Как устроен Транзистор (физический аспект) | ScArtproject
Купить транзисторы вы можете на Aliexpress оптом
Доброго времени суток. В своем блоге я перешел к рассмотрению транзистора по одной причине. В дальнейшем мы часто будем затрагивать радиоэлектронику, включая пайку схем. И знать как устроен транзистор, я считаю — это необходимо. Тем более в наше время транзисторы везде, во всех электронных приборах. На работе транзистора основаны процессоры, микросхемы и многое другое.
P.S. Также в скором будущем мы будем делать свой полноценный процессор, а точнее Битовый Сумматор, который без знания работы транзистора не представляет интереса.
Начнем..
Вот так выглядят транзистор
Состав транзистора — это кремниевые, реже германиевые пластины. Также производят из нитрида галлия(высокое качество, дорого в производстве). Полный список можете найти в интернете.
Основной принцип работы транзистора прост: в одном случае транзистор пропускает ток, когда на Базу подается напряжение, в другом не пропускает, когда База остается нетронутой.
Схематичное представление транзистора
Сейчас все разберем по порядку. Транзисторы бывают полевыми (от слова поле) и Биполярными (Би — значит «2»). На рисунке выше изображен Биполярный транзистор. (Полярный разберем чуть позднее, но смысл у него тот же).
Биполярные транзисторы бывают n-p-n и p-n-p переходы (n — negative[электронный], p — positive [дырочный]). Для определенности рассмотрим n-p-n переход.
n-p-n1.Из Базиса (области «p») электроны диффундируют (Диффузия) в области «n» слева и справа. Т.е. дырки в электронную, а электроны в дырочную. На границе между переходами образуется поле, создаваемое зарядами «+» и «-«. Таким образом, процесс диффузии останавливается и создается баланс между электронами и дырками.
2.Если к n и n частям подвести ток, то каким бы не было направление тока, он течь не будет(точнее будет, так как ничего идеального нет, но он будет ничтожно мал). Рассмотрим почему:
При подключении к ЭДС таким образом, как на рисунке (рассмотрим левую часть) ток начнет течь от «+» к «-«, т.е. дырки в левой «n» зоне начнут заполнятся электронами, следовательно в левой части «p» зоны появятся положительные ионы, которые создадут запирающее напряжение, из-за которого ток не пойдет. Т.е. наш ток от батареи пытается течь по часовой стрелки, а транзистор против часовой.
Конечно, если подать достаточно большое напряжение, то произойдет пробой, в результате чего ток потечет, но транзистор станет непригодным. Чтобы этого не произошло, надо читать инструкцию к транзистору, в котором написано максимальное работоспособное напряжение.
Аналогичная ситуация, если подсоединить батарею наоборот. Только тогда ток, создаваемый ЭДС потечет против ч.стрелки, а в транзисторе поле будет направлено в др сторону.
3. Теперь подключим к третьей ножке (Базе) ток.
В таком случае между n — p переходом исчезнет барьер и потечет ток, отсюда следует, что и у p — n перехода уйдет сдерживающее поле, тогда и по большой цепи, и по малой потекут электроны.
Полевой транзисторБыстренька пройдемся по полевому транзистору.
1.У полевого транзистора также 3 части: Исток(откуда идут электроны), Сток(куда текут электроны), Затвор(пластина с электронными дырками).
Когда затвор не замкнут в цепи, то электроны могу спокойно течь против тока и никто им не мешает. (против , потому что ток течет от «+» к «-«, а электроны от «-» к «+»)<почему так, читайте внизу>
2. Если замкнуть затвор
На пластине затвора образуются избытки электронов. (Пластины обрамлены диэлектриком) Отсюда на нижней пластине — излишки положительных ионов, что препятствует протеканию тока. И только некоторым электронам это удается. Аналогично с биполярными транзисторами (БТ).
Надеюсь я понятным языком объяснил устройство-работу транзисторов. Как и всегда вы можете писать свои предложения и вопросы в комментариях.
П. С. Почему электроны, частицы несущие заряд, при протекании тока, идут от «-» к «+», а ток течет от «+» к «-» ?
Отв: Благодаря Лейденским ученым, Вольту и др. мы узнали о существовании тока, и когда его открыли, то предписали, что он течет от + к — (условно). Но электрон открыли гораздо позднее (1897г). А к моменту открытии тока не было известно о частице несущей заряд.
Источники:
– Школа
– ScArtProject.ru
Как устроен транзистор и как он обозначается
Транзистор на пальцах
Жуткая вещь, в детстве все не мог понять как он работает, а оказалось все просто.
В общем, транзистор можно сравнить с управляемым вентилем, где крохотным усилием мы управляем мощнейшим потоком. Чуть повернул рукоятку и тонны дерьма умчались по трубам, открыл посильней и вот уже все вокруг захлебнулось в нечистотах. Т.е. выход пропорционален входу умноженному на какую то величину. Этой величиной является коэффициент усиления.
Делятся эти девайсы на полевые и биполярные.
В биполярном транзисторе есть эмиттер, коллектор и база (смотри рисунок условного обозначения).
На схемах эмиттер – со стрелочкой, а база обозначается как прямая площадка между эмиттером и коллектором.
Между эмиттером и коллектором идет большой ток полезной нагрузки, направление тока определяется стрелочкой на эмиттере. А вот между базой и эмиттером идет маленький управляющий ток. Грубо говоря, величина управляющего тока влияет на сопротивление между коллектором и эмиттером. Биполярные транзисторы бывают двух типов: p-n-p и n-p-n принципиальная разница только лишь в направлении тока через них.
Полевой транзистор отличается от биполярного тем, что в нем сопротивление канала между истоком и стоком определяется уже не током, а напряжением на затворе. Последнее время полевые транзисторы получили громадную популярность (на них построены все микропроцессоры), т.к. токи в них протекают микроскопические, решающую роль играет напряжение, а значит потери и тепловыделение минимальны.
Обозначение транзисторов или камень преткновения всех студентов. Как запомнить тип биполярного транзистора по его условной схеме? Представь что стрелочка это направление твоего движения на машине… Если едем в стенку то дружный вопль “Писец Нам Писец” (PnP).
Короче, транзистор позволяет слабеньким сигналом, например с ноги микроконтроллера, управлять мощной нагрузкой типа реле, двигателя или лампочки. Если не хватит усиления одного транзистора, то их можно соединять каскадами – один за другим, все мощней и мощней. А порой хватает и одного могучего полевого MOSFET транзистора. Посмотри, например, как в схемах сотовых телефонов управляется виброзвонок. Там выход с процессора идет на затвор силового MOSFET ключа.
Как это устроено: транзисторы
Процессоры в компьютерах, телефонах и любой электронике состоят из транзисторов. В процессоре Apple A13 Bionic, который стоит внутри одиннадцатого айфона, 8,5 миллиарда транзисторов, а в Core i7 4790, который стоял внутри многих настольных компьютеров в 2014 году, — в 6 раз меньше.
Именно транзисторы выполняют всю компьютерную работу: считают, запускают программы, управляют датчиками и отвечают за работу устройства в целом.
При этом сам транзистор — простейший прибор, который по сути похож на кран или электрические ворота. Через транзистор идёт какой-то один ток, а другим током этот поток можно либо пропустить, либо заблокировать. И всё.
Вот примерная схема. В жизни ножки транзистора могут быть расположены не так, как на схеме, но для наглядности нам надо именно так:
Ток пытается пройти сквозь транзистор, но транзистор «закрыт»: на его управляющую ногу не подан другой ток.
А теперь мы подали на управляющую ногу немного тока, и теперь транзистор «открылся» и пропускает через себя основной ток.
Из миллиардов таких простейших кранов и состоит любая современная вычислительная машина: от чайника с электронным управлением до суперкомпьютера в подвалах Пентагона. И до чипа в вашем смартфоне.
В середине XX века транзисторы были большими: сотней транзисторов можно было набить карман, их продавали в радиотехнических магазинах, у них были прочные корпуса и металлические ножки, которые нужно было паять на плате. Такие транзисторы до сих пор продаются и производятся, но в микроэлектронике они не используются — слишком большие.
Это один из вариантов исполнения транзистора: пластиковый корпус и три ноги для соединения с платой.
Современный транзистор уменьшен в миллионы раз, у него нет корпуса, а процесс его монтажа можно сравнить скорее с процессом лазерной печати. Транзисторы размером несколько нанометров в буквальном смысле печатают поверх пластин, из которых потом получаются наши процессоры и память. Такие пластины называют вафлями, и если смотреть на них без микроскопа, это будут просто такие радужные поверхности. Радужные они потому, что состоят из миллиардов маленьких выемок — транзисторов, резисторов и прочих микрокомпонентов:
Вафля из миллиардов транзисторов. Если её разрезать в правильных местах, получатся наши микропроцессоры.
Что внутри транзистора
Если бы мы могли разрезать один транзистор в микропроцессоре, мы бы увидели что-то вроде этого:
Слева — проводник, по которому бежит ток, справа — просто проводник, пока без тока. Между ними находится проводящий канал — те самые «ворота». Когда ворота открыты, ток из левого проводника поступает в правый. Когда закрыты — правый остаётся без тока. Чтобы ворота открылись, на них нужно подать ток откуда-то ещё. Если тока нет, то ворота закрыты.
Теперь, если грамотно посоединять тысячу транзисторов, мы получим простейшую вычислительную машину. А если посоединять миллиард транзисторов, получим ваш процессор.
Почему все так полюбили транзисторы
До транзисторов у учёных уже было некое подобие вычислительных машин. Например, счёты: там оператор управлял перемещением бусин в регистрах и складывал таким образом числа. Но оператор медленный и может ошибаться, поэтому система была несовершенной.
Были механические счётные машины, которые умели складывать и умножать числа за счёт сложных шестерней, бочонков и пружин, — например, арифмометр. Они работали медленно и были слишком дорогими для масштабирования.
Были вычислительные машины на базе механических переключателей — реле. Они были очень большими — те самые «залы, наполненные одним компьютером». Их могли застать наши родители, бабушки и дедушки.
Позже придумали электронные лампы: там управлять током уже можно было с помощью другого тока. Но лампы перегревались, ломались, на них мог прилететь мотылёк.
И только в конце сороковых учёные изобрели твердотельные транзисторы: вся кухня с включением и выключением тока проходила внутри чего-то твёрдого, устойчивого и безопасного, не привлекающего внимания мотыльков. За основу взяли германий и кремний и стали развивать эту технологию.
Кайф твердотельных транзисторов в том, что взаимодействия там происходят на скоростях, близких к скорости света. Чем меньше сам транзистор, тем быстрее по нему пробегают электроны, тем меньше времени нужно на вычисления. Ну и сломать твердотельный транзистор в хорошем прочном корпусе намного сложнее, чем хрупкую стеклянную лампу или механическое реле.
Как считают транзисторы
Транзисторы соединены таким хитрым образом, что, когда на них подаётся ток в нужных местах, они выдают ток в других нужных местах. И всё вместе производит впечатление полезной для человека математической операции.
Пока что не будем думать, как именно соединены транзисторы. Просто посмотрим на принцип.
Допустим, нам надо сложить числа 4 и 7. Нам, людям, очевидно, что результат будет 11. Закодируем эти три числа в двоичной системе:
Десятичная | Двоичная |
4 | 0100 |
7 | 0111 |
11 | 1011 |
Теперь представим, что мы собрали некую машину, которая получила точно такой же результат: мы с одной стороны подали ей ток на входы, которые соответствуют первому слагаемому; с другой стороны — подали ток на входы второго слагаемого; а на выходе подсветились выходы, которые соответствовали сумме.
Смотрите, что тут происходит: есть восемь входов и четыре выхода. На входы подается электричество. Это просто электричество, оно не знает, что оно обозначает числа. Но мы, люди, знаем, что мы в этом электричестве зашифровали числа.
Так же на выходе: электричество пришло на какие-то контакты. Мы как-то на них посмотрели и увидели, что эти контакты соответствуют какому-то числу. Мы делаем вывод, что эта простейшая машина сложила два числа. Хотя на самом деле она просто хитрым образом перемешала электричество.
Вот простейший пример компьютера, собранного на транзисторах. Он складывает два числа от 0 до 15 и состоит только из транзисторов, резисторов (чтобы не спалить) и всяких вспомогательных деталей типа батарейки, выключателей и лампочек. Можно сразу посмотреть концовку, как он работает:
Вот ровно это, только в миллиард раз сложнее, и происходит в наших компьютерах.
Что мы знаем на этом этапе:
- Транзисторы — это просто «краны» для электричества.
- Если их хитрым образом соединить, то они будут смешивать электричество полезным для человека образом.
- Все компьютерные вычисления основаны на том, чтобы правильно соединить и очень плотно упаковать транзисторы.
В следующей части разберем, как именно соединены эти транзисторы и что им позволяет так интересно всё считать.
устройство, классификация и работа простым языком
С каждым годом появляется все больше и больше электронных средств, а они часто ломаются. На ремонт уходит немало средств, порой, достигая до 50 процентов от стоимости аппарата. И что досадно, некоторые из этих поломок можно было устранить самому, имея начальные знания о том, как работает транзистор. Почему он? Именно транзисторы чаще всего выходят из строя.
Виды транзистора
Чтобы легче разобраться в работе транзистора, необходимо иметь представление о нем. Он является полупроводником, что указывает на его способность проводить ток в одном направлении и не пропускать в другом. Чтобы достичь таких характеристик используются разные способы изготовления.
- биполярные
- полярные
Хотя и те и другие относятся к одному классу — транзисторы, происходящие в них процессы сильно отличаются.
Биполярный
Движение электронов по замкнутой цепи называется электрическим током. Грубо говоря, чем больше электронов, тем больше ток. Если атом отдает электроны, он становится положительно заряженным и, наоборот, притягивая лишние электроны, он становится отрицательно заряженным.
При добавлении в кремний и германий примесей они становятся необходимым материалом, из которых и изготавливаются биполярные транзисторы.
Биполярными называются электронные приборы, состоящие из двух, имеющие разные заряды слоев. Причем два крайних имеют одинаковый заряд. Тот слой, который имеет положительный заряд, называется «p», а отрицательный — «n». В связи с этим различают следующие типы:
Граница между этими слоями называется переход. Внутреннюю область, разделенную двумя переходами, называют базой. Две внешние области называют эмиттер и коллектор. Монокристалл изготовлен таким образом, что одна внешняя область передает в базу носители энергии и называется эмиттером. Другая внешняя область забирает эти носители и называется коллектором.
На электрической схеме биполярный транзистор обозначается в виде круга, внутри которого нарисована черточка, а к ней подходят три прямые. Одна подходит под углом в 90 градусов и обозначает базу, две другие под наклоном. Та из них что имеет стрелку обозначает эмиттер, другая — коллектор. Сам прибор, как правило, имеет три вывода, соответствующих этим областям.
Полевой
Другой вид называется полевой или униполярный. В отличие от биполярного p-n переход работает иначе. Его монокристалл имеет однородный состав. Канал, по которому движутся энергоносители, может быть дырочным или электронным. В дырочном носителем являются положительно заряженные неподвижные ионы, в электронном — отрицательно заряженные. Эти каналы также обозначаются буквами «p» и «n» соответственно.
Вокруг и почти по всей длине этого канала впрыскиваются, вживляются ионы противоположной полярности. Эта область называется затвором, она-то и регулирует проводимость канала. Тот край канала, через который заряженные частицы входят в кристалл, называется исток, а через который выходят — стоком.
Для улучшения электрических характеристик между металлическим каналом и затвором стали добавлять диэлектрик. Если классифицировать транзисторы по структуре, то можно выделить два семейства:
- МДП (к ним можно отнести и МОП — металл-оксид-проводник)
- JGBT
МДП расшифровывается как металл-диэлектрик-проводник. Это полевой. Новый JGBT транзистор сочетает в себе достоинства биполярного, но имеет изолированный затвор.
Принцип действия
Один из сложных радиоэлементов — транзистор. Принцип работы его сводится к следующему:
- регулировка
- усиление
- генерация
Биполярные обладают большей мощностью и могут работать с большими частотами. Однако, если нужен широкий спектр усиления, то без полевого не обойтись.
Работа полевого
Рассмотрим, как работает транзистор. Для начинающих радиолюбителей трудно разобраться во всех этих переходах. Чтобы показать принцип работы транзистора простым языком, обратим внимание на следующий пример
Водопроводный кран вентильного типа способен очень плавно менять напор воды. Это достигается благодаря постепенному изменению пропускного отверстия. На этом же принципе основана работа и полевого транзистора.
Затвор окружает пропускной канал. При подаче на него запирающего напряжения, электрическое поле как бы сдавливает проход, тем самым уменьшая поток заряженных частиц. Как и при закрывании крана необходимо прилагать небольшое усилие, так и мощность затвора, по сравнению с основным каналом, очень мала. Сходство также и в том, что при небольших изменениях напряжения на затворе, сечение прохода также меняется незначительно.
Как работает биполярный
Работа биполярного прибора несколько отличается от работы полевого. В первую очередь отличается способ управления движением заряженных частиц. В полевом используется электрическое поле, в биполярном — ток между базой и эмиттером.
В зависимости от типа прибора стрелочка эмиттера на схеме будет либо направлена к базе, тогда это тип p-n-p, либо от базы, тогда это n-p-n. При подключении к этим зажимам одноименного напряжения («p» подключается к «+”, а «n» подключается к «-“) в цепи эмиттер — база возникает ток. В базе появляется больше носителей заряда и их становится тем больше, чем больше ток в этой цепи.
К коллектору подводится обратное напряжение, т. е. к «p» подключается «-“, а к «n» — «+”. Поскольку между эмиттером и коллектором возникает разность потенциалов, между этими выводами появляется ток. Он будет тем больше, чем больше носителей заряда имеется в базе.
Когда к эмиттеру и базе подключают источник питания противоположного знака, ток прекращается, транзистор закрывается. Что поможет лучше понять работу транзистора? Для чайников важно понять одну истину.
Меры предосторожности
Полевые транзисторы очень чувствительны к повышенному напряжению. При работе с ними необходимо предотвратить возможность попадания на них статистического напряжения. Этого можно достичь надев заземленный браслет. При подборе аналога важно учитывать не только рабочее напряжение, но и допустимый ток. А если прибор работает в частотном режиме, то и его частоту.
Транзистор – принцип работы.Основные параметры.
Как устроен транзистор.
Вне зависимости от принципа работы, полупроводниковый транзистор содержит в себе монокристалл из основного полупроводникового материала, чаще всего это – кремний, германий, арсенид галлия. В основной материал добавлены, легирующие добавки для формирования p-n перехода(переходов), металлические выводы.
Кристалл помещается в металлический, пластиковый или керамический корпус, для защиты от внешних воздействий. Однако, существуют также и бескорпусные транзисторы.
Принцип работы биполярного транзистора.
Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника в кристалле. В любом случае выводы называются – база, коллектор и эмиттер. Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора. Он имеет принципиально очень малую ширину. Носители заряда движутся от эмиттера через базу – к коллектору. Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого может являться разность напряжения между этими электродами.
Т.е. – для нормальной работы биполярного транзистора в качестве усилителя сигнала всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в прямом направлении. Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает так называемую – рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют режим – А. В этом режиме напряжение между коллектором и нагрузкой, примерно равно половине питающего напряжения – т. е выходное сопротивление транзистора и нагрузки примерно равны . Если подавать теперь на переход база – эмиттер сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер – коллектор будет изменяться, графически повторяя форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору протекающим. Причем амплитуда тока будет большей, нежели амплитуда входного сигнала – будет происходить усиление сигнала.
Если увеличивать напряжение смещения база – эмиттер дальше, это приведет к росту тока в этой цепи, и как результат – еще большему росту тока эмиттер – коллектор. В конце, концов ток перестает расти – транзистор переходит в полностью открытое состояние(насыщения). Если затем убрать напряжение смещения – транзистор закроется, ток эмиттер – коллектор уменьшится, почти исчезнет. Так транзистор может работать в качестве электронного ключа. Этот режим наиболее эффективен в отношении управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения минимальна. Соответственно малы потери тока и нагрев переходов транзистора.
Существует три вида подключения биполярного транзистора.
С общим эмиттером (ОЭ) — осуществляется усиление как по току, так и по напряжению — наиболее
часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой,
так как значения их входного и выходного сопротивления относительно близки, если
сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).
С общим коллектором (ОК) осуществляется усиление только по току — применяется для согласования источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок. Например, в выходных каскадах усилителей и контроллеров.
С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом усиления. Например – в входных цепях радиоприемных устройств.
Принцип работы полевого транзистора.
Полевой транзистор, как и биполярный имеет три электрода. Они носят названия – сток, исток и затвор. Если на затворе отсутствует напряжение, а на сток подано положительное напряжение относительно истока, то между истоком и стоком через канал течет максимальный ток.
Т. е. – транзистор полностью открыт. Для того, что бы его изменить, на затвор подают отрицательное напряжение, относительно истока. Под действием электрического поля (отсюда и название транзистора) канал сужается, его сопротивление растет, а ток через него уменьшается. При определенном значении напряжения канал сужается до такой степени, что ток практически исчезает – транзистор закрывается.
На рисунке изображено устройство полевого транзистора с изолированным затвором(МДП).
Если на затвор этого прибора не подано положительное напряжение, то канал между истоком и стоком отсутствует и ток равен нулю. Транзистор полностью закрыт. Канал возникает при некотором минимальном напряжении на затворе(напряжение порога). Затем сопротивление канала уменьшается, до полного открывания транзистора.
Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения: с общим истоком (ОИ) — аналог ОЭ биполярного транзистора; с общим стоком (ОС) — аналог ОК биполярного транзистора; с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.
По рассеиваемой в виде тепла мощности различают:
маломощные транзисторы – до 100 мВт ;
транзисторы средней мощности – от 0,1 до 1 Вт;
мощные транзисторы – больше 1 Вт.
Важные параметры биполярных транзисторов.
1. Коэффициент передачи тока(коэффициент усиления) –
от 1 до 1000 при постоянном токе. С увеличением частоты постепенно снижается.
2. Максимальное напряжение между коллектором и эмиттером(при разомкнутой базе)
У специальных высоковольтных транзисторов, достигает десятков тысяч вольт.
3.Предельная частота, до которой коэффициент передачи тока выше 1.
До 100000 гц. у низкочастотных транзисторов, свыше 100000 гц. – у высокочастотных.
4.Напряжение насыщения эмиттер-коллектор – величина падения напряжения между этими
электродами у полностью открытого транзистора.
Важные параметры полевых транзисторов.
Усилительные свойства полевого транзистора определяются отношением приращения тока стока к вызвавшему его приращению напряжения затвор – исток, т. е.
ΔId /ΔUGSЭто отношение принято называть крутизной прибора, а по сути дела оно является передаточной проводимостью и измеряется в миллиамперах на вольт(мА /В).
Другие важнейшие параметры полевых транзисторов приведены ниже:
1. IDmax – максимальный ток стока.
2.UDSmax – максимальное напряжение сток-исток.
3.UGSmax – максимальное напряжение затвор-исток.
4.РDmax – максимальна мощность, которая может выделяться на приборе.
5.ton – типовое время нарастания тока стока при идеально прямоугольной форме входного сигнала.
6.toff – типовое время спада тока стока при идеально прямоугольной форме входного сигнала.
7.RDS(on)max – максимальное значение сопротивления исток – сток в включенном(открытом) состоянии.
На главную страницу
Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт “Электрика это просто”.
Как работает транзистор?
- Подробности
- Категория: Начинающим
- Опубликовано 29.11.2013 14:41
- Автор: Admin
- Просмотров: 35218
Транзисторы – это радиоэлектронные компоненты из полупроводникового материала, которые предназначены для преобразований, усилений и генерации электрических колебаний.
Но всё же, как работает транзистор? Говоря простым языком с помощью транзистора можно управлять током. Транзисторами называются любые устройства, которое способно имитировать главные его свойства, а именно – изменять сигнал между двумя разными типами состояний при изменениях сигнала на управляющем электроде.
Транзисторы бывают двух типов:
- полевые;
- биполярные.
Материалами изготовления служат германий и кремний, но при добавлении примесей способность проводить ток возрастает. Нужно рассмотреть оба типа транзисторов, для того чтобы понять как работает транзистор? На рисунке представлены три области p-n-p или n-p-n из которых состоит любой биполярный транзистор.
Структура транзистора
В биполярных транзисторах носители зарядов двигаются от эмиттера к коллектору. База отделяется от коллектора и эмиттера p-n переходами. Протекает ток через транзистор лишь при инжектировании носителей заряда через p-n переход из эмиттера в базу. Находясь в базе, они начинают становиться неосновными носителями заряда и достаточно легко проникают через p-n переходы. Управление током между коллектором и эмиттером осуществляется за счет изменения напряжения между базой и эмиттером.
Конструкция транзистора
Как работает транзистор в цепи электрического тока?
Основной принцип работы транзистора заключается в управлении электрическим током с помощью незначительного тока являющегося своего рода управляющим током. В полевых транзисторах носители зарядов движутся к коллектору от эмиттера через базу. Существует канал, в легированном проводнике находясь в промежутке между нелегированной подложкой и затвором. В подложке отсутствует заряд, и она не проводит ток. Перед затвором есть область обеднения с отсутствием носителей заряда.
Таким образом, вся ширина канала ограничивается пространством между областью обеднения и пространством между подложкой. Напряжение, прикладываемое к затвору, уменьшает или увеличивает область обеднения, и тем самым ширину самого канала, контролируя при этом ток.
Многие начинающие радиолюбители не так представляют себе принцип работы транзистора. Они думают, что транзистор способен усилить мощность источника питания, но это далеко не так. Важно понимать, что транзистор управляет большим током коллектора с помощью маленького тока протекающего через базу. Здесь речь идет скорее всего об управлении чем об усилении.
Схема подключение транзистора
Схема состоит из двух электрических цепей :
- цепь эмиттера;
- цепь коллектора;
В цепи эмиттера протекает незначительный ток, который управляет током коллектора. На выходе мы получаем “копию” тока эммитера но усиленного в несколько раз.
Интересное видео о принципе действия транзистора
- < Назад
- Вперёд >
Добавить комментарий
Принцип действия транзистора, внутреннее устройство и основные характеристики транзисторов
Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Так что же такое транзистор? – Он представляет собой кристалл, помещенный в корпус, снабженный выводами. Кристалл изготовляют из полупроводникового материала. По своим электрическим свойствам полупроводники занимают некоторое промежуточное положение между проводниками и непроводниками тока (изоляторами).
Небольшой кристалл полупроводникового материала (полупроводника) после соответствующей технологической обработки становится способным менять свою электропроводность в очень широких пределах при подведении к нему слабых электрических колебаний и постоянного напряжения смещения.
Кристалл помещают в металлический или пластмассовый корпус и снабжают тремя выводами, жесткими или мягкими, присоединенными к соответствующим зонам кристалла. Металлический корпус иногда имеет собственный вывод, но чаща с корпусом соединяют один из трех электродов транзистора.
В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.
Быполярные транзисторы
Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами. В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов.
Поэтому и транзисторы называют одни кремниевыми, другие – германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.
Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость). Таким образом формируют один из электродов транзистора, называемый базой.
Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.
Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам.
Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.
Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.
Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.
Рис. 1. Напряжения смещения базы для кремниевых и германиевых транзисторов.
На рис. 1 показаны условные графические обозначения транзисторов той и другой структуры, выполненных на основе германия и кремния, и типовое напряжение смещения. Электроды транзисторов обозначены первыми буквами слов: эмиттер — Э, база — Б, коллектор — К.
Напряжение смещения (или, как принято говорить, режим) показано относительно эмиттера, но на практике напряжение на электродах транзистора указывают относительно общего провода устройства. Общим проводом в устройстве и на схеме называют провод, гальванически соединенный с входом, выходом и часто с источником питания, т. е. общий для входа, выхода и источника питания.
Усилительные и другие свойства транзисторов характеризуются рядом электрических параметров, наиболее важные из которых рассмотрены ниже.
Статический коэффициент передачи тока базы h21Э показывает, во сколько раз ток коллектора биполярного транзистора больше тока его базы, вызвавшего этот ток. У большинства типов транзисторов численное значение этого коэффициента от экземпляра к экземпляру может изменяться от 20 до 200. Есть транзисторы и с меньшим значением — 10…15, и с большим — до 50…800 (такие называют транзисторами со сверхусилением).
Нередко считают, что хорошие результаты можно получить только с транзисторами, имеющими большое значение h21э. Однако практика показывает, что при умелом конструировании аппаратуры вполне можно обойтись транзисторами, имеющими h2lЭ, равный всего 12…20. Примером этого может служить большинство конструкций, описанных в этой книге.
Частотными свойствами транзистора учитывается тот факт, что транзистор способен усиливать электрические сигналы с частотой, не превышающей определенного для каждого транзистора предела. Частоту, на которой транзистор теряет свои усилительные свойства, называют предельной частотой усиления транзистора.
Для того, чтобы транзистор мог обеспечить значительное усиление сигнала, необходимо, чтобы максимальная рабочая частота сигнала была по крайней мере в 10…20 раз меньше предельной частоты fт транзистора. Например, для эффективного усиления сигналов низкой частоты (до 20 кГц) применяют низкочастотные транзисторы, предельная частота которых не менее 0,2…0,4 МГц.
Для усиления сигналов радиостанций длинноволнового и средневолнового диапазонов волн (частота сигнала не выше 1,6 МГц) пригодны лишь высокочастотные транзисторы с предельной частотой не ниже 16…30 МГц.
Максимальная допустимая рассеиваемая мощность — это наибольшая мощность, которую может рассеивать транзистор в течение длительного времени без опасности выхода из строя. В справочниках по транзисторам обычно указывают максимальную допустимую мощность коллектора Яктах, поскольку именно в цепи коллектор — эмиттер выделяется наибольшая мощность и действуют наибольшие ток и напряжение.
Базовый и коллекторный токи, протекая по кристаллу транзистора, разогревают его. Германиевый кристалл может нормально работать при температуре не более 80, а кремниевый — не более 120°С. Тепло, которое выделяется в кристалле, отводится в окружающую, среду через корпус транзистора, а также и через дополнительный теплоотвод (радиатор), которым дополнительно снабжают транзисторы большой мощности.
В зависимости от назначения выпускают транзисторы малой, средней и большой мощности. Маломощные используют главным образом для усиления и преобразования слабых сигналов низкой и высокой частот, мощные — в оконечных ступенях усиления и генерации электрических колебаний низкой и высокой частот.
Усилительные возможности ступени на биполярном транзисторе зависят не только от того, какой он мощности, а сколько от того, какой конкретно выбран транзистор, в каком режиме работы по переменному и постоянному току он работает (в частности, каковы ток коллектора и напряжение между коллектором и эмиттером), каково соотношение рабочей частоты сигнала и предельной частоты транзистора.
Что такое полевой транзистор
Полевой транзистор представляет собой полупроводниковый прибор, в котором управление током между двумя электродами, образованным направленным движением носителей заряда дырок или электронов, осуществляется электрическим полем, создаваемым напряжением на третьем электроде.
Электроды, между Которыми протекает управляемый ток, иоСят название истока и стока, причем истоком считают тот электрод, из которого выходят (истекают) носители заряда.
Третий, управляющий, электрод называют затвором. Токопроводящий участок полупроводникового материала между истоком и стоком принято называть каналом, отсюда еще одно название этих транзисторов — канальные. Под действием напряжения на затворе» относительно истока меняется сопротивление канала» а значит, и ток через него.
В зависимости от типа носителей заряда различают транзисторы с n-каналом или р-каналом. В n-канальных ток канала обусловлен направленным движением электронов, а р-канальных — дырок. В связи с этой особенностью полевых транзисторов их иногда называют также униполярными. Это название подчеркивает, что ток в них образуют носители только одного знака, что и отличает полевые транзисторы от биполярных.
Для изготовления полевых транзисторов используют главным образом кремний, что связано с особенностями технологии их производства.
Основные параметры полевых транзисторов
Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп.
Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала.
Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока.
Частотные свойства полевого транзистора, так же как и биполярного, характеризуются значением предельной частоты. Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10…20 раз меньше предельной частоты транзистора.
Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.
Для нормальной работы полевого транзистора на его электродах должно действовать постоянное напряжение начального смещения. Полярность напряжения смещения определяется типом канала (n или р), а значение этого напряжения — конкретным типом транзистора.
Здесь следует указать, что среди полевых транзисторов значительно больше разнообразие конструкций кристалла, чем среди биполярных. Наибольшее распространение в любительских конструкциях и в изделиях промышленного производства получили полевые транзисторы с так называемым встроенным каналом и р-n переходом.
Они неприхотливы в эксплуатации, работают в широких частотных пределах, обладают высоким входным сопротивлением, достигающим на низкой частоте нескольких мегаом, а на средней и высокой частотах — нескольких десятков или сотен килоом в зависимости от серии.
Для сравнения укажем, что биполярные транзисторы имеют значительно меньшее входное сопротивление, обычно близкое к 1…2 кОм, и лишь ступени на составном транзисторе могут иметь большее входное сопротивление. В этом со-состоит большое преимущество полевых транзисторов перед биполярными.
Рис. 2. Напряжения питания для полевых транзисторов.
На рис. 2 показаны условные обозначения полевых транзисторов со встроенным каналом и р-n переходом, а также указаны и типовые значения напряжения смещения. Выводы обозначены в соответствии с первыми буквами названий электродов.
Характерно, что для транзисторов с р-каналом напряжение на стоке относительно истока должно быть отрицательным, а на затворе относительно истока — положительным, а для транзистора с n-каналом — наоборот.
В промышленной аппаратуре и реже в радиолюбительской находят также применение полевые транзисторы с изолированным затвором. Такие транзисторы имеют еще более высокое входное сопротивление, могут работать на очень высоких частотах. Но у них есть существенный недостаток — низкая электрическая прочность изолированного затвора.
Для его пробоя и выхода транзистора из строя вполне достаточно даже слабого заряда статического электричества, который всегда есть на теле человека, на одежде, на инструменте.
По этой причине выводы полевых транзисторов с изолированным затвором при хранении следует связывать вместе мягкой голой проволокой, при монтаже транзисторов руки и инструменты нужно «заземлять», используют и другие защитные мероприятия.
Литература: Васильев В.А. Приемники начинающего радиолюбителя (МРБ 1072).
транзисторов – learn.sparkfun.com
Добавлено в избранное Любимый 77Введение
Транзисторы вращают мир электроники. Они критически важны как источник управления практически в каждой современной цепи. Иногда вы их видите, но чаще всего они спрятаны глубоко внутри кристалла интегральной схемы. В этом уроке мы познакомим вас с основами самого распространенного транзистора: биполярного переходного транзистора (BJT).
В небольших дискретных количествах транзисторы могут использоваться для создания простых электронных переключателей, цифровой логики и схем усиления сигналов. В количествах тысяч, миллионов и даже миллиардов транзисторы соединены между собой и встроены в крошечные микросхемы для создания компьютерной памяти, микропроцессоров и других сложных ИС.
рассматривается в этом учебном пособии
После прочтения этого руководства мы хотим, чтобы вы получили широкое представление о том, как работают транзисторы.Мы не будем углубляться в физику полупроводников или эквивалентные модели, но мы достаточно углубимся в предмет, чтобы вы поняли, как транзистор можно использовать в качестве переключателя или усилителя .
Это руководство разделено на несколько разделов, охватывающих:
Существует два типа базовых транзисторов: биполярный переход (BJT) и металлооксидный полевой транзистор (MOSFET). В этом руководстве мы сфокусируемся на BJT , потому что его немного легче понять.Если копать еще глубже в типы транзисторов, на самом деле существует две версии BJT: NPN и PNP . Мы сфокусируемся еще больше, ограничив наше раннее обсуждение NPN. Если сузить наш фокус – получить твердое представление о NPN – будет легче понять PNP (или даже МОП-транзисторы), сравнив, чем он отличается от NPN.
и nbsp
и nbsp
Рекомендуемая литература
Перед тем, как углубиться в это руководство, мы настоятельно рекомендуем просмотреть эти уроки:
- Напряжение, ток, сопротивление и закон Ома – Введение в основы электроники.
- Основы электричества – Мы немного поговорим об электричестве как потоке электронов. Узнайте, как текут эти электроны, в этом уроке.
- Electric Power – Одно из основных применений транзисторов – усиление – увеличение мощности сигнала. Увеличение мощности означает, что мы можем увеличивать ток или напряжение, узнайте почему в этом руководстве.
- Диоды – Транзистор – это полупроводниковый прибор, похожий на диод. В некотором смысле это то, что вы получили бы, если бы сложили два диода вместе и связали их аноды вместе.Понимание того, как работает диод, будет иметь большое значение для раскрытия работы транзистора.
Хотите изучить транзисторы?
Символы, булавки и конструкция
Транзисторы – это в основном трехконтактные устройства. На биполярном переходном транзисторе (BJT) эти контакты обозначены как коллектор (C), база (B) и эмиттер (E). Обозначения схем как для NPN, так и для PNP BJT приведены ниже:
Единственное различие между NPN и PNP – это направление стрелки на эмиттере.Стрелка на NPN указывает, а на PNP указывает. Полезная мнемоника для запоминания:
NPN:
N от P ointing i NОбратная логика, но работает!
Конструкция транзистора
Транзисторы полагаются на полупроводники, чтобы творить чудеса. Полупроводник – это не совсем чистый проводник (например, медный провод), но и не изолятор (например, воздух). Проводимость полупроводника – насколько легко он позволяет электронам течь – зависит от таких переменных, как температура или наличие большего или меньшего количества электронов.Заглянем вкратце под капот транзистора. Не волнуйтесь, мы не будем углубляться в квантовую физику.
Транзистор как два диода
Транзисторы– это своего рода продолжение другого полупроводникового компонента: диодов. В некотором смысле транзисторы – это всего лишь два диода со связанными вместе катодами (или анодами):
Диод, соединяющий базу с эмиттером, здесь важен; он соответствует направлению стрелки на схематическом символе и показывает , в каком направлении должен течь ток через транзистор.
Изображение диодов – хорошее место для начала, но оно далеко не точное. Не основывайте свое понимание работы транзистора на этой модели (и определенно не пытайтесь воспроизвести ее на макете, это не сработает). Существует множество странных вещей на уровне квантовой физики, управляющих взаимодействием между тремя терминалами.
(Эта модель полезна, если вам нужно проверить транзистор. Используя функцию проверки диодов (или сопротивления) на мультиметре, вы можете провести измерения на клеммах BE и BC, чтобы проверить наличие этих «диодов».)
Структура и работа транзистора
Транзисторысостоят из трех разных слоев полупроводникового материала. В некоторые из этих слоев добавлены дополнительные электроны (процесс, называемый «легированием»), а в других электроны удалены (допирование «дырками» – отсутствие электронов). Полупроводниковый материал с дополнительными электронами называется n-типа ( n для отрицательного заряда, потому что электроны имеют отрицательный заряд), а материал с удаленными электронами называется p-типа (для положительного).Транзисторы создаются путем размещения n поверх p поверх n или p поверх n над p .
Упрощенная схема структуры NPN. Заметили происхождение каких-либо аббревиатур?
Если немного помахать рукой, мы можем сказать, что электронов могут легко перетекать из областей n в области p , если у них есть небольшая сила (напряжение), толкающая их.Но переход от области p к области n действительно затруднен (требуется лот напряжения). Но особенность транзистора – та часть, которая делает нашу модель с двумя диодами устаревшей – это тот факт, что электронов могут легко перемещаться от базы p-типа к коллектору n-типа, пока база- эмиттерный переход смещен в прямом направлении (это означает, что база находится под более высоким напряжением, чем эмиттер).
NPN-транзистор предназначен для передачи электронов от эмиттера к коллектору (поэтому обычный ток течет от коллектора к эмиттеру).Эмиттер «испускает» электроны в базу, которая контролирует количество электронов, испускаемых эмиттером. Большая часть испускаемых электронов «собирается» коллектором, который отправляет их в следующую часть цепи.
PNP работает таким же, но противоположным образом. База по-прежнему контролирует ток, но этот ток течет в противоположном направлении – от эмиттера к коллектору. Вместо электронов эмиттер испускает «дырки» (концептуальное отсутствие электронов), которые собираются коллектором.
Транзистор похож на электронный клапан . Базовый штифт похож на ручку, которую вы можете отрегулировать, чтобы позволить большему или меньшему количеству электронов течь от эмиттера к коллектору. Давайте исследуем эту аналогию дальше …
Расширение аналогии с водой
Если вы в последнее время читали много руководств по концепциям электричества, вы, вероятно, привыкли к аналогиям с водой. Мы говорим, что ток аналогичен скорости потока воды, напряжение – это давление, проталкивающее воду по трубе, а сопротивление – это ширина трубы.
Неудивительно, что аналогия с водой может быть распространена и на транзисторы: транзистор похож на водяной клапан – механизм, который мы можем использовать для управления скоростью потока .
Есть три состояния, в которых мы можем использовать клапан, каждое из которых по-разному влияет на скорость потока в системе.
1) Вкл – короткое замыкание
Клапан может быть полностью открыт, позволяя воде свободно течь в – проходить, как если бы клапана даже не было.
Аналогичным образом, при определенных обстоятельствах, транзистор может выглядеть как короткое замыкание между выводами коллектора и эмиттера. Ток может свободно течь через коллектор и выходить из эмиттера.
2) Выкл. – обрыв цепи
Когда он закрыт, клапан может полностью перекрыть поток воды.
Таким же образом можно использовать транзистор для создания разрыва цепи между выводами коллектора и эмиттера.
3) Линейное управление потоком
С некоторой точной настройкой клапан может быть отрегулирован для точного управления расходом до некоторой точки между полностью открытым и закрытым.
Транзистор может делать то же самое – линейно регулирует ток через цепь в какой-то момент между полностью выключенным (разомкнутая цепь) и полностью включенным (короткое замыкание).
Из нашей аналогии с водой, ширина трубы аналогична сопротивлению в цепи. Если клапан может точно регулировать ширину трубы, то транзистор может точно регулировать сопротивление между коллектором и эмиттером. Таким образом, транзистор подобен переменному регулируемому резистору .
Усилительная мощность
Есть еще одна аналогия, которую мы можем провести здесь. Представьте себе, если бы с легким поворотом клапана вы могли контролировать скорость потока затворов плотины Гувера. Ничтожное усилие, которое вы можете приложить, чтобы повернуть эту ручку, может создать усилие в тысячи раз сильнее. Мы расширяем аналогию до предела, но эта идея распространяется и на транзисторы. Транзисторы особенные, потому что они могут усиливать электрические сигналы , превращая сигнал малой мощности в аналогичный сигнал гораздо большей мощности.
Вид. Это еще не все, но это хорошее место для начала! В следующем разделе вы найдете более подробное объяснение работы транзистора.
Режимы работы
В отличие от резисторов, которые обеспечивают линейную зависимость между напряжением и током, транзисторы являются нелинейными устройствами. У них есть четыре различных режима работы, которые описывают протекающий через них ток. (Когда мы говорим о токе, протекающем через транзистор, мы обычно имеем в виду ток , протекающий от коллектора к эмиттеру NPN .)
Четыре режима работы транзистора:
- Насыщение – Транзистор действует как короткое замыкание . Ток свободно течет от коллектора к эмиттеру.
- Отсечка – Транзистор действует как разомкнутая цепь . Нет тока от коллектора к эмиттеру.
- Активный – Ток от коллектора к эмиттеру пропорционален току, протекающему в базу.
- Reverse-Active – Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении.Ток течет от эмиттера к коллектору (не совсем то, для чего были предназначены транзисторы).
Чтобы определить, в каком режиме находится транзистор, нам нужно посмотреть на напряжения на каждом из трех выводов и на то, как они соотносятся друг с другом. Напряжения от базы к эмиттеру (V BE ) и от базы к коллектору (V BC ) устанавливают режим транзистора:
Упрощенный квадрантный график выше показывает, как положительное и отрицательное напряжение на этих клеммах влияет на режим.На самом деле все немного сложнее.
Давайте рассмотрим все четыре режима транзистора по отдельности; мы исследуем, как перевести устройство в этот режим и как это влияет на ток.
Примечание: Большая часть этой страницы посвящена транзисторам NPN . Чтобы понять, как работает транзистор PNP, просто поменяйте полярность или знаки> и <.
Режим насыщенности
Насыщенность – это в режиме транзистора.Транзистор в режиме насыщения действует как короткое замыкание между коллектором и эмиттером.
В режиме насыщения оба «диода» транзистора смещены в прямом направлении. Это означает, что V BE должен быть больше 0, и , поэтому должен быть V BC . Другими словами, V B должен быть выше, чем V E и V C .
Поскольку переход от базы к эмиттеру выглядит как диод, в действительности V BE должно быть больше, чем пороговое напряжение , чтобы войти в режим насыщения.Для этого падения напряжения существует множество сокращений – V th , V γ и V d несколько – и фактическое значение варьируется между транзисторами (и даже больше в зависимости от температуры). Для многих транзисторов (при комнатной температуре) это падение может составить около 0,6 В.
Еще один облом реальности: между эмиттером и коллектором не будет идеальной проводимости. Между этими узлами образуется небольшое падение напряжения. В технических характеристиках транзисторов это напряжение определяется как напряжение насыщения CE, В CE (насыщение) – напряжение от коллектора к эмиттеру, необходимое для насыщения.Это значение обычно составляет 0,05-0,2 В. Это значение означает, что V C должно быть немного больше, чем V E (но оба все еще меньше, чем V B ), чтобы транзистор перешел в режим насыщения.
Режим отсечки
Режим отсечки противоположен насыщению. Транзистор в режиме отсечки – выключен, – нет тока коллектора и, следовательно, нет тока эмиттера. Это почти похоже на обрыв цепи.
Чтобы перевести транзистор в режим отсечки, базовое напряжение должно быть меньше, чем напряжение эмиттера и коллектора.V BC и V BE должны быть отрицательными.
На самом деле, V BE может быть где угодно между 0 В и V th (~ 0,6 В) для достижения режима отсечки.
Активный режим
Для работы в активном режиме транзистор V BE должен быть больше нуля, а V BC должен быть отрицательным. Таким образом, базовое напряжение должно быть меньше, чем на коллекторе, но больше, чем на эмиттере. Это также означает, что коллектор должен быть больше эмиттера.
На самом деле нам нужно ненулевое прямое падение напряжения (сокращенно V th , V γ или V d ) от базы к эмиттеру (V BE ), чтобы «включить» транзистор. Обычно это напряжение обычно составляет около 0,6 В.
Усиление в активном режиме
Активный режим – это самый мощный режим транзистора, потому что он превращает устройство в усилитель . Ток, идущий на вывод базы, усиливает ток, идущий в коллектор и выходящий из эмиттера.
Наше сокращенное обозначение для коэффициента усиления (коэффициент усиления) транзистора – β (вы также можете увидеть его как β F или h FE ). β линейно связывает ток коллектора ( I C ) с базовым током ( I B ):
Фактическое значение β зависит от транзистора. Обычно это около 100 , но может варьироваться от 50 до 200 … даже 2000, в зависимости от того, какой транзистор вы используете и сколько тока проходит через него.Например, если у вашего транзистора β = 100, это будет означать, что входной ток в 1 мА на базу может производить ток 100 мА через коллектор.
Модель с активным режимом. V BE = V th и I C = βI B .
А как насчет тока эмиттера, I E ? В активном режиме токи коллектора и базы идут на устройство, а выходит I E . Чтобы связать ток эмиттера с током коллектора, у нас есть другое постоянное значение: α .α – коэффициент усиления по току общей базы, он связывает эти токи как таковые:
α обычно очень близко, но меньше 1. Это означает, что I C очень близко, но меньше I E в активном режиме.
Вы можете использовать β для вычисления α или наоборот:
Если, например, β равно 100, это означает, что α равно 0,99. Итак, если, например, I C равен 100 мА, то я E равен 101 мА.
Реверс активен
Так же, как насыщение противоположно отсечке, обратный активный режим противоположен активному режиму.Транзистор в обратном активном режиме проводит, даже усиливает, но ток течет в противоположном направлении, от эмиттера к коллектору. Обратной стороной активного режима является то, что β (β R в данном случае) на намного меньше на .
Чтобы перевести транзистор в обратный активный режим, напряжение на эмиттере должно быть больше, чем на базе, которая должна быть больше, чем на коллекторе (V BE <0 и V BC > 0).
Обратный активный режим обычно не является состоянием, в котором вы хотите управлять транзистором.Приятно знать, что он есть, но он редко превращается в приложение.
Относительно PNP
После всего, о чем мы говорили на этой странице, мы все еще покрыли только половину спектра BJT. А как насчет транзисторов PNP? Работа PNP очень похожа на работу NPN – у них те же четыре режима, но все изменилось. Чтобы узнать, в каком режиме находится PNP-транзистор, поменяйте местами все знаки <и>.
Например, чтобы перевести PNP в режим насыщения, V C и V E должны быть выше, чем V B .Вы опускаете базу ниже, чтобы включить PNP, и поднимаете ее выше, чем коллектор и эмиттер, чтобы выключить его. И, чтобы перевести PNP в активный режим, напряжение V E должно быть выше, чем напряжение V B , которое должно быть выше, чем V C .
Итого:
Соотношение напряжений | Режим NPN | Режим PNP |
---|---|---|
В E | Активный | Обратный |
V E | Насыщенность | Отсечка |
V E > V B | Отсечка | Насыщенность |
V E > V B > V C | Задний ход | Активный |
Другой противоположной характеристикой NPN и PNP является направление тока.В активном режиме и режиме насыщения ток в PNP течет от эмиттера к коллектору . Это означает, что эмиттер обычно должен иметь более высокое напряжение, чем коллектор.
Если вы перегорели концептуальными вещами, перейдите к следующему разделу. Лучший способ узнать, как работает транзистор, – это изучить его в реальных схемах. Давайте посмотрим на некоторые приложения!
Приложения I: Коммутаторы
Одно из самых фундаментальных применений транзистора – использовать его для управления потоком энергии к другой части схемы – используя его в качестве электрического переключателя.Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.
Транзисторные переключатели являются важными строительными блоками; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.
Транзисторный переключатель
Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:
Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.
В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.
Когда напряжение на базе превышает 0,6 В (или какое бы там значение у вашего транзистора V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6V транзистор находится в режиме отсечки – ток не течет, потому что это похоже на разрыв цепи между C и E.
Схема, приведенная выше, называется переключателем низкого уровня , потому что переключатель – наш транзистор – находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:
Как и в схеме NPN, база – это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору со стороны земли.
Эта схема работает так же хорошо, как и коммутатор на основе NPN, но есть одно огромное отличие: для включения нагрузки база должна быть низкой. Это может вызвать осложнения, особенно если высокое напряжение нагрузки (V CC – 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить выключатель , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .
Базовые резисторы!
Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.
Напомним, что в некотором смысле транзистор – это просто пара соединенных между собой диодов. Мы смещаем диод база-эмиттер в прямом направлении, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.
Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.
Резистор должен быть достаточно большим, чтобы эффективно ограничивать ток , но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.
Цифровая логика
Транзисторыможно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.
(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)
Инвертор
Вот схема транзистора, которая реализует инвертор , или НЕ затвор:
Инвертор на транзисторах.
Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC
.(На самом деле это фундаментальная конфигурация транзистора, называемая общим эмиттером .Подробнее об этом позже.)
И Ворота
Вот пара транзисторов, используемых для создания логического элемента И с двумя входами :
2-входной логический элемент И на транзисторах.
Если один из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.
OR Выход
И, наконец, логический элемент ИЛИ с двумя входами :
2-входной логический элемент ИЛИ на транзисторах.
В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.
Н-образный мост
H-мост – это транзисторная схема, способная приводить двигатели как по часовой, так и против часовой стрелки . Это невероятно популярная трасса – движущая сила бесчисленных роботов, которые должны уметь двигаться как вперед на , так и на назад.
По сути, H-мост представляет собой комбинацию четырех транзисторов с двумя входными линиями и двумя выходами:
Вы можете догадаться, почему это называется H-мостом?
(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)
Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.
H-мост имеет таблицу истинности, которая выглядит примерно так:
Вход A | Вход B | Выход A | Выход B | Направление двигателя | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 1 | Остановка (торможение) | ||||||||||||||||||||
1 | 0 | По часовой стрелке | ||||||||||||||||||||||
1 | 0 | 0 | 1 | Против часовой стрелки | ||||||||||||||||||||
1 | 1 | 0 | торможениеОсцилляторыГенератор – это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы. Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов. Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора поочередно включаются и выключаются. Анализ работы этой схемы – отличное исследование работы как конденсаторов, так и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняется напряжение около V CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:
Может быть трудно осознать. Вы можете найти еще одну отличную демонстрацию этой схемы здесь. Выбирая конкретные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора: Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора будет около 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду. Как вы, наверное, уже заметили, существует тонна схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров! Приложения II: УсилителиНекоторые из самых мощных транзисторных приложений включают усиление: преобразование сигнала малой мощности в сигнал большей мощности.Усилители могут увеличивать напряжение сигнала, беря что-то из диапазона мкВ и преобразовывая его в более полезный уровень в мВ или В. Или они могут усиливать ток, что полезно для превращения мкА тока, создаваемого фотодиодом, в ток гораздо большей величины. Существуют даже усилители, которые принимают ток и производят более высокое напряжение или наоборот (называемые транссопротивлением и крутизной соответственно). Транзисторы являются ключевым компонентом многих усилительных схем. Существует бесконечное количество разнообразных транзисторных усилителей, но, к счастью, многие из них основаны на некоторых из этих более примитивных схем.Запомните эти схемы, и, надеюсь, с небольшим сопоставлением с образцом вы сможете понять более сложные усилители. Общие конфигурацииТри основных транзисторных усилителя: общий эмиттер, общий коллектор и общая база. В каждой из трех конфигураций один из трех узлов постоянно связан с общим напряжением (обычно с землей), а два других узла являются либо входом, либо выходом усилителя. Общий эмиттерОбщий эмиттер – одна из наиболее популярных схем транзисторов.В этой схеме эмиттер подключен к общему напряжению как для базы, так и для коллектора (обычно заземления). База становится входом сигнала, а коллектор – выходом. Схема с общим эмиттером популярна, потому что она хорошо подходит для усиления напряжения , особенно на низких частотах. Например, они отлично подходят для усиления аудиосигналов. Если у вас небольшой входной сигнал с размахом 1,5 В, вы можете усилить его до гораздо более высокого напряжения, используя немного более сложную схему, например: Одна особенность обычного эмиттера заключается в том, что он инвертирует входной сигнал (сравните его с инвертором с последней страницы!). Общий коллектор (эмиттерный повторитель)Если мы подключим коллектор к общему напряжению, используем базу как вход, а эмиттер как выход, то получится общий коллектор. Эта конфигурация также известна как эмиттерный повторитель . Общий коллектор не усиливает напряжение (фактически, выходное напряжение будет на 0,6 В ниже входного). По этой причине эту схему иногда называют повторителем напряжения . Эта схема действительно имеет большой потенциал в качестве усилителя тока .В дополнение к этому, высокий коэффициент усиления по току в сочетании с коэффициентом усиления по напряжению, близким к единице, делает эту схему отличным буфером напряжения . Буфер напряжения предотвращает нежелательные помехи цепи нагрузки цепи, управляющей ею. Например, если вы хотите подать 1 В на нагрузку, вы можете пойти простым путем и использовать делитель напряжения, или вы можете использовать эмиттерный повторитель. По мере увеличения нагрузки (что, наоборот, означает уменьшение сопротивления) выход схемы делителя напряжения падает.Но выходное напряжение эмиттерного повторителя остается стабильным, независимо от нагрузки. Большие нагрузки не могут «нагружать» эмиттерный повторитель, как это могут быть цепи с большим выходным сопротивлением. Общая базаМы поговорим об общей базе, чтобы завершить этот раздел, но это наименее популярная из трех основных конфигураций. В усилителе с общей базой эмиттер является входом, а коллектор – выходом. База общая для обоих. Общая база похожа на антиэмиттер-повторитель.Это приличный усилитель напряжения, и ток на входе примерно равен току на выходе (на самом деле ток на входе немного больше, чем на выходе). Схема с общей базой лучше всего работает как токовый буфер . Он может принимать входной ток с низким входным сопротивлением и подавать почти такой же ток на выход с более высоким сопротивлением. ВкратцеЭти три конфигурации усилителей лежат в основе многих более сложных транзисторных усилителей. У каждого из них есть приложения, где они сияют, будь то усиление тока, напряжения или буферизация.
Многокаскадные усилителиМы можем продолжать говорить о большом разнообразии транзисторных усилителей.Вот несколько быстрых примеров, демонстрирующих, что происходит, когда вы комбинируете одноступенчатые усилители, указанные выше: ДарлингтонУсилитель Дарлингтона соединяет один общий коллектор с другим для создания усилителя с высоким коэффициентом усиления по току . Выходное напряжение примерно равно входному напряжению (минус примерно 1,2–1,4 В), но коэффициент усиления по току является произведением двух коэффициентов усиления транзистора . Это β 2 – более 10 000! Пара Дарлингтона – отличный инструмент, если вам нужно управлять большой нагрузкой с очень малым входным током. Дифференциальный усилительДифференциальный усилитель вычитает два входных сигнала и усиливает эту разницу. Это важная часть цепей обратной связи, где вход сравнивается с выходом для получения будущего выхода. Вот основа дифференциального усилителя: Эта схема также называется длинной хвостовой парой . Это пара схем с общим эмиттером, которые сравниваются друг с другом для получения дифференциального выхода.Два входа подаются на базы транзисторов; выход представляет собой дифференциальное напряжение на двух коллекторах. Двухтактный усилительДвухтактный усилитель является полезным «заключительным каскадом» многих многокаскадных усилителей. Это энергоэффективный усилитель мощности, часто используемый для управления громкоговорителями. Основной двухтактный усилитель использует транзисторы NPN и PNP, оба сконфигурированы как общие коллекторы: Двухтактный усилитель на самом деле не усиливает напряжение (выходное напряжение будет немного меньше входного), но усиливает ток.Это особенно полезно в биполярных цепях (с положительным и отрицательным питанием), потому что оно может как «проталкивать» ток в нагрузку от положительного источника питания, так и «вытягивать» ток и погружать его в отрицательный источник питания. Если у вас есть биполярный источник питания (или даже если у вас его нет), двухтактный – отличный конечный каскад для усилителя, действующий как буфер для нагрузки. Собираем их вместе (операционный усилитель)Давайте рассмотрим классический пример многокаскадной транзисторной схемы: операционный усилитель.Умение распознавать общие транзисторные схемы и понимание их назначения может очень помочь! Вот схема внутри LM3558, действительно простого операционного усилителя: Внутреннее устройство операционного усилителя LM358. Узнали какие-то усилители? Здесь определенно больше сложности, чем вы можете быть готовы усвоить, однако вы можете увидеть некоторые знакомые топологии:
После этого ускоренного курса по транзисторам мы не ожидаем, что вы поймете, что происходит в этой схеме, но если вы можете начать определять общие транзисторные схемы, вы на правильном пути! Покупка транзисторовТеперь, когда вы контролируете источник управления, мы рекомендуем SparkFun Inventor’s Kit, чтобы воплотить в жизнь полученные вами новые знания.Мы также предоставили ссылки на комплект полупроводников и одиночные транзисторы для использования в ваших собственных проектах. Наши рекомендации:N-канальный полевой МОП-транзистор 60 В, 30 АВ наличии COM-10213Если вы когда-нибудь задумывались, как управлять фарами автомобиля с помощью микроконтроллера, MOSFET – это то, что вам нужно.Это ве… 4Пакет дополнений SparkFun Inventor’s Kit – v4.0В наличии КОМПЛЕКТ-14310С помощью Add-On Pack вы сможете включить некоторые из старых частей, которые раньше были включены в SIK, которые были обновлены… Ресурсы и дальнейшее развитиеЕсли вы хотите глубже изучить транзисторы, мы рекомендуем несколько ресурсов:
Кроме того, наш собственный технический директор Пит выпустил серию видеороликов «По словам Пита», в которых основное внимание уделяется транзисторам и транзисторным усилителям. Обязательно посмотрите его видео о диодах и транзисторах: .Затем вы можете перейти к: Конфигурации смещения транзисторов, часть 1 и часть 2, и, наконец, текущие зеркала.Качественный товар! Идем дальшеИли, если вам не терпится узнать больше об электронике в целом, ознакомьтесь с некоторыми из этих руководств по SparkFun:
Или ознакомьтесь с некоторыми из этих сообщений в блоге, чтобы найти идеи: Как работают транзисторы ?.На самом деле почти как унитаз со смывом… | Джованни Органтини | Стартап | Январь, 2021 г.Действительно, почти как унитаз со смывом…Транзисторы являются строительными блоками наших электронных гаджетов: от смартфонов до компьютеров, игрушек, кухонных устройств, инструментов для уборки и т. Д. Несмотря на их повсеместное распространение, всего несколько человек знать о том, как они работают. На самом деле понять их принципы работы не так уж и сложно. Чтобы понять, как работает транзистор, нам нужно понять, что такое диод .Фактически, транзистор на практике представляет собой не что иное, как два диода. Диод, по сути, работает как вентиль для электрического тока. Он позволяет потоку электронов течь только в одном направлении, противодействуя движению электронов в противоположном направлении, точно так же, как водяной клапан позволяет потоку воды течь только в одном направлении. Водяной клапан позволяет воде течь только в одном направлении. Точно так же диод позволяет току течь в одном направлении толькоДиоды состоят из двух полупроводниковых кристаллов, легированных разными атомами, так что на их стыке они создают электрическое поле, которое не позволяет зарядам течь в одном направлении, одновременно ускоряя движущиеся в одном направлении. противоположное направление.Подобные диоды называются диодами p-n , потому что они сделаны из полупроводникового кристалла типа p , соединенного с кристаллом типа n . p и n относятся к знаку (положительному или отрицательному) их носителя заряда. Диод состоит из полупроводникового кристалла p-типа, соединенного с кристаллом n-типа. Его символ в цепи – стрелка, потому что ток может течь только в ее направлении. Он работает очень похоже на гидравлический клапан (изображение слева взято из Wikimedia Common, сделано Раффамайденом; изображение справа принадлежит мне).Представьте себе гидравлический клапан в виде трубы со стенкой, на которой есть отверстие, закрытое заглушкой, удерживаемой пружиной. Если вода находится справа от пробки, она просто прижимает ее к стене и не может проникнуть на другую сторону. Если вода находится слева и ее давления достаточно, она толкает пробку вправо, и клапан открывается, позволяя воде течь. Чтобы сделать транзистор, нам нужно соединить три кристалла. Кристаллы могут быть типа p или n , в зависимости от знака их носителей заряда; Таким образом, транзисторы представляют собой схему кристаллов типа p-n-p или n-p-n. Транзисторы имеют три вывода, называемых эмиттером , базой и коллектором , каждый из которых подключен к одному из кристаллов, из которых состоит. Давайте сосредоточимся на транзисторе p-n-p (тип n-p-n работает почти так же, но с обратными токами) Рассмотрим затем нашу простую модель диода как клапана: транзистор представлен последовательностью двух ламп, установленных друг напротив друга. Поместим два клапана в вертикальную трубку и наполним верхнюю часть водой.Верхний клапан закрыт, поэтому вода остается вверху, как показано ниже, слева. Транзистор похож на пару ламп. Когда оба клапана закрыты, вода остается наверху. Открытие верхнего клапана заставляет воду течь в средней секции. Когда давление, оказываемое на нижний клапан, достаточно, вода протекает через него.Если нам удалось открыть верхний клапан, вода начнет течь в средней секции и в конечном итоге откроет нижний клапан, когда давление достигнет необходимого значения.Таким образом, для того, чтобы вода потекла, достаточно найти способ подтолкнуть верхний клапан вверх. Например, в середину можно ввести немного воды, чтобы ее давление было достаточным для открытия верхнего клапана, но недостаточным для открытия нижнего. Таким образом, система позволяет воде течь только тогда, когда достаточное количество воды падает сверху вниз. По нашему аналогию, верхняя часть этого двойного клапана представляет собой эмиттер транзистора .Пространство посередине – это его основание , а в нижней части клапана – его коллектор . В базовой схеме усилителя эмиттер подключен к источнику напряжения, например к батарее, а коллектор подключен к земле через резистор. Подавая небольшой ток в базу (обозначенную «B»), наблюдается большой ток, протекающий между эмиттером (обозначенным «E») и коллектором (обозначенным «C»), так что выходное напряжение справа велико. тоже (см. картинку ниже слева). Сравнение схемы усилителя и унитаза со смывом (собственная работа)Конечный результат состоит в том, что вы вводите небольшой ток в базу транзистора, и вы видите большой ток, вытекающий из коллектора, как если бы входной ток был умноженный на некоторый коэффициент. Фактически, ток, наблюдаемый на выходе транзистора, является не усиленным входным током, а другим током, пропорциональным входному току, извлекаемым из источника напряжения. Транзистор действует как переключатель, позволяя току течь от источника напряжения к земле через резистор. Можно провести интересную аналогию между транзисторным усилителем и туалетом (см. Правую часть рисунка выше). Эмиттер – это сливной бачок, а коллектор – унитаз. Представьте, что к рычагу смыва, который представляет собой основание, прикреплено небольшое ведро. Налейте немного воды в ведро – это все равно, что пропустить ток через базу транзистора. Вес воды, налитой в ведро, приводит в действие рычаг, и клапан унитаза открывается, позволяя воде, содержащейся в эмиттере / цистерне (аналог зарядов, содержащихся в источнике напряжения, прикрепленном к эмиттеру транзистора), обильно течь в коллектор / чаша, как будто прибор умножает воду, налитую в ведро, и пускает ее в трубу (аналог резистора). На самом деле схемы с транзисторами n-p-n встречаются чаще, чем схемы с транзисторами p-n-p. На это есть несколько причин. Основная причина в том, что поляризовать транзистор n-p-n проще. В каждой цепи есть общая земля, к которой относятся напряжения. В конфигурации, подобной той, что мы показали, то, что определяет входной ток, – это падение напряжения между источником напряжения и напряжением базы. Если бы мы использовали транзистор n-p-n, входной ток зависел бы от напряжения между базой и землей, и это намного удобнее.Есть и другие причины, связанные с их скоростью и стоимостью. Транзистор типа n-p-n работает, по существу, как транзистор p-n-p, с обратными ролями коллектора и эмиттера. Мы решили проиллюстрировать работу p-n-p транзистора, потому что названия его выводов казались более подходящими для понимания их значения. Транзисторы также могут использоваться как электронные переключатели. Для этого приложения часто используются транзисторы n-p-n, как показано ниже. Транзистор n-p-n в качестве переключателя (собственная работа).Усиление транзистора можно регулировать в соответствии с его характеристиками. В частности, говорят, что транзистор находится в области отсечки , когда ток, протекающий к его базе, равен нулю, в то время как говорят, что он находится в области насыщения , когда в его базу протекает достаточно большой ток, так что выходной ток больше не пропорционален последнему, но достигает максимального значения. Когда транзистор находится в области отсечки (ток базы равен нулю), ток не течет от коллектора к эмиттеру.Транзистор работает как открытый переключатель. Как следствие, выходное напряжение источника равно напряжению Vcc . Подавая достаточный ток в базу, ток течет от Vcc к земле, а выходное напряжение такое же, как у земли, то есть транзистор работает как замкнутый переключатель. Резистор между Vcc и коллектором транзистора может быть заменен любой нагрузкой. В частности, это может быть любой исполнительный механизм, например, двигатель, светодиод, громкоговоритель и т. Д.Такое решение полезно, когда мощность, необходимая для привода исполнительного механизма, не может быть обеспечена схемой управления. Например, представьте, что вы хотите управлять двигателем постоянного тока, используя один из цифровых выходов платы Arduino. При установке цифрового вывода на ВЫСОКИЙ уровень на нем появляется 5 В. Вы не можете использовать эти 5 В для питания двигателя, потому что Arduino не может обеспечить достаточный ток через свои цифровые контакты. Однако вы можете подключить к нему базу npn-транзистора так, чтобы, когда вывод находится в НИЗКОМ состоянии, транзистор действует как открытый переключатель, в то время как он ведет себя как закрытый переключатель, когда вывод Arduino находится в ВЫСОКОМ состоянии. государственный.Используя батарею 9 В в качестве Vcc , через двигатель протекает достаточно высокий ток, когда транзистор работает как замкнутый переключатель, то есть когда он находится в области насыщения. Как работает транзистор? Руководство для начинающихТранзисторы – одни из самых популярных электронных компонентов, которые могут выполнять две разные работы. Он может работать как усилитель или переключатель. В электронике используется очень много типов транзисторов в зависимости от их характеристик и применения. В электронике используются такие транзисторы, как BJT (Bipolar Junction Transistor), , FET (полевой транзистор) . Переходный транзистор может быть двух типов: PNP-транзистор и NPN-транзистор , и есть два типа полевого транзистора – переходный полевой транзистор (JFET) и полевой транзистор (MOSFET) . В этом руководстве мы узнаем, как работает биполярный транзистор (BJT). 1. База 2. Эмиттер 3. Коллектор Применяя различные уровни электрического тока от базы, можно регулировать количество тока, протекающего через затвор от коллектора.Таким образом, очень небольшое количество тока может использоваться для управления большим током, как в усилителе. Как работает транзистор NPN?В основном транзисторы изготавливаются из полупроводниковых материалов. В зависимости от этих материалов существует два типа биополярных переходных транзисторов – NPN-транзистор и PNP-транзистор . Транзистор NPN имеет три ножки – базу, эмиттер и коллектор. В NPN-транзисторе области коллектора и эмиттера состоят из материала N-типа, который в основном состоит из электронов.Базовая часть состоит из материала P-типа, который в основном состоит из отверстий. В транзисторе NPN ток течет от коллектора к эмиттеру. для этого типа обтекания необходимо соблюдать такое смещение – Если вы понимаете закон заряда, вы легко поймете, как работает транзистор. это очень простая концепция. Это концепция, при которой одни и те же заряды отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу. Это означает, что два положительных заряда будут отталкивать друг друга, а два отрицательных заряда будут отталкиваться друг от друга, а противоположные заряды будут притягиваться друг к другу.Это все, что вам нужно знать, чтобы разбираться в транзисторах. Как мы знаем ранее, в NPN-транзисторе области эмиттера, состоящие из материала N-типа, где основными носителями являются электроны с отрицательными зарядами. Теперь мы прикладываем напряжение к базовой области, которая состоит из материала P-типа.Это наиболее важная область для управления включением / выключением транзистора. Вот почему материал P, составляющий основную область, состоящую из отверстий, обеспечивает прочный барьер, разделяющий области коллектора и эмиттера. Теперь подключите транзистор, как указано выше. После подключения схемы, если вы приложите достаточный ток к базе, вы увидите, что транзистор включается. А если убрать этот ток с базы, он отключится. Как работает транзистор PNP? В транзисторе PNP ток течет от эмиттера к коллектору. для этого типа обтекания необходимо соблюдать смещение – Как мы знаем ранее, в транзисторе PNP области эмиттера, состоящие из материала P-типа, где основными носителями являются дырки, которые являются положительными зарядами.Теперь мы хотим пропустить ток от эмиттера к области коллектора. Итак, мы прикладываем положительное напряжение к области эмиттера. В результате отверстия в выводе эмиттера отталкиваются этим напряжением, и ток течет к коллектору. Вот почему материал N, составляющий основную область, состоит из электронов. Теперь, если мы дадим больше электронов, приложив ток, тогда толщина базовой области увеличится, и это заблокирует поток тока от эмиттера к коллектору. Теперь подключите транзистор, как указано выше. После подключения схемы, если вы подадите достаточный ток на базу, то увидите, что транзистор отключился. И если вы уберете этот ток с базы, он станет включенным. Что такое транзистор?Транзисторы – это устройства, управляющие движением электронов и, следовательно, электричества.Они работают как водопроводный кран – они не только запускают и останавливают течение тока, но также контролируют его величину. С помощью электричества транзисторы могут как переключать, так и усиливать электронные сигналы, позволяя с точностью управлять током, проходящим через печатную плату. Транзисторы, изготовленные в Bell Labs, изначально были изготовлены из германия. Ученые знали, что чистый германий – хороший изолятор. Но добавление примесей (процесс, называемый легированием ) превратило германий в слабый проводник или полупроводник .Полупроводники – это материалы, которые обладают промежуточными свойствами между изоляторами и проводниками, обеспечивая электрическую проводимость в различной степени. Момент изобретения транзисторов был выбран не случайно. Для правильной работы транзисторам требуются чистые полупроводниковые материалы. Так уж получилось, что сразу после Второй мировой войны улучшения в очистке германия, а также достижения в области легирования сделали германий пригодным для применения в полупроводниках. В зависимости от элемента, используемого для легирования, полученный слой германия был либо отрицательного типа (N-тип), либо положительного типа (P-тип).В слое N-типа легирующий элемент добавлял электроны к германию, облегчая выброс электронов. Напротив, в слое P-типа определенные легирующие элементы заставляли германий терять электроны, таким образом, электроны из соседних материалов текли к нему. Поместите N-тип и P-тип рядом друг с другом, и вы получите P-N диод . Этот диод пропускает электрический ток, но только в одном направлении, что является полезным свойством при построении электронных схем. Следующим шагом были полноценные транзисторы. Для создания транзисторов инженеры наложили легированный германий на два слоя, расположенные вплотную друг к другу, в конфигурации P-N-P или N-P-N. Точка контакта была названа переходом, отсюда и название переходного транзистора . При подаче электрического тока на центральный слой (называемый базой) электроны будут перемещаться со стороны N-типа на сторону P-типа. Первоначальная небольшая струйка действует как переключатель, позволяющий протекать гораздо большему току.В электрической цепи это означает, что транзисторы действуют как переключатель и как усилитель. В наши дни вместо германия в коммерческой электронике используются полупроводники на основе кремния, которые более надежны и доступны по цене, чем транзисторы на основе германия. Но как только технология стала популярной, германиевые транзисторы широко использовались более 20 лет.
Как работают биполярные переходные транзисторы.
Рис. 3.3.1 Как легируется транзистор BJP.Все дело в допингеПринцип работы транзистора можно описать со ссылкой на рис. 3.3.1, на котором показаны основные элементы легирования переходного транзистора, и на рис.3.3.2, показывающий, как работает BJT. Работа транзистора очень зависит от степени легирования различных частей полупроводникового кристалла. Эмиттер N-типа очень сильно легирован, чтобы обеспечить много свободных электронов в качестве основных носителей заряда. Слаболегированная базовая область P-типа чрезвычайно тонкая, а коллектор N-типа очень сильно легирован, чтобы придать ему низкое удельное сопротивление, за исключением слоя менее сильно легированного материала рядом с базовой областью.Это изменение удельного сопротивления коллектора гарантирует, что в материале коллектора рядом с основанием присутствует большой потенциал. Важность этого станет очевидной из следующего описания. Рис. 3.3.2. Как транзистор усиливает ток.Во время нормальной работы на переход база / эмиттер прикладывается потенциал, так что база примерно на 0,6 В положительнее, чем эмиттер, это делает переход база / эмиттер смещенным вперед. К переходу база / коллектор прикладывается гораздо более высокий потенциал с относительно высоким положительным напряжением, приложенным к коллектору, так что переход база / коллектор сильно смещен в обратном направлении. Это делает слой истощения между базой и коллектором довольно широким после подачи питания. Как упоминалось выше, коллектор состоит в основном из сильно легированного материала с низким удельным сопротивлением и тонкого слоя слаболегированного материала с высоким удельным сопротивлением рядом с переходом база / коллектор.Это означает, что большая часть напряжения между коллектором и базой вырабатывается через этот тонкий слой с высоким удельным сопротивлением, создавая высокий градиент напряжения рядом с переходом коллектор-база. Когда переход база-эмиттер смещен в прямом направлении, в базу будет течь небольшой ток. Поэтому в материале P-типа вводятся отверстия. Эти дырки притягивают электроны через смещенный вперед переход база / эмиттер для объединения с дырками. Однако, поскольку эмиттерная область очень сильно легирована, в базовую область P-типа пересекает гораздо больше электронов, чем может объединиться с доступными дырками.Это означает, что в области базы имеется большая концентрация электронов, и большая часть этих электронов проходит прямо через очень тонкую базу и попадает в обедненный слой база / коллектор. Оказавшись здесь, они попадают под влияние сильного электрического поля на переходе база / коллектор. Это поле настолько сильное из-за большого градиента потенциала в материале коллектора, упомянутого ранее, что электроны перемещаются через обедненный слой в материал коллектора и, таким образом, в сторону вывода коллектора. Изменение тока, протекающего в базе, влияет на количество электронов, притягиваемых эмиттером. Таким образом, очень небольшие изменения тока базы вызывают очень большие изменения тока, протекающего от эмиттера к коллектору, поэтому происходит усиление тока. Посмотрите наше видео о том, как делаются биполярные транзисторы и как они работают. Начало страницы Что это такое и как они работают?Транзистор – это электронный компонент, используемый в схеме для управления большим током или напряжением с помощью небольшого количества напряжения или тока.Это означает, что его можно использовать для усиления или переключения (выпрямления) электрических сигналов или мощности, что позволяет использовать его в широком спектре электронных устройств. Это достигается за счет размещения одного полупроводника между двумя другими полупроводниками. Поскольку ток передается через материал, который обычно имеет высокое сопротивление (например, резистор , ), это «резистор передачи» или транзистор . Первый практический точечный транзистор был построен в 1948 году Уильямом Брэдфордом Шокли, Джоном Бардином и Уолтером Хаусом Браттейном.Патенты на концепцию транзисторов датируются 1928 годом в Германии, хотя они, похоже, никогда не были построены, или, по крайней мере, никто никогда не заявлял, что их построил. За эту работу трое физиков получили Нобелевскую премию по физике 1956 года. Структура базового точечного транзистораПо сути, существует два основных типа транзисторов с точечным контактом: транзистор npn и транзистор pnp , где n и p обозначают отрицательный и положительный соответственно.Единственная разница между ними – расположение напряжений смещения. Чтобы понять, как работает транзистор, вы должны понять, как полупроводники реагируют на электрический потенциал. Некоторые полупроводники будут типа n или отрицательными, что означает, что свободные электроны в материале дрейфуют от отрицательного электрода (например, батареи, к которой он подключен) к положительному. Другие полупроводники будут типа p , и в этом случае электроны заполняют «дыры» в электронных оболочках атомов, что означает, что он ведет себя так, как если бы положительная частица перемещалась от положительного электрода к отрицательному.Тип определяется атомной структурой конкретного полупроводникового материала. Теперь рассмотрим транзистор npn . Каждый конец транзистора представляет собой полупроводниковый материал типа n , а между ними – полупроводниковый материал типа p . Если вы представите себе такое устройство, подключенное к батарее, вы увидите, как работает транзистор:
Таким образом, изменяя потенциал в каждой области, вы можете резко повлиять на скорость потока электронов через транзистор. Преимущества транзисторовПо сравнению с электронными лампами, которые использовались ранее, транзистор был потрясающим достижением.Меньший по размеру транзистор можно было легко изготавливать дешево в больших количествах. У них также были различные эксплуатационные преимущества, которых слишком много, чтобы упоминать их здесь. Некоторые считают транзистор величайшим изобретением 20-го века, поскольку он так много открыл путь другим электронным достижениям. Практически каждое современное электронное устройство имеет транзистор в качестве одного из основных активных компонентов. Поскольку они являются строительными блоками микрочипов, компьютеры, телефоны и другие устройства не могут существовать без транзисторов. Другие типы транзисторовСуществует большое количество типов транзисторов, которые были разработаны с 1948 года. Вот список (не обязательно исчерпывающий) различных типов транзисторов:
Под редакцией Энн Мари Хелменстайн, Ph. |