Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Стабилизатор напряжения 220в для дома своими руками схема

Бытовые устройства чувствительны к скачкам напряжения, быстрее подлежат износу, и появляются неисправности. В электрической сети напряжение часто изменяется, снижается, либо возрастает. Это взаимосвязано с отдаленностью источника энергии и некачественной линии питания.

Чтобы подключать приборы к устойчивому питанию, в жилых помещениях применяют стабилизаторы напряжения. На его выходе напряжение обладает стабильными свойствами. Стабилизатор можно приобрести в торговой сети, однако такой прибор можно изготовить своими руками.

Имеются допуски на изменение напряжения не более 10% от номинального значения (220 В). Это отклонение должно быть соблюдено как в большую сторону, так и в меньшую. Но идеальной электрической сети не бывает, и величина напряжения в сети часто меняется, усугубляя тем самым работу подключенных к ней устройств.

Электрические приборы отрицательно реагируют на такие капризы сети и могут быстро выйти из строя, потеряв при этом свои заложенные функции.

Чтобы избежать таких последствий, люди применяют самодельные приборы под названием стабилизаторы напряжения. Эффективным стабилизатором стал прибор, выполненный на симисторах. Как сделать стабилизатор напряжения своими руками мы и рассмотрим.

Характеристика стабилизатора

Это устройство стабилизации не будет иметь повышенную чувствительность к изменениям напряжения, подающегося по общей линии. Сглаживание напряжения будет производиться в том случае, если на входе напряжение будет находиться в пределах от 130 до 270 вольт.

Включенные в сеть устройства будут питаться напряжением, имеющим величину от 205 до 230 вольт. От такого прибора можно будет питать электрические устройства, суммарная мощность которых до 6 кВт. Стабилизатор будет производить переключение нагрузки потребителя за 10 мс.

Устройство стабилизатора

Схема устройства стабилизации.

Стабилизатор напряжения по указанной схеме имеет в своем составе следующие части:

  1. Питающий блок, в который входят емкости С2, С5, компаратор, трансформатор, теплоэлектрический диод.
  2. Узел, задерживающий подключение нагрузки потребителя, и состоящий из сопротивлений, транзисторов, емкости.
  3. Выпрямительного моста, измеряющего амплитуду напряжения. Выпрямитель состоит из емкости, диода, стабилитрона, нескольких делителей.
  4. Компаратора напряжения. Его составными частями являются сопротивления и компараторы.
  5. Логического контроллера на микросхемах.
  6. Усилителей, на транзисторах VТ4-12, резисторов, ограничивающих ток.
  7. Светодиодов в качестве индикаторов.
  8. Оптитронных ключей. Каждый из ник снабжается симисторами и резисторами, а также оптосимисторами.
  9. Электрического автомата, либо предохранителя.
  10. Автотрансформатора.

Принцип действия

Рассмотрим, как функционирует стабилизатор напряжения, выполненный своими руками.

После подключения питания емкость С1 находится в состоянии разряда, транзистор VТ1 открытый, а VТ2 закрытый. VТ3 транзистор также остается закрытым. Через него поступает ток на все светодиоды и оптитрон на основе симисторов.

Так как этот транзистор пребывает в закрытом состоянии, то светодиоды не горят, а каждый симистор закрыт, нагрузка выключена. В этот момент ток поступает через сопротивление R1 и приходит на С1. Дальше конденсатор начинает заряжаться.

Диапазон выдержки идет три секунды. За этот период производятся все процессы перехода. После их окончания срабатывает триггер Шмитта на основе транзисторов VТ1 и VТ2. После этого открывается 3-й транзистор и подключается нагрузка.

Напряжение, выходящее с 3-й обмотки Т1, выравнивается диодом VD2 и емкостью С2. Далее ток поступает на делитель на сопротивлениях R13-14. Из сопротивления R14, напряжение, величина которого прямо зависит от величины напряжения, включена в каждый неинвертирующий компараторный вход.

Число компараторов становится равным 8. Они все выполнены на микросхемах DА2 и DА3. В то же время на инвертируемый вход компараторов подходит постоянный ток, подающийся с помощью делителей R15-23. Дальше вступает в действие контроллер, осуществляющий прием входного сигнала каждого компаратора.

Стабилизатор напряжения и его особенности

Когда напряжение входа становится меньше 130 вольт, то на выходах компараторов появляется логический уровень малого размера. В этот момент транзистор VТ4 находится в открытом виде, первый светодиод мигает. Эта индикация сообщает о наличии низкого напряжения, что означает невозможность выполнения регулируемым стабилизатором своих функций.

Все симисторы закрытии и нагрузка отключена. Когда напряжение находится в пределах 130-150 вольт, то сигналы 1 и А имеют свойства высокого значения логического уровня. Такой уровень имеет низкое значение. В таком случае транзистор VТ5 открывается, и начинает сигнализировать второй светодиод.

Оптосимистор U1.2 открывается, так же, как и симистор VS2. Через симистор будет протекать нагрузочный ток. Затем нагрузка зайдет в верхний вывод катушки автотрансформатора Т2.

Если напряжение входа 150 – 170 В, то сигналы 2, 1 и В имеют повышенное значение логического уровня. Другие сигналы имеют низкий уровень. При таком напряжении входа транзистор VТ6 открывается, 3-й светодиод включается. В этот момент 2-й симистор открывается и ток поступает на второй вывод катушки Т2, являющийся 2-м сверху.

Собранный самостоятельно стабилизатор напряжения на 220 вольт будет соединять обмотки 2-го трансформатора, если уровень напряжения входа достигнет соответственно: 190, 210, 230, 250 вольт. Чтобы сделать такой стабилизатор, необходима печатная плата 115 х 90 мм, изготовленная из фольгированного стеклотекстолита.

Изображение платы можно отпечатать на принтере. Затем с помощью утюга переносят это изображение на плату.

Изготовление трансформаторов

Изготовить трансформаторы Т1 и Т2 можно самостоятельно. Для Т1, мощность которого 3 кВт, необходимо применить магнитопровод с поперечным сечением 1,87 см2, и 3 провода ПЭВ – 2. 1-й провод диаметром 0,064 мм. Им наматывают первую катушку, с количеством витков 8669. Другие 2 провода применяются для образования остальных обмоток. Провода на них должны быть одного диаметра 0,185 мм, с числом витков 522.

Чтобы не изготавливать самому такие трансформаторы, можно применить готовые варианты ТПК – 2 – 2 х 12 В, соединенные последовательно.

Чтобы изготовить трансформатор Т2 на 6 кВт, применяют магнитопровод тороидальной формы. Обмотку наматывают проводом ПЭВ – 2 с числом витков 455. На трансформаторе необходимо вывести 7 отводов. Первые 3 из них наматываются проводом 3 мм. Остальные 4 отвода наматываются шинами сечением 18 мм

2. С таким сечением провода трансформатор не нагреется.

Отводы выполняют на таких витках: 203, 232, 266, 305, 348 и 398. Витки считают с нижнего отвода. В этом случае электрический ток сети должен поступать по отводу 266 витка.

Детали и материалы

Остальные элементы и детали стабилизатора для самостоятельной сборки приобретаются в торговой сети. Перечислим их перечень:

  1. Симисторы (отптроны) МОС 3041 – 7 шт.
  2. Симисторы ВТА 41 – 800 В – 7 шт.
  3. КР 1158 ЕН 6А (DА1) стабилизатор.
  4. Компаратор LМ 339 N (для DА2 и DА3) – 2 шт.
  5. Диоды DF 005 М (для VD2 и VD1) – 2 шт.
  6. Резисторы проволочные СП 5 или СП 3 (для R13, R14 и R25) – 3 шт.
  7. Резисторы С2 – 23, с допуском 1% — 7 шт.
  8. Резисторы любого номинала с допуском 5% — 30 шт.
  9. Резисторы токоограничивающие – 7 шт, для пропускания ими тока 16 миллиампер (для R 41 – 47) – 7 шт.
  10. Конденсаторы электролитические – 4 шт (для С5 – 1).
  11. Конденсаторы пленочные (С4 – 8).
  12. Выключатель, оснащенный предохранителем.

Оптроны МОС 3041 заменяются на МОС 3061. КР 1158 ЕН 6А стабилизатор можно менять на КП 1158 ЕН 6Б. Компаратор К 1401 СА 1 можно установить в качестве аналога LM 339 N. Вместо диодов можно использовать КЦ 407 А.

Микросхему КР 1158 ЕН 6А надо устанавливать на теплоотвод. Для его изготовления применяют алюминиевую пластинку 15 см2. Также на него необходимо установить симисторы. Для симисторов допускается применять общий теплоотвод. Площадь поверхности должна превышать 1600 см

2. Стабилизатор необходимо снабдить микросхемой КР 1554 ЛП 5, выступающей в качестве микроконтроллера. Девять светодиодов располагаются так, что попадают в отверстия на панели прибора спереди.

Если устройство корпуса не дает установить их таким образом, как на схеме, то их размещают на другой стороне, где расположены печатные дорожки. Светодиоды необходимо устанавливать мигающего типа, но можно монтировать и немигающие диоды, при условии, что они будут светиться ярким красным светом. Для таких целей применяют АЛ 307 КМ или L 1543 SRC — Е.

Можно выполнить сборку более простых исполнений приборов, но они будут иметь определенными особенностями.

Достоинства и недостатки, отличия от заводских моделей

Если перечислять достоинства стабилизаторов, изготовленных самостоятельно, то основным достоинством является низкая стоимость. Производители приборов часто завышают цены, а своя сборка в любом случае обойдется меньшей стоимостью.

Другим преимуществом можно определить такой фактор, как возможность простого ремонта своими руками устройства, Ведь кто, если не вы знаете лучше устройство, собранное своими руками.

В случае поломки хозяин прибора сразу найдет неисправный элемент и заменит его на новый. Простая замена деталей создается таким фактором, что все детали приобретались в магазине, поэтому их можно будет легко снова купить в любом магазине.

Недостатком самостоятельно собранного стабилизатора напряжения необходимо выделить его сложную настройку.

Простейший стабилизатор напряжения своими руками

Рассмотрим, каким образом можно изготовить самостоятельно стабилизатор на 220 вольт собственными руками, имея под рукой несколько простых деталей. Если в вашей электрической сети напряжение значительно снижено, то такой прибор подойдет вам как нельзя кстати. Чтобы его изготовить, понадобится готовый трансформатор, и несколько простых деталей. Лучше взять такой пример прибора себе на заметку, так как получается неплохое устройство, обладающее достаточной мощностью, например, для микроволновки.

Для холодильников и различных других бытовых устройств понижение напряжения сети очень вредно, больше чем повышение. Если поднять величину напряжения сети, применяя автотрансформатор, то во время уменьшения напряжения сети на выходе прибора напряжение будет нормальной величины. А если в сети напряжение станет в норме, то на выходе мы получим повышенное значение напряжения. Например, возьмем трансформатор на 24 В. При напряжении на линии 190 В на выходе устройства получится 210 В, при значении сети 220 В на выходе получится 244 В. Это вполне допустимо и нормально для работы бытовых устройств.

Для изготовления нам понадобится основная деталь – это простой трансформатор, но не электронный. Его можно найти готовый, либо изменить данные на уже имеющемся трансформаторе, например, от сломанного телевизора. Трансформатор будем соединять по схеме автотрансформатора. Напряжение на выходе будет получаться примерно на 11% выше напряжения сети.

При этом нужно соблюдать осторожность, так как во время значительного перепада напряжения в сети в большую сторону, на выходе устройства получится напряжение, которое значительно превышает допустимую величину.

Автотрансформатор будет добавлять к напряжению линии сети всего 11%. Это значит, что мощность автотрансформатора берется также на 11% от мощности потребителя. Например, мощность микроволновки равна 700 Вт, значит трансформатор берем 80 Вт. Но лучше брать мощность с запасом.

Регулятор SA1 дает возможность, если нужно, подсоединять нагрузку потребителя без автотрансформатора. Конечно, это не полноценный стабилизатор, но зато для его изготовления не требуется больших вложений и много времени.

Схема мощного стабилизатора напряжения 220в своими руками. Стабилизатор напряжения — как все сделать своими руками. Видео. Преимущества и недостатки перед фабричными

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных схемы является возможность защиты от короткого замыкания в нагрузке.


5 очень простых схем в основном собранных на транзисторах, одна из них, с защитой от КЗ

Очень часто бывает когда для питания вашей новодельной электронной самоделки требуется стабильное напряжение, которое не меняется от нагрузки, например, 5 Вольт или 12 Вольт для питания автомагнитолы. И чтобы сильно не заморачиваться с конструированием самодельного блока питания на транзисторах, используются так называемые микросхемы стабилизаторы напряжения. На выходе такого элемента мы получим напряжение, на которое спроектирован этот прибор

Многие радиолюбители уже неоднократно собирали схемы стабилизаторов напряжения на специализированных микросхемах серий 78хх, 78Мхх, 78Lxx. Например, на микросхеме KIA7805 можно собрать самодельную схему рассчитаную на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но мало кто знает, что имеются узко специализированный микросхемы серии 78Rxx, которые сочитают в себе стабилизаторы напряжения положительной полярности с малым напряжением насыщения, которое не превышает 0, 5 В при токе нагрузки 1 А. Одну из этих схем мы и рассмотрим более подробно.

Регулируемый трехвыводной стабилизатор положительного напряжения LM317 обеспечивает ток нагрузки 100 мА в диапазоне выходного напряжения от 1.2 до 37 В. Стабилизатор очень удобен в применении и требуют только два внешних резистора для обеспечения выходного напряжения. Кроме того, нестабильность по напряжению и току нагрузки у стабилизатора LM317L имеет лучшие показателями, чем у традиционных стабилизаторов с фиксированным значением выходного напряжения.

Для стабилизации напряжения постоянного тока достаточно большой мощности в числе других применяются компенсационные стабилизаторы непрерывного действия. Принцип действия такого стабилизатора заключается в поддержании выходного напряжения на заданном уровне за счет изменения падения напряжения на регулирующем элементе. При этом величина управляющего сигнала, поступающего на регулирующий элемент, зависит от разницы между заданным и выходным напряжениями стабилизатора.

При стационарной эксплуатации аппаратуры, CD и аудиоплейеров возникают проблемы с БП. Большинство блоков питания, выпускаемых серийно отечественным производителем, (если быть точным) практически все не могут удовлетворить потребителя, так как содержат упрощенные схемы. Если говорить об импортных китайских и им подобных блоках питания, то они, вообще, представляют интересный набор деталей “купи и выброси”. Эти и многие другие проблемы заставляют радиолюбителейно изготовлять блоки питания. Но и на этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Данная радиолюбительская разработка представлена как вариант нетрадиционного включения операционного усиителя, ранее опубликованного и вскоре забытого

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша конструкция работает от напряженияпять вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Стабилизатор напряжения на 220 вольт


В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО “Прибор”, г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева “Селен”, справа – с обычными характеристиками)


Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке “Украина” тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью “Типы стабилизаторов напряжения”, где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.


На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема



Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10 .
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1 . Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 – усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676 .
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on , R2off , R1on и R1off .
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1 , а вспомогательные LIMING JZC – 22F .
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).



Прибор повешен на стене и закрыт кожухом из жести


Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР”а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки . Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC – 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО “Прибор”, г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой
▼ 🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи – помоги мне!

Стабилизатор представ­ляет собой сетевой авто­трансформатор, отводы обмотки которого пере­ключаются автоматичес­ки в зависимости от величины напряжения в электросети.

Стабилизатор позво­ляет поддерживать вы­ходное напряжение на уровне 220V при измене­нии входного от 180 до 270 V. Точность стабили­зации 10V.

Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схе­му автотрансформатора).

Схема управления пока­зана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отво­дом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения. Напряже­ние с конденсатора С1 поступает на цепь пита­ния микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений мини­мальной и максимальной отметки шкалы. Для их получения используется параметрический стабилизатор на УЗ и Р1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором RЗ -нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напря­жения от номинального значения. В процессе налаживания резистор R5 пред­варительно устанавливают в среднее положе­ние, а резистор RЗ в нижнее по схеме.

Затем, на первичную обмотку Т1 от автотрансфор­матора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные свето-диоды). Затем входное переменное напря­жение уменьшают до 190V и резистором RЗ выводят шкалу на значение когда горит свето­диод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последова­тельных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микро­схемы А1.

Всего получается девять пороговых значе­ний, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных изме­рений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9. Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансфор­матора. И наоборот, — увеличение пока­заний микросхемы А1 приводит к пере­ключению на понижающий отвод авто­трансформатора. Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симис-торные ключи переключаются уверенно. Схема на транзисторах VТ1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переход­ных процессов в схеме после включе­ния. Эта схема задерживает подключе­ние светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вто­ричных по 12V (12-0-12V) и ток 300mА. Можно использовать и другой аналогич­ный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Содержание:

В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие – на уменьшение.

Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.

Схема стабилизатора напряжения 220в своими руками

При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.

Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.

За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.

Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.

Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.

Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см2 и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков – 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.

Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм2. За счет этого предотвращается нагрев трансформатора во время работы.

Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см2. На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью. После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.

Схемы стабилизаторов напряжения на транзисторах

Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе – уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.

В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу . Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.

Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.

Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы – К50-35, резисторы – МЛТ-0,5.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому – КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами – стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) – полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 – 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.

Схема симисторного стабилизатора напряжения 220в

Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.

Управление обмотками с помощью симисторов – бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком – до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.

Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.

Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.

Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.
Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 – на выходное напряжение.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.

Схема релейного стабилизатора напряжения 220

С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.

Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус. Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.

Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.

Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.

Стабилизатор напряжения и тока на LM2576

Напряжение домашней электросети часто бывает пониженным, никогда не достигая нормальных 220 В. В такой ситуации и холодильник плохо запускается, и освещение слабое, и вода в электрочайнике долгое время не закипает. Мощность устаревшего стабилизатора напряжения, предназначенного для питания черно-белого (лампового) телевизора, обычно недостаточна для всех других бытовых приборов, да и напряжение в сети зачастую падает ниже допустимого для такого стабилизатора.

Известен простой способ повысить напряжение в сети, используя трансформатор мощностью значительно меньше мощности нагрузки. Первичную обмотку трансформатора включают непосредственно в сеть, а нагрузку соединив последовательно со вторичной (понижающей) обмоткой трансформатора. При соответствующей фазировке напряжение на нагрузке будет равно сумме сетевого и снимаемого с трансформатора.

Схема стабилизатора сетевого напряжения , действующего по этому принципу, изображена на рис. 1. Когда включенный в диагональ диодного моста VD2 полевой транзистор VT2 закрыт, обмотка I (первичная) трансформатора Т1 отключена от сети. Напряжение на нагрузке практически равно сетевому за вычетом небольшого падения напряжения на обмотке II (вторичной) трансформатора Т1. Если же открыть полевой транзистор, цепь питания первичной обмотки трансформатора будет замкнута, а к нагрузке приложена сумма напряжения его вторичной обмотки и сетевого.

Рис. 1 Схема стабилизатора напряжения

Напряжение на нагрузке, пониженное трансформатором Т2 и выпрямленное диодным мостом VD1, поступает на базу транзистора VT1. Движок подстроечного резистора R1 должен быть установлен в положение, при котором транзистор VT1 открыт, a VT2 закрыт, если напряжение на нагрузке больше номинального (220 В). При напряжении меньше номинального транзистор VT1 будет закрыт, a VT2 – открыт. Организованная таким образом отрицательная I обратная связь поддерживает напряжение на нагрузке приблизительно равным номинальному

Выпрямленное мостом VD1 напряжение использовано и для питания коллекторной цепи транзистора VT1 (через интегральный стабилизатор DA1). Цепь C5R6 подавляет нежелательные выбросы напряжения сток-исток транзистора VT2. Конденсатор С1 снижает помехи, проникающие в сеть при работе стабилизатора. Резисторы R3 и R5 подбирают, добиваясь наилучшей и устойчивой стабилизации напряжения. Выключателем SA1 включают и выключают стабилизатор вместе с нагрузкой. Замкнув выключатель SA2, отключают автоматику, поддерживающую напряжение на нагрузке неизменным. Оно в этом случае становится максимально возможным при данном напряжении в сети.

Большинство деталей стабилизатора смонтированы на печатной плате, изображенной на рис. 2. Остальные соединяются с ней в точках А-Г.

Подбирая замену диодному мосту КЦ405А (VD2), следует иметь в виду, что он должен быть рассчитан на напряжение не менее 600 В и ток, равный максимальному току нагрузки, деленному на коэффициент трансформации трансформатора Т1. Требования к мосту VD1 скромнее: напряжение и ток – не менее соответственно 50 В и 50 мА

Рис. 2 Монтаж печатной платы

Транзистор КТ972А можно заменить на КТ815Б , a IRF840 – на IRF740 . Полевой транзистор имеет теплоотвод размерами 50×40 мм.

“Вольтодобавочный” трансформатор Т1 изготовлен из трансформатора СТ-320, применявшегося в блоках питания БП-1 телевизоров УЛПЦТ-59. Трансформатор разбирают, и аккуратно сматывают вторичные обмотки, оставив первичные в сохранности. Новые вторичные обмотки (одинаковые на обеих катушках) наматывают эмалированным медным проводом (ПЭЛ или ПЭВ) в соответствии с данными, приведенными в таблице. Чем сильнее падает напряжение в сети, тем больше потребуется витков и тем меньше допустимая мощность нагрузки.

После перемотки и сборки трансформатора выводы 2 и 2″ половин первичной обмотки, находящихся на разных стержнях магнитопровода, соединены перемычкой. Половины вторичной обмотки нужно соединить последовательно таким образом, чтобы их суммарное напряжение было максимальным (при неправильном соединении оно окажется близким к нулю). По максимуму суммарного напряжения вторичной обмотки и сети нужно определить, какой из оставшихся свободными выводов этой обмотки следует соединить с выводом 1 первичной, а какой – с нагрузкой.

Трансформатор Т2 – любой сетевой с напряжением на вторичной обмотке, близким к указанному на схеме при потребляемом от этой обмотки токе 5О…1ООмА.

Таблица 1

Добавочное напряжение, В 70 60 50 40 30 20
Максимальная мощность нагрузки, кВт 1 1.2 1.4 1,8 2,3 3,5
Число витков обмотки II 60+60 54+54 48+48 41+41 32+32 23+23
Диаметр провода, мм 1.5 1,6 1,8 2 2,2 2,8

Включив собранный стабилизатор в сеть, подстроечным резистором R1 установите напряжение на нагрузке равным 220 В. Следует учитывать, что описанное устройство не устраняет колебания сетевого напряжения, если оно превышает 220 В или опускается ниже минимального, принятого при расчете трансформатора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Примечание: в тяжелых режимах работы стабилизатора, мощность, рассеиваемая транзистором VT2, бывает весьма увеличенной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем теплоотводе транзистора.

Стоит ли собирать стабилизатор напряжения своими руками

Идеальным вариантом работы электросетей является изменение значений тока и напряжения как в сторону уменьшения, так и увеличения не более чем на 10% от номинальных 220 В. Но поскольку в реальности скачки характеризуются большими изменениями, то электроприборам, подключенным к сети напрямую, грозит потеря проектных возможностей и даже выход из строя.

Избежать неприятностей поможет использование специального оборудования. Но поскольку оно отличается весьма высокой ценой, то многие предпочитают собирать стабилизатор напряжения сделанный своими руками. Насколько оправдан такой шаг и что потребуется для его реализации?

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Виды приборов и их особенности

Виды и их применения

Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно одним из способов:

  • Механическим;
  • Импульсным.

Первый основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям.

Приборы этого типа позволяют очень только выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.

Смотрим видео, принцип работы импульсного прибора:

Импульсные модели работают по принципу амплитудной модуляции тока. В цепи стабилизатора используется выключатель, разрывающий ее через определенные промежутки времени. Такой подход позволяет равномерно накапливать ток в конденсаторе, а после его полной зарядки и далее на приборы.

В отличие от линейных стабилизаторов импульсные не имеют возможности задавать определенную величину. В продаже встречаются модели повышающе-понижающие – это идеальный выбор для дома.

Также стабилизаторы напряжения делятся на:

  1. Однофазные;
  2. Трехфазные.

Но так как большинство бытовых приборов работают от однофазной сети, то в жилых помещениях используют как правило оборудование, относящееся к первому типу.

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Этапы изготовления

Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

Смотрим видео, самодельный несложный прибор:

схема электрическая принципиальная

Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:

  • магнитопровод площадью сечения 1,87 см²;
  • три кабеля ПЭВ-2.

Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.

Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.

Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.

соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.

Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.

Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.

Эффективность изделия, выполненного своими руками

Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.

К преимуществам самодельных устройств можно отнести и возможность самостоятельного ремонта. Человек, собравший стабилизатор разобрался как в его принципе действия, так и строении и поэтому сможет устранить неисправность без посторонней помощи.

Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.

Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.

Заключение

Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

Стабилизатор напряжения своими руками

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Подобные устройства используются в составе конкретной бытовой аппаратуры и не более того.

Поэтому вполне актуальной является задача сделать мощный стабилизатор напряжения своими руками под работу с напряжением бытовой сети 220 вольт. В принципе, такая задача решаема. Посмотрим, каким способом удастся ее выполнить.

Блок: 1/6 | Кол-во символов: 575
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Стабилизация напряжения бытовой сети

Стремления владельцев разного вида недвижимости обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве.

Да и в целом фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений по такому оборудованию на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами.

Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Блок: 2/6 | Кол-во символов: 1509
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Характеристика стабилизатора

Прежде чем задавать вопрос, как сделать стабилизатор напряжения своими руками, нужно хорошо разузнать его характеристики.

Диапазон входного напряжения характеризуется двумя порогами – нижним и верхним. Работа между двумя порогами считается нормальной для стабилизатора. Встречаются модели с большой шкалой регулирования входного напряжения, но не стоит их приобретать. Так как чем больше параметр, тем медленнее будет реагировать прибор.

Точность и скорость реагирования также требует особого внимания. Все электроприборы требуют точность электроподачи с небольшим отклонением не больше пяти процентов. Основываясь на этом стоит выбирать стабилизирующее устройство. Но не стоит забывать про скорость реагирования. Например, если к стабилизатору подключено много разных приборов, то он должен реагировать плавно, чтобы не было сильных скачков.

Мощность устройства выбрать, наверно, легче всего. Так как для этого необходимо просто сложить напряжение всех приборов, которые работают в помещении. Это среднее число будет определять, какая мощность понадобиться стабилизатору.

Фазность различают однофазную и трехфазную. Какую выбрать зависит от того, какое количество фаз имеют нагрузки, которые подключаются к стабилизатору. Если хоть один прибор имеет три фазы, это значит устройство тоже должно быть трехфазным.

Что касается дополнительных опции и габаритов с массой, то здесь все зависит от предпочтений покупателя. В основном, выбирают с минимальным количеством ненужных функций, чтобы ремонт стабилизатора напряжения своими руками можно было сделать.

Блок: 3/6 | Кол-во символов: 1583
Источник: https://techsad.com/oborudovanie/stabilizator-napryazheniya-svoimi-rukami/

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 — феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка — феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 — автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Подобного рода схемы выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения.

Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 — электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже, становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно.Без опыта и знаний в сфере электротехники не обойтись.

Поэтому под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Блок: 3/6 | Кол-во символов: 3370
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Блок: 2/5 | Кол-во символов: 581
Источник: http://GeneratorVolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html

Виды стабилизаторов напряжения

В зависимости от мощности нагрузки в сети и других условий эксплуатации, используются различные модели стабилизаторов:

  • Феррорезонансные стабилизаторы считаются самыми простыми, в них применяется принцип магнитного резонанса. Схема включает в себя всего два дросселя и конденсатор. Внешне он похож на обычный трансформатор с первичной и вторичной обмотками на дросселях. Такие стабилизаторы имеют большой вес и габариты, поэтому почти не используются для бытовой аппаратуры. Благодаря высокому быстродействию, эти приборы применяются для медицинского оборудования;

Схема феррорезонансного стабилизатора напряжения

  • Сервоприводные стабилизаторы обеспечивают регулировку напряжения автотрансформатором, реостатом которого управляет сервопривод, получающий сигналы с датчика контроля напряжения. Электромеханические модели могут работать с большими нагрузками, но имеют малую скорость срабатывания. Релейный стабилизатор напряжения имеет секционную конструкцию вторичной обмотки, стабилизация напряжения производится группой реле, сигналы на замыкание и размыкание контактов которых поступают с платы управления. Таким образом, осуществляется подключение нужных секций вторичной обмотки для поддержания выходного напряжения в пределах установленных величин. Скорость регулировки осуществляется быстро, но точность установки напряжения невысокая;

Пример сборки релейного стабилизатора напряжения

  • Электронные стабилизаторы имеют аналогичный принцип, как и релейные, но вместо реле используются тиристоры, симисторы или полевые транзисторы для выпрямления соответствующей мощности, в зависимости от тока нагрузки. Это значительно повышает скорость переключения секций вторичной обмотки. Бывают варианты схем без трансформаторного блока, все узлы выполнены на полупроводниковых элементах;

Вариант схемы электронного стабилизатора

  • Стабилизаторы напряжения с двойным преобразованием осуществляют регулировку по инверторному принципу. Эти модели преобразуют переменное напряжение в постоянное, потом обратно в переменное напряжение, на выходе преобразователя формируется 220В.

Вариант схемы инверторного стабилизатора напряжения

Схема стабилизатора не преобразует напряжение сети. Инвертор постоянного напряжения в переменное при любом напряжении на входе генерирует на выходе 220В переменного тока. Такие стабилизаторы совмещают высокую скорость срабатывания и точность установки напряжения, но имеют высокую цену по сравнению с ранее рассмотренными вариантами.

Блок: 2/4 | Кол-во символов: 2475
Источник: https://elquanta.ru/teoriya/skhema-stabilizatora-napryazheniya-220v.html

Устройство стабилизатора

Схема устройства стабилизации.

Стабилизатор напряжения по указанной схеме имеет в своем составе следующие части:

  1. Питающий блок, в который входят емкости С2, С5, компаратор, трансформатор, теплоэлектрический диод.
  2. Узел, задерживающий подключение нагрузки потребителя, и состоящий из сопротивлений, транзисторов, емкости.
  3. Выпрямительного моста, измеряющего амплитуду напряжения. Выпрямитель состоит из емкости, диода, стабилитрона, нескольких делителей.
  4. Компаратора напряжения. Его составными частями являются сопротивления и компараторы.
  5. Логического контроллера на микросхемах.
  6. Усилителей, на транзисторах VТ4-12, резисторов, ограничивающих ток.
  7. Светодиодов в качестве индикаторов.
  8. Оптитронных ключей. Каждый из ник снабжается симисторами и резисторами, а также оптосимисторами.
  9. Электрического автомата, либо предохранителя.
  10. Автотрансформатора.

Блок: 3/9 | Кол-во символов: 869
Источник: http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html

Видео

Блок: 4/4 | Кол-во символов: 5
Источник: https://elquanta.ru/teoriya/skhema-stabilizatora-napryazheniya-220v.html

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Блок: 4/5 | Кол-во символов: 888
Источник: http://GeneratorVolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html

Принцип работы

Каким же образом работает наш стабилизатор сетевого напряжения, который легко делается своими руками?

После того, как включается питание конденсатор С1 находится в разряженном состоянии, транзистор VT2 открыт, а VT2 является закрытым. Также закрытым является транзистор VT3. Именно через него будет подаваться ток на каждый светодиод и симисторный оптотрон.

Поскольку этот транзистор является закрытым, светодиоды не светятся, каждый симистор является закрытым и нагрузка отключена. В это время электрический ток проходит через резистор R1 и попадает в С1. Далее происходит зарядка этого конденсатора.

Интервал задержки длится всего лишь три секунды. За это время осуществляются все переходные процессы, и после окончания происходит срабатывание триггера Шмитта, основу которого составляют транзисторы VT1 и VT2.

Далее открывается третий транзистор и включается нагрузка.

Напряжение, которое выходит с третьей обмотки Т1, выпрямляется диодом VD2 и конденсатором С2. Далее ток проходит через делитель R13…14. Из R14 напряжение, уровень которого является пропорциональным количеству вольт в сети, входит в каждый неинвертирующий вход компараторов.

Количество компараторов равняется восьми и все они находятся на микросхемах DA2 и DA3. В этот же момент на инвертирующий вход каждого компаратора входит постоянный образцовый ток. Его подают резисторные делители R15…23.

После этого в игру вступает контроллер, который осуществляет обработку сигнала на входе у каждого компаратора.

Блок: 4/5 | Кол-во символов: 1485
Источник: http://electricadom.com/stabilizator-napryazheniya-kak-vse-sdelat-svoimi-rukami-video.html

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самлделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Блок: 6/6 | Кол-во символов: 689
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Детали и материалы

Остальные элементы и детали стабилизатора для самостоятельной сборки приобретаются в торговой сети. Перечислим их перечень:

  1. Симисторы (отптроны) МОС 3041 – 7 шт.
  2. Симисторы ВТА 41 – 800 В – 7 шт.
  3. КР 1158 ЕН 6А (DА1) стабилизатор.
  4. Компаратор LМ 339 N (для DА2 и DА3) – 2 шт.
  5. Диоды DF 005 М (для VD2 и VD1) – 2 шт.
  6. Резисторы проволочные СП 5 или СП 3 (для R13, R14 и R25) – 3 шт.
  7. Резисторы С2 – 23, с допуском 1% — 7 шт.
  8. Резисторы любого номинала с допуском 5% — 30 шт.
  9. Резисторы токоограничивающие – 7 шт, для пропускания ими тока 16 миллиампер (для R 41 – 47) – 7 шт.
  10. Конденсаторы электролитические – 4 шт (для С5 – 1).
  11. Конденсаторы пленочные (С4 – 8).
  12. Выключатель, оснащенный предохранителем.

Оптроны МОС 3041 заменяются на МОС 3061. КР 1158 ЕН 6А стабилизатор можно менять на КП 1158 ЕН 6Б. Компаратор К 1401 СА 1 можно установить в качестве аналога LM 339 N. Вместо диодов можно использовать КЦ 407 А.

Микросхему КР 1158 ЕН 6А надо устанавливать на теплоотвод. Для его изготовления применяют алюминиевую пластинку 15 см2. Также на него необходимо установить симисторы. Для симисторов допускается применять общий теплоотвод. Площадь поверхности должна превышать 1600 см2. Стабилизатор необходимо снабдить микросхемой КР 1554 ЛП 5, выступающей в качестве микроконтроллера. Девять светодиодов располагаются так, что попадают в отверстия на панели прибора спереди.

Если устройство корпуса не дает установить их таким образом, как на схеме, то их размещают на другой стороне, где расположены печатные дорожки. Светодиоды необходимо устанавливать мигающего типа, но можно монтировать и немигающие диоды, при условии, что они будут светиться ярким красным светом. Для таких целей применяют АЛ 307 КМ или L 1543 SRC — Е.

Можно выполнить сборку более простых исполнений приборов, но они будут иметь определенными особенностями.

Блок: 7/9 | Кол-во символов: 1841
Источник: http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html

Простейший стабилизатор напряжения своими руками

Рассмотрим, каким образом можно изготовить самостоятельно стабилизатор на 220 вольт собственными руками, имея под рукой несколько простых деталей. Если в вашей электрической сети напряжение значительно снижено, то такой прибор подойдет вам как нельзя кстати. Чтобы его изготовить, понадобится готовый трансформатор, и несколько простых деталей. Лучше взять такой пример прибора себе на заметку, так как получается неплохое устройство, обладающее достаточной мощностью, например, для микроволновки.

Для холодильников и различных других бытовых устройств понижение напряжения сети очень вредно, больше чем повышение. Если поднять величину напряжения сети, применяя автотрансформатор, то во время уменьшения напряжения сети на выходе прибора напряжение будет нормальной величины. А если в сети напряжение станет в норме, то на выходе мы получим повышенное значение напряжения. Например, возьмем трансформатор на 24 В. При напряжении на линии 190 В на выходе устройства получится 210 В, при значении сети 220 В на выходе получится 244 В. Это вполне допустимо и нормально для работы бытовых устройств.

Для изготовления нам понадобится основная деталь – это простой трансформатор, но не электронный. Его можно найти готовый, либо изменить данные на уже имеющемся трансформаторе, например, от сломанного телевизора. Трансформатор будем соединять по схеме автотрансформатора. Напряжение на выходе будет получаться примерно на 11% выше напряжения сети.

При этом нужно соблюдать осторожность, так как во время значительного перепада напряжения в сети в большую сторону, на выходе устройства получится напряжение, которое значительно превышает допустимую величину.

Автотрансформатор будет добавлять к напряжению линии сети всего 11%. Это значит, что мощность автотрансформатора берется также на 11% от мощности потребителя. Например, мощность микроволновки равна 700 Вт, значит трансформатор берем 80 Вт. Но лучше брать мощность с запасом.

Регулятор SA1 дает возможность, если нужно, подсоединять нагрузку потребителя без автотрансформатора. Конечно, это не полноценный стабилизатор, но зато для его изготовления не требуется больших вложений и много времени.

Самодельный стабилизатор напряжения

Блок: 9/9 | Кол-во символов: 2308
Источник: http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html

Кол-во блоков: 16 | Общее кол-во символов: 18178
Количество использованных доноров: 6
Информация по каждому донору:
  1. http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html: использовано 4 блоков из 6, кол-во символов 6143 (34%)
  2. http://electricadom.com/stabilizator-napryazheniya-kak-vse-sdelat-svoimi-rukami-video.html: использовано 1 блоков из 5, кол-во символов 1485 (8%)
  3. https://elquanta.ru/teoriya/skhema-stabilizatora-napryazheniya-220v.html: использовано 2 блоков из 4, кол-во символов 2480 (14%)
  4. http://GeneratorVolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html: использовано 2 блоков из 5, кол-во символов 1469 (8%)
  5. https://techsad.com/oborudovanie/stabilizator-napryazheniya-svoimi-rukami/: использовано 1 блоков из 6, кол-во символов 1583 (9%)
  6. http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html: использовано 3 блоков из 9, кол-во символов 5018 (28%)

Электронный стабилизатор напряжения 220 своими руками. Виды и схемы стабилизаторов напряжения

Исследовав источники и ряд сайтов в Интернете, я упростил стабилизатор переменного напряжения, описанный в статье . Число микросхем удалось сократить до четырёх, число оптосимисторных ключей — до шести. Принцип действия стабилизатора такой же, как у прототипа .

Основные технические характеристики стабилизатора напряжения:

  • Входное напряжение, В …..135…270
  • Выходное напряжение, В. . . .197…242
  • Максимальная мощность нагрузки, кВт ………………5
  • Время переключения или отключения нагрузки,мс …….10

Схема предлагаемого стабилизатора показана на рисунке. Устройство состоит из силового модуля и блока управления. Силовой модуль содержит мощный автотрансформатор Т2 и шесть ключей переменного тока, обведённых на схеме штрихпунктирной линией.

Остальные детали образуют блок управления. Он содержит семь пороговых устройств: I – DA2.1 R5 R11 R17, II -DA2.2 R6 R12 R18, III — DA2.3 R7 R13 R19, IV — DA2.4 R8 R14 R20, V — DA3.1 R9 R15 R21, VI — DA3.2 R10 R16 R22, VII -DA3.3 R23. На одном из выходов дешифратора DD2 присутствует напряжение высокого уровня, которое вызывает включение соответствующего светодиода (одного из HL1 — HL8).

Мощный автотрансформатор Т2 включён иначе, чем в прототипе. Напряжение сети подаётся на один из отводов обмотки или на обмотку целиком через один из симисторов VS1—VS6, а нагрузка подключена к одному и тому же отводу. При таком включении расходуется меньше провода на обмотку автотрансформатора.

Напряжение обмотки II трансформатора Т1 выпрямляют диоды VD1, VD2 и сглаживает конденсатор С1. Выпрямленное напряжение пропорционально входному. Оно используется как для питания блока управления, так и для измерения входного напряжения сети. С этой целью оно подаётся на делитель R1—R3. С движка подстроечного резистора R2 поступает на неинвертирующие входы операционных усилителей DA2.1 —DA2.4, DA3.1—DA3.3. Эти ОУ используются в качестве компараторов напряжения. Резисторы R17—R23 создают гистерезис переключения компараторов.

В таблице ниже показаны пределы изменения выходного напряжения Uвых и логические уровни напряжения на выходах операционных усилителей и входах дешифратора DD2, а также включённые светодиоды в зависимости от входного напряжения Uвх без учёта гистерезиса.

Микросхема DA1 вырабатывает стабильное напряжение 12 В для питания остальных микросхем. Стабилитрон VD3 вырабатывает образцовое напряжение 9 В. Оно подаётся на инвертирующий вход ОУ DA3.3. На инвертирующие входы других ОУ оно поступает через делители на резисторах R5—R16.

При сетевом напряжении ниже 135 В напряжение на движке резистора R2, а значит, и на неинвертирующих входах ОУ меньше, чем на инвертирующих. Поэтому на выходах всех ОУ низкий уровень. На всех выходах микросхемы DD1 также низкий уровень. В этом случае появляется высокий уровень на выходе О (вывод 3) дешифратора DD2. Включён светодиод HL1, показывая слишком низкое напряжение сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

При напряжении сети от 135 до 155 В напряжение на движке резистора R2 больше, чем на инвертирующем входе DA2.1, поэтому на его выходе высокий уровень. На выходе элемента DD1.1 также высокий уровень. В этом случае появляется высокий уровень на выходе 1 (вывод 14) дешифратора DD2 (см. таблицу). Светодиод HL1 гаснет. Включается светодиод HL2, течёт ток через излучающий диод оптрона U6, вследствие чего оптосимистор этого оптрона открывается. Через открытый симистор VS6 напряжение сети подаётся на нижний по схеме отвод (вывод 6) относительно начала обмотки (вывода 7) автотрансформатора Т2. Напряжение на нагрузке больше напряжения сети на 64…71 В.

При дальнейшем повышении напряжения сети оно будет переключаться на следующий вверх по схеме вывод автотрансформатора Т2. В частности, напряжение сети от 205 до 235 В непосредственно поступает на нагрузку через открытый симистор VS2, а также на выводы 1—7 автотрансформатора Т2.

При напряжении сети от 235 до 270 В на выходах всех ОУ, кроме DA3.3, высокий уровень, ток течёт через светодиод HL7 и излучающий диод U1.2. Напряжение сети через открытый симистор VS1 подключено ко всей обмотке автотрансформатора Т2. Напряжение на нагрузке меньше напряжения сети на 24…28 В.

При напряжении сети более 270 В на выходах всех ОУ высокий уровень, а ток течёт через светодиод HL8, который сигнализирует о чрезмерно высоком напряжении сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

Маломощный трансформатор Т1 аналогичен применённому в прототипе, за исключением того, что его вторичная обмотка содержит 1400 витков с отводом от середины. Мощный автотрансформатор Т2 — готовый от промышленного стабилизатора VOTO 5000 Вт. Отмотав вторичную обмотку и часть первичной, я сделал новые отводы, считая от начала обмотки (вывода 7): вывод 6 от 215-го витка (150 В), вывод 5 от 236-го витка (165 В), вывод4 от 257-го витка (180 В), вывод 3 от 286-го витка (200 В), вывод 2 от 314-го витка (220 В). Вся обмотка (выводы 1—7) имеет 350 витков (245 В).

Постоянные резисторы — С2-23 и ОМЛТ, подстроечный резистор R2 — С5-2ВБ. Конденсаторы С1 —СЗ— К50-35, К50-20. Диоды (VD1, VD2) можно заменить на — , КД243Б— КД243Ж.

Микросхему можно заменить отечественными аналогами КР1157ЕН12А, КР1157ЕН12Б.

Налаживание выполняют с помощью ЛАТРа. Вначале устанавливают пороги переключения. Для достижения более высокой точности установки резисторы R17—R23, создающие гистерезис, не устанавливают. Мощный автотрансформатор Т2 не подключают. Устройство подключают к сети через ЛАТР. На выходе ЛАТРа устанавливают напряжение 270 В. Перемещают движок подстроечного резистора R2 снизу вверх по схеме до включения светодиода HL8. Далее на выходе ЛАТРа устанавливают напряжение 135 В. Подбирают резистор R5 так, чтобы напряжение на инвертирующем входе (вывод 2) ОУ DA2.1 было равно напряжению на его неинвертирующем входе (вывод 3). Затем последовательно подбирают резисторы R6…R10, устанавливая пороги переключения 155 В, 170 В, 185 В, 205 В, 235 В, сверяя логические уровни с таблицей. После этого устанавливают резисторы R17— R23. В случае необходимости подбирают их сопротивления, устанавливая необходимую ширину петли гистерезиса. Чем больше сопротивление, тем меньше ширина петли. Установив пороги переключения, подключают мощный автотрансформатор Т2, а к нему нагрузку, например, лампу накаливания мощностью 100…200 Вт. Проверяют пороги переключения и измеряют напряжение на нагрузке. После налаживания светодиоды HL2—HL7 можно удалить, заменив их перемычками.

ЛИТЕРАТУРА:

1. Годин А. Стабилизатор переменного напряжения. – Радио, 2005, № 8.
2. Озолин М. Усовершенствованный блок управления стабилизатора переменного напряжения. – Радио, 2006, № 7.


В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО “Прибор”, г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева “Селен”, справа – с обычными характеристиками)


Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке “Украина” тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью “Типы стабилизаторов напряжения”, где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.


На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема



Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10 .
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1 . Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 – усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676 .
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on , R2off , R1on и R1off .
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1 , а вспомогательные LIMING JZC – 22F .
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).



Прибор повешен на стене и закрыт кожухом из жести


Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР”а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки . Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC – 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО “Прибор”, г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой
▼ 🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи – помоги мне!

Стабилизатор напряжения для дома | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

Тема сегодняшней статьи относится к таким неотъемлемым в настоящее время устройствам, как стабилизаторы напряжения для дома. Сейчас я Вам поясню почему неотъемлемые. Энергоснабжающая организация не уделяет должного внимания на качество поставляемой электроэнергии потребителям. Причиной этому может являться отсутствие законов и наложение санкций при несоответствующем качестве. К тому же не стоит забывать, что энергоснабжающая организация является монополистом по поставке электрической энергии.

Поставляемая электроэнергия является товаром. И если этот «товар» будет не надлежащего качества, то это может привести к выходу из строя электрооборудования. Поэтому каждый потребитель должен позаботиться о себе сам, применив стабилизаторы напряжения для дома, которые предназначены для поддержания стабильного напряжения питания нагрузок бытового и промышленного назначения.

Что же такое «качество» электрической энергии?

Для этого обратимся к следующим нормативным документам, где регламентируются параметры электрической сети от источника питания до потребителя.

В этих ГОСТах представлена расшифровка параметров и цифровые показатели качества электрической энергии, методы их измерения, причины и вероятности появления того или иного отклонения качества.

Кстати, скачать ПУЭ 7 издание Вы можете с моего сайта.

Теперь давайте рассмотрим основные показатели качества электрической энергии, согласно ГОСТ 13109-97.

Основные показатели электрической энергии

1. Отклонение напряжения

Существуют следующие нормы отклонений:

  • нормально-допустимые (±5%)
  • предельно-допустимые (±10%)

Согласно ГОСТа 21128-83, номинальное действующее напряжение однофазной бытовой сети должно составлять 220 (В). Отсюда следует, что предел напряжений от 209 – 231 (В) является нормально-допустимым отклонением, а предел напряжений от 198 – 242 (В) – предельно-допустимым отклонением.

2. Провал напряжения

Провал напряжения – это падение напряжения ниже, чем 198 (В) длительностью более 30 секунд. Глубина провала напряжения может достигать до 100%.

3. Перенапряжение

Перенапряжение – это превышение амплитудного значения напряжения больше 339 (В).

Напоминаю, что амплитудное значение 310 (В) соответствует действующему значению 220 (В).

Более подробно о причинах возникновения перенапряжений читайте в моей статье: виды перенапряжений и их опасность.

Так что же такое стабилизатор напряжения для дома?

Стабилизатор напряжения – это автоматическое устройство, которое при изменении входного напряжения, на выход выдает стабильное заданное напряжение 220 (В). Схематично можно изобразить так:

Рассмотрим проблемы, которые могут возникнуть с питающим напряжением в своих домах, коттеджах и садах.

Наружная электропроводка для большинства дачных поселков была построена и рассчитана еще в прошлом веке, когда нормы потребления на каждый дом принимались около 2 (кВт). В настоящее время только один электрический чайник потребляет около 1 (кВт), стиральная машинка около 2 (кВт), не говоря уже об электрических плитах, мощность которых достигает 10 (кВт) и больше.

По причине долгого срока эксплуатации состояние питающих линий с каждым годом ухудшается. Обслуживающие электрики приезжают на линию только по аварийным заявкам и вызовам. Периодические проверки и обслуживание линий ведется по минимуму.

От воздействий атмосферных осадков происходит окисление проводов, что уменьшает их сечение, в местах соединений проводов ухудшается электрический контакт, что приводит к дополнительным потерям. Также увеличивается число потребителей на одну и ту же линию. Хотя в последнее время в технических условиях на подключение дома энергоснабжающая организация обязывает установку ограничителей мощности.

Что в итоге мы имеем?

Когда линия не нагружена, то величина питающего напряжения не выходит за рамки норм. Как только нагрузка на линии начинает постепенно расти (люди приходят с работы), питающее напряжение начинает уменьшаться. По личному примеру скажу, что в одной из деревень величина напряжения в вечернее время достигала 150 (В). При таком напряжении холодильники выходят из строя, лампочки светят тускло, электрические печи не греют до номинальной температуры и т.д.

Как выходит из данной ситуации энергоснабжающая организация?

Очень просто.

Они выставляют на питающем трансформаторе с помощью привода ПБВ или РПН изначально повышенный уровень напряжения, чтобы в часы максимальной нагрузки напряжение было в норме, ну или почти в норме. Но ведь изначально выставленный повышенный уровень напряжения на питающем трансформаторе приводит к скорому перегоранию лампочек, а также к выходу из строя бытовой аппаратуры и техники.

Что же получается? Палка о «двух концах»?

Кто в данном тексте увидел свою проблему, то рекомендую Вам позаботиться о себе самостоятельно, вооружившись стабилизатором напряжения для дома. Ниже я познакомлю Вас с типами стабилизаторов.

Типы стабилизаторов напряжения для дома

Рассмотрим классификацию стабилизаторов напряжения для дома.

1. Феррорезонансные или магниторезонансные стабилизаторы напряжения

Это самые «древние» стабилизаторы напряжения для дома, которые применялись для питания первых цветных телевизоров. Помните, такую «коробку»?

Стабилизатор напряжения для дома «Украина-2″ мощностью всего то 315 (Вт).

А это еще один феррорезонансный стабилизатор напряжения.

Принцип их работы основывается на явлении магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей.

У этих стабилизаторов напряжения недостатков пожалуй гораздо больше, чем достоинств. Во-первых, они выпускались небольшой мощности (до 600 Вт). Во-вторых, они очень сильно искажают синусоидальную форму выходного напряжения. В-третьих, они очень сильно гудят, а также у них узкий диапазон стабилизации и они частенько выходят из строя при повышенном напряжении в сети.

2. Дискретные (ступенчатые) стабилизаторы напряжения

Следующий тип стабилизаторов напряжения для дома, который мы рассмотрим, называются дискретными или ступенчатыми.

Принцип их работы основывается на ступенчатой коррекции напряжения, осуществляемой переключением отводов обмотки автотрансформатора с помощью ключей.

Ключи бывают либо релейными, либо полупроводниковыми (симисторы).

Ниже на рисунке приведена упрощенная схема дискретного стабилизатора для дома с прямым включением 5 ключей. Обычно такая схема применяется у самых дешевых моделей. Каждый ключ (реле или симистор) настроен на определенный порог срабатывания по уровню входного напряжения сети. При достижении этого значения ключ замыкает часть обмотки автотрансформатора.

Про достоинства таких типов стабилизаторов напряжения для дома могу сказать то, что они обладают высокой скоростью реакции на изменение входного напряжения, что необходимо для двигательных нагрузок, таких как холодильник, стиральная машина, глубинный насос и др.

Время реакции на изменение входного напряжения зависит от количества обмоток и скорости работы ключей.

Также у них небольшой вес и габариты, отсутствуют движущиеся части, в отличие от электромеханических стабилизаторов, а также широкий диапазон входных напряжений.

Из недостатков можно отметить то, что напряжение на выходе меняется ступенчато и во время процесса регулирования происходит прерывание выходного напряжения.

Сейчас мы рассмотрим электромеханические стабилизаторы напряжения для дома. Их принцип работы основан на регулировании напряжения за счет перемещения щетки по обмотке автотрансформатора.

Непрерывность фазы выходного напряжения обеспечивается конструкцией токосъемника, т.е. щеткой. Ширина щетки приблизительно равна 2,2 диаметра провода обмотки автотрансформатора, чтобы при переходе с одного витка на другой электрический контакт не терялся.

Достоинства электромеханического стабилизатора напряжения:

  • плавное регулирование
  • отсутствие помех при работе
  • отсутствие искаженной формы напряжения
  • отсутствие электронных ключей, коммутирующих рабочий ток
  • высокая точность удержания выходного напряжения – 220 ± 3% (в отличие от дискретных – 220 ± 7%)

Недостатки электромеханического стабилизатора напряжения:

  • необходимо следить за износом щетки
  • искрение во время перемещения щетки по обмотке автотрансформатора
  • во время работы двигателя сервопривода слышно гудение
Выводы

Про необходимость установки стабилизаторов напряжения для дома я Вам пояснил. Далее решать только Вам. С типами стабилизаторов я Вас познакомил. Рекомендую Вам приобретать только дискретные или электромеханические стабилизаторы (сам лично склоняюсь к последним), про феррорезонансный вообще забудьте.

P.S. В следующей статье мы научимся выбирать стабилизатор напряжения по мощности. Покажу Вам пример расчета мощности стабилизатора для своей квартиры. А также поговорим о месте их установки и креплении. Чтобы не пропустить выход новых статей – пройдите процедуру подписки. Форма находится в конце каждой статьи и в правой колонке сайта.

zametkielectrika.ru

стабилизатор напряжения 220в своими руками – Меандр – занимательная электроника

Цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26, содержит 10-разрядный АЦП, трехразрядный светодиодный индикатор с динамической индикацией, линейный стабилизатор 7805, ну еще несколько токоограничительных резисторов. Конечно, большая часть рассыпухи используется для работы безтрансформаторного БП. Ниже приведена схема вольтметра. Детали: все диоды в схеме использованы типа 1N4007, но подойдут и любые другие с прямым током от 0,5А …

В статье приведено описание устройства, которое позволяет наглядно с помощью двух светодиодных линеек отображать текущее значение напряжения сети ~220 В и тока потребления в контролируемой линии, а также осуществлять звуковую сигнализацию при выходе уровней напряжения и тока за установленные границы. Идея контролировать состояние домашней питающей сети возникает, думаю, у многих, особенно после очередной оплаты за …

R1, R2, R3 – делители напряжения в диапазонах 0-1,2В, 0-12В и 0-120В. Вольтметр индикатор собран на микросхеме LM3914. Ток протекающий через каждый светодиод может достигать 30мА. R4 – регулирует яркость светодиодов. Каждый светодиод имеет шаг 1,2В (в диапазоне 12В). Изменив значения делителей напряжения R1 R2 R3 Вы можете самостоятельно подобрать необходимый Вам диапазон измерения напряжения.

Технические характеристики: Напряжение питания – 10-17 В Шаг индикации напряжения – 0.5 В Диапазон измерения напряжения – 10.5-16 В Количество точек индикации – 12 Максимальный ток потребления – 40 мА Устройство представляет собой универсальный линейный индикатор напряжения на базе КР1003ПП1. Сигнал индицируется шкалой из 12 светодиодов, загорающихся последовательно в зависимости от входного напряжения. При использовании …

meandr.org

Подключение стабилизатора напряжения пошаговая инструкция

В зависимости от того, какой стабилизатор напряжения вы выбрали, стоит рассмотреть несколько вариантов подключения. (Меню кликабельно)

Кроме того, важно определиться с местом расположения стабилизатора

Зачастую бывает так, что в квартире (доме, офисе) есть необходимость подключить только одно-два устройства под стабилизатор, а остальные в таком не нуждаются.

Это случается тогда, когда входящее напряжение в сети незначительно отличается от номинальных 220 вольт и его перепады незначительны (+/- 15 вольт).

В таких случаях, действительно нет необходимости подключать полностью весь дом и достаточно защитить плазменный телевизор, спутниковый тюнер или компьютер.

Для подключения по такой схеме необходимо, тем не менее, позаботиться о том, чтобы высокоточная техника (аудио, видеосистемы, ПК) были дополнительно подключены через сетевой фильтр. Это необходимо для того, чтобы эти источники не давали помехи друг на друга, а также, чтобы отфильтровать скачки напряжения от работы сварки во дворе, например.

Стоит отметить, что в случае подключения газового котла, необходимо также включить в схему ИБП – источник бесперебойного питания, который обеспечит корректную работу оборудования даже при отключении электричества.

Непосредственно к самому выпрямителю можно подключать мощные токоприемники, такие, как насос, холодильник, микроволновая печь, электродуховка, пылесос, пароварка, утюг. Эти потребители не требуют особой точности в стабилизации и мало зависят от перепадов напряжения.

Схема подключения всей квартиры через стабилизатор напряжения

Этот способ подключения стабилизатора напряжения наиболее приемлем для современных квартир и домов.

Выпрямитель в этом случае является самым первым прибором после электросчетчика и обеспечивает стабильным и ровным напряжением все токоприемники квартиры, дачи или дома.

При таком подключении наиболее правильным считается проведение отдельных линий под разные типы электроприборов. Каждая из линий должна оборудоваться своими пакетниками (освещение, насос, телевизор+аудиосистема, компьютер и т.д.)

Но очень редко на этапе строительства учитывается, какие электроустановки будут включаться в ту или иную розетку, поэтому возникают ситуации, когда с помощью удлинителя удобно подключить маломощную, но точную технику (телевизор, спутниковая антенна) в одну розетку с «грубой» (холодильник, стиральная машина, насос, утюг).

При этом «грубая» техника при включении будет создавать помехи, которую стабилизатор, расположенный на входе в дом, отфильтровать не в состоянии. Поэтому старайтесь избегать такого соседства и подключать такие электроприборы как можно дальше друг от друга.

Если же это невозможно, то перед «точной» техникой должен обязательно стоять сетевой фильтр.

Три фазы

Нередко в помещение заходит не одна, а три фазы. В этом случае нужно подключать один трехфазный стабилизатор напряжения или три однофазных.

Первый из них используется только в том случае, если будут применяться электроприборы, рассчитанные на 380 вольт, например мощные электродвигатели, но такие устройства в быту обычно не используются.

Подключение стабилизаторов к трем фазам

Если же в дом поступает три фазы (380 вольт), то лучше использовать схему из трех стабилизаторов, которая обеспечит качественным, ровным 220 В электричеством всю элетрику в доме.

Более того, даже в промышленных масштабах рекомендуется использовать схему из трех однофазных, т.к. в случае выхода из строя или попросту отключения одного из них, в сети остается 220 вольт, что невозможно при использовании трехфазного – тот попросту отключает электричество полностью.

Поэтому, если в сети преобладают потребители по 220 вольт, а не по 380 – следует использовать схему из трех стабилизаторов.

Схема подключения показана на рисунке.

Трехфазный вход имеет четыре провода – один из которых – ноль, является общим для всех трех стабилизаторов в системе, а каждая отдельная фаза пропускается через отдельный выпрямитель.

Перепады напряжения негативно сказываются на любой бытовой технике. Особенно это касается высокоточной электроники, регулирующей работу отопительных приборов.

Для того, чтобы выровнять ток в домашних условиях используют стабилизатор напряжения. В самом простом варианте он работает по принципу реостата, повышая и понижая сопротивление в зависимости от силы тока. Но есть и более современные приборы, которые в полной мере защищают технику от скачков напряжения. О том, как их сделать и поговорим.

Стабилизатор напряжения и принцип его действия

Для более детального понимания работы прибора рассмотрим составляющие электрического тока:

  • сила тока,
  • напряжение,
  • частота.

Сила тока – это количество заряда, который прошел через проводник за определенный промежуток времени. Напряжение, если объяснять очень просто, эквивалентно понятию работы, которое совершает электрическое поле. Частота – это скорость, с которой поток электронов меняет свое направление. Данная величина характерна исключительно для переменного тока, который циркулирует в электросети. Большинство бытовых приборов рассчитано на напряжение в 220 Вольт, при этом сила тока должна быть 5 Ампер, а частота 50 Герц.

В большинстве случаев бытовая техника имеет допустимую вилку по каждому из параметров, но любая защита рассчитана на то, что условия работы приборов длительное время будут неизменными. В нашей же сети колебания тока происходят практически постоянно. Амплитуда составляет до 2 А по силе тока и до 40-50 В, по напряжению. Частота тока, также отлична от 50 Гц и составляет от 40 Гц до 60 Гц.

Данная проблема связана со многими факторами, но главный среди них, — удаленность конечного потребителя от источника электричества. В результате достаточно длительной транспортировки и многократной трансформации, ток теряет стабильность. Данный дефект электросетей присутствует не только у нас, но и в любых других странах, которые пользуются электричеством. Поэтому был придуман специальный прибор, позволяющий стабилизировать выходной ток.

Виды стабилизаторов напряжения

Так как ток – это направленное движение частиц, для его регулировки используются:

  • механический метод,
  • импульсный метод.

Механический основан на законе Ома. Такой стабилизатор называется линейным. Он состоит из двух колен, соединенных между собой реостатом. Напряжение подается на одно колено, проходит по реостату и попадает на второе колено, с которого уже и раздается далее. Преимущества данного метода заключается в том, что он позволяет достаточно точно установить параметры выходного тока. В зависимости от предназначения, линейный стабилизатор модернизируют дополнительными запчастями. Стоит отметить, что прибор эффективно справляется со своей задачей только в том случае, если разница между входным и выходным током невелика. В противном случае стабилизатор будет иметь низкий КПД. Но даже этого достаточно, чтобы защитить бытовую технику и обезопасить себя от короткого замыкания в случае перенагрузки сети.

Импульсный стабилизатор напряжения основан на принципе амплитудной модуляции тока. Схема стабилизатора напряжения устроена таким образом, что в цепи есть выключатель, который автоматически разрывает цепь через равные промежутки времени. Это позволяет подавать ток частями и равномерно накапливать его в конденсаторе. После того, как он зарядится, уже выровненный ток подается на приборы. Недостаток этого метода в том, что он не позволяет задать определенную величину. Тем не менее, достаточно часто встречаются импульсные повышающе-понижающие стабилизаторы, которые оптимально подходят для бытового использования. Они выравнивают ток в пределах чуть ниже или чуть выше нормы. В обоих случаях все параметры тока не выходят за допустимую вилку.

Важно отметить и разделение приборов на:

  • стабилизатор напряжения однофазный,
  • стабилизатор напряжения трехфазный.

После перераспределения в трансформаторе, выходит трехфазная линия, она как правило идет до распределительного щитка на отдельно взятый дом. Далее от щитка в квартиру идут уже стандартные фаза и ноль. Таким образом большинство бытовых приборов рассчитано именно на однофазную сеть. Поэтому в типовых квартирах целесообразно использовать однофазный стабилизатор. К тому же, стоит он в 10 раз дешевле трехфазного, даже если собрать его своими руками.

Стабилизаторы напряжения для дачи могут быть и трехфазными. Особенно актуально это для мощных насосов, культиваторов и тяжелой строительной техники. В таком случае необходимо сделать стабилизатор, рассчитанный на трансформацию тока под конкретный прибор. На практике сделать это достаточно сложно. Поэтому проще взять его в аренду. Использование указанных выше приборов носит временный характер, поэтому смысла тратить время и деньги на трехфазный стабилизатор напряжения нет.

Основные элементы стабилизатора напряжения

Для того, чтобы собрать простой выравниватель тока не понадобится ни особых навыков, ни специфических деталей. Стабилизаторы напряжения для дома состоят из:

  • трансформатора,
  • конденсаторов,
  • резисторов,
  • диодов,
  • провода для соединения микросхемы.

Идеально, если есть старый сварочный аппарат. Переделать его в стабилизатор напряжения очень легко, к том же не понадобится покупать дополнительные запчасти и конструировать корпус для микросхем. Этому вопросу посвящено видео в конце статьи. Но, ненужная сварка – это большая редкость, поэтому рассмотрим процедуру создания стабилизатора напряжения с нуля. Так как импульсный стабилизатор не позволяет провести точную настройку параметров, рассматривать будем линейный стабилизатор напряжения.

Изготовление самодельного стабилизатора напряжения

Его основа – это трансформатор. На практике трансформаторы намного меньше, чем массивные будки для выравнивания высокого напряжения, приходящего с электростанции. Они представляют собой две катушки, образующие индуктивную электромагнитную связь. Проще говоря, ток подается на одну катушку, заряжает ее, затем возникает электромагнитное поле, которое заряжает вторую катушку, с которой ток идет далее. Эта взаимосвязь выражена формулой:

U 2 = N 2 = I 1
U 1 N 1 I 2
  • U 1 – напряжение на первичной обмотке,
  • U 2 – напряжение на вторичной обмотке,
  • N 1 – число витков на первичной обмотке,
  • N 2 – число витков на вторичной обмотке,
  • I 1 – сила тока на первичной обмотке,
  • I 2 – сила тока на вторичной обмотке.

Формула не идеальна, так как позволяет либо понижать напряжение, либо его повышать. В 90% случаев к потребителю доходит ток с низким напряжением. Поэтому имеет смысл сразу же сделать повышающий трансформатор. Индуктивные катушки к нему продаются в магазинах электротехники либо на любом блошином рынке. Важно отметить, что число витков должно быть не менее 2000 тысяч, так как иначе трансформатор будет очень сильно греться и вскоре сгорит. Для того, чтобы выбрать мощность трансформатора, необходимо замерять напряжение в сети. Для расчетов возьмем значение 196 В. Формула приобретает такой вид:

Как видно из формулы, сила напряжения на выходе будет 220х4/196=4,4 А. Большинство электроприборов допускает вилку в 1 А. Поэтому полученная величина достаточна для нормальной работы техники.

Стабилизатор напряжения, энергия в котором увеличивается на заданную величину готов. Но, если в сети произойдет скачек мощности, то формула примет следующие значения:

Это приведет к поломке большинства электроприборов.

Для устранения данного дефекта воспользуемся законом Ома:

  • U– напряжение,
  • I– сила тока,
  • R– сопротивление.

264=4,47хR, R=264/4,47=60. Данная формула говорит о том, что в идеале сопротивление всех элементов в системе будет составлять 60 Ом. Если понизить сопротивление, то напряжение уменьшиться:

220=4,47хR, R=220/4,47=50.

Для изменения сопротивления сети используется прибор, под названием реостат. Естественно, регулировать его вручную достаточно неудобно. Поэтому понадобится микросхема-стабилизатор напряжения, на которой будет отмечен путь следования электрического тока после выхода из трансформатора.

Наиболее простой способ – это вывести ток с трансформатора на конденсатор. Желательно использовать 12-16 конденсаторов одинаковой емкости. Это позволит накопить ток и сделать его более однородным. Далее все конденсаторы подсоединяются к реостату. Сила тока в сети после трансформатора будет в пределах 4,5-5 А, а желаемое напряжение должно составлять 220 В. Следовательно, имеем формулу R=220/4,75=46. При усредненных показателях сопротивление должно составлять 46 Ом.

Для достижения более плавного выравнивания, желательно установить несколько параллельных реостатов. Таким образом соединяясь в один поток после конденсаторов, цепь необходимо распределить на 4,6,8 отдельных веток, подключенных к реостатам. При этом следует использовать формулу R/число реостатов. Если делать цепь из 6 реостатов, то согласно представленным данным, каждый из них должен иметь сопротивление в 8 Ом.

После прохождения реостатов, цепь снова собирается в один поток и выводится на диод. Диод подключается к обычной розетке.

Все указанные манипуляции относятся к проводу на котором находится фаза, ноль просто пропускаем напрямую к розетке.

Указанный с реостатами способ является достаточно архаичным. Намного более эффективно использовать вместо них обычное устройство защитного отключения. Ток от трансформатора подается на УЗО, ноль также подключается к УЗО. Далее от него идет выход напрямую к розетке.

В том случае, если напряжение или сила тока возрастут в следствии скачка напряжения, УЗО разомкнет цепь, и бытовая техника не пострадает. В остальное время трансформатор будет качественно выравнивать ток.

При повышенном напряжении понадобится понижающий трансформатор. Собирается он по аналогии, за тем исключением, что обмотка на второй катушке должна быть сделана из более толстой проволоки, иначе трансформатор сгорит.

Наиболее эффективно собрать оба трансформатора. Тем более, что есть конструкции понижающе-повышающего типа. В первом случае понадобится ручное переключение провода, во втором — процесс поддается автоматизации. Как видно, сделать стабилизатор напряжения не сложно, но работа с электричеством предполагает предельный уровень осторожности.

Советы по работе с самодельным стабилизатором напряжения

Важно : описанная схема идеально подходит для постоянных условий, но в электросети достаточно часто случаются перебои и скачки, как вверх, так и вниз.

Поэтому при сборке стабилизатора напряжения рекомендуем отталкиваться от параметров конкретной техники, т.е.:

  • продумать разводку по квартире,
  • если ремонта не предполагается, установить удлинители под определенные группы электроприборов со схожими параметрами,
  • подключить каждую группу к отдельному стабилизатору.

Любая бытовая техника либо на тыльной стороне, либо в паспорте содержит ведомости о требованиях к электропитанию. Отталкиваясь от конкретных цифр значительно проще создать эффективный стабилизатор, так как нет необходимости подстраиваться под сеть. Еще один полезный гаджет – это электронный вольтметр. Желательно подключить его в схему стабилизатора для визуального контроля за его работой.

Для корпуса подойдет любой материал кроме дерева. Достаточно часто самодельные стабилизаторы помещают в пластиковые контейнеры для еды.

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Устройства используются в составе бытовой аппаратуры, не более того.

Мы расскажем, как сделать мощный стабилизатор напряжения своими руками. В предложенной нами статье описан процесс изготовления устройства для работы с напряжением сети 220 вольт. С учетом наших советов вы без проблем самостоятельно справитесь со сборкой.

Стремления обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве. Да и в целом, фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Для бытовых целей чаще всего приобретают , автоматика которого требует подключения к электропитанию, насосного оборудования, сплит систем и подобных потребителей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами. Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 – феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка – феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 – автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.


Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Схемы подобного рода выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения. Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 – электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.


Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно, лучше . В этом деле без опыта и знаний в сфере электротехники не обойтись.

Под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Подробные инструкции по сборке

Рассматриваемая под самостоятельное изготовление схема, скорее является гибридным вариантом, так как предполагает использование силового трансформатора совместно с электроникой. Трансформатор в данном случае применяется из числа тех, что устанавливались в телевизорах старых моделей.

Вот такой примерно силовой трансформатор потребуется под изготовление самодельной конструкции стабилизатора. Однако не исключается подбор других вариантов или же намотка своими руками

Правда в ТВ приёмниках, как правило, ставились трансформаторы ТС-180, тогда как для стабилизатора требуется как минимум ТС-320 чтобы обеспечить выходную нагрузку до 2 кВт.

Шаг #1 – изготовление корпуса стабилизатора

Для изготовления корпуса аппарата подойдёт любой подходящий короб на основе изолирующего материала – пластмассы, текстолита и т.п. Главный критерий – достаточность места под размещение силового трансформатора, электронной платы и других компонентов.

Также корпус допустимо изготовить из листового стеклотекстолита, скрепив отдельные листы с помощью уголков или иным способом.

Допустимо подобрать корпус от любой электроники, подходящий под размещение всех рабочих компонентов схемы самодельного стабилизатора. Также корпус можно собрать своими руками, к примеру, из листов стеклотекстолита

Короб стабилизатора необходимо оснастить пазами под установку выключателя, входного и выходного интерфейсов, а также других аксессуаров, предусмотренных схемой в качестве контрольных или коммутационных элементов.

Под изготовленный корпус нужна плита-основание, на которую «ляжет» электронная плата и будет закреплён трансформатор. Плиту можно сделать из алюминия, но следует предусмотреть изоляторы под крепёж электронной платы.

Шаг #2 – изготовление печатной платы

Здесь потребуется изначально спроектировать макет на размещение и связку всех электронных деталей согласно принципиальной схеме, кроме трансформатора. Затем по макету размечают лист фольгированного текстолита и рисуют (отпечатывают) на стороне фольги созданную трассировку.

Изготовить печатную плату стабилизатора вполне доступными способами можно непосредственно в домашних условиях. Для этого нужно приготовить трафарет и набор средств для травления на фольгированном текстолите

Полученный таким способом печатный экземпляр разводки зачищают, облуживают оловом и производят монтаж всех радиодеталей схемы с последующей пайкой. Так выполняется изготовление электронной платы мощного стабилизатора напряжения.

В принципе, можно воспользоваться сторонними услугами по травлению печатных плат. Этот сервис вполне приемлем по цене, а качество изготовления «печатки» существенно выше, чем в домашнем варианте.

Шаг #3 – сборка стабилизатора напряжения

Укомплектованная радиодеталями плата подготавливается для внешней обвязки. В частности, от платы выводятся линии внешней связи (проводники) с другими элементами – трансформатором, выключателем, интерфейсами и т.д.

На опорную плиту корпуса устанавливают трансформатор, соединяют с трансформатором цепи электронной платы, закрепляют плату на изоляторах.

Пример самодельного стабилизатора напряжения релейного типа, изготовленного в домашней обстановке, помещённого в корпус от пришедшего в негодность промышленного измерительного прибора

Останется только подключить к схеме внешние элементы, смонтированные на корпусе, установить ключевой транзистор на радиатор, после чего корпусом закрывают собранную электронную конструкцию. Стабилизатор напряжения готов. Можно приступать к настройке с дальнейшими испытаниями.

Принцип работы и тест самоделки

Регулирующим элементом электронной схемы стабилизации выступает мощный полевой транзистор типа IRF840. Напряжение для обработки (220-250В) проходит первичную обмотку силового трансформатора, выпрямляется диодным мостом VD1 и поступает на сток транзистора IRF840. Исток этого же компонента соединен с минусовым потенциалом диодного моста.


Схема принципиальная стабилизирующего блока высокой мощности (до 2 кВт), на основе которой были собраны и успешно используются несколько аппаратов. Схема показала оптимальный уровень стабилизации при указанной нагрузке, но не выше

Часть схемы, в которую включена одна из двух вторичных обмоток трансформатора, образуется диодным выпрямителем (VD2), потенциометром (R5) и другими элементами электронного регулятора. Этой частью схемы формируется управляющий сигнал, который поступает на затвор полевого транзистора IRF840.

На случай повышения напряжения питающей сети управляющим сигналом понижается напряжение затвора полевого транзистора, что приводит к закрытию ключа. Соответственно, на контактах подключения нагрузки (XT3, XT4) возможное повышение напряжения ограничивается. Обратным вариантом работает схема на случай понижения сетевого напряжения.

Настройка прибора особой сложностью не отличается. Здесь потребуется обычная лампа накаливания (200-250 Вт), которую следует включить на клеммы выхода прибора (X3, X4). Далее вращением потенциометра (R5) напряжение на отмеченных клеммах доводят до уровня 220-225 вольт.

Выключают стабилизатор, отключают лампу накаливания и включают прибор уже с полноценной нагрузкой (не выше 2 кВт).

После 15-20 минут работы вновь отключают аппарат и производят контроль температуры радиатора ключевого транзистора (IRF840). Если нагрев радиатора существенный (более 75º), следует подобрать более мощный теплоотводящий радиатор.

Если процесс изготовления стабилизатора показался вам слишком сложным и нерациональным с практической точки зрения, без особых проблем можно найти и приобрести устройство заводского исполнения. Правила и критерии приведены в рекомендуемой нами статье.

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самоделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, публикуйте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как собрали стабилизатор напряжения собственными руками. Поделитесь полезной информацией, которая может пригодиться посещающим сайт начинающим электротехникам.

Сетевой стабилизатор напряжения | Микросхема

Поводом для публикации статьи про сетевые стабилизаторы напряжения послужил комментарий одного из наших уважаемых радиолюбителей в заметке про мощные стабилизаторы напряжения, обеспечивающие ток нагрузки до 3 ампер.

Здесь рассмотрим именно сетевые стабилизаторы напряжения бытового назначения, т.е. которые обеспечивают на выходе стандартное для многих стран (хотя далеко не всегда оно таковое – прим. AndReas) потребительское напряжение 220 вольт. Так вот, при девиации сетевого напряжения на входе такого стабилизатора они призваны приводить его к номиналу 220 вольт на выходе. Таким образом, обеспечивается стабильное и бесперебойное питание бытовых приборов или оргтехники, что способствует значительному продлению срока эксплуатации бытовой техники.

Не буду загружать вас, уважаемые радиолюбители, теоретическим материалом, поскольку здесь и так все ясно. Схем различных сетевых стабилизаторов напряжения масса. Большинство из них также уже содержат фильтры от ВЧ помех и прочие «навороты». Но фирмы при покупке у них готового сетевого стабилизатора напряжения всегда «до кучи» пытаются «навалить» «левого», уже ненужного товара, например, сетевые фильтры. А цена на данные устройства порой доходит до абсурда.

Для начала небольшая ремарка. Если вы зашли на эту страничку, чтобы просто найти подходящий стабилизатор для себя, то можете поискать, например, здесь. Некоторые модели вполне заслуживают внимания.

Поскольку речь в комментарии зашла про сетевые стабилизаторы напряжения торговой марки Defender, то остановлюсь на них чуточку подробнее. Если изучить номенклатуру предлагаемых ими стабилизаторов, то в описании практически каждого устройства написано одно и то же назначение, а именно: предназначен для защиты электропитания бытовой аудио- и видеотехники, компьютеров, периферии и другой электронной аппаратуры от длительного повышения или понижения напряжения в сети, импульсных помех, а также для защиты от высокого напряжения.

Лично я для компьютера и другой маломощной цифровой электроники, вместо каких бы то ни было сетевых стабилизаторов, использую источник бесперебойного питания (или инвертор или преобразователь – кому как нравится). Вот это крайне полезное устройство во всех отношениях. Оно и от девиации напряжения спасает (кстати, в некоторые современные модели таких инверторов уже встроены стабилизаторы), и от его совершенного падения до нуля, да и от помех защищает.

А сетевые стабилизаторы напряжения не то чтобы необходимы, но рекомендованы приборам с электродвигателями и низкочастотными трансформаторами. А действительно необходимы они этим самым приборам за городом, на даче, т.е. там, где на выделенной вам электролинии напряжение много меньше даже 180 вольт.

Ну да ладно, лирику в сторону, продолжаем по существу. Как мне стало известно, в сетевых стабилизаторах напряжения Defender AVR применяется автотрансформаторная схема с цифровым управлением, а раньше использовалась схема с аналоговым управлением. Пример схемы с аналоговым управлением:

Более про бытовые стабилизаторы Defender никаких данных, к сожалению, найти не удалось. Вообще подобные фирмы неохотно раскрывают, так сказать, коммерческую тайну. Хотя, было бы что скрывать, если подобных разработок полно в общем доступе (прим. авт. AndReas). Но мы подготовили ещё несколько схем сетевых преобразователей напряжения. Не думаю, что все производители подобных устройств могут предложить что-то кардинально новое. Все их, так называемые, разработки основаны на общедоступных схемотехнических решениях. Вот один из них:

Сетевой стабилизатор напряжения, схема которого представлена чуть выше, включает последовательно с нагрузкой одну, две или три дополнительных обмотки трансформатора при девиации сетевого напряжения. Если сетевое напряжение ниже необходимого, то дополнительные обмотки включаются синфазно с сетью, и напряжение на нагрузке становится больше сетевого. Если напряжение сети становится выше нормы, то обмотки включаются в противофазе с сетевым напряжением, приводя к уменьшению напряжения на нагрузке. Трансформатор на схеме обозначен Т1, а дополнительные обмотки римскими цифрами IV, V, VI. Компараторы DA3…DA8 настроены на срабатывание в зависимости от уровней сетевого напряжения 250 В, 240 В, 230 В, 210 В, 200 В и 190 вольт соответственно. Если напряжение сети превышает указанные уровни, то на выходах (вывод 9) тех компараторов, для которых выполняется указанное условие, действует напряжение высокого логического уровня (логической 1), составляющее около 12 В. Таким образом, разница уровней срабатывания компараторов составляет 10 В, или примерно 5 % сетевого напряжения. Уровни срабатывания компараторов DA5 и DA6 отличаются на 20 вольт. Это соответствует зоне регулирования 220 В ± 5%. Следует заметить, что государственными стандартами установлено допустимое сетевое напряжение от 187 В до 242 В. Данный же стабилизатор, как видно, обеспечивает более высокую точность поддержания величины сетевого напряжения. Это можно отразить так:

Вместо указанных на схеме компараторов можно применить микросхему К1401СА1. В качестве стабилизаторов применены КР142ЕН8Б. Диодные мостики VD1 и VD2 можно заменить на КЦ402…КЦ405, КЦ409, КЦ410, КЦ412. VD4…VD7 – любые с допустимым обратным напряжением более 15 В и прямым током более 100 мА. Оксидные конденсаторы — К50-16, К50-29 или К50-35; остальные— КМ-6, К10-17, К73-17. Реле К1 — К5 — зарубежного производства Bestar BS-902CS. Реле этого типа имеют обмотку сопротивлением 150 Ом, рассчитанную на рабочее напряжение 12 В, и контактную группу переключающего типа, рассчитанную на коммутацию напряжения 240 В при токе 15 А. Трансформатор Т1 выполнен на магнитопроводе ШЛ50х40. Обмотка I намотана проводом ПЭВ-2 0,9 и содержит 300 витков; обмотка II —21 виток провода ПЭВ-2 0,45; обмотка III — 14 витков провода ПЭВ-2 0.45; обмотки IV, V, VI содержат по 14 витков провода ПБД 2.64. Удобно использовать стандартный трансформатор типа ОСМ1-0.63, у которого все обмотки, кроме первичной (она содержит 300 витков), удалены, а вторичные обмотки намотаны в соответствии с приведенными выше данными. При изготовлении трансформатора одноименные выводы обмоток I, IV, V, VI следует пометить (на схеме обозначены точками). Номинальная мощность такого трансформатора составляет 630 Вт. К данному сетевому стабилизатору напряжения можно подключить нагрузку до 3 киловатт. Если точность поддержания выходного напряжения нужна ниже, то число вторичных обмоток трансформатора Т2 можно снизить до двух, а их напряжение увеличить с 10 вольт до 15 вольт. При этом число компараторов также уменьшится, а пороги их срабатывания следует установить соответственно напряжениям вторичных обмоток Т2.

Настройка этого сетевого стабилизатора следующая:

Самыми простыми в схемотехническом отношении являются электромеханические сетевые стабилизаторы напряжения. Основными компонентами такого типа приборов являются автотрансформатор и электродвигатель, например, РД-09 со встроенным редуктором, который вращает движок автотрансформатора.

Все очень просто. Контроль сетевого напряжения осуществляет электронная схема, которая при его девиации подает сигналы электродвигателю на вращение ротора по часовой или против часовой стрелки. Вращаясь, ротор перемещает движок автотрансформатора, обеспечивая тем самым стабильное выходное напряжение. Вот несколько схем электромеханических сетевых стабилизаторов:

Ещё одной разновидностью сетевых стабилизаторов напряжения являются релейные. Они обеспечивают более высокую выходную мощность вплоть до нескольких киловатт. Мощность нагрузки даже может превосходить мощность самого трансформатора. При выборе мощности трансформатора учитывается минимально возможное напряжение в электрической сети. Если, например, минимальное напряжение сети не менее 180 вольт, то от трансформатора требуется вольтодобавка 40 вольт, т.е. в 5,5 раз меньше сетевого напряжения. Во столько же раз выходная мощность всего стабилизатора будет больше мощности силового трансформатора. Количество ступеней регулирования напряжения обычно не превышает 3…6, что обеспечивает достаточную точность поддержания выходного напряжения. Вот некоторые схемы стабилизаторов релейного типа:

Дополнительно можете ознакомиться со следующими схемами, описанием работы и конструкциями сетевых стабилизаторов напряжения:

Скачать схему сетевого стабилизатора на 6 киловатт

Скачать схему сетевого стабилизатора с микроконтроллерным управлением

Обсуждайте в социальных сетях и микроблогах

Метки: полезно собрать

Радиолюбителей интересуют электрические схемы:

Стабилизатор сетевого напряжения
Мощный стабилизатор напряжения

Виды и схемы стабилизаторов напряжения

Автор: Александр Старченко

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Содержание:

  1. Виды стабилизаторов напряжения

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую  скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования, в отличие  от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.

 

В основе работы электромеханического стабилизатора лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.

Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.

При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.

Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.

 

В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью  реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых  имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.

Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. Стабилизаторы релейного типа имеют самую низкую цену среди этих приборов.

Пример схемы релейного стабилизатора

Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

 

Принцип работы электронного стабилизатора не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует  трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.

Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.

На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

Схема автоматического стабилизатора напряжения для телевизоров и холодильников

Здесь мы рассмотрим конструкцию простого автоматического стабилизатора сетевого напряжения переменного тока, который может применяться для защиты таких приборов, как телевизор и холодильник, от колебаний напряжения.

Стабилизатор напряжения – это устройство, которое предназначено для определения несоответствующих колебаний напряжения на входах сети переменного тока и их корректировки для получения стабилизированного напряжения для подключенных устройств или устройств.

Как работает схема

Обращаясь к рисунку, мы обнаруживаем, что предлагаемая схема автоматического стабилизатора напряжения сконфигурирована с одним операционным усилителем IC 741.Он становится управляющей частью всей конструкции. Операционный усилитель подключен как компаратор, мы все знаем, насколько хорошо этот режим подходит для IC 741 и других операционных усилителей. Два входа подходят для указанных операций.

На вывод №2 ИС устанавливается опорный уровень, создаваемый резистором R1 и стабилитроном, в то время как на вывод №3 подается образец напряжения от трансформатора или источника питания.

Это напряжение становится напряжением считывания для ИС и прямо пропорционально изменяющемуся входному переменному току нашей сети.

Предустановка используется для установки точки срабатывания или пороговой точки, при которой напряжение может считаться опасным или несоответствующим. Мы обсудим это в разделе процедуры настройки.

Вывод №6, который является выходом ИС, переходит в высокий уровень, как только контакт №3 достигает заданного значения и активирует ступень транзистора / реле.

В случае, если сетевое напряжение пересекает заранее установленный порог, неинвертирующая ИС обнаруживает это, и ее выход немедленно становится высоким, включая транзистор и реле для желаемых действий.

Реле, которое является реле типа DPDT, имеет свои контакты, подключенные к трансформатору, который является обычным трансформатором, модифицированным для выполнения функции стабилизирующего трансформатора.

Первичная и вторичная обмотки соединены между собой таким образом, что при соответствующем переключении отводов трансформатор может добавлять или вычитать определенную величину сетевого напряжения переменного тока и создавать результирующую для выходной подключенной нагрузки.

Контакты реле соответствующим образом интегрированы в ответвления трансформатора для выполнения вышеуказанных действий в соответствии с командами, подаваемыми с выхода операционного усилителя.

Таким образом, если входное напряжение переменного тока имеет тенденцию к увеличению установленного порогового значения, трансформатор вычитает некоторое напряжение и пытается не дать напряжению достичь опасного уровня и наоборот в ситуациях низкого напряжения.

Полная принципиальная схема

Расчеты операционного усилителя

Если вместо стабилитрона на выводе №2 использовался резисторный делитель, соотношение между опорным уровнем на выводе №2 операционного усилителя с резистивным делителем и Vcc можно было бы представить следующим образом:

Vref = (R2 / R1 + R2) x Vcc

Где R2 – резистор, используемый вместо Z1.

Схема подключения реле трансформатора

Список деталей

Для изготовления этой самодельной схемы автоматического стабилизатора сетевого напряжения вам потребуются следующие компоненты:

  • R1, R2 = 10K,
  • R3 = 470K или 1M, (более низкие значения позволят более медленная коррекция напряжения)
  • C1 = 1000 мкФ / 25 В
  • D1, D2, D3 = 1N4007,
  • T1 = BC547,
  • TR1 = 0-12 В, 500 мА,
  • TR2 = 9-0-9 В, 5 А,
  • IC1 = 741,
  • Z1, Z2 = 4.7 В / 400 мВт
  • Реле = DPDT, 12 В, 200 или более Ом, приблизительное выходное напряжение для данных входов

Пропорции стабилизированного выхода и нестабилизированного входного напряжения

ВХОД —— ВЫХОД

200 В – ——- 212 В
210 В ——– 222 В
220 В ——– 232 В
225 В ——– 237 В
230 В ——- – 218V
240V ——– 228V
250V ——– 238V

Как настроить схему

Обсуждаемая простая схема автоматического стабилизатора напряжения может быть настроена с помощью следующих шагов:

Первоначально не подключайте трансформаторы к цепи, также оставьте R3 отключенным.

Теперь, используя переменный источник питания, запитайте цепь через C1, положительный вывод питания идет на линию контакта №7 операционного усилителя, а отрицательный – на линию отрицательного контакта №4 операционного усилителя.

Установите напряжение примерно на 12,5 и отрегулируйте предустановку так, чтобы выход IC просто становился высоким и запускал реле.

Помните, здесь мы предположили, что выход постоянного тока 12,5 В от TR1 соответствует примерно 225 В переменного тока на входе от сети …. Для вашей схемы обязательно подтвердите это перед выполнением этой процедуры настройки.Это означает, что если предположим, вы обнаружите, что ваш выход постоянного тока TR1 соответствует 13 В для входа 225 В, то завершите эту процедуру, используя 13 В … и так далее.

Теперь при понижении напряжения примерно до 12 В операционный усилитель должен отключить реле в исходное состояние или обесточить его.

Повторите и проверьте действие реле, изменив напряжение с 12 до 13 вольт, что должно заставить реле срабатывать соответственно.

Ваша процедура настройки окончена.

Теперь вы можете подключить трансформатор в соответствующие положения со схемой, а также восстановить R3 и соединения реле в их исходных точках.

Ваша простая самодельная схема стабилизатора напряжения сети готова.

Если установлено, реле срабатывает, когда входное напряжение превышает 230 вольт, доводя выходное напряжение до 218 вольт, и сохраняет это расстояние постоянно, когда напряжение достигает более высоких уровней.

Когда напряжение снова падает до 225, реле обесточивается, подтягивая напряжение до 238 вольт, и сохраняет разницу при дальнейшем падении напряжения.

Вышеупомянутое действие поддерживает выходное напряжение устройства в диапазоне от 200 до 250 вольт с колебаниями в диапазоне от 180 до 265 вольт.

Предупреждение: единичное неправильное подключение может привести к возгоранию или взрыву, поэтому будьте осторожны. Всегда используйте 100-ваттную защитную лампу последовательно с линией питания, которая изначально идет к стабилизирующему трансформатору. После подтверждения операций вы можете удалить эту лампочку.

2) Вся цепь не изолирована от сети, поэтому пользователям рекомендуется соблюдать особую осторожность при тестировании устройства в открытом положении и при включенном питании, чтобы избежать смертельного поражения электрическим током.

Схема автоматического регулятора напряжения (АРН)

Схема автоматического регулятора напряжения довольно хорошо используется там, где напряжение питания составляет всего 120 В переменного тока. Многие устройства могут нормально работать при 220 В переменного тока, поэтому необходима регулировка напряжения.

Автор: Mehran Manzoor

Для этого разработана соответствующая схема регулятора напряжения, которая может работать с мощностью до 1 кВт и дает переменное напряжение с различными ступенями (диапазонами).

Работа цепи:

Сеть 120 В переменного тока, линия и нейтраль содержат выключатель и предохранитель до 10 А.Переключатель DPDT используется для повышения и понижения напряжения. Переключатель DPDT имеет четыре конца.

Нейтраль от сети входит непосредственно в первый конец DPDT, а линия / фаза входит в первичную обмотку трансформатора, которая имеет 220 витков в 6 слоев.

Имеет семь вторичных обмоток на 55 витков и одну обмотку на 60 витков. Эти обмотки подключены к поворотным переключателям с 1 по 8 соответственно. Поворотный переключатель имеет восемь ступеней, которые можно включать по одной.

Общие точки поворотного переключателя подключены ко второму концу переключателя DPDT.Третий вывод DPDT подключен к первой вторичной обмотке трансформатора.

Последний конец DPDT подключен к общему проводу реле. Реле в цепи используется для автоматического отключения.

Замыкающий контакт реле становится первым выходом сетевого питания переменного тока.

НО реле подключено к первой клемме красной неоновой лампы в качестве индикатора для обнаружения автоматического отключения. другой вывод красной неоновой лампы подключен к другому выводу выходного источника питания, который является общим для цепи.Он напрямую поступает от линейного / фазного провода входной сети 120 В переменного тока.

Общий вывод реле подключен к четвертому концу переключателя DPDT и второму выводу трансформатора 500 мА для измерения напряжения. реле может работать от цепи автоматического отключения, как показано на схеме.

Вольтметр подключен параллельно с зеленой неоновой лампой к выходному источнику питания, который указывает наличие питания и напряжения на выходных клеммах

Цепь автоматического отключения:

Вышеупомянутая схема автоматического регулятора напряжения ясно показывает, что 12 В переменного тока поступает через трансформатор 500 мА в автоматическое отключение цепи.

Два конденсатора C1 и C2, примыкающие к D1 и D2, образуют первую клемму для реле, а другую клемму можно отрегулировать с помощью предварительной настройки, которая подключена к эмиттеру транзистора Q1.

Выход коллектора становится еще одной клеммой для реле. значение предустановки может быть изменено в соответствии с требованиями. Когда напряжение превышает установленное значение, цепь автоматически отключается.

Детали, необходимые для цепи автоматического отключения:

C1-C2: 100 мк 25 В
D1-D2: 1N4007
R1: 1.5 кОм
R2: 220 Ом
VR1: предустановка 5K
Z1: 8,2 В
Q1: BC547

Как сделать автоматический стабилизатор напряжения? Схема, объяснение конструкции

Введение

На рынке доступно огромное количество разнообразных стабилизаторов напряжения, и, конечно же, не составляет большого труда приобрести один в соответствии с потребностями. Но, конечно, может быть очень забавно построить один дома самостоятельно и увидеть, как он действительно работает. Схема автоматического стабилизатора напряжения (АВС), описанная в этой статье, на самом деле очень проста по конструкции, достаточно точна и обеспечит хорошую защиту подключенного к ней электронного устройства.Это особенно защитит их от опасных высоких напряжений, а также от возможных отключений (низкого напряжения). Выходной сигнал будет находиться в диапазоне 200–255 В переменного тока при входном напряжении 175–280 В переменного тока.

Как работает стабилизатор напряжения?

В одной из моих предыдущих статей вы, должно быть, узнали о работе автотрансформатора. Там мы изучили, как автотрансформатор может быть использован для создания напряжений выше и ниже, чем входное напряжение сети переменного тока.Автотрансформатор фактически играет самую важную роль в цепи стабилизатора напряжения.

Схема стабилизатора напряжения в основном состоит из датчика напряжения. Он настроен на обнаружение повышения или понижения напряжения сети переменного тока до опасного уровня. Как только он обнаруживает опасное входное напряжение, он немедленно включает реле, подключенные к нему. Эти реле, в свою очередь, меняют местами и переключают соответствующие клеммы обмотки автотрансформатора для корректировки и стабилизации выходного напряжения.Таким образом, устройство, подключенное к выходу схемы стабилизатора напряжения, всегда получает безопасное, допустимое напряжение и может надежно функционировать независимо от колеблющихся входных напряжений.

Давайте перейдем к изучению деталей, необходимых для его постройки, а также деталей его конструкции.

Необходимые детали

Для схемы потребуются следующие детали:

  • Резистор Вт, CFR R1 = 2 K 7,

  • Предустановка P1 = 10 K Линейная,

  • Транзистор T1 = BC 547,

  • Стабилитрон Z1 = 3 В / 400 мВт,

  • Диод D1, D2 = 1N4007,

  • Конденсатор = 220 мкФ / 25 В

  • Реле RL1 = 12 В / DPDT mini ( двойной полюс, двойной ход),

  • Трансформатор T1 = 12 – 0 – 12 В / 5 ампер.T2 = 0 – 12 В / 500 мА (вход в соответствии со спецификациями страны)

  • Плата общего назначения = 3 дюйма на 3 дюйма

Строительные подсказки

С помощью данной принципиальной схемы (на следующей странице ) Построение этой простой схемы AVS может быть выполнено с помощью следующих простых шагов:

  • В данную часть платы общего назначения вставьте транзистор, припаяйте и отрежьте его выводы.

  • Закрепите и припаяйте остальные связанные детали вместе с реле вокруг транзистора.

  • Свяжите их все согласно принципиальной схеме.

  • Наконец, подключите первичный и вторичный провода трансформатора к контактам реле, как показано на схеме.

На следующей странице описаны схема и детали конструкции этой схемы автоматического стабилизатора напряжения.

Описание схемы

Функционирование этой простой схемы стабилизатора напряжения можно понять из следующих пунктов:

Обращаясь к рисунку ( Нажмите, чтобы увеличить ), мы видим, что транзистор T1 составляет основную активную часть всей системы. схема.

Напряжение от меньшего трансформатора выпрямляется D1 и фильтруется C1, чтобы обеспечить требуемую рабочую мощность для схемы управления, состоящей из транзистора T1, предварительно установленного P1, стабилитрона Z1 и реле DPDT.

Вышеупомянутое напряжение также используется как базовое опорное или чувствительное напряжение. Поскольку это напряжение будет изменяться пропорционально изменениям приложенного входного напряжения.

Например, если обычно рабочее напряжение постоянного тока составляет около 12 вольт, увеличение или уменьшение входного напряжения сети переменного тока, скажем, на 25 вольт будет пропорционально увеличивать или уменьшать напряжение постоянного тока до 14 или 10 вольт соответственно.

Предварительная установка P1 настроена таким образом, что транзистор проводит и управляет реле всякий раз, когда входная сеть переменного тока имеет тенденцию отклоняться выше точного нормального напряжения (110 или 225 вольт) и наоборот.

Если входное напряжение превышает вышеуказанный предел, T1 проводит и активирует реле. Контакты реле подключают соответствующие соединения трансформатора стабилизатора мощности, чтобы вычесть 25 вольт на входе, то есть довести выходное напряжение примерно до 205 вольт. С этого момента, если сетевое напряжение продолжает увеличиваться, выходное напряжение для приборов будет на 25 вольт ниже него.Это означает, что даже если напряжение достигнет 260 В, выходная мощность будет только до 260 – 25 = 235 вольт.

Совершенно противоположное произойдет, если входной переменный ток упадет ниже нормального уровня, то есть в этом случае к выходу будет добавлено 25 вольт, и даже если вход продолжит падать и достигнет 180 вольт, выход достигнет только до 180 + 25 = 205 вольт.

Настоящая конструкция очень проста и проста, поэтому стабилизация не может быть очень точной. Но, конечно, он будет поддерживать выходное напряжение в пределах 200 и 250 вольт против предельных входных напряжений от 180 до 275 вольт (или в пределах 100 и 125 против 90 и 130 вольт).

Как это проверить?

Готовая печатная плата простого стабилизатора напряжения может быть протестирована следующим образом:

  • Для процедуры тестирования вам потребуется универсальный регулируемый источник питания постоянного тока 0–12 вольт.

  • Можно предположить, что максимальное напряжение источника питания 12 В эквивалентно входному напряжению приблизительно 230 В переменного тока. Это напряжение примем за напряжение срабатывания или за напряжение переключения стабилизатора.

  • Подключите источник питания к клеммам питания собранной печатной платы.

  • Поддерживайте максимальное напряжение источника питания 12 вольт.

  • Тщательно отрегулируйте предустановку, чтобы реле просто сработало.

  • Теперь при уменьшении напряжения питания на 1 вольт, т.е. до 11 вольт, реле должно вернуться в деактивированное положение.

  • На этом настройка устройства завершена. Он должен поддерживать выходное напряжение в диапазоне от 200 до 255 вольт с предельным входным напряжением от 175 до 280 вольт.

Ваш стабилизатор напряжения теперь готов и должен защищать все бытовые электронные устройства, подключенные к его выходу.

Как собрать собственный блок питания »maxEmbedded

Этот пост написал Вишвам, фанат электроники и отличный гитарист. Он является одним из основных членов roboVITics. Не забудьте поделиться своим мнением после прочтения!

Блок питания – это устройство, которое подает точное напряжение на другое устройство в соответствии с его потребностями.

Сегодня на рынке доступно множество источников питания, таких как регулируемые, нерегулируемые, регулируемые и т. Д., И решение о выборе правильного полностью зависит от того, какое устройство вы пытаетесь использовать с источником питания. Источники питания, часто называемые адаптерами питания или просто адаптерами, доступны с различным напряжением и разной токовой нагрузкой, что является не чем иным, как максимальной мощностью источника питания для подачи тока на нагрузку (нагрузка – это устройство, которое вы пытаетесь подать. мощность к).

Можно спросить себя, «Почему я делаю это сам, если он доступен на рынке?» Что ж, ответ – даже если вы его купите, он обязательно перестанет работать через некоторое время (и поверьте мне, блоки питания перестают работать без каких-либо предварительных указаний, однажды они будут работать, завтра они просто перестанут работать. прекратить работу!). Итак, если вы построите его самостоятельно, вы всегда будете знать, как его отремонтировать, поскольку вы будете точно знать, какой компонент / часть схемы что делает. А дальше, зная, как построить один, вы сможете отремонтировать уже купленные, не тратя деньги на новый.

  1. Медные провода с допустимой токовой нагрузкой не менее 1 А для сети переменного тока
  2. Понижающий трансформатор
  3. 1N4007 Кремнеземные диоды (× 4)
  4. Конденсатор 1000 мкФ
  5. Конденсатор 10 мкФ
  6. Регулятор напряжения (78XX) (XX – требуемое выходное напряжение. Я объясню эту концепцию позже)
  7. Паяльник
  8. Припой
  9. Печатная плата общего назначения
  10. Гнездо адаптера (для подачи выходного напряжения на устройство с определенной розеткой)
  11. 2-контактный штекер

Дополнительно

  1. Светодиод (для индикации)
  2. Резистор (значение поясняется позже)
  3. Радиатор для регулятора напряжения (для более высоких выходов тока)
  4. Коммутатор SPST

Трансформаторы

Трансформаторы – это устройства, которые понижают относительно более высокое входное напряжение переменного тока до более низкого выходного напряжения переменного тока.Найти входные и выходные клеммы трансформатора очень сложно. Обратитесь к следующей иллюстрации или в Интернете, чтобы понять, где что находится.

Клеммы ввода / вывода трансформатора

В основном трансформатор имеет две стороны, где заканчивается обмотка внутри трансформатора. Оба конца имеют по два провода (если вы не используете трансформатор с центральным отводом для двухполупериодного выпрямления). На трансформаторе одна сторона будет иметь три клеммы, а другая – две.Один с тремя выводами – это пониженный выход трансформатора, а другой с двумя выводами – это то место, где должно быть обеспечено входное напряжение.

Регуляторы напряжения

Стабилизаторы напряжения серии 78ХХ – это регуляторы, широко используемые во всем мире. XX обозначает напряжение, которое регулятор будет регулировать как выходное, исходя из входного напряжения. Например, 7805 будет регулировать напряжение до 5 В. Точно так же 7812 будет регулировать напряжение до 12 В.Обращаясь к этим регуляторам напряжения, следует помнить, что им требуется как минимум на 2 вольта больше, чем их выходное напряжение на входе. Например, для 7805 потребуется не менее 7 В, а для 7812 – не менее 14 В в качестве входов. Это повышенное напряжение, которое необходимо подать на регуляторы напряжения, называется Dropout Voltage .

ПРИМЕЧАНИЕ: Входной вывод обозначен как «1», земля – ​​как «2», а выходной – как «3».

Схема регулятора напряжения

Диодный мост

Мостовой выпрямитель состоит из четырех обычных диодов, с помощью которых мы можем преобразовать напряжение переменного тока в напряжение постоянного тока.Это лучшая модель для преобразования переменного тока в постоянный, чем двухполупериодные и полуволновые выпрямители. Вы можете использовать любую модель, какую захотите, но я использую ее для повышения эффективности (если вы используете модель двухполупериодного выпрямителя, вам понадобится трансформатор с центральным отводом, и вы сможете использовать только половину преобразованное напряжение).

Следует отметить, что диоды теряют около 0,7 В каждый при работе в прямом смещении. Таким образом, при выпрямлении моста мы упадем 1,4 В, потому что в один момент два диода проводят ток, и каждый из них упадет на 0.7V. В случае двухполупериодного выпрямителя будет потеряно только 0,7 В.

Так как это падение влияет на нас? Что ж, это пригодится при выборе правильного понижающего напряжения для трансформатора. Видите ли, нашему регулятору напряжения нужно на 2 вольта больше, чем его выходное напряжение. Для пояснения предположим, что мы делаем адаптер на 12 В. Таким образом, для регулятора напряжения требуется как минимум 14 вольт на входе. Таким образом, выход диодов (который входит в стабилизатор напряжения) должен быть больше или равен 14 вольт.Теперь о входном напряжении диодов. В целом они упадут на 1,4 Вольт, поэтому входное напряжение на них должно быть больше или равно 14,0 + 1,4 = 15,4 Вольт. Поэтому я бы, вероятно, использовал для этого понижающий трансформатор с 220 на 18 вольт.

Таким образом, понижающее напряжение трансформатора должно быть как минимум на 3,4 В выше желаемого выходного напряжения источника питания.

Схема и изображение диода

Цепь фильтра

Мы фильтруем как вход, так и выход регулятора напряжения, чтобы получить максимально плавное напряжение постоянного тока от нашего адаптера, для которого мы используем конденсаторы.Конденсаторы – это простейшие фильтры тока, они пропускают переменный ток и блокируют постоянный ток, поэтому используются параллельно с выходом. Кроме того, если есть пульсация на входе или выходе, конденсатор выпрямляет его, разряжая накопленный в нем заряд.

Схема и изображение конденсатора

Вот принципиальная схема блока питания:

Принципиальная схема

Как это работает

Сеть переменного тока подается на трансформатор, который понижает 230 В до желаемого напряжения.Мостовой выпрямитель следует за трансформатором, преобразуя переменное напряжение в выходное постоянное и через фильтрующий конденсатор подает его непосредственно на вход (контакт 1) регулятора напряжения. Общий вывод (вывод 2) регулятора напряжения заземлен. Выход (вывод 3) регулятора напряжения сначала фильтруется конденсатором, а затем снимается выходной сигнал.

Сделайте схему на печатной плате общего назначения и используйте 2-контактный штекер (5A) для подключения входа трансформатора к сети переменного тока через изолированные медные провода.

Если вы хотите включить устройство, купленное на рынке, вам необходимо припаять выход блока питания к разъему адаптера. Этот переходник бывает разных форм и размеров и полностью зависит от вашего устройства. Я включил изображение наиболее распространенного типа переходного разъема.

Очень распространенный тип переходного разъема

Если вы хотите включить самодельную схему или устройство, то вы, вероятно, пропустите выходные провода вашего источника питания напрямую в вашу схему.

Важно отметить, что вам нужно будет соблюдать полярность при использовании этого источника питания, так как большинство устройств, которые вы включаете, будут работать только с прямым смещением и не будут иметь встроенного выпрямителя для исправления неправильной полярности. .

Порты подключения переходного разъема

Практически всем устройствам потребуется положительный контакт на наконечнике и заземление на корпусе, за исключением некоторых, например, в музыкальной индустрии, почти все устройства нуждаются в заземлении на наконечнике и заземлении на корпусе.

Вы можете подключить последовательно светодиод с токоограничивающим резистором для индикации работы источника питания. Значение сопротивления рассчитывается следующим образом:

 R = (Vout - 3) / 0,02 Ом 

Где, R – значение последовательного сопротивления, а Vout – выходное напряжение регулятора напряжения (а также источника питания).

Схема и изображение резистора

ПРИМЕЧАНИЕ: Значение резистора не обязательно должно быть точно таким, как рассчитано по этой формуле, оно может быть любым, близким к рассчитанному, желательно большим.

Схема и изображение светодиода

Помимо светодиода, вы также можете добавить переключатель для управления режимом включения / выключения источника питания.

Вы также можете использовать теплоотвод, который представляет собой металлический проводник тепла, прикрепленный к регулятору напряжения с помощью болта. Используется в случае, если нам нужны сильноточные выходы от блока питания и регулятор напряжения нагревается.

Радиатор

Здесь я сделал блок питания на 12 В для питания моей платы микроконтроллера.Он работает отлично и стоит где-то около 100 баксов (индийских рупий).

ПРИМЕЧАНИЕ: Для всех плат микроконтроллеров потребуется положительный полюс на наконечнике и заземление на втулке.

Это адаптер на 12 В, который я сделал

  1. Перед тем, как паять детали на печатную плату, спланируйте компоновку вашей схемы на ней, это поможет сэкономить место и позволит меньше места для ошибок при пайке.
  2. Если вы новичок в схемах и пайке, я бы посоветовал вам сначала сделать эту настройку на макетной плате и проверить свои соединения, а после того, как эта схема заработает на макетной плате, перенесите эту схему на печатную плату и припаяйте.
  3. Будьте осторожны, , так как вы работаете напрямую с сетью переменного тока.
  4. Проверьте заранее, какое напряжение требуется устройству, которое вы пытаетесь подключить к источнику питания. Некоторые устройства можно сжечь всего парой дополнительных вольт.
  5. Стабилизаторы напряжения серии 78XX способны обеспечивать токи до 700 мА при использовании радиатора.

Вот и все. Если вам понравился этот пост, у вас есть какие-либо мнения относительно него или любые дальнейшие запросы и проекты, пожалуйста, прокомментируйте ниже.Кроме того, подпишитесь на maxEmbedded, чтобы оставаться в курсе! Ваше здоровье!

Вишвам Аггарвал
[email protected]

Нравится:

Нравится Загрузка …

Связанные

5V Regulator Design Tutorial – How it works, how to design PCB Altium

Регулятор напряжения. Узнайте, как сделать стабилизатор 5 В с использованием конденсаторов, стабилизатора LM7805 и диода Шоттки, узнайте, как работает схема, а также как построить свою собственную печатную плату, как заказать печатную плату и как спаять электронные компоненты платы вместе.

Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube

Вот что происходит, когда мы подаем большое напряжение на наши электронные компоненты.

Компоненты перегорят и даже взорвутся. Чтобы это остановить, нам понадобится один из них.

Регулятор напряжения. И мы собираемся показать вам, как это работает, как спроектировать такую ​​и даже превратить ее в полностью работающую печатную плату профессионального вида, которую можно использовать в качестве источника питания и даже заряжать с ее помощью телефон.Вы даже можете скачать копию нашей печатной платы ЗДЕСЬ .

Проектирование схемы

Назначение регулятора напряжения – поддерживать постоянное выходное напряжение даже при изменении входного напряжения. Почему это важно? Потому что электронные компоненты рассчитаны только на определенное напряжение.

Возьмите этот светодиод, например, если мы подключим его к батарее на 9 вольт, он мгновенно выйдет из строя навсегда. Это из-за тонкого провода внутри светодиода.Посмотрев под микроскоп, мы можем увидеть, как напряжение протолкнуло слишком много электронов через провод, что привело к его перегоранию. Для защиты светодиода нам понадобится резистор. Это уменьшит ток.

Это только резистор на 10 Ом, который подключен к нашему источнику переменного тока постоянного тока. Когда мы подаем небольшое напряжение, мы видим, что светодиод в порядке, но когда мы увеличиваем его, резистор загорается, и светодиод будет разрушен. Таким образом, использование резистора работает хорошо, но напряжение должно оставаться довольно постоянным.Поэтому нам нужен способ обеспечить постоянное выходное напряжение даже при изменении входного напряжения. Допустим, мы хотим поддерживать постоянное напряжение 5 В постоянного тока и ток, достаточный для зарядки простого дешевого телефона. Мы хотим иметь возможность подключать его к нескольким источникам напряжения, таким как батареи на 9 вольт или, возможно, на 12 вольт. Для этого нам нужно использовать компонент интегральной схемы. Есть много вариантов на выбор, которые могут работать при разных напряжениях, но в результате небольшого исследования мы нашли это. Модель LM7805.

Он может поддерживать постоянный выходной ток 5 вольт и ток до 1,5 ампер. Этот компонент может быть подключен к любому источнику постоянного напряжения от 7 до 35 вольт. Так что он идеально подходит для наших нужд. Имеет три контакта. Первый контакт – это вход для нерегулируемого напряжения. Контакт 2 – это контакт заземления, а контакт 3 – это регулируемый выход 5 В. Производитель рекомендует наличие конденсатора на входе и выходе. Он отмечает, что входной конденсатор необходим, если регулятор находится далеко от фильтра источника питания.Мы собираемся использовать несколько длинных проводов для подключения батареи, поэтому мы будем использовать рекомендуемый конденсатор 0,22 мкФ. Это электролитический конденсатор. Мы можем использовать версию с чуть большей емкостью, но мы не хотим использовать меньшую. Конденсатор поможет сгладить перебои в питании, а также низкочастотные искажения. В этом простом примере вы можете увидеть, как светодиод мгновенно выключается при отключении питания. Но если мы разместим конденсатор параллельно светодиоду, светодиод останется включенным, потому что теперь конденсатор разряжается и питает светодиод.

Значит, прерывания работы светодиода практически не влияют. Мы собираемся добавить еще один конденсатор параллельно на входной стороне. Это байпасный конденсатор. Он расположен очень близко к входному контакту регулятора. Это будет небольшой керамический конденсатор емкостью 0,1 мкФ. Этот конденсатор предназначен для фильтрации шума и высокочастотных искажений от источника питания. Поскольку мы не всегда можем получить идеально ровный источник постоянного тока. Мы также добавим еще один байпасный конденсатор 0,1 мкФ на выходной стороне, а также электролитический конденсатор на 10 мкФ.Это просто типичное значение, используемое для этой цели. При желании мы могли бы использовать конденсатор с чуть большей емкостью, но это будет работать нормально. Это поможет обеспечить чистый выход в нашей подключенной цепи. Мы также добавим защитный диод на входной стороне. Это поможет защитить схему, если мы подключим блок питания неправильно. Чтобы показать, как это работает, если мы подключим эту лампу накаливания к источнику питания, она загорится. Мы можем поменять местами провода, и он тоже загорится.Если мы поместим диод на красный провод и подключим его к плюсу, он снова загорится. Но теперь, когда мы меняем местами провода, диод блокирует ток, а лампа остается выключенной. Таким образом, мы можем использовать это для защиты цепи. Мы можем использовать выпрямительный диод или диод Шоттки. Здесь вы можете увидеть, как мы разместили два светодиода, каждый из которых подключен к разному типу диода. Когда мы медленно увеличиваем напряжение, мы видим, что светодиод, подключенный к выпрямительному диоду, не такой яркий. Это потому, что этот тип диодов имеет большое падение напряжения.Если мы измеряем на диоде Шоттки, мы получим падение напряжения около 0,3 вольт, а выпрямитель – около 0,66 вольт. Поэтому для этого случая лучше использовать диод Шоттки. Теперь мы можем выложить все эти компоненты на макетную плату, чтобы протестировать их, как мы это делали здесь. И как только мы будем счастливы, что это работает, теперь мы можем превратить это в печатную плату.

Проектирование печатной платы

Мы собираемся использовать Altium Designer для этого руководства, поскольку они любезно спонсировали эту статью.Все наши зрители могут получить бесплатную пробную версию этого программного обеспечения, перейдя по ссылке ЗДЕСЬ . Итак, откройте Altium Designer и нажмите «Файл», «Новый проект» и дайте проекту имя. Щелкните проект правой кнопкой мыши и добавьте схему, затем щелкните еще раз правой кнопкой мыши и добавьте плату. Теперь щелкните схему правой кнопкой мыши и сохраните ее. Дайте ему то же имя, что и проект. Затем также щелкните правой кнопкой мыши на плате и сохраните ее с тем же именем. Теперь нам нужно добавить компоненты. Мы можем использовать инструмент компонентов с правой стороны, но мы собираемся использовать надстройку, которая сделает это немного проще.Итак, мы находим нужные нам детали, мы используем Mouser, но вы можете использовать все, что захотите. Мы обнаружили конденсатор на 22 мкФ, поэтому берем этот номер детали, вставляем его в загрузчик библиотеки и нажимаем поиск. Затем он находит компонент, и мы нажимаем «добавить в дизайн». Он разместит компонент в нижнем углу, поэтому нам просто нужно переместить его на место. Затем мы переименовываем компонент, чтобы нам было проще. Теперь мы делаем то же самое для другого входного конденсатора, копируем номер детали и ищем его, затем добавляем, перемещаем и переименовываем.Затем мы находим регулятор и добавляем его в нашу конструкцию, а затем мы находим защитный диод и добавляем его в нашу конструкцию. Кстати, мы используем этот, но мы рекомендуем вам выбрать тот с более высоким пределом тока.

Затем мы находим выходной конденсатор, добавляем его и переименовываем. Теперь нам нужно найти клеммы подключения, и мы это тоже добавляем. Теперь нам нужен еще один конденсатор на розетке, поэтому мы выбираем существующий, копируем и вставляем его, а затем перемещаем на место.То же самое проделываем и с типом разъема на входной стороне. Теперь мы просто вращаем компоненты, поэтому выберите входной соединитель и нажмите клавишу пробела, чтобы повернуть его. Затем мы вращаем диод, затем мы можем вращать конденсаторы, но убедитесь, что символ «плюс» всегда идет к положительному источнику питания. Другие керамические конденсаторы не имеют полярности, поэтому они могут быть установлены в любую сторону, но мы сохраним ее в этом порядке. Затем мы вращаем регулятор и также перемещаем текст, затем вращаем следующий конденсатор и другой конденсатор.А теперь мы просто перемещаем компоненты на свои места. Теперь щелкните инструмент для проводов и начните соединять компоненты вместе, подводя заземляющий провод к регулятору. Затем мы добавляем к этому проводу символ заземления. Теперь используйте инструмент для проводов, чтобы также подключить выходную сторону. Теперь добавьте аннотацию для входного источника питания, который является VCC, затем добавьте аннотацию для 5 вольт на выходной стороне и переименуйте ее. Затем мы можем добавить текст для «входного напряжения», а также «выходного напряжения». Теперь нам нужно пронумеровать компоненты, поэтому нажмите «Инструменты», «Аннотации», «Аннотировать схему».Затем выберите «Вниз», затем «Через», а затем обновите список изменений, нажмите «ОК», примите изменения, затем подтвердите изменения. Затем внесите изменения и закройте. Теперь мы видим, что все компоненты пронумерованы. Затем нам нужно проверить дизайн. Итак, нажмите «Проект», а затем «Подтвердить проект». Если мы нажмем «Просмотр», «Панели», а затем «Сообщения», это сообщит нам, что компиляция прошла успешно без ошибок. Итак, теперь щелкните PCB и щелкните Design, а затем импортируйте изменения. Затем подтвердите изменения и нажмите «Выполнить изменения».Компоненты размещаются в нижнем углу, просто щелкните поле и удалите его. Глядя на нашу схему, у нас есть коннектор J1 на входе, поэтому мы его переместим. Затем у нас есть диод, конденсатор 1 и конденсатор 2, поэтому мы их тоже переместим. Затем у нас есть регулятор, затем у нас есть конденсаторы 3 и 4, а затем у нас есть выходной разъем. Теперь мы вращаем компоненты, чтобы проложить путь, по которому течет наше электричество. Мы можем переключиться в режим 3D, чтобы проверить, как это выглядит. Затем мы можем выровнять компоненты, чтобы улучшить внешний вид.Теперь щелкните здесь и в новом окне выберите механический слой. Щелкните правой кнопкой мыши и создайте новый слой, назовите его Cut Out. Измените настройки, а затем закройте. Теперь выберите свой слой внизу, затем нажмите Edit, Origin и Set. Затем щелкните верхний угол печатной платы. Теперь нажмите «Поместить» и «Выбрать линию». Проведите линию вокруг компонентов. Затем, удерживая Shift, щелкните по 4 линиям. Затем нажмите «Дизайн», «Форма платы» и «Определить форму». Затем мы можем увидеть это в 3D. Теперь мне просто нужно изменить размер текста, чтобы он не печатался слишком большим.Теперь нажмите на верхний слой и вставьте текст, и мы назовем его 5 вольт, и мы можем просто повернуть его. То же самое проделаем и с основным текстом. Глядя на входную сторону платы, мы только что осознали, что входной разъем расположен не так, мы видим, что в трехмерном представлении мы просто пропустили это ранее, поэтому мы просто исправим это сейчас. Затем мы добавляем на плату землю и текст VCC. Теперь нажмите Route, Auto Route и выберите All. Затем он добавляет наш маршрут на доску. Мы также можем переместить маршрут, если захотим.Теперь мы переходим в Инструменты и Проверка правил. Нажмите «Выполнить», он загрузит отчет и сообщит нам, что у нас есть две проблемы с зазором мачты шелка и припоя. Мы выбираем Design, Rules, Silk to Mask, затем меняем значение, нажимаем Apply, Ok, затем снова запускаем проверку правил. Теперь мы видим, что ошибок нет. Теперь мы можем видеть маршрут и в 3D-дизайне. Так что давайте сохраним это. Щелкните схему, затем щелкните Файл, Smart PDF, затем выберите схему. Мы отключаем спецификацию материалов, но вы можете оставить ее включенной, если хотите.Нажмите Готово, и он сгенерирует PDF-файл с нашим дизайном, закройте его, а затем нажмите на выход Fabrication, выберите файлы Gerber, а затем выберите проект. Теперь щелкните по нему и измените его на Миллиметры, затем на слоях вы можете оставить все как есть, но мы собираемся выбрать все слои и нажать ОК. Нажмите на структуру папок, затем свяжите файл, нажмите «Создать» и все. Были сделаны! Мы готовы напечатать нашу печатную плату.

Изготовление печатной платы.

Теперь нам нужно заказать нашу печатную плату.Мы используем JLCPCB, который также любезно спонсировал эту статью. Они предлагают исключительную стоимость с 5 печатными платами всего за 2 доллара, проверьте ЗДЕСЬ . Мы просто меняем пункт назначения и валюту доставки в Великобританию, поскольку именно там мы находимся, но вы можете выбрать свою страну и валюту. Теперь мы просто загружаем наши файлы Gerber, и он производит предварительный просмотр. У нас есть несколько вариантов настройки продукта, мы выберем количество, а затем оставим остальные по умолчанию.Затем мы сохраним это в тележке и сразу перейдем к оформлению заказа. Мы можем выбрать вариант пересылки, чтобы снизить стоимость, но мы хотим сделать это очень быстро, поэтому собираемся заказывать через DHL Express. Затем мы просто отправляем заказ, оплачиваем и все. Просто, готово. Несколько дней спустя наша печатная плата прибыла по почте от JLCPCB, готовая к сборке. Надо сказать, это выглядит потрясающе, мы очень довольны этим сервисом. Не забывайте, что вы также можете бесплатно скачать копию нашей печатной платы ЗДЕСЬ .

Собираем печатную плату

Сборка печатной платы довольно проста. Мы просто выкладываем наши компоненты, и нам нравится размещать их по порядку на этом паяльном коврике. Мы также используем этот держатель, чтобы с ним было немного легче работать. Затем вставляем компоненты и начинаем их паять по одному. Просто слегка согните ноги, чтобы удерживать их на месте. Когда вы паяете компоненты на место, просто осмотрите паяные соединения, чтобы убедиться, что все в порядке, а затем вы можете обрезать выводы. А через несколько минут мы получим готовую печатную плату, готовую к тестированию.

Тестирование печатной платы

Для проверки печатной платы мы подключили к источнику питания 9-вольтную батарею. А мультиметр на розетке показывает 5 вольт. Если перевернуть батарею, мы увидим на мультиметре 0 вольт. Итак, диод защищает нашу схему. Мы довольны этим, поэтому возлагаем на него небольшую нагрузку, и он отлично работает. Теперь для настоящего теста мы подключаем USB-порт к розетке и подключаем дешевый телефон. Мы видим, что 9-вольтовая батарея заряжает устройство. Используя USB-тестер, мы видим, что он поставляет 4.6 вольт и потребляемый ток 0,26 ампер. Так что он работает отлично.


Почему вам следует использовать линейный стабилизатор напряжения

Стабилизаторы напряжения

являются неотъемлемой частью многих проектов, требующих стабильного входного напряжения. Их работа состоит в том, чтобы принимать нерегулируемое входное напряжение и выводить регулируемое напряжение , с единственной загвоздкой в ​​том, что входное напряжение должно быть выше, чем выходное напряжение. Если у вас в разработке проект, требующий определенного напряжения, вы можете рассмотреть несколько вариантов:

Фиксированное напряжение – LM78XX

Микросхемы линейных стабилизаторов напряжения серии LM78XX чрезвычайно популярны, и не зря.Они дешевы, просты в использовании, требуют небольшого количества других компонентов и имеют встроенную защиту от слишком большого тока. Существуют разные модели для вывода разного напряжения, и последние две цифры в номере модели обозначают их выходное напряжение. Например, LM7805 выдает 5 вольт, LM7810 выдает 10 вольт, а LM7824 выдает 24 вольта.

Фиксированное напряжение – стабилитрон

Вы прошли половину своего проекта и только что осознали, что только что освоили микросхемы линейных регуляторов.Что ты можешь сделать? Если у вас есть подходящий стабилитрон напряжения и силовой транзистор, вы можете сделать свой собственный стабилизатор напряжения, используя приведенную выше принципиальную схему. Выходное напряжение будет на 0,6 В ниже напряжения стабилитрона диода из-за падения напряжения база-эмиттер на транзисторе.

Переменное напряжение – LM317

Если вам нужно настроить выходное напряжение регулятора напряжения, LM317 – это то, что вам нужно. Он очень похож на серию LM78XX, за исключением того, что имеет регулировочный штифт для изменения выходного напряжения.Добавив в схему потенциометр, вы можете использовать его для таких целей, как управление скоростью вращения вентилятора или источники питания с переменным напряжением.

Примечание о радиаторах

Чем больше падение напряжения на регуляторе напряжения, тем больше тепла будет рассеиваться через компонент. Во избежание возгорания обязательно используйте радиатор!

DIY Дискретный и простой регулятор напряжения – Toli’s DIY

Некоторое время назад я немного поигрался со старинными звуковыми усилителями / приемниками, и во многих из них я улучшал блок питания для слаботочных дифференциальных усилительных каскадов.Это всегда была простая и дешевая задача, которая стоила потраченного времени, когда дело доходило до звука. Стремясь «сделать это по-другому», я не хотел использовать для этого ИС, а скорее хотел использовать дискретный, но простой дизайн. Схема, которую я придумал, очень хорошо подходила для таких приложений, и поэтому я решил, что было бы неплохо сделать из нее независимую печатную плату регулятора для общего использования в аудиотехнике, которую я создаю. В то время у меня также был ограниченный опыт проектирования печатных плат, так что это казалось отличным проектом для начала.Нет лучшего способа научиться, чем просто попробовать.

Рис. 1. Схема регулятора минимального напряжения Toli.

Самая простая форма регулятора показана на рис. 1. Это старые схемы, которые я нарисовал с помощью TinyCAD до использования KiCAD, и поэтому они не так красивы, как схемы на моих более поздних схемах. Схема довольно проста, но она отличается от большинства регуляторов напряжения. В отличие от большинства регуляторов, в которых имеется явное опорное напряжение, которое затем буферизуется усилителем ошибки и проходными транзисторами, в этой схеме используется другой механизм.«Опорное» напряжение в этом случае – это VGS, необходимое для того, чтобы M3 пропускал ток, обеспечиваемый J2. Все компоненты слева от J2 представляют собой не более чем двухполупериодный выпрямитель и конденсатор фильтра большой емкости. J2 в этом случае работает в режиме насыщения и, следовательно, действует как источник постоянного тока (CCS). Этот ток заряжает узел затвора M2, который, в свою очередь, подтягивает выходной узел к высокому уровню. Это заставляет узел затвора M3 подниматься, и M3 проводит ток J2 в узел заземления. Состояние равновесия – это когда ток M3 равен току J2.Следовательно, выходное напряжение можно описать как:

VOUT (DC) = VGS (M3) * Ra + RbRb

Эта (часть регулятора, без выпрямителя) представляет собой схему, которую я неоднократно использовал в качестве локальных регуляторов внутри старинных усилителей. Его можно построить на небольшом сборном картоне и разместить рядом с точкой нагрузки. Тот факт, что точное значение выходного постоянного тока не определяется перед измерением (из-за вариаций VTH M3), не имеет большого значения для аудио приложений. Однако это довольно хороший регулятор с очень низким уровнем шума.

Однако при использовании его в качестве автономного регулятора линейное регулирование имеет гораздо большее значение. Одна часть схемы, которая ухудшает линейное регулирование в этой цепи, – это чувствительность J2 к изменениям напряжения на нем. Поэтому, чтобы улучшить это, можно несколько изменить схему до той, что показана на рис. 2. В этой схеме J2 больше не работает напрямую от выпрямленного напряжения. Вместо этого используется стабилитрон D5, чтобы обеспечить J2 чистым питанием. J1 снова используется как CCS для ограничения колебаний тока через стабилитрон.Очевидно, что J1 должен поддерживать ток J2 и стабилитрона. Поскольку теперь у нас есть дополнительное напряжение, которое несколько выше, чем на затворе M2, мы можем использовать его для управления затвором дополнительного NMOS, M1. Он может действовать как каскод для M2, ограничивая вариации VDS над ним и дополнительно улучшая регулирование линии. Эта модифицированная схема, очевидно, происходит за счет увеличения требований к запасу мощности регулятора (Vin-Vout необходим для правильной работы).

Рис. 2. Улучшенное регулирование линии

Возможный компромисс между ними (высокий запас по мощности и хорошее регулирование линии переменного тока) может быть достигнут путем замены этих дополнительных устройств простым фильтром нижних частот (ФНЧ), как на рис.3.

Рис. 3. ФНЧ для уменьшенной пульсации 100 Гц / 120 Гц

Однако я хотел посмотреть, насколько далеко я могу продвинуть эту базовую схему, расширив схему вокруг нее, чтобы дать дополнительную функциональность. Кое-что из того, чего я надеялся достичь, – это снижение требований к запасу мощности без ущерба для производительности, а также некоторая базовая форма ограничения тока. Я предпочитаю не строить схемы, в которых нет некоторых ограничений по току, просто в качестве меры минимизации повреждений в случае возникновения каких-либо проблем.После пары итераций я пришел к схеме на рис. 4, которую я назвал «ToliReg» 🙂

. Рис. 4. Окончательная версия регулятора напряжения (ToliReg)

В этой схеме немного больше деталей, и на самом деле она не соответствует первоначальному замыслу «сделать ее как можно более простой», но она предлагает гораздо больше. функциональность. Обозначение устройства было изменено по сравнению с первой схемой, но все еще легко распознать тот же механизм, который устанавливает выходное напряжение. M1 теперь является устройством обратной связи (усилителем ошибки), а M2 – проходным транзистором.Raa был добавлен в качестве дополнительной настройки для выходного напряжения, чтобы сделать его менее чувствительным к параметрам M1. CCS теперь реализован с использованием CRD1 (который все еще может быть JFET, что и есть CRD). Однако, чтобы иметь более низкий запас по запасу мощности, этот ток поступает не напрямую, а через токовое зеркало, состоящее из Q5 / Q6. Q7 используется как каскод для Q6, чтобы ограничить температурную разницу между Q5 / Q6. D6 нужен только для смещения базы Q7.
Чтобы обеспечить бесперебойное питание для этой схемы смещения, используется LPF (R1 и C4), буферизованный Q4 в качестве умножителя емкости.D5 / C3 действуют как цепь «удержания пика», что является очень эффективным дополнением. При такой топологии допускается значительное падение напряжения на конденсаторе большой емкости без влияния на работу усилителя ошибки, что, в свою очередь, означает лучшее регулирование даже при более высоком выходном токе.
Наконец, в Rsense добавлена ​​функция ограничения тока. Этот резистор установлен на стоке M2, поэтому он не влияет на выходное сопротивление регулятора. Когда напряжение на этом резисторе возрастает до ~ 0,6 В, Q1 будет проводить.Это, в свою очередь, сделает второй / третий квартал активным. Q2 опускает затвор M2 ниже и ограничивает выходное напряжение (и ток). Q3 не является обязательным и может использоваться для управления светодиодом для визуального уведомления о текущем предельном состоянии.

Рис. 5. Схема платы ToliReg V3

Я также разработал версию этого же регулятора с двумя рельсами для использования в моих собственных проектах. Я сделал некоторые измерения шума регулятора (на более ранней версии печатной платы, как показано на рисунке ниже. Измерение шума было выполнено с использованием LNMP от тангенса (см. Ссылку для получения дополнительной информации) с полосой пропускания 100 кГц -3 дБ .Общий интегрированный шум на выходе регулятора, установленного на 24 В, был измерен при 10 мкВ (среднеквадратичное значение).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *