Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как устроен Транзистор (физический аспект) | ScArtproject

Купить транзисторы вы можете на Aliexpress оптом

Доброго времени суток. В своем блоге я перешел к рассмотрению транзистора по одной причине. В дальнейшем мы часто будем затрагивать радиоэлектронику, включая пайку схем. И знать как устроен транзистор, я считаю — это необходимо. Тем более в наше время транзисторы везде, во всех электронных приборах. На работе транзистора основаны процессоры, микросхемы и многое другое.

P.S. Также в скором будущем мы будем делать свой полноценный процессор, а точнее Битовый Сумматор, который без знания работы транзистора не представляет интереса.

Начнем..

Вот так выглядят транзистор

Состав транзистора — это кремниевые, реже германиевые пластины. Также производят из  нитрида галлия(высокое качество, дорого в производстве). Полный список можете найти в интернете.

Основной принцип работы транзистора прост: в одном случае транзистор пропускает ток, когда на Базу подается напряжение, в другом не пропускает, когда База остается нетронутой.

Схематичное представление транзистора

Сейчас все разберем по порядку. Транзисторы бывают полевыми (от слова поле) и Биполярными (Би — значит «2»). На рисунке выше изображен Биполярный транзистор. (Полярный разберем чуть позднее, но смысл у него тот же).

Биполярные транзисторы бывают n-p-n и p-n-p переходы (n — negative[электронный], p — positive [дырочный]). Для определенности рассмотрим n-p-n переход.

n-p-n

1.Из Базиса (области «p») электроны диффундируют (Диффузия)  в области «n» слева и справа. Т.е. дырки в электронную, а электроны в дырочную. На границе между переходами образуется поле, создаваемое зарядами «+» и «-«. Таким образом, процесс диффузии останавливается и создается баланс между электронами и дырками.

2.Если к n и n частям подвести ток, то каким бы не было направление тока, он течь не будет(точнее будет, так как ничего идеального нет, но он будет ничтожно мал). Рассмотрим почему:

При подключении к ЭДС таким образом, как на рисунке  (рассмотрим левую часть) ток начнет течь от «+» к «-«, т.е. дырки в левой «n» зоне начнут заполнятся электронами, следовательно в левой части «p» зоны появятся положительные ионы, которые создадут запирающее напряжение, из-за которого ток не пойдет. Т.е. наш ток от батареи пытается течь по часовой стрелки, а транзистор против часовой.

Конечно, если подать достаточно большое напряжение, то произойдет пробой, в результате чего ток потечет, но транзистор станет непригодным. Чтобы этого не произошло, надо читать инструкцию к транзистору, в котором написано максимальное работоспособное напряжение.

Аналогичная ситуация, если подсоединить батарею наоборот. Только тогда ток, создаваемый ЭДС потечет против ч.стрелки, а в транзисторе поле будет направлено в др сторону.

3. Теперь подключим к третьей ножке (Базе) ток.

В таком случае между n — p переходом исчезнет барьер и потечет ток, отсюда следует, что и у p — n перехода уйдет сдерживающее поле, тогда и по большой цепи, и по малой потекут электроны.

Полевой транзистор

Быстренька пройдемся по полевому транзистору.

1.У полевого транзистора также 3 части: Исток(откуда идут электроны), Сток(куда текут электроны), Затвор(пластина с электронными дырками).

Когда затвор не замкнут в цепи, то электроны могу спокойно течь против тока и никто им не мешает. (против , потому что ток течет от «+» к «-«, а электроны от «-» к «+»)<почему так, читайте внизу>

2. Если замкнуть затвор

На пластине затвора образуются избытки электронов. (Пластины обрамлены диэлектриком) Отсюда на нижней пластине  — излишки положительных ионов, что препятствует протеканию тока. И только некоторым электронам это удается. Аналогично с биполярными транзисторами (БТ).

Надеюсь я понятным языком объяснил устройство-работу транзисторов. Как и всегда вы можете писать свои предложения и вопросы в комментариях.

П. С. Почему электроны, частицы несущие заряд, при протекании тока, идут от «-» к «+», а ток течет от «+» к «-» ?

Отв: Благодаря Лейденским ученым, Вольту и др. мы узнали о существовании тока, и когда его открыли, то предписали, что он течет от + к — (условно). Но электрон открыли гораздо позднее (1897г). А к моменту открытии тока не было известно  о частице несущей заряд.

Источники:

– Школа

– ScArtProject.ru

Как устроен транзистор и как он обозначается

Транзистор на пальцах

Жуткая вещь, в детстве все не мог понять как он работает, а оказалось все просто.

В общем, транзистор можно сравнить с управляемым вентилем, где крохотным усилием мы управляем мощнейшим потоком. Чуть повернул рукоятку и тонны дерьма умчались по трубам, открыл посильней и вот уже все вокруг захлебнулось в нечистотах. Т.е. выход пропорционален входу умноженному на какую то величину. Этой величиной является коэффициент усиления.

Делятся эти девайсы на полевые и биполярные.

В биполярном транзисторе есть эмиттер, коллектор и база (смотри рисунок условного обозначения).

На схемах эмиттер – со стрелочкой, а база обозначается как прямая площадка между эмиттером и коллектором.

Между эмиттером и коллектором идет большой ток полезной нагрузки, направление тока определяется стрелочкой на эмиттере. А вот между базой и эмиттером идет маленький управляющий ток. Грубо говоря, величина управляющего тока влияет на сопротивление между коллектором и эмиттером. Биполярные транзисторы бывают двух типов: p-n-p и n-p-n принципиальная разница только лишь в направлении тока через них.

Полевой транзистор отличается от биполярного тем, что в нем сопротивление канала между истоком и стоком определяется уже не током, а напряжением на затворе. Последнее время полевые транзисторы получили громадную популярность (на них построены все микропроцессоры), т.к. токи в них протекают микроскопические, решающую роль играет напряжение, а значит потери и тепловыделение минимальны.

Обозначение транзисторов или камень преткновения всех студентов. Как запомнить тип биполярного транзистора по его условной схеме? Представь что стрелочка это направление твоего движения на машине… Если едем в стенку то дружный вопль “Писец Нам Писец” (PnP).

Короче, транзистор позволяет слабеньким сигналом, например с ноги микроконтроллера, управлять мощной нагрузкой типа реле, двигателя или лампочки. Если не хватит усиления одного транзистора, то их можно соединять каскадами – один за другим, все мощней и мощней. А порой хватает и одного могучего полевого MOSFET транзистора. Посмотри, например, как в схемах сотовых телефонов управляется виброзвонок. Там выход с процессора идет на затвор силового MOSFET ключа.

Как это устроено: транзисторы

Про­цес­со­ры в ком­пью­те­рах, теле­фо­нах и любой элек­тро­ни­ке состо­ят из тран­зи­сто­ров. В про­цес­со­ре Apple A13 Bionic, кото­рый сто­ит внут­ри один­на­дца­то­го айфо­на, 8,5 мил­ли­ар­да тран­зи­сто­ров, а в Core i7 4790, кото­рый сто­ял внут­ри мно­гих настоль­ных ком­пью­те­ров в 2014 году, — в 6 раз меньше.

Имен­но тран­зи­сто­ры выпол­ня­ют всю ком­пью­тер­ную рабо­ту: счи­та­ют, запус­ка­ют про­грам­мы, управ­ля­ют дат­чи­ка­ми и отве­ча­ют за рабо­ту устрой­ства в целом.

При этом сам тран­зи­стор — про­стей­ший при­бор, кото­рый по сути похож на кран или элек­три­че­ские воро­та. Через тран­зи­стор идёт какой-то один ток, а дру­гим током этот поток мож­но либо про­пу­стить, либо забло­ки­ро­вать. И всё.

Вот при­мер­ная схе­ма. В жиз­ни нож­ки тран­зи­сто­ра могут быть рас­по­ло­же­ны не так, как на схе­ме, но для нагляд­но­сти нам надо имен­но так:

Ток пыта­ет­ся прой­ти сквозь тран­зи­стор, но тран­зи­стор «закрыт»: на его управ­ля­ю­щую ногу не подан дру­гой ток.

А теперь мы пода­ли на управ­ля­ю­щую ногу немно­го тока, и теперь тран­зи­стор «открыл­ся» и про­пус­ка­ет через себя основ­ной ток.

Из мил­ли­ар­дов таких про­стей­ших кра­нов и состо­ит любая совре­мен­ная вычис­ли­тель­ная маши­на: от чай­ни­ка с элек­трон­ным управ­ле­ни­ем до супер­ком­пью­те­ра в под­ва­лах Пен­та­го­на. И до чипа в вашем смартфоне.

В сере­дине XX века тран­зи­сто­ры были боль­ши­ми: сот­ней тран­зи­сто­ров мож­но было набить кар­ман, их про­да­ва­ли в радио­тех­ни­че­ских мага­зи­нах, у них были проч­ные кор­пу­са и метал­ли­че­ские нож­ки, кото­рые нуж­но было паять на пла­те. Такие тран­зи­сто­ры до сих пор про­да­ют­ся и про­из­во­дят­ся, но в мик­ро­элек­тро­ни­ке они не исполь­зу­ют­ся — слиш­ком большие.


Это один из вари­ан­тов испол­не­ния тран­зи­сто­ра: пла­сти­ко­вый кор­пус и три ноги для соеди­не­ния с платой. 

Совре­мен­ный тран­зи­стор умень­шен в мил­ли­о­ны раз, у него нет кор­пу­са, а про­цесс его мон­та­жа мож­но срав­нить ско­рее с про­цес­сом лазер­ной печа­ти. Тран­зи­сто­ры раз­ме­ром несколь­ко нано­мет­ров в бук­валь­ном смыс­ле печа­та­ют поверх пла­стин, из кото­рых потом полу­ча­ют­ся наши про­цес­со­ры и память. Такие пла­сти­ны назы­ва­ют ваф­ля­ми, и если смот­реть на них без мик­ро­ско­па, это будут про­сто такие радуж­ные поверх­но­сти. Радуж­ные они пото­му, что состо­ят из мил­ли­ар­дов малень­ких выемок — тран­зи­сто­ров, рези­сто­ров и про­чих микрокомпонентов:


Ваф­ля из мил­ли­ар­дов тран­зи­сто­ров. Если её раз­ре­зать в пра­виль­ных местах, полу­чат­ся наши микропроцессоры. 

Что внутри транзистора

Если бы мы мог­ли раз­ре­зать один тран­зи­стор в мик­ро­про­цес­со­ре, мы бы уви­де­ли что-то вро­де этого:

Сле­ва — про­вод­ник, по кото­ро­му бежит ток, спра­ва — про­сто про­вод­ник, пока без тока. Меж­ду ними нахо­дит­ся про­во­дя­щий канал — те самые «воро­та». Когда воро­та откры­ты, ток из лево­го про­вод­ни­ка посту­па­ет в пра­вый. Когда закры­ты — пра­вый оста­ёт­ся без тока. Что­бы воро­та откры­лись, на них нуж­но подать ток откуда-то ещё. Если тока нет, то воро­та закрыты.

Теперь, если гра­мот­но посо­еди­нять тыся­чу тран­зи­сто­ров, мы полу­чим про­стей­шую вычис­ли­тель­ную маши­ну. А если посо­еди­нять мил­ли­ард тран­зи­сто­ров, полу­чим ваш процессор.

Почему все так полюбили транзисторы

До тран­зи­сто­ров у учё­ных уже было некое подо­бие вычис­ли­тель­ных машин. Напри­мер, счё­ты: там опе­ра­тор управ­лял пере­ме­ще­ни­ем бусин в реги­страх и скла­ды­вал таким обра­зом чис­ла. Но опе­ра­тор мед­лен­ный и может оши­бать­ся, поэто­му систе­ма была несовершенной.

Были меха­ни­че­ские счёт­ные маши­ны, кото­рые уме­ли скла­ды­вать и умно­жать чис­ла за счёт слож­ных шестер­ней, бочон­ков и пру­жин, — напри­мер, ариф­мо­метр. Они рабо­та­ли мед­лен­но и были слиш­ком доро­ги­ми для масштабирования.

Были вычис­ли­тель­ные маши­ны на базе меха­ни­че­ских пере­клю­ча­те­лей — реле. Они были очень боль­ши­ми — те самые «залы, напол­нен­ные одним ком­пью­те­ром». Их мог­ли застать наши роди­те­ли, бабуш­ки и дедушки.

Поз­же при­ду­ма­ли элек­трон­ные лам­пы: там управ­лять током уже мож­но было с помо­щью дру­го­го тока. Но лам­пы пере­гре­ва­лись, лома­лись, на них мог при­ле­теть мотылёк.

И толь­ко в кон­це соро­ко­вых учё­ные изоб­ре­ли твер­до­тель­ные тран­зи­сто­ры: вся кух­ня с вклю­че­ни­ем и выклю­че­ни­ем тока про­хо­ди­ла внут­ри чего-то твёр­до­го, устой­чи­во­го и без­опас­но­го, не при­вле­ка­ю­ще­го вни­ма­ния мотыль­ков. За осно­ву взя­ли гер­ма­ний и крем­ний и ста­ли раз­ви­вать эту технологию.

Кайф твер­до­тель­ных тран­зи­сто­ров в том, что вза­и­мо­дей­ствия там про­ис­хо­дят на ско­ро­стях, близ­ких к ско­ро­сти све­та. Чем мень­ше сам тран­зи­стор, тем быст­рее по нему про­бе­га­ют элек­тро­ны, тем мень­ше вре­ме­ни нуж­но на вычис­ле­ния. Ну и сло­мать твер­до­тель­ный тран­зи­стор в хоро­шем проч­ном кор­пу­се намно­го слож­нее, чем хруп­кую стек­лян­ную лам­пу или меха­ни­че­ское реле.

Как считают транзисторы

Тран­зи­сто­ры соеди­не­ны таким хит­рым обра­зом, что, когда на них пода­ёт­ся ток в нуж­ных местах, они выда­ют ток в дру­гих нуж­ных местах. И всё вме­сте про­из­во­дит впе­чат­ле­ние полез­ной для чело­ве­ка мате­ма­ти­че­ской операции.

Пока что не будем думать, как имен­но соеди­не­ны тран­зи­сто­ры. Про­сто посмот­рим на принцип.

Допу­стим, нам надо сло­жить чис­ла 4 и 7. Нам, людям, оче­вид­но, что резуль­тат будет 11. Зако­ди­ру­ем эти три чис­ла в дво­ич­ной системе:

Деся­тич­ная Дво­ич­ная
40100
70111
111011

Теперь пред­ста­вим, что мы собра­ли некую маши­ну, кото­рая полу­чи­ла точ­но такой же резуль­тат: мы с одной сто­ро­ны пода­ли ей ток на вхо­ды, кото­рые соот­вет­ству­ют пер­во­му сла­га­е­мо­му; с дру­гой сто­ро­ны — пода­ли ток на вхо­ды вто­ро­го сла­га­е­мо­го; а на выхо­де под­све­ти­лись выхо­ды, кото­рые соот­вет­ство­ва­ли сумме.

Смот­ри­те, что тут про­ис­хо­дит: есть восемь вхо­дов и четы­ре выхо­да. На вхо­ды пода­ет­ся элек­три­че­ство. Это про­сто элек­три­че­ство, оно не зна­ет, что оно обо­зна­ча­ет чис­ла. Но мы, люди, зна­ем, что мы в этом элек­три­че­стве зашиф­ро­ва­ли числа.

Так же на выхо­де: элек­три­че­ство при­шло на какие-то кон­так­ты. Мы как-то на них посмот­ре­ли и уви­де­ли, что эти кон­так­ты соот­вет­ству­ют какому-то чис­лу. Мы дела­ем вывод, что эта про­стей­шая маши­на сло­жи­ла два чис­ла. Хотя на самом деле она про­сто хит­рым обра­зом пере­ме­ша­ла электричество.

Вот про­стей­ший при­мер ком­пью­те­ра, собран­но­го на тран­зи­сто­рах. Он скла­ды­ва­ет два чис­ла от 0 до 15 и состо­ит толь­ко из тран­зи­сто­ров, рези­сто­ров (что­бы не спа­лить) и вся­ких вспо­мо­га­тель­ных дета­лей типа бата­рей­ки, выклю­ча­те­лей и лам­по­чек. Мож­но сра­зу посмот­реть кон­цов­ку, как он работает:

Вот ров­но это, толь­ко в мил­ли­ард раз слож­нее, и про­ис­хо­дит в наших компьютерах.

Что мы зна­ем на этом этапе:

  1. Тран­зи­сто­ры — это про­сто «кра­ны» для электричества.
  2. Если их хит­рым обра­зом соеди­нить, то они будут сме­ши­вать элек­три­че­ство полез­ным для чело­ве­ка образом.
  3. Все ком­пью­тер­ные вычис­ле­ния осно­ва­ны на том, что­бы пра­виль­но соеди­нить и очень плот­но упа­ко­вать транзисторы.

В сле­ду­ю­щей части раз­бе­рем, как имен­но соеди­не­ны эти тран­зи­сто­ры и что им поз­во­ля­ет так инте­рес­но всё считать.

устройство, классификация и работа простым языком

С каждым годом появляется все больше и больше электронных средств, а они часто ломаются. На ремонт уходит немало средств, порой, достигая до 50 процентов от стоимости аппарата. И что досадно, некоторые из этих поломок можно было устранить самому, имея начальные знания о том, как работает транзистор. Почему он? Именно транзисторы чаще всего выходят из строя.

Виды транзистора

Чтобы легче разобраться в работе транзистора, необходимо иметь представление о нем. Он является полупроводником, что указывает на его способность проводить ток в одном направлении и не пропускать в другом. Чтобы достичь таких характеристик используются разные способы изготовления.

Все эти приборы по своему характеру работы делятся на две группы:

  1. биполярные
  2. полярные

Хотя и те и другие относятся к одному классу — транзисторы, происходящие в них процессы сильно отличаются.

Биполярный

Движение электронов по замкнутой цепи называется электрическим током. Грубо говоря, чем больше электронов, тем больше ток. Если атом отдает электроны, он становится положительно заряженным и, наоборот, притягивая лишние электроны, он становится отрицательно заряженным.

При добавлении в кремний и германий примесей они становятся необходимым материалом, из которых и изготавливаются биполярные транзисторы.

Биполярными называются электронные приборы, состоящие из двух, имеющие разные заряды слоев. Причем два крайних имеют одинаковый заряд. Тот слой, который имеет положительный заряд, называется «p», а отрицательный — «n». В связи с этим различают следующие типы:

Граница между этими слоями называется переход. Внутреннюю область, разделенную двумя переходами, называют базой. Две внешние области называют эмиттер и коллектор. Монокристалл изготовлен таким образом, что одна внешняя область передает в базу носители энергии и называется эмиттером. Другая внешняя область забирает эти носители и называется коллектором.

На электрической схеме биполярный транзистор обозначается в виде круга, внутри которого нарисована черточка, а к ней подходят три прямые. Одна подходит под углом в 90 градусов и обозначает базу, две другие под наклоном. Та из них что имеет стрелку обозначает эмиттер, другая — коллектор. Сам прибор, как правило, имеет три вывода, соответствующих этим областям.

Полевой

Другой вид называется полевой или униполярный. В отличие от биполярного p-n переход работает иначе. Его монокристалл имеет однородный состав. Канал, по которому движутся энергоносители, может быть дырочным или электронным. В дырочном носителем являются положительно заряженные неподвижные ионы, в электронном — отрицательно заряженные. Эти каналы также обозначаются буквами «p» и «n» соответственно.

Вокруг и почти по всей длине этого канала впрыскиваются, вживляются ионы противоположной полярности. Эта область называется затвором, она-то и регулирует проводимость канала. Тот край канала, через который заряженные частицы входят в кристалл, называется исток, а через который выходят — стоком.

Для улучшения электрических характеристик между металлическим каналом и затвором стали добавлять диэлектрик. Если классифицировать транзисторы по структуре, то можно выделить два семейства:

  • МДП (к ним можно отнести и МОП — металл-оксид-проводник)
  • JGBT

МДП расшифровывается как металл-диэлектрик-проводник. Это полевой. Новый JGBT транзистор сочетает в себе достоинства биполярного, но имеет изолированный затвор.

Принцип действия

Один из сложных радиоэлементов — транзистор. Принцип работы его сводится к следующему:

  • регулировка
  • усиление
  • генерация

Биполярные обладают большей мощностью и могут работать с большими частотами. Однако, если нужен широкий спектр усиления, то без полевого не обойтись.

Работа полевого

Рассмотрим, как работает транзистор. Для начинающих радиолюбителей трудно разобраться во всех этих переходах. Чтобы показать принцип работы транзистора простым языком, обратим внимание на следующий пример

.

Водопроводный кран вентильного типа способен очень плавно менять напор воды. Это достигается благодаря постепенному изменению пропускного отверстия. На этом же принципе основана работа и полевого транзистора.

Затвор окружает пропускной канал. При подаче на него запирающего напряжения, электрическое поле как бы сдавливает проход, тем самым уменьшая поток заряженных частиц. Как и при закрывании крана необходимо прилагать небольшое усилие, так и мощность затвора, по сравнению с основным каналом, очень мала. Сходство также и в том, что при небольших изменениях напряжения на затворе, сечение прохода также меняется незначительно.

Как работает биполярный

Работа биполярного прибора несколько отличается от работы полевого. В первую очередь отличается способ управления движением заряженных частиц. В полевом используется электрическое поле, в биполярном — ток между базой и эмиттером.

В зависимости от типа прибора стрелочка эмиттера на схеме будет либо направлена к базе, тогда это тип p-n-p, либо от базы, тогда это n-p-n. При подключении к этим зажимам одноименного напряжения («p» подключается к «+”, а «n» подключается к «-“) в цепи эмиттер — база возникает ток. В базе появляется больше носителей заряда и их становится тем больше, чем больше ток в этой цепи.

К коллектору подводится обратное напряжение, т. е. к «p» подключается «-“, а к «n» — «+”. Поскольку между эмиттером и коллектором возникает разность потенциалов, между этими выводами появляется ток. Он будет тем больше, чем больше носителей заряда имеется в базе.

Когда к эмиттеру и базе подключают источник питания противоположного знака, ток прекращается, транзистор закрывается. Что поможет лучше понять работу транзистора? Для чайников важно понять одну истину.

Если открыт переход эмиттер — база (подается прямое напряжение), то открыт и сам прибор, в противном случае он закрыт.

Меры предосторожности

Полевые транзисторы очень чувствительны к повышенному напряжению. При работе с ними необходимо предотвратить возможность попадания на них статистического напряжения. Этого можно достичь надев заземленный браслет. При подборе аналога важно учитывать не только рабочее напряжение, но и допустимый ток. А если прибор работает в частотном режиме, то и его частоту.

Транзистор – принцип работы.Основные параметры.

Как устроен транзистор.

Вне зависимости от принципа работы, полупроводниковый транзистор содержит в себе монокристалл из основного полупроводникового материала, чаще всего это – кремний, германий, арсенид галлия. В основной материал добавлены, легирующие добавки для формирования p-n перехода(переходов), металлические выводы.


Кристалл помещается в металлический, пластиковый или керамический корпус, для защиты от внешних воздействий. Однако, существуют также и бескорпусные транзисторы.

Принцип работы биполярного транзистора.

Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника в кристалле. В любом случае выводы называются – база, коллектор и эмиттер. Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора. Он имеет принципиально очень малую ширину. Носители заряда движутся от эмиттера через базу – к коллектору. Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого может являться разность напряжения между этими электродами.

Т.е. – для нормальной работы биполярного транзистора в качестве усилителя сигнала всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в прямом направлении. Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает так называемую – рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют режим – А. В этом режиме напряжение между коллектором и нагрузкой, примерно равно половине питающего напряжения – т. е выходное сопротивление транзистора и нагрузки примерно равны . Если подавать теперь на переход база – эмиттер сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер – коллектор будет изменяться, графически повторяя форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору протекающим. Причем амплитуда тока будет большей, нежели амплитуда входного сигнала – будет происходить усиление сигнала.

Если увеличивать напряжение смещения база – эмиттер дальше, это приведет к росту тока в этой цепи, и как результат – еще большему росту тока эмиттер – коллектор. В конце, концов ток перестает расти – транзистор переходит в полностью открытое состояние(насыщения). Если затем убрать напряжение смещения – транзистор закроется, ток эмиттер – коллектор уменьшится, почти исчезнет. Так транзистор может работать в качестве электронного ключа. Этот режим наиболее эффективен в отношении управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения минимальна. Соответственно малы потери тока и нагрев переходов транзистора.

Существует три вида подключения биполярного транзистора. С общим эмиттером (ОЭ) — осуществляется усиление как по току, так и по напряжению — наиболее часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой, так как значения их входного и выходного сопротивления относительно близки, если сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).

С общим коллектором (ОК) осуществляется усиление только по току — применяется для согласования источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок. Например, в выходных каскадах усилителей и контроллеров.

С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом усиления. Например – в входных цепях радиоприемных устройств.

Принцип работы полевого транзистора.

Полевой транзистор, как и биполярный имеет три электрода. Они носят названия – сток, исток и затвор. Если на затворе отсутствует напряжение, а на сток подано положительное напряжение относительно истока, то между истоком и стоком через канал течет максимальный ток.

Т. е. – транзистор полностью открыт. Для того, что бы его изменить, на затвор подают отрицательное напряжение, относительно истока. Под действием электрического поля (отсюда и название транзистора) канал сужается, его сопротивление растет, а ток через него уменьшается. При определенном значении напряжения канал сужается до такой степени, что ток практически исчезает – транзистор закрывается.

На рисунке изображено устройство полевого транзистора с изолированным затвором(МДП).

Если на затвор этого прибора не подано положительное напряжение, то канал между истоком и стоком отсутствует и ток равен нулю. Транзистор полностью закрыт. Канал возникает при некотором минимальном напряжении на затворе(напряжение порога). Затем сопротивление канала уменьшается, до полного открывания транзистора.

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения: с общим истоком (ОИ) — аналог ОЭ биполярного транзистора; с общим стоком (ОС) — аналог ОК биполярного транзистора; с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

По рассеиваемой в виде тепла мощности различают:
маломощные транзисторы – до 100 мВт ;
транзисторы средней мощности – от 0,1 до 1 Вт;
мощные транзисторы – больше 1 Вт.

Важные параметры биполярных транзисторов.

1. Коэффициент передачи тока(коэффициент усиления) – от 1 до 1000 при постоянном токе. С увеличением частоты постепенно снижается.
2. Максимальное напряжение между коллектором и эмиттером(при разомкнутой базе) У специальных высоковольтных транзисторов, достигает десятков тысяч вольт.
3.Предельная частота, до которой коэффициент передачи тока выше 1. До 100000 гц. у низкочастотных транзисторов, свыше 100000 гц. – у высокочастотных.
4.Напряжение насыщения эмиттер-коллектор – величина падения напряжения между этими электродами у полностью открытого транзистора.

Важные параметры полевых транзисторов.

Усилительные свойства полевого транзистора определяются отношением приращения тока стока к вызвавшему его приращению напряжения затвор – исток, т. е.

ΔId /ΔUGS

Это отношение принято называть крутизной прибора, а по сути дела оно является передаточной проводимостью и измеряется в миллиамперах на вольт(мА /В).

Другие важнейшие параметры полевых транзисторов приведены ниже:
1. IDmax – максимальный ток стока.

2.UDSmax – максимальное напряжение сток-исток.

3.UGSmax – максимальное напряжение затвор-исток.

4.РDmax – максимальна мощность, которая может выделяться на приборе.

5.ton – типовое время нарастания тока стока при идеально прямоугольной форме входного сигнала.

6.toff – типовое время спада тока стока при идеально прямоугольной форме входного сигнала.

7.RDS(on)max – максимальное значение сопротивления исток – сток в включенном(открытом) состоянии.

На главную страницу

Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт “Электрика это просто”.

Как работает транзистор?

Подробности
Категория: Начинающим
Опубликовано 29.11.2013 14:41
Автор: Admin
Просмотров: 35218

Транзисторы – это радиоэлектронные компоненты из полупроводникового материала, которые предназначены для преобразований, усилений и генерации электрических колебаний.

Но всё же, как работает транзистор? Говоря простым языком с помощью транзистора можно управлять током. Транзисторами называются любые устройства, которое способно имитировать главные его свойства, а именно – изменять сигнал между двумя разными типами состояний при изменениях сигнала на управляющем электроде.

Транзисторы бывают двух типов:

  • полевые;
  • биполярные.

Материалами изготовления служат германий и кремний, но при добавлении примесей способность проводить ток возрастает. Нужно рассмотреть оба типа транзисторов, для того чтобы понять как работает транзистор? На рисунке представлены три области p-n-p или n-p-n из которых состоит любой биполярный транзистор.

Структура транзистора

В биполярных транзисторах носители зарядов двигаются от эмиттера к коллектору. База отделяется от коллектора и эмиттера p-n переходами. Протекает ток через транзистор лишь при инжектировании носителей заряда через p-n переход из эмиттера в базу. Находясь в базе, они начинают становиться неосновными носителями заряда и достаточно легко проникают через p-n переходы. Управление током между коллектором и эмиттером осуществляется за счет изменения напряжения между базой и эмиттером.

Конструкция транзистора

Как работает транзистор в цепи электрического тока? 

Основной принцип работы транзистора заключается в управлении электрическим током с помощью незначительного тока являющегося своего рода управляющим током. В полевых транзисторах носители зарядов движутся к коллектору от эмиттера через базу. Существует канал, в легированном проводнике находясь в промежутке между нелегированной подложкой и затвором. В подложке отсутствует заряд, и она не проводит ток. Перед затвором есть область обеднения с отсутствием носителей заряда.

Таким образом, вся ширина канала ограничивается пространством между областью обеднения и пространством между подложкой. Напряжение, прикладываемое к затвору, уменьшает или увеличивает область обеднения, и тем самым ширину самого канала, контролируя при этом ток.

Многие начинающие радиолюбители не так представляют себе принцип работы транзистора. Они думают, что транзистор способен усилить мощность источника питания, но это далеко не так. Важно понимать, что транзистор управляет большим током коллектора с помощью маленького тока протекающего через базу. Здесь речь идет скорее всего об управлении чем об усилении. 

Схема подключение транзистора

Схема состоит из двух электрических цепей : 

  • цепь эмиттера;
  • цепь коллектора;

В цепи эмиттера протекает незначительный ток, который управляет током коллектора. На выходе мы получаем “копию” тока эммитера но усиленного в несколько раз.

Интересное видео о принципе действия транзистора

  • < Назад
  • Вперёд >
Добавить комментарий

Принцип действия транзистора, внутреннее устройство и основные характеристики транзисторов

Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Так что же такое транзистор? – Он представляет собой кристалл, помещенный в корпус, снабженный выводами. Кристалл изготовляют из полупроводникового материала. По своим электрическим свойствам полупроводники занимают некоторое промежуточное положение между проводниками и непроводниками тока (изоляторами).

Небольшой кристалл полупроводникового материала (полупроводника) после соответствующей технологической обработки становится способным менять свою электропроводность в очень широких пределах при подведении к нему слабых электрических колебаний и постоянного напряжения смещения.

Кристалл помещают в металлический или пластмассовый корпус и снабжают тремя выводами, жесткими или мягкими, присоединенными к соответствующим зонам кристалла. Металлический корпус иногда имеет собственный вывод, но чаща с корпусом соединяют один из трех электродов транзистора.

В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.

Быполярные транзисторы

Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами. В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов.

Поэтому и транзисторы называют одни кремниевыми, другие – германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.

Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость). Таким образом формируют один из электродов транзистора, называемый базой.

Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.

Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам.

Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.

Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.

Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.

Рис. 1. Напряжения смещения базы для кремниевых и германиевых транзисторов.

На рис. 1 показаны условные графические обозначения транзисторов той и другой структуры, выполненных на основе германия и кремния, и типовое напряжение смещения. Электроды транзисторов обозначены первыми буквами слов: эмиттер — Э, база — Б, коллектор — К.

Напряжение смещения (или, как принято говорить, режим) показано относительно эмиттера, но на практике напряжение на электродах транзистора указывают относительно общего провода устройства. Общим проводом в устройстве и на схеме называют провод, гальванически соединенный с входом, выходом и часто с источником питания, т. е. общий для входа, выхода и источника питания.

Усилительные и другие свойства транзисторов характеризуются рядом электрических параметров, наиболее важные из которых рассмотрены ниже.

Статический коэффициент передачи тока базы h21Э показывает, во сколько раз ток коллектора биполярного транзистора больше тока его базы, вызвавшего этот ток. У большинства типов транзисторов численное значение этого коэффициента от экземпляра к экземпляру может изменяться от 20 до 200. Есть транзисторы и с меньшим значением — 10…15, и с большим — до 50…800 (такие называют транзисторами со сверхусилением).

Нередко считают, что хорошие результаты можно получить только с транзисторами, имеющими большое значение h21э. Однако практика показывает, что при умелом конструировании аппаратуры вполне можно обойтись транзисторами, имеющими h2lЭ, равный всего 12…20. Примером этого может служить большинство конструкций, описанных в этой книге.

Частотными свойствами транзистора учитывается тот факт, что транзистор способен усиливать электрические сигналы с частотой, не превышающей определенного для каждого транзистора предела. Частоту, на которой транзистор теряет свои усилительные свойства, называют предельной частотой усиления транзистора.

Для того, чтобы транзистор мог обеспечить значительное усиление сигнала, необходимо, чтобы максимальная рабочая частота сигнала была по крайней мере в 10…20 раз меньше предельной частоты fт транзистора. Например, для эффективного усиления сигналов низкой частоты (до 20 кГц) применяют низкочастотные транзисторы, предельная частота которых не менее 0,2…0,4 МГц.

Для усиления сигналов радиостанций длинноволнового и средневолнового диапазонов волн (частота сигнала не выше 1,6 МГц) пригодны лишь высокочастотные транзисторы с предельной частотой не ниже 16…30 МГц.

Максимальная допустимая рассеиваемая мощность — это наибольшая мощность, которую может рассеивать транзистор в течение длительного времени без опасности выхода из строя. В справочниках по транзисторам обычно указывают максимальную допустимую мощность коллектора Яктах, поскольку именно в цепи коллектор — эмиттер выделяется наибольшая мощность и действуют наибольшие ток и напряжение.

Базовый и коллекторный токи, протекая по кристаллу транзистора, разогревают его. Германиевый кристалл может нормально работать при температуре не более 80, а кремниевый — не более 120°С. Тепло, которое выделяется в кристалле, отводится в окружающую, среду через корпус транзистора, а также и через дополнительный теплоотвод (радиатор), которым дополнительно снабжают транзисторы большой мощности.

В зависимости от назначения выпускают транзисторы малой, средней и большой мощности. Маломощные используют главным образом для усиления и преобразования слабых сигналов низкой и высокой частот, мощные — в оконечных ступенях усиления и генерации электрических колебаний низкой и высокой частот.

Усилительные возможности ступени на биполярном транзисторе зависят не только от того, какой он мощности, а сколько от того, какой конкретно выбран транзистор, в каком режиме работы по переменному и постоянному току он работает (в частности, каковы ток коллектора и напряжение между коллектором и эмиттером), каково соотношение рабочей частоты сигнала и предельной частоты транзистора.

Что такое полевой транзистор

Полевой транзистор представляет собой полупроводниковый прибор, в котором управление током между двумя электродами, образованным направленным движением носителей заряда дырок или электронов, осуществляется электрическим полем, создаваемым напряжением на третьем электроде.

Электроды, между Которыми протекает управляемый ток, иоСят название истока и стока, причем истоком считают тот электрод, из которого выходят (истекают) носители заряда.

Третий, управляющий, электрод называют затвором. Токопроводящий участок полупроводникового материала между истоком и стоком принято называть каналом, отсюда еще одно название этих транзисторов — канальные. Под действием напряжения на затворе» относительно истока меняется сопротивление канала» а значит, и ток через него.

В зависимости от типа носителей заряда различают транзисторы с n-каналом или р-каналом. В n-канальных ток канала обусловлен направленным движением электронов, а р-канальных — дырок. В связи с этой особенностью полевых транзисторов их иногда называют также униполярными. Это название подчеркивает, что ток в них образуют носители только одного знака, что и отличает полевые транзисторы от биполярных.

Для изготовления полевых транзисторов используют главным образом кремний, что связано с особенностями технологии их производства.

Основные параметры полевых транзисторов

Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп.

Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала.

Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока.

Частотные свойства полевого транзистора, так же как и биполярного, характеризуются значением предельной частоты. Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10…20 раз меньше предельной частоты транзистора.

Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.

Для нормальной работы полевого транзистора на его электродах должно действовать постоянное напряжение начального смещения. Полярность напряжения смещения определяется типом канала (n или р), а значение этого напряжения — конкретным типом транзистора.

Здесь следует указать, что среди полевых транзисторов значительно больше разнообразие конструкций кристалла, чем среди биполярных. Наибольшее распространение в любительских конструкциях и в изделиях промышленного производства получили полевые транзисторы с так называемым встроенным каналом и р-n переходом.

Они неприхотливы в эксплуатации, работают в широких частотных пределах, обладают высоким входным сопротивлением, достигающим на низкой частоте нескольких мегаом, а на средней и высокой частотах — нескольких десятков или сотен килоом в зависимости от серии.

Для сравнения укажем, что биполярные транзисторы имеют значительно меньшее входное сопротивление, обычно близкое к 1…2 кОм, и лишь ступени на составном транзисторе могут иметь большее входное сопротивление. В этом со-состоит большое преимущество полевых транзисторов перед биполярными.

Рис. 2. Напряжения питания для полевых транзисторов.

На рис. 2 показаны условные обозначения полевых транзисторов со встроенным каналом и р-n переходом, а также указаны и типовые значения напряжения смещения. Выводы обозначены в соответствии с первыми буквами названий электродов.

Характерно, что для транзисторов с р-каналом напряжение на стоке относительно истока должно быть отрицательным, а на затворе относительно истока — положительным, а для транзистора с n-каналом — наоборот.

В промышленной аппаратуре и реже в радиолюбительской находят также применение полевые транзисторы с изолированным затвором. Такие транзисторы имеют еще более высокое входное сопротивление, могут работать на очень высоких частотах. Но у них есть существенный недостаток — низкая электрическая прочность изолированного затвора.

Для его пробоя и выхода транзистора из строя вполне достаточно даже слабого заряда статического электричества, который всегда есть на теле человека, на одежде, на инструменте.

По этой причине выводы полевых транзисторов с изолированным затвором при хранении следует связывать вместе мягкой голой проволокой, при монтаже транзисторов руки и инструменты нужно «заземлять», используют и другие защитные мероприятия.

Литература: Васильев В.А. Приемники начинающего радиолюбителя (МРБ 1072).

транзисторов – learn.sparkfun.com

Добавлено в избранное Любимый 77

Введение

Транзисторы вращают мир электроники. Они критически важны как источник управления практически в каждой современной цепи. Иногда вы их видите, но чаще всего они спрятаны глубоко внутри кристалла интегральной схемы. В этом уроке мы познакомим вас с основами самого распространенного транзистора: биполярного переходного транзистора (BJT).

В небольших дискретных количествах транзисторы могут использоваться для создания простых электронных переключателей, цифровой логики и схем усиления сигналов. В количествах тысяч, миллионов и даже миллиардов транзисторы соединены между собой и встроены в крошечные микросхемы для создания компьютерной памяти, микропроцессоров и других сложных ИС.

рассматривается в этом учебном пособии

После прочтения этого руководства мы хотим, чтобы вы получили широкое представление о том, как работают транзисторы.Мы не будем углубляться в физику полупроводников или эквивалентные модели, но мы достаточно углубимся в предмет, чтобы вы поняли, как транзистор можно использовать в качестве переключателя или усилителя .

Это руководство разделено на несколько разделов, охватывающих:

Существует два типа базовых транзисторов: биполярный переход (BJT) и металлооксидный полевой транзистор (MOSFET). В этом руководстве мы сфокусируемся на BJT , потому что его немного легче понять.Если копать еще глубже в типы транзисторов, на самом деле существует две версии BJT: NPN и PNP . Мы сфокусируемся еще больше, ограничив наше раннее обсуждение NPN. Если сузить наш фокус – получить твердое представление о NPN – будет легче понять PNP (или даже МОП-транзисторы), сравнив, чем он отличается от NPN.

и nbsp

и nbsp

Рекомендуемая литература

Перед тем, как углубиться в это руководство, мы настоятельно рекомендуем просмотреть эти уроки:

  • Напряжение, ток, сопротивление и закон Ома – Введение в основы электроники.
  • Основы электричества – Мы немного поговорим об электричестве как потоке электронов. Узнайте, как текут эти электроны, в этом уроке.
  • Electric Power – Одно из основных применений транзисторов – усиление – увеличение мощности сигнала. Увеличение мощности означает, что мы можем увеличивать ток или напряжение, узнайте почему в этом руководстве.
  • Диоды – Транзистор – это полупроводниковый прибор, похожий на диод. В некотором смысле это то, что вы получили бы, если бы сложили два диода вместе и связали их аноды вместе.Понимание того, как работает диод, будет иметь большое значение для раскрытия работы транзистора.

Хотите изучить транзисторы?

Символы, булавки и конструкция

Транзисторы – это в основном трехконтактные устройства. На биполярном переходном транзисторе (BJT) эти контакты обозначены как коллектор (C), база (B) и эмиттер (E). Обозначения схем как для NPN, так и для PNP BJT приведены ниже:

Единственное различие между NPN и PNP – это направление стрелки на эмиттере.Стрелка на NPN указывает, а на PNP указывает. Полезная мнемоника для запоминания:

NPN:

N от P ointing i N

Обратная логика, но работает!

Конструкция транзистора

Транзисторы полагаются на полупроводники, чтобы творить чудеса. Полупроводник – это не совсем чистый проводник (например, медный провод), но и не изолятор (например, воздух). Проводимость полупроводника – насколько легко он позволяет электронам течь – зависит от таких переменных, как температура или наличие большего или меньшего количества электронов.Заглянем вкратце под капот транзистора. Не волнуйтесь, мы не будем углубляться в квантовую физику.

Транзистор как два диода
Транзисторы

– это своего рода продолжение другого полупроводникового компонента: диодов. В некотором смысле транзисторы – это всего лишь два диода со связанными вместе катодами (или анодами):

Диод, соединяющий базу с эмиттером, здесь важен; он соответствует направлению стрелки на схематическом символе и показывает , в каком направлении должен течь ток через транзистор.

Изображение диодов – хорошее место для начала, но оно далеко не точное. Не основывайте свое понимание работы транзистора на этой модели (и определенно не пытайтесь воспроизвести ее на макете, это не сработает). Существует множество странных вещей на уровне квантовой физики, управляющих взаимодействием между тремя терминалами.

(Эта модель полезна, если вам нужно проверить транзистор. Используя функцию проверки диодов (или сопротивления) на мультиметре, вы можете провести измерения на клеммах BE и BC, чтобы проверить наличие этих «диодов».)

Структура и работа транзистора
Транзисторы

состоят из трех разных слоев полупроводникового материала. В некоторые из этих слоев добавлены дополнительные электроны (процесс, называемый «легированием»), а в других электроны удалены (допирование «дырками» – отсутствие электронов). Полупроводниковый материал с дополнительными электронами называется n-типа ( n для отрицательного заряда, потому что электроны имеют отрицательный заряд), а материал с удаленными электронами называется p-типа (для положительного).Транзисторы создаются путем размещения n поверх p поверх n или p поверх n над p .

Упрощенная схема структуры NPN. Заметили происхождение каких-либо аббревиатур?

Если немного помахать рукой, мы можем сказать, что электронов могут легко перетекать из областей n в области p , если у них есть небольшая сила (напряжение), толкающая их.Но переход от области p к области n действительно затруднен (требуется лот напряжения). Но особенность транзистора – та часть, которая делает нашу модель с двумя диодами устаревшей – это тот факт, что электронов могут легко перемещаться от базы p-типа к коллектору n-типа, пока база- эмиттерный переход смещен в прямом направлении (это означает, что база находится под более высоким напряжением, чем эмиттер).

NPN-транзистор предназначен для передачи электронов от эмиттера к коллектору (поэтому обычный ток течет от коллектора к эмиттеру).Эмиттер «испускает» электроны в базу, которая контролирует количество электронов, испускаемых эмиттером. Большая часть испускаемых электронов «собирается» коллектором, который отправляет их в следующую часть цепи.

PNP работает таким же, но противоположным образом. База по-прежнему контролирует ток, но этот ток течет в противоположном направлении – от эмиттера к коллектору. Вместо электронов эмиттер испускает «дырки» (концептуальное отсутствие электронов), которые собираются коллектором.

Транзистор похож на электронный клапан . Базовый штифт похож на ручку, которую вы можете отрегулировать, чтобы позволить большему или меньшему количеству электронов течь от эмиттера к коллектору. Давайте исследуем эту аналогию дальше …


Расширение аналогии с водой

Если вы в последнее время читали много руководств по концепциям электричества, вы, вероятно, привыкли к аналогиям с водой. Мы говорим, что ток аналогичен скорости потока воды, напряжение – это давление, проталкивающее воду по трубе, а сопротивление – это ширина трубы.

Неудивительно, что аналогия с водой может быть распространена и на транзисторы: транзистор похож на водяной клапан – механизм, который мы можем использовать для управления скоростью потока .

Есть три состояния, в которых мы можем использовать клапан, каждое из которых по-разному влияет на скорость потока в системе.

1) Вкл – короткое замыкание

Клапан может быть полностью открыт, позволяя воде свободно течь в – проходить, как если бы клапана даже не было.

Аналогичным образом, при определенных обстоятельствах, транзистор может выглядеть как короткое замыкание между выводами коллектора и эмиттера. Ток может свободно течь через коллектор и выходить из эмиттера.

2) Выкл. – обрыв цепи

Когда он закрыт, клапан может полностью перекрыть поток воды.

Таким же образом можно использовать транзистор для создания разрыва цепи между выводами коллектора и эмиттера.

3) Линейное управление потоком

С некоторой точной настройкой клапан может быть отрегулирован для точного управления расходом до некоторой точки между полностью открытым и закрытым.

Транзистор может делать то же самое – линейно регулирует ток через цепь в какой-то момент между полностью выключенным (разомкнутая цепь) и полностью включенным (короткое замыкание).

Из нашей аналогии с водой, ширина трубы аналогична сопротивлению в цепи. Если клапан может точно регулировать ширину трубы, то транзистор может точно регулировать сопротивление между коллектором и эмиттером. Таким образом, транзистор подобен переменному регулируемому резистору .

Усилительная мощность

Есть еще одна аналогия, которую мы можем провести здесь. Представьте себе, если бы с легким поворотом клапана вы могли контролировать скорость потока затворов плотины Гувера. Ничтожное усилие, которое вы можете приложить, чтобы повернуть эту ручку, может создать усилие в тысячи раз сильнее. Мы расширяем аналогию до предела, но эта идея распространяется и на транзисторы. Транзисторы особенные, потому что они могут усиливать электрические сигналы , превращая сигнал малой мощности в аналогичный сигнал гораздо большей мощности.


Вид. Это еще не все, но это хорошее место для начала! В следующем разделе вы найдете более подробное объяснение работы транзистора.


Режимы работы

В отличие от резисторов, которые обеспечивают линейную зависимость между напряжением и током, транзисторы являются нелинейными устройствами. У них есть четыре различных режима работы, которые описывают протекающий через них ток. (Когда мы говорим о токе, протекающем через транзистор, мы обычно имеем в виду ток , протекающий от коллектора к эмиттеру NPN .)

Четыре режима работы транзистора:

  • Насыщение – Транзистор действует как короткое замыкание . Ток свободно течет от коллектора к эмиттеру.
  • Отсечка – Транзистор действует как разомкнутая цепь . Нет тока от коллектора к эмиттеру.
  • Активный – Ток от коллектора к эмиттеру пропорционален току, протекающему в базу.
  • Reverse-Active – Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении.Ток течет от эмиттера к коллектору (не совсем то, для чего были предназначены транзисторы).

Чтобы определить, в каком режиме находится транзистор, нам нужно посмотреть на напряжения на каждом из трех выводов и на то, как они соотносятся друг с другом. Напряжения от базы к эмиттеру (V BE ) и от базы к коллектору (V BC ) устанавливают режим транзистора:

Упрощенный квадрантный график выше показывает, как положительное и отрицательное напряжение на этих клеммах влияет на режим.На самом деле все немного сложнее.

Давайте рассмотрим все четыре режима транзистора по отдельности; мы исследуем, как перевести устройство в этот режим и как это влияет на ток.

Примечание: Большая часть этой страницы посвящена транзисторам NPN . Чтобы понять, как работает транзистор PNP, просто поменяйте полярность или знаки> и <.

Режим насыщенности

Насыщенность – это в режиме транзистора.Транзистор в режиме насыщения действует как короткое замыкание между коллектором и эмиттером.

В режиме насыщения оба «диода» транзистора смещены в прямом направлении. Это означает, что V BE должен быть больше 0, и , поэтому должен быть V BC . Другими словами, V B должен быть выше, чем V E и V C .

Поскольку переход от базы к эмиттеру выглядит как диод, в действительности V BE должно быть больше, чем пороговое напряжение , чтобы войти в режим насыщения.Для этого падения напряжения существует множество сокращений – V th , V γ и V d несколько – и фактическое значение варьируется между транзисторами (и даже больше в зависимости от температуры). Для многих транзисторов (при комнатной температуре) это падение может составить около 0,6 В.

Еще один облом реальности: между эмиттером и коллектором не будет идеальной проводимости. Между этими узлами образуется небольшое падение напряжения. В технических характеристиках транзисторов это напряжение определяется как напряжение насыщения CE, В CE (насыщение) – напряжение от коллектора к эмиттеру, необходимое для насыщения.Это значение обычно составляет 0,05-0,2 В. Это значение означает, что V C должно быть немного больше, чем V E (но оба все еще меньше, чем V B ), чтобы транзистор перешел в режим насыщения.

Режим отсечки

Режим отсечки противоположен насыщению. Транзистор в режиме отсечки – выключен, – нет тока коллектора и, следовательно, нет тока эмиттера. Это почти похоже на обрыв цепи.

Чтобы перевести транзистор в режим отсечки, базовое напряжение должно быть меньше, чем напряжение эмиттера и коллектора.V BC и V BE должны быть отрицательными.

На самом деле, V BE может быть где угодно между 0 В и V th (~ 0,6 В) для достижения режима отсечки.

Активный режим

Для работы в активном режиме транзистор V BE должен быть больше нуля, а V BC должен быть отрицательным. Таким образом, базовое напряжение должно быть меньше, чем на коллекторе, но больше, чем на эмиттере. Это также означает, что коллектор должен быть больше эмиттера.

На самом деле нам нужно ненулевое прямое падение напряжения (сокращенно V th , V γ или V d ) от базы к эмиттеру (V BE ), чтобы «включить» транзистор. Обычно это напряжение обычно составляет около 0,6 В.

Усиление в активном режиме

Активный режим – это самый мощный режим транзистора, потому что он превращает устройство в усилитель . Ток, идущий на вывод базы, усиливает ток, идущий в коллектор и выходящий из эмиттера.

Наше сокращенное обозначение для коэффициента усиления (коэффициент усиления) транзистора – β (вы также можете увидеть его как β F или h FE ). β линейно связывает ток коллектора ( I C ) с базовым током ( I B ):

Фактическое значение β зависит от транзистора. Обычно это около 100 , но может варьироваться от 50 до 200 … даже 2000, в зависимости от того, какой транзистор вы используете и сколько тока проходит через него.Например, если у вашего транзистора β = 100, это будет означать, что входной ток в 1 мА на базу может производить ток 100 мА через коллектор.

Модель с активным режимом. V BE = V th и I C = βI B .

А как насчет тока эмиттера, I E ? В активном режиме токи коллектора и базы идут на устройство, а выходит I E . Чтобы связать ток эмиттера с током коллектора, у нас есть другое постоянное значение: α .α – коэффициент усиления по току общей базы, он связывает эти токи как таковые:

α обычно очень близко, но меньше 1. Это означает, что I C очень близко, но меньше I E в активном режиме.

Вы можете использовать β для вычисления α или наоборот:

Если, например, β равно 100, это означает, что α равно 0,99. Итак, если, например, I C равен 100 мА, то я E равен 101 мА.

Реверс активен

Так же, как насыщение противоположно отсечке, обратный активный режим противоположен активному режиму.Транзистор в обратном активном режиме проводит, даже усиливает, но ток течет в противоположном направлении, от эмиттера к коллектору. Обратной стороной активного режима является то, что β (β R в данном случае) на намного меньше на .

Чтобы перевести транзистор в обратный активный режим, напряжение на эмиттере должно быть больше, чем на базе, которая должна быть больше, чем на коллекторе (V BE <0 и V BC > 0).

Обратный активный режим обычно не является состоянием, в котором вы хотите управлять транзистором.Приятно знать, что он есть, но он редко превращается в приложение.

Относительно PNP

После всего, о чем мы говорили на этой странице, мы все еще покрыли только половину спектра BJT. А как насчет транзисторов PNP? Работа PNP очень похожа на работу NPN – у них те же четыре режима, но все изменилось. Чтобы узнать, в каком режиме находится PNP-транзистор, поменяйте местами все знаки <и>.

Например, чтобы перевести PNP в режим насыщения, V C и V E должны быть выше, чем V B .Вы опускаете базу ниже, чтобы включить PNP, и поднимаете ее выше, чем коллектор и эмиттер, чтобы выключить его. И, чтобы перевести PNP в активный режим, напряжение V E должно быть выше, чем напряжение V B , которое должно быть выше, чем V C .

Итого:

Соотношение напряжений Режим NPN Режим PNP
В E B C Активный Обратный
V E B > V C Насыщенность Отсечка
V E > V B C Отсечка Насыщенность
V E > V B > V C Задний ход Активный

Другой противоположной характеристикой NPN и PNP является направление тока.В активном режиме и режиме насыщения ток в PNP течет от эмиттера к коллектору . Это означает, что эмиттер обычно должен иметь более высокое напряжение, чем коллектор.


Если вы перегорели концептуальными вещами, перейдите к следующему разделу. Лучший способ узнать, как работает транзистор, – это изучить его в реальных схемах. Давайте посмотрим на некоторые приложения!


Приложения I: Коммутаторы

Одно из самых фундаментальных применений транзистора – использовать его для управления потоком энергии к другой части схемы – используя его в качестве электрического переключателя.Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.

Транзисторные переключатели являются важными строительными блоками; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.

Транзисторный переключатель

Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:

Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.

В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.

Когда напряжение на базе превышает 0,6 В (или какое бы там значение у вашего транзистора V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6V транзистор находится в режиме отсечки – ток не течет, потому что это похоже на разрыв цепи между C и E.

Схема, приведенная выше, называется переключателем низкого уровня , потому что переключатель – наш транзистор – находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:

Как и в схеме NPN, база – это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору со стороны земли.

Эта схема работает так же хорошо, как и коммутатор на основе NPN, но есть одно огромное отличие: для включения нагрузки база должна быть низкой. Это может вызвать осложнения, особенно если высокое напряжение нагрузки (V CC – 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить выключатель , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .

Базовые резисторы!

Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Напомним, что в некотором смысле транзистор – это просто пара соединенных между собой диодов. Мы смещаем диод база-эмиттер в прямом направлении, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.

Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.

Резистор должен быть достаточно большим, чтобы эффективно ограничивать ток , но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.

Цифровая логика

Транзисторы

можно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.

(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)

Инвертор

Вот схема транзистора, которая реализует инвертор , или НЕ затвор:

Инвертор на транзисторах.

Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC

.

(На самом деле это фундаментальная конфигурация транзистора, называемая общим эмиттером .Подробнее об этом позже.)

И Ворота

Вот пара транзисторов, используемых для создания логического элемента И с двумя входами :

2-входной логический элемент И на транзисторах.

Если один из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.

OR Выход

И, наконец, логический элемент ИЛИ с двумя входами :

2-входной логический элемент ИЛИ на транзисторах.

В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.

Н-образный мост

H-мост – это транзисторная схема, способная приводить двигатели как по часовой, так и против часовой стрелки . Это невероятно популярная трасса – движущая сила бесчисленных роботов, которые должны уметь двигаться как вперед на , так и на назад.

По сути, H-мост представляет собой комбинацию четырех транзисторов с двумя входными линиями и двумя выходами:

Вы можете догадаться, почему это называется H-мостом?

(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)

Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.

H-мост имеет таблицу истинности, которая выглядит примерно так:

6
Вход A Вход B Выход A Выход B Направление двигателя
0 0 1 1 Остановка (торможение)
1 0 По часовой стрелке
1 0 0 1 Против часовой стрелки
1 1 0 торможение

Осцилляторы

Генератор – это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.

Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов.

Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора поочередно включаются и выключаются.

Анализ работы этой схемы – отличное исследование работы как конденсаторов, так и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняется напряжение около V CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:

  • Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0 В. Это позволит C1 разряжаться через коллектор Q1.
  • Пока C1 разряжается, C2 быстро заряжается через резистор меньшего номинала – R4.
  • Как только C1 полностью разрядится, его правая пластина будет подтянута примерно до 0,6 В, что включит Q2.
  • На этом этапе мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь танцуем в другую сторону.
  • Q2 включен, позволяет C2 разряжаться через коллектор Q2.
  • Когда Q1 выключен, C1 может относительно быстро заряжаться через R1.
  • Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в состояние, в котором мы начали.

Может быть трудно осознать. Вы можете найти еще одну отличную демонстрацию этой схемы здесь.

Выбирая конкретные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:

Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора будет около 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.


Как вы, наверное, уже заметили, существует тонна схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров!


Приложения II: Усилители

Некоторые из самых мощных транзисторных приложений включают усиление: преобразование сигнала малой мощности в сигнал большей мощности.Усилители могут увеличивать напряжение сигнала, беря что-то из диапазона мкВ и преобразовывая его в более полезный уровень в мВ или В. Или они могут усиливать ток, что полезно для превращения мкА тока, создаваемого фотодиодом, в ток гораздо большей величины. Существуют даже усилители, которые принимают ток и производят более высокое напряжение или наоборот (называемые транссопротивлением и крутизной соответственно).

Транзисторы являются ключевым компонентом многих усилительных схем. Существует бесконечное количество разнообразных транзисторных усилителей, но, к счастью, многие из них основаны на некоторых из этих более примитивных схем.Запомните эти схемы, и, надеюсь, с небольшим сопоставлением с образцом вы сможете понять более сложные усилители.

Общие конфигурации

Три основных транзисторных усилителя: общий эмиттер, общий коллектор и общая база. В каждой из трех конфигураций один из трех узлов постоянно связан с общим напряжением (обычно с землей), а два других узла являются либо входом, либо выходом усилителя.

Общий эмиттер

Общий эмиттер – одна из наиболее популярных схем транзисторов.В этой схеме эмиттер подключен к общему напряжению как для базы, так и для коллектора (обычно заземления). База становится входом сигнала, а коллектор – выходом.

Схема с общим эмиттером популярна, потому что она хорошо подходит для усиления напряжения , особенно на низких частотах. Например, они отлично подходят для усиления аудиосигналов. Если у вас небольшой входной сигнал с размахом 1,5 В, вы можете усилить его до гораздо более высокого напряжения, используя немного более сложную схему, например:

Одна особенность обычного эмиттера заключается в том, что он инвертирует входной сигнал (сравните его с инвертором с последней страницы!).

Общий коллектор (эмиттерный повторитель)

Если мы подключим коллектор к общему напряжению, используем базу как вход, а эмиттер как выход, то получится общий коллектор. Эта конфигурация также известна как эмиттерный повторитель .

Общий коллектор не усиливает напряжение (фактически, выходное напряжение будет на 0,6 В ниже входного). По этой причине эту схему иногда называют повторителем напряжения .

Эта схема действительно имеет большой потенциал в качестве усилителя тока .В дополнение к этому, высокий коэффициент усиления по току в сочетании с коэффициентом усиления по напряжению, близким к единице, делает эту схему отличным буфером напряжения . Буфер напряжения предотвращает нежелательные помехи цепи нагрузки цепи, управляющей ею.

Например, если вы хотите подать 1 В на нагрузку, вы можете пойти простым путем и использовать делитель напряжения, или вы можете использовать эмиттерный повторитель.

По мере увеличения нагрузки (что, наоборот, означает уменьшение сопротивления) выход схемы делителя напряжения падает.Но выходное напряжение эмиттерного повторителя остается стабильным, независимо от нагрузки. Большие нагрузки не могут «нагружать» эмиттерный повторитель, как это могут быть цепи с большим выходным сопротивлением.

Общая база

Мы поговорим об общей базе, чтобы завершить этот раздел, но это наименее популярная из трех основных конфигураций. В усилителе с общей базой эмиттер является входом, а коллектор – выходом. База общая для обоих.

Общая база похожа на антиэмиттер-повторитель.Это приличный усилитель напряжения, и ток на входе примерно равен току на выходе (на самом деле ток на входе немного больше, чем на выходе).

Схема с общей базой лучше всего работает как токовый буфер . Он может принимать входной ток с низким входным сопротивлением и подавать почти такой же ток на выход с более высоким сопротивлением.

Вкратце

Эти три конфигурации усилителей лежат в основе многих более сложных транзисторных усилителей. У каждого из них есть приложения, где они сияют, будь то усиление тока, напряжения или буферизация.

Общий эмиттер Общий коллектор Общая база
Коэффициент усиления по напряжению Средний Низкий Высокий
Усиление по току Низкое 9044 На входе Среднее Среднее Высокое Низкое
Выходное сопротивление Среднее Низкое Высокое

Многокаскадные усилители

Мы можем продолжать говорить о большом разнообразии транзисторных усилителей.Вот несколько быстрых примеров, демонстрирующих, что происходит, когда вы комбинируете одноступенчатые усилители, указанные выше:

Дарлингтон

Усилитель Дарлингтона соединяет один общий коллектор с другим для создания усилителя с высоким коэффициентом усиления по току .

Выходное напряжение примерно равно входному напряжению (минус примерно 1,2–1,4 В), но коэффициент усиления по току является произведением двух коэффициентов усиления транзистора . Это β 2 – более 10 000!

Пара Дарлингтона – отличный инструмент, если вам нужно управлять большой нагрузкой с очень малым входным током.

Дифференциальный усилитель

Дифференциальный усилитель вычитает два входных сигнала и усиливает эту разницу. Это важная часть цепей обратной связи, где вход сравнивается с выходом для получения будущего выхода.

Вот основа дифференциального усилителя:

Эта схема также называется длинной хвостовой парой . Это пара схем с общим эмиттером, которые сравниваются друг с другом для получения дифференциального выхода.Два входа подаются на базы транзисторов; выход представляет собой дифференциальное напряжение на двух коллекторах.

Двухтактный усилитель

Двухтактный усилитель является полезным «заключительным каскадом» многих многокаскадных усилителей. Это энергоэффективный усилитель мощности, часто используемый для управления громкоговорителями.

Основной двухтактный усилитель использует транзисторы NPN и PNP, оба сконфигурированы как общие коллекторы:

Двухтактный усилитель на самом деле не усиливает напряжение (выходное напряжение будет немного меньше входного), но усиливает ток.Это особенно полезно в биполярных цепях (с положительным и отрицательным питанием), потому что оно может как «проталкивать» ток в нагрузку от положительного источника питания, так и «вытягивать» ток и погружать его в отрицательный источник питания.

Если у вас есть биполярный источник питания (или даже если у вас его нет), двухтактный – отличный конечный каскад для усилителя, действующий как буфер для нагрузки.

Собираем их вместе (операционный усилитель)

Давайте рассмотрим классический пример многокаскадной транзисторной схемы: операционный усилитель.Умение распознавать общие транзисторные схемы и понимание их назначения может очень помочь! Вот схема внутри LM3558, действительно простого операционного усилителя:

Внутреннее устройство операционного усилителя LM358. Узнали какие-то усилители?

Здесь определенно больше сложности, чем вы можете быть готовы усвоить, однако вы можете увидеть некоторые знакомые топологии:

  • Q1, Q2, Q3 и Q4 образуют входной каскад. Очень похоже на общий коллектор (Q1 и Q4) на дифференциальный усилитель , верно? Он просто выглядит перевернутым, потому что использует PNP.Эти транзисторы образуют входной дифференциальный каскад усилителя.
  • Q11 и Q12 являются частью второго этапа. Q11 – это общий коллектор, а Q12 – это общий эмиттер . Эта пара транзисторов буферизует сигнал с коллектора Q3 и обеспечивает высокий коэффициент усиления, когда сигнал поступает на конечный каскад.
  • Q6 и Q13 являются частью финальной стадии, и они тоже должны выглядеть знакомо (особенно если не обращать внимания на R SC ) – это двухтактный ! Этот этап буферизует выходной сигнал, позволяя ему управлять большими нагрузками.
  • Есть множество других распространенных конфигураций, о которых мы не говорили. Q8 и Q9 сконфигурированы как токовое зеркало , которое просто копирует величину тока, проходящего через один транзистор, в другой.

После этого ускоренного курса по транзисторам мы не ожидаем, что вы поймете, что происходит в этой схеме, но если вы можете начать определять общие транзисторные схемы, вы на правильном пути!


Покупка транзисторов

Теперь, когда вы контролируете источник управления, мы рекомендуем SparkFun Inventor’s Kit, чтобы воплотить в жизнь полученные вами новые знания.Мы также предоставили ссылки на комплект полупроводников и одиночные транзисторы для использования в ваших собственных проектах.

Наши рекомендации:

N-канальный полевой МОП-транзистор 60 В, 30 А

В наличии COM-10213

Если вы когда-нибудь задумывались, как управлять фарами автомобиля с помощью микроконтроллера, MOSFET – это то, что вам нужно.Это ве…

4

Пакет дополнений SparkFun Inventor’s Kit – v4.0

В наличии КОМПЛЕКТ-14310

С помощью Add-On Pack вы сможете включить некоторые из старых частей, которые раньше были включены в SIK, которые были обновлены…


Ресурсы и дальнейшее развитие

Если вы хотите глубже изучить транзисторы, мы рекомендуем несколько ресурсов:

  • Начало работы в электронике Форрест Мимс – Мимс – мастер объяснения электроники простым для понимания и применимым образом.Обязательно посмотрите эту книгу, если вы хотите более подробно познакомиться с транзисторами.
  • LTSpice и Falstad Circuit – это бесплатные программные инструменты, которые вы можете использовать для моделирования цепей. Цифровые эксперименты со схемами – отличный способ научиться. Вы получаете все эксперименты, без боли макетирования или страха взорвать все. Попробуйте собрать воедино то, о чем мы говорили!
  • 2N3904 Техническое описание – Еще один способ узнать о транзисторах – это изучить их техническое описание.2N3904 – действительно распространенный транзистор, который мы используем постоянно (а 2N3906 – его брат по PNP). Ознакомьтесь с таблицей данных, чтобы узнать, узнаете ли вы какие-нибудь знакомые характеристики.

Кроме того, наш собственный технический директор Пит выпустил серию видеороликов «По словам Пита», в которых основное внимание уделяется транзисторам и транзисторным усилителям. Обязательно посмотрите его видео о диодах и транзисторах:

.

Затем вы можете перейти к: Конфигурации смещения транзисторов, часть 1 и часть 2, и, наконец, текущие зеркала.Качественный товар!

Идем дальше

Или, если вам не терпится узнать больше об электронике в целом, ознакомьтесь с некоторыми из этих руководств по SparkFun:

  • Интегральные схемы – Что вы получите, если объедините тысячи транзисторов и поместите их в черный ящик? IC!
  • Регистры сдвига – регистры сдвига – одна из наиболее распространенных интегральных схем. Узнайте, как с помощью транзистора мигать десятки светодиодов всего за несколько входов.
  • Mini FET Shield Hookup Guide – Это действительно простой щит Arduino, который использует 8 полевых МОП-транзисторов для управления 8 сильноточными выходами.Это хороший пример использования транзистора в качестве переключателя из реальной жизни.
  • Проектирование печатных плат с EAGLE – Выведите свои новые навыки работы с транзисторами на новый уровень. Сделайте из них печатную плату! В этом руководстве объясняется, как использовать бесплатное программное обеспечение (Eagle) для проектирования печатных плат.
  • Как паять. Если вы разрабатываете печатную плату, вам также нужно знать, как паять. Узнайте, как паять через отверстия в этом руководстве.

Или ознакомьтесь с некоторыми из этих сообщений в блоге, чтобы найти идеи:

Как работают транзисторы ?.На самом деле почти как унитаз со смывом… | Джованни Органтини | Стартап | Январь, 2021 г.

Действительно, почти как унитаз со смывом…

Транзисторы являются строительными блоками наших электронных гаджетов: от смартфонов до компьютеров, игрушек, кухонных устройств, инструментов для уборки и т. Д.

Несмотря на их повсеместное распространение, всего несколько человек знать о том, как они работают. На самом деле понять их принципы работы не так уж и сложно.

Чтобы понять, как работает транзистор, нам нужно понять, что такое диод .Фактически, транзистор на практике представляет собой не что иное, как два диода.

Диод, по сути, работает как вентиль для электрического тока. Он позволяет потоку электронов течь только в одном направлении, противодействуя движению электронов в противоположном направлении, точно так же, как водяной клапан позволяет потоку воды течь только в одном направлении.

Водяной клапан позволяет воде течь только в одном направлении. Точно так же диод позволяет току течь в одном направлении только

Диоды состоят из двух полупроводниковых кристаллов, легированных разными атомами, так что на их стыке они создают электрическое поле, которое не позволяет зарядам течь в одном направлении, одновременно ускоряя движущиеся в одном направлении. противоположное направление.Подобные диоды называются диодами p-n , потому что они сделаны из полупроводникового кристалла типа p , соединенного с кристаллом типа n . p и n относятся к знаку (положительному или отрицательному) их носителя заряда.

Диод состоит из полупроводникового кристалла p-типа, соединенного с кристаллом n-типа. Его символ в цепи – стрелка, потому что ток может течь только в ее направлении. Он работает очень похоже на гидравлический клапан (изображение слева взято из Wikimedia Common, сделано Раффамайденом; изображение справа принадлежит мне).

Представьте себе гидравлический клапан в виде трубы со стенкой, на которой есть отверстие, закрытое заглушкой, удерживаемой пружиной. Если вода находится справа от пробки, она просто прижимает ее к стене и не может проникнуть на другую сторону. Если вода находится слева и ее давления достаточно, она толкает пробку вправо, и клапан открывается, позволяя воде течь.

Чтобы сделать транзистор, нам нужно соединить три кристалла. Кристаллы могут быть типа p или n , в зависимости от знака их носителей заряда; Таким образом, транзисторы представляют собой схему кристаллов типа p-n-p или n-p-n.

Транзисторы имеют три вывода, называемых эмиттером , базой и коллектором , каждый из которых подключен к одному из кристаллов, из которых состоит. Давайте сосредоточимся на транзисторе p-n-p (тип n-p-n работает почти так же, но с обратными токами)

Рассмотрим затем нашу простую модель диода как клапана: транзистор представлен последовательностью двух ламп, установленных друг напротив друга. Поместим два клапана в вертикальную трубку и наполним верхнюю часть водой.Верхний клапан закрыт, поэтому вода остается вверху, как показано ниже, слева.

Транзистор похож на пару ламп. Когда оба клапана закрыты, вода остается наверху. Открытие верхнего клапана заставляет воду течь в средней секции. Когда давление, оказываемое на нижний клапан, достаточно, вода протекает через него.

Если нам удалось открыть верхний клапан, вода начнет течь в средней секции и в конечном итоге откроет нижний клапан, когда давление достигнет необходимого значения.Таким образом, для того, чтобы вода потекла, достаточно найти способ подтолкнуть верхний клапан вверх.

Например, в середину можно ввести немного воды, чтобы ее давление было достаточным для открытия верхнего клапана, но недостаточным для открытия нижнего. Таким образом, система позволяет воде течь только тогда, когда достаточное количество воды падает сверху вниз.

По нашему аналогию, верхняя часть этого двойного клапана представляет собой эмиттер транзистора .Пространство посередине – это его основание , а в нижней части клапана – его коллектор .

В базовой схеме усилителя эмиттер подключен к источнику напряжения, например к батарее, а коллектор подключен к земле через резистор. Подавая небольшой ток в базу (обозначенную «B»), наблюдается большой ток, протекающий между эмиттером (обозначенным «E») и коллектором (обозначенным «C»), так что выходное напряжение справа велико. тоже (см. картинку ниже слева).

Сравнение схемы усилителя и унитаза со смывом (собственная работа)

Конечный результат состоит в том, что вы вводите небольшой ток в базу транзистора, и вы видите большой ток, вытекающий из коллектора, как если бы входной ток был умноженный на некоторый коэффициент. Фактически, ток, наблюдаемый на выходе транзистора, является не усиленным входным током, а другим током, пропорциональным входному току, извлекаемым из источника напряжения. Транзистор действует как переключатель, позволяя току течь от источника напряжения к земле через резистор.

Можно провести интересную аналогию между транзисторным усилителем и туалетом (см. Правую часть рисунка выше). Эмиттер – это сливной бачок, а коллектор – унитаз. Представьте, что к рычагу смыва, который представляет собой основание, прикреплено небольшое ведро. Налейте немного воды в ведро – это все равно, что пропустить ток через базу транзистора. Вес воды, налитой в ведро, приводит в действие рычаг, и клапан унитаза открывается, позволяя воде, содержащейся в эмиттере / цистерне (аналог зарядов, содержащихся в источнике напряжения, прикрепленном к эмиттеру транзистора), обильно течь в коллектор / чаша, как будто прибор умножает воду, налитую в ведро, и пускает ее в трубу (аналог резистора).

На самом деле схемы с транзисторами n-p-n встречаются чаще, чем схемы с транзисторами p-n-p. На это есть несколько причин. Основная причина в том, что поляризовать транзистор n-p-n проще. В каждой цепи есть общая земля, к которой относятся напряжения. В конфигурации, подобной той, что мы показали, то, что определяет входной ток, – это падение напряжения между источником напряжения и напряжением базы. Если бы мы использовали транзистор n-p-n, входной ток зависел бы от напряжения между базой и землей, и это намного удобнее.Есть и другие причины, связанные с их скоростью и стоимостью.

Транзистор типа n-p-n работает, по существу, как транзистор p-n-p, с обратными ролями коллектора и эмиттера. Мы решили проиллюстрировать работу p-n-p транзистора, потому что названия его выводов казались более подходящими для понимания их значения.

Транзисторы также могут использоваться как электронные переключатели. Для этого приложения часто используются транзисторы n-p-n, как показано ниже.

Транзистор n-p-n в качестве переключателя (собственная работа).

Усиление транзистора можно регулировать в соответствии с его характеристиками. В частности, говорят, что транзистор находится в области отсечки , когда ток, протекающий к его базе, равен нулю, в то время как говорят, что он находится в области насыщения , когда в его базу протекает достаточно большой ток, так что выходной ток больше не пропорционален последнему, но достигает максимального значения.

Когда транзистор находится в области отсечки (ток базы равен нулю), ток не течет от коллектора к эмиттеру.Транзистор работает как открытый переключатель. Как следствие, выходное напряжение источника равно напряжению Vcc .

Подавая достаточный ток в базу, ток течет от Vcc к земле, а выходное напряжение такое же, как у земли, то есть транзистор работает как замкнутый переключатель.

Резистор между Vcc и коллектором транзистора может быть заменен любой нагрузкой. В частности, это может быть любой исполнительный механизм, например, двигатель, светодиод, громкоговоритель и т. Д.Такое решение полезно, когда мощность, необходимая для привода исполнительного механизма, не может быть обеспечена схемой управления.

Например, представьте, что вы хотите управлять двигателем постоянного тока, используя один из цифровых выходов платы Arduino. При установке цифрового вывода на ВЫСОКИЙ уровень на нем появляется 5 В. Вы не можете использовать эти 5 В для питания двигателя, потому что Arduino не может обеспечить достаточный ток через свои цифровые контакты. Однако вы можете подключить к нему базу npn-транзистора так, чтобы, когда вывод находится в НИЗКОМ состоянии, транзистор действует как открытый переключатель, в то время как он ведет себя как закрытый переключатель, когда вывод Arduino находится в ВЫСОКОМ состоянии. государственный.Используя батарею 9 В в качестве Vcc , через двигатель протекает достаточно высокий ток, когда транзистор работает как замкнутый переключатель, то есть когда он находится в области насыщения.

Как работает транзистор? Руководство для начинающих

Транзисторы – одни из самых популярных электронных компонентов, которые могут выполнять две разные работы. Он может работать как усилитель или переключатель. В электронике используется очень много типов транзисторов в зависимости от их характеристик и применения. В электронике используются такие транзисторы, как BJT (Bipolar Junction Transistor), , FET (полевой транзистор) . Переходный транзистор может быть двух типов: PNP-транзистор и NPN-транзистор , и есть два типа полевого транзистора – переходный полевой транзистор (JFET) и полевой транзистор (MOSFET) . В этом руководстве мы узнаем, как работает биполярный транзистор (BJT).


С помощью транзистора можно контролировать большую подачу электроэнергии с помощью небольшого количества электроэнергии. Это очень похоже на управление подачей воды путем поворота клапана.

Транзистор имеет три ножки –

1. База
2. Эмиттер
3. Коллектор


В транзисторе база используется как затвор для управления большей подачей электроэнергии. Коллектор используется в качестве источника питания большего размера, а эмиттер работает как выход для этого источника питания.

Применяя различные уровни электрического тока от базы, можно регулировать количество тока, протекающего через затвор от коллектора.Таким образом, очень небольшое количество тока может использоваться для управления большим током, как в усилителе.


Как работает транзистор NPN?


В основном транзисторы изготавливаются из полупроводниковых материалов. В зависимости от этих материалов существует два типа биополярных переходных транзисторов – NPN-транзистор и PNP-транзистор

.

Транзистор NPN имеет три ножки – базу, эмиттер и коллектор. В NPN-транзисторе области коллектора и эмиттера состоят из материала N-типа, который в основном состоит из электронов.Базовая часть состоит из материала P-типа, который в основном состоит из отверстий.

В транзисторе NPN ток течет от коллектора к эмиттеру. для этого типа обтекания необходимо соблюдать такое смещение –


Если вы понимаете закон заряда, вы легко поймете, как работает транзистор. это очень простая концепция. Это концепция, при которой одни и те же заряды отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу.

Это означает, что два положительных заряда будут отталкивать друг друга, а два отрицательных заряда будут отталкиваться друг от друга, а противоположные заряды будут притягиваться друг к другу.Это все, что вам нужно знать, чтобы разбираться в транзисторах.

Как мы знаем ранее, в NPN-транзисторе области эмиттера, состоящие из материала N-типа, где основными носителями являются электроны с отрицательными зарядами.

Теперь мы хотим пропустить ток от коллектора к области эмиттера. Итак, мы прикладываем положительное напряжение к области эмиттера. В результате электроны на выводе коллектора отталкиваются этим напряжением, и ток течет к эмиттеру.



Теперь мы прикладываем напряжение к базовой области, которая состоит из материала P-типа.Это наиболее важная область для управления включением / выключением транзистора.

Если ток не проходит в базовую область транзистора, он оказывает сильное сопротивление протеканию тока. Таким образом, ток не течет от коллектора к эмиттеру.

Вот почему материал P, составляющий основную область, состоящую из отверстий, обеспечивает прочный барьер, разделяющий области коллектора и эмиттера.

Однако, когда ток течет в базу, электроны начинают течь в материал P и истощают количество дырок в области базы.

Барьер базовой области истощается, становясь меньше, пока не наберется достаточно электронов, чтобы полностью разрушить барьер. Когда это происходит, ток может легко течь от коллектора к эмиттеру.


Теперь подключите транзистор, как указано выше. После подключения схемы, если вы приложите достаточный ток к базе, вы увидите, что транзистор включается. А если убрать этот ток с базы, он отключится.

Как работает транзистор PNP?


PNP-транзистор также имеет три ножки – База, Эмиттер и Коллектор.Области коллектора и эмиттера состоят из материала P-типа, который в основном состоит из отверстий. Базовая область состоит из материала N-типа, который в основном состоит из электронов.

В транзисторе PNP ток течет от эмиттера к коллектору. для этого типа обтекания необходимо соблюдать смещение –


Как мы знаем ранее, в транзисторе PNP области эмиттера, состоящие из материала P-типа, где основными носителями являются дырки, которые являются положительными зарядами.Теперь мы хотим пропустить ток от эмиттера к области коллектора. Итак, мы прикладываем положительное напряжение к области эмиттера. В результате отверстия в выводе эмиттера отталкиваются этим напряжением, и ток течет к коллектору.

Теперь мы прикладываем напряжение к базовой области, которая состоит из материала N-типа. Это наиболее важная область для управления включением / выключением транзистора. Если в базовую область транзистора не поступает ток, он не оказывает сопротивления протеканию тока.Таким образом, ток может легко течь от эмиттера к коллектору.





Вот почему материал N, составляющий основную область, состоит из электронов. Теперь, если мы дадим больше электронов, приложив ток, тогда толщина базовой области увеличится, и это заблокирует поток тока от эмиттера к коллектору.

Вот почему, когда мы подаем ток на базу PNP-транзистора, он блокирует прохождение тока от эмиттера к коллектору.А когда ток не течет от базы, ток может легко течь от эмиттера к коллектору.

Теперь подключите транзистор, как указано выше. После подключения схемы, если вы подадите достаточный ток на базу, то увидите, что транзистор отключился. И если вы уберете этот ток с базы, он станет включенным.

Что такое транзистор?

Транзисторы – это устройства, управляющие движением электронов и, следовательно, электричества.Они работают как водопроводный кран – они не только запускают и останавливают течение тока, но также контролируют его величину. С помощью электричества транзисторы могут как переключать, так и усиливать электронные сигналы, позволяя с точностью управлять током, проходящим через печатную плату.

Транзисторы, изготовленные в Bell Labs, изначально были изготовлены из германия. Ученые знали, что чистый германий – хороший изолятор. Но добавление примесей (процесс, называемый легированием ) превратило германий в слабый проводник или полупроводник .Полупроводники – это материалы, которые обладают промежуточными свойствами между изоляторами и проводниками, обеспечивая электрическую проводимость в различной степени.

Момент изобретения транзисторов был выбран не случайно. Для правильной работы транзисторам требуются чистые полупроводниковые материалы. Так уж получилось, что сразу после Второй мировой войны улучшения в очистке германия, а также достижения в области легирования сделали германий пригодным для применения в полупроводниках.

В зависимости от элемента, используемого для легирования, полученный слой германия был либо отрицательного типа (N-тип), либо положительного типа (P-тип).В слое N-типа легирующий элемент добавлял электроны к германию, облегчая выброс электронов. Напротив, в слое P-типа определенные легирующие элементы заставляли германий терять электроны, таким образом, электроны из соседних материалов текли к нему.

Поместите N-тип и P-тип рядом друг с другом, и вы получите P-N диод . Этот диод пропускает электрический ток, но только в одном направлении, что является полезным свойством при построении электронных схем.

Следующим шагом были полноценные транзисторы. Для создания транзисторов инженеры наложили легированный германий на два слоя, расположенные вплотную друг к другу, в конфигурации P-N-P или N-P-N. Точка контакта была названа переходом, отсюда и название переходного транзистора .

При подаче электрического тока на центральный слой (называемый базой) электроны будут перемещаться со стороны N-типа на сторону P-типа. Первоначальная небольшая струйка действует как переключатель, позволяющий протекать гораздо большему току.В электрической цепи это означает, что транзисторы действуют как переключатель и как усилитель.

В наши дни вместо германия в коммерческой электронике используются полупроводники на основе кремния, которые более надежны и доступны по цене, чем транзисторы на основе германия. Но как только технология стала популярной, германиевые транзисторы широко использовались более 20 лет.

как работает транзистор, альтернативная точка зрения

Потоки заряда, управляемые напряжением

Прежде всего, вы должны отказаться от идеи, что ток проходит в транзисторы или потоки внутри проводов.Да, вы поняли меня правильно. Ток не течет. Электрический ток никогда не течет , так как электрический ток – это не материал. Электрический ток – это поток чего-то другого. (Спросите себя: что такое вещество, которое течет в реке, называется ли оно «течением»? Либо это называется “вода?”)

Поскольку ток – это поток заряда, следует избегать распространенного выражения «поток тока», поскольку буквально оно означает « поток из потока заряда». – СОВРЕМЕННАЯ ФИЗИКА КОЛЛЕДЖА, Richards, Sears, Wehr, Zemansky (найти похожие в книге Сервея COLLEGE ФИЗИКА)
Так что же на самом деле течет внутри проводов?

То, что движется по проводам, НЕ называется электрическим током.Вместо он называется Electric Charge . Это заряд, который течет, а не ток. Движение зарядов может исчезнуть, а движение появиться. Но Само движение не течет, текут заряды. И в реки (или в водопроводе) течет вода, а не «течение». Аналогия: мы не сможем понять сантехнику, пока не перестанем предполагать, что трубы пусты … при этом веря в волшебство, называемое “Текущий.”

Мы должны узнать, что трубы уже заполнены; эта «вода» течет внутри них.То же самое и со схемами. Провода не залиты «потоком Текущий “, вместо этого они предварительно заполнены. Платежи, которые могут двигаться. Электрический заряд – это настоящая штука; его переносят физические частицы, и он может двигаться с реальной скоростью и в реальном направлении. Обвинять ведет себя как «вещество», как газ или жидкость. Но электрический ток отличается от заряда: заряд – это как материал, но ток – это не вещи. (Если ток подобен ветру, то заряд подобен азоту!) Если мы экспериментируйте с концепциями; если мы решим игнорировать “текущий”, и вместо этого мы пойдите и внимательно изучите поведение движущихся зарядов в большом детали, мы можем сжечь облака тумана, которые блокируют наше понимание электроника.

Секунда: заряды внутри проводников не проталкиваются сами собой вместе, но вместо этого их подталкивает «разность потенциалов»; они проталкивается полями напряжения в проводящем материале. Сборы не выскакивал из блока питания, как будто блок питания какой-то резервуара для воды. Если представить, что заряды уходят через минус клемма источника питания; и если вы думаете, что обвинения то распределить по полым трубам контура, то вы сделали фундаментальная ошибка.Если вы считаете, что сборы предусмотрены блок питания, значит, вы совершили фундаментальную ошибку. Провода не действуют вроде «пустых электронных трубок». Блок питания не дает никаких электроны. Блоки питания обязательно создают токов, либо они вызывает токов, но помните, мы убираем слово «ток». Чтобы создать поток зарядов, блок питания не вводит никаких заряжает провода. Источник питания – только помпа. Насос может подавать давление накачки.Насосы никогда не подают перекачиваемую воду.

Третий: открыли ли вы большой «секрет» визуализации электрических схемы?

ВСЕ ПРОВОДНИКИ УЖЕ ЗАРЯДЫ
Провода и силикон … оба ведут себя как предварительно заполненные водопроводные трубы или резервуары для воды. В «вода» – это огромное количество подвижных заряженных частиц дирижер. Электрические схемы построены по «полнотрубной аналогии». Этот простая идея обычно скрывается фразами «поток тока» или “Источники питания посылают ток.”Мы думаем, что провода похожи на полые трубы. В итоге мы визуализируем загадочную субстанцию ​​под названием Current. которая протекает через них. Неа. (Как только мы избавимся от слова «текущий», мы можем открыть для себя довольно ошеломляющую информацию о простых схемах, а?)
Если контуры подобны водопроводу, , то ни одна из «труб» контура всегда пусты. Эта идея чрезвычайно важна, и без нее мы не может понять полупроводники … или даже проводники! Металлы содержат огромное количество подвижных электронов, образующих своего рода «электрическую жидкость» внутри металла.Простой кусок меди похож на резервуар для воды! Физики называют эту жидкость «электронным морем металлов» или океан заряда ». Полупроводники всегда полны этой подвижной “зарядка”. Подвижный заряд присутствует, даже когда транзистор сидит на полке и отключен от всего. Когда напряжение нанесенный на кусок кремния, эти заряды уже в материал приводится в движение. Также обратите внимание, что заряд внутри проводов … незаряжен. Рядом с каждым подвижным электроном находится положительный протон, поэтому хотя металл содержит огромное море заряда, нет никакой сети заряд в среднем.Провода содержат «незаряженный» заряд. Лучше назови это “отмена платежа”. Но даже несмотря на то, что электроны нейтрализуются рядом с протонами электроны все еще могут течь между протонами. Отменено заряд все еще может перемещаться, поэтому возможны потоки заряда в незаряженный металл.

Хорошо, так как «трубы» уже заполнены «жидкостью», то для того, чтобы понимать схему, мы НЕ должны отслеживать путь, начиная с клеммы источника питания. Вместо этого мы можем начать с любого компонента на схема.Если напряжение приложено к этому компоненту, то заряды внутри этого компонента начнут течь. Доработаем старую “объяснение с помощью фонарика”, которому всех нас учили в начальной школе. Вот исправленная версия:

ТОЧНОЕ ОБЪЯСНЕНИЕ ФОНАРЯ:
Провода полны огромных количества подвижного электрического заряда (все проводники есть!) Если подключить несколько проводов в сплошное кольцо, вы формируете “электрическую цепь”, которая содержит подвижную конвейерную ленту из зарядов внутри металлического круга.Далее мы разрезаем это кольцо в паре мест и вставляем батарею и лампочку в разрезы. Аккумулятор действует как зарядный насос, в то время как лампочка предлагает трение. Аккумулятор проталкивает длинный ряд проводов заряжается вперед, потом все заряды текут, затем загорается лампочка. Давайте следовать за ними.

Заряды начинаются внутри нити накаливания лампочки. (Нет, не внутри аккумулятор. Начинаем с лампочки .) Заряды вынуждены течь вдоль нити.Потом они вытекают в первую проволоку и двигайтесь к первому выводу аккумулятора. (В то же время более заряды попадают в нить через другой ее конец.) Аккумулятор нагнетает заряжается через себя и снова отступает. Обвинения уходят вторые клемму АКБ, потом по второму проводу стекают к лампочке. Они намотать обратно внутрь нити накаливания лампочки. В то же время заряды в других частях цепи делают то же самое. Это как сплошной ремень , изготовленный из зарядов.Батарея действует как привод колесо, которое перемещает ремень. Провода ведут себя так, как будто они скрывают конвейерная лента внутри. Лампочка действует как «трение»; становится жарко когда его собственные естественные заряды вынуждены течь. Скорость батареи вверх по всему ремню, а трение лампочки замедляет его опять таки. А так ремень работает постоянно, а лампочка нагревается.



Правда освободит вас … но сначала это разозлит тебя! -анон

Краткий обзор:

1.МАТЕРИАЛ, ПРОТЕКАЮЩИЙ ЧЕРЕЗ ПРОВОДНИКИ НАЗЫВАЕТСЯ ОПЛАТА. («ТОК» НЕ ПРОХОДИТ.)

2. ЗАРЯД ВНУТРИ ПРОВОДНИКИ УМЫВАЮТСЯ ПОЛЯ НАПРЯЖЕНИЯ.

3. ВСЕ ПРОВОДА «ПРЕДВАРИТЕЛЬНО ЗАПОЛНЕННЫЙ» ОБЪЕМ ПОДВИЖНОГО ЗАРЯДА

4. АККУМУЛЯТОРЫ И ИСТОЧНИКИ ПИТАНИЯ ЯВЛЯЮТСЯ ЗАРЯДНЫМИ НАСОСАМИ.

5. ЛАМПОЧКИ И РЕЗИСТОРЫ ОБА АКТ «ФРИКЦИОННО».

И последнее: разница между проводником и изолятором в том, что просто: проводники похожи на предварительно залитые водопроводные трубы, а изоляторы – на как трубы, задушенные льдом.Оба содержат «электрический материал»; проводники и изоляторы заполнены электрически заряженными частицами. Но «вещество» внутри изолятора не может двигаться. Когда мы применяем перепад давления по водопроводу, течет вода. Но с труба пустая, там ничего нет, поэтому течения не происходит. И с трубка в замороженном состоянии, материал застрял и не сдвинется с места. (Другими словами, напряжение вызывает поток заряда в проводниках, но не может вызвать поток заряда в изоляторах, потому что заряды либо отсутствуют, либо неподвижны.) Многие вводные учебники ошибаются в своих определениях. Они определяют проводника как нечто, через которое могут течь заряды, а изоляторы якобы блочные сборы. Неа. Воздух и вакуум не блокируют заряды, но воздух и вакуум – хорошие изоляторы! На самом деле дирижер – это то, что содержит подвижные заряды, а в изоляторе их нет. (Если в книге неверна эта основополагающая идея, то большая часть ее последующих объяснения подобны зданиям, построенным на куче мусора, и они имеют тенденцию свернуть.)

Еще одно напоминание перед тем, как погрузиться в транзисторы. Кремний очень отличается от металла. Металлы полны подвижных зарядов … но также легированный кремний. Насколько они разные? Конечно, дело в “запрещенная зона” и разница между электронами и дырками, но это не главное. Важное отличие довольно простое: металлы имеют огромное количество подвижного заряда, но кремний гораздо меньше. За Например, в меди каждый атом меди отдает один подвижный электрон в «море заряда».«Электрический флюид» меди очень плотный, это такой же плотный, как и медь. Но в легированном кремнии только по одному на каждый миллиард атомов отдает подвижный заряд. Кремний похож на большое пустое пространство со случайным блуждающим зарядом. В кремнии можно подмести все заряжается из материала, используя потенциал в несколько вольт, в то время как металл потребуются миллиарды вольт, чтобы сделать то же самое. Или в другие слова:

6. ЗАРЯД ВНУТРИ ПОЛУПРОВОДНИКОВ КАК ЗАРЯД СЖИМАЕМЫЙ ГАЗ, А ЗАРЯД ВНУТРИ МЕТАЛЛА КАК ПЛОТНЫЙ И Несжимаемая жидкость.
Сметание зарядов в материале – то же самое, что преобразование этого материала. материал от проводника до изолятора. Если силикон похож на резину шланг, значит, это шланг, содержащий сжимаемый газ. Мы можем легко закройте его и остановите поток. Но если медь тоже похожа на резину шланг, то вместо этого, это как шланг, полный железных слизней. Вы можете сжать и давить, но не разбить их с дороги. Но с воздушными шлангами а с кремниевыми проводниками даже небольшое боковое давление может защемить путь закройте и остановите поток.

Хорошо, давайте посмотрим, как обычно объясняют транзисторы.

Чтобы включить NPN-транзистор, на базу подается напряжение и эмиттерные клеммы. Это приводит к тому, что электроны в основном проводе удаляются. от самого транзистора и вытекают в сторону блока питания. Это в Turn выдергивает электроны из базовой области P-типа, оставляя “ дырки ” позади, и «дыры» действуют как положительные заряды, которые проталкиваются в противоположном направлении от направления электронного тока.Что КАЖЕТСЯ бывает так, что базовый провод вводит положительные заряды в основание область, край. Изрыгает дыры. Он вводит заряд.

(Обратите внимание, что здесь я описываю поток заряда , а не положительный заряд. «условный ток»)

Как работают биполярные переходные транзисторы.

  • Изучив этот раздел, вы должны уметь:
  • • Опишите основные операции кремниевого планарного транзистора.
  • • Понять работу переходов база / эмиттер и база / коллектор.
  • • Опишите влияние легирования на материалы транзисторов.

Рис. 3.3.1 Как легируется транзистор BJP.

Все дело в допинге

Принцип работы транзистора можно описать со ссылкой на рис. 3.3.1, на котором показаны основные элементы легирования переходного транзистора, и на рис.3.3.2, показывающий, как работает BJT.

Работа транзистора очень зависит от степени легирования различных частей полупроводникового кристалла. Эмиттер N-типа очень сильно легирован, чтобы обеспечить много свободных электронов в качестве основных носителей заряда. Слаболегированная базовая область P-типа чрезвычайно тонкая, а коллектор N-типа очень сильно легирован, чтобы придать ему низкое удельное сопротивление, за исключением слоя менее сильно легированного материала рядом с базовой областью.Это изменение удельного сопротивления коллектора гарантирует, что в материале коллектора рядом с основанием присутствует большой потенциал. Важность этого станет очевидной из следующего описания.

Рис. 3.3.2. Как транзистор усиливает ток.

Во время нормальной работы на переход база / эмиттер прикладывается потенциал, так что база примерно на 0,6 В положительнее, чем эмиттер, это делает переход база / эмиттер смещенным вперед.

К переходу база / коллектор прикладывается гораздо более высокий потенциал с относительно высоким положительным напряжением, приложенным к коллектору, так что переход база / коллектор сильно смещен в обратном направлении. Это делает слой истощения между базой и коллектором довольно широким после подачи питания.

Как упоминалось выше, коллектор состоит в основном из сильно легированного материала с низким удельным сопротивлением и тонкого слоя слаболегированного материала с высоким удельным сопротивлением рядом с переходом база / коллектор.Это означает, что большая часть напряжения между коллектором и базой вырабатывается через этот тонкий слой с высоким удельным сопротивлением, создавая высокий градиент напряжения рядом с переходом коллектор-база.

Когда переход база-эмиттер смещен в прямом направлении, в базу будет течь небольшой ток. Поэтому в материале P-типа вводятся отверстия. Эти дырки притягивают электроны через смещенный вперед переход база / эмиттер для объединения с дырками. Однако, поскольку эмиттерная область очень сильно легирована, в базовую область P-типа пересекает гораздо больше электронов, чем может объединиться с доступными дырками.Это означает, что в области базы имеется большая концентрация электронов, и большая часть этих электронов проходит прямо через очень тонкую базу и попадает в обедненный слой база / коллектор. Оказавшись здесь, они попадают под влияние сильного электрического поля на переходе база / коллектор. Это поле настолько сильное из-за большого градиента потенциала в материале коллектора, упомянутого ранее, что электроны перемещаются через обедненный слой в материал коллектора и, таким образом, в сторону вывода коллектора.

Изменение тока, протекающего в базе, влияет на количество электронов, притягиваемых эмиттером. Таким образом, очень небольшие изменения тока базы вызывают очень большие изменения тока, протекающего от эмиттера к коллектору, поэтому происходит усиление тока.

Посмотрите наше видео о том, как делаются биполярные транзисторы и как они работают.

Начало страницы

Что это такое и как они работают?

Транзистор – это электронный компонент, используемый в схеме для управления большим током или напряжением с помощью небольшого количества напряжения или тока.Это означает, что его можно использовать для усиления или переключения (выпрямления) электрических сигналов или мощности, что позволяет использовать его в широком спектре электронных устройств.

Это достигается за счет размещения одного полупроводника между двумя другими полупроводниками. Поскольку ток передается через материал, который обычно имеет высокое сопротивление (например, резистор , ), это «резистор передачи» или транзистор .

Первый практический точечный транзистор был построен в 1948 году Уильямом Брэдфордом Шокли, Джоном Бардином и Уолтером Хаусом Браттейном.Патенты на концепцию транзисторов датируются 1928 годом в Германии, хотя они, похоже, никогда не были построены, или, по крайней мере, никто никогда не заявлял, что их построил. За эту работу трое физиков получили Нобелевскую премию по физике 1956 года.

Структура базового точечного транзистора

По сути, существует два основных типа транзисторов с точечным контактом: транзистор npn и транзистор pnp , где n и p обозначают отрицательный и положительный соответственно.Единственная разница между ними – расположение напряжений смещения.

Чтобы понять, как работает транзистор, вы должны понять, как полупроводники реагируют на электрический потенциал. Некоторые полупроводники будут типа n или отрицательными, что означает, что свободные электроны в материале дрейфуют от отрицательного электрода (например, батареи, к которой он подключен) к положительному. Другие полупроводники будут типа p , и в этом случае электроны заполняют «дыры» в электронных оболочках атомов, что означает, что он ведет себя так, как если бы положительная частица перемещалась от положительного электрода к отрицательному.Тип определяется атомной структурой конкретного полупроводникового материала.

Теперь рассмотрим транзистор npn . Каждый конец транзистора представляет собой полупроводниковый материал типа n , а между ними – полупроводниковый материал типа p . Если вы представите себе такое устройство, подключенное к батарее, вы увидите, как работает транзистор:

  • Область типа n , прикрепленная к отрицательному концу батареи, помогает продвигать электроны в среднюю область типа p .
  • Область типа n , прикрепленная к положительному концу батареи, помогает замедлить выход электронов из области типа p .
  • область типа p в центре делает и то, и другое.

Таким образом, изменяя потенциал в каждой области, вы можете резко повлиять на скорость потока электронов через транзистор.

Преимущества транзисторов

По сравнению с электронными лампами, которые использовались ранее, транзистор был потрясающим достижением.Меньший по размеру транзистор можно было легко изготавливать дешево в больших количествах. У них также были различные эксплуатационные преимущества, которых слишком много, чтобы упоминать их здесь.

Некоторые считают транзистор величайшим изобретением 20-го века, поскольку он так много открыл путь другим электронным достижениям. Практически каждое современное электронное устройство имеет транзистор в качестве одного из основных активных компонентов. Поскольку они являются строительными блоками микрочипов, компьютеры, телефоны и другие устройства не могут существовать без транзисторов.

Другие типы транзисторов

Существует большое количество типов транзисторов, которые были разработаны с 1948 года. Вот список (не обязательно исчерпывающий) различных типов транзисторов:

  • Биполярный переходной транзистор (BJT)
  • Полевой транзистор (FET)
  • Гетеропереходный биполярный транзистор
  • Однопереходный транзистор
  • Двухзатворный полевой транзистор
  • Лавинный транзистор
  • Тонкопленочный транзистор
  • Транзистор Дарлингтона
  • Баллистический транзистор
  • FinFET
  • Транзистор с плавающим затвором
  • Транзистор с инвертированным Т-эффектом
  • Спиновый транзистор
  • Фототранзистор
  • Биполярный транзистор с изолированным затвором
  • Одноэлектронный транзистор
  • Нанофлюидный транзистор
  • Тригатный транзистор (прототип Intel)
  • Ионный -чувствительный полевой транзистор
  • Быстро обратный эпитаксальный диодный полевой транзистор (FREDFET)
  • Электролит-оксидно-полупроводниковый полевой транзистор (EOSFET)

Под редакцией Энн Мари Хелменстайн, Ph.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *