Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Последовательное и параллельное соединение резисторов


Последовательное соединение резисторов

Последовательное соединение резисторов применяется для увеличения сопротивления. Т.е. когда резисторы соединены последовательно, общее сопротивление равняется сумме сопротивлений каждого резистора. Например, если резисторы R1 и R2 соединены последовательно, их общее сопротивление высчитывается по формуле:
R = R1 + R2.
Это справедливо и для большего количества соединённых последовательно резисторов:
R = R1 + R2 + R3 + R4 + … + Rn.

 

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Параллельное соединение резисторов (формула)

Параллельное соединение резисторов необходимо для уменьшения общего сопротивления и, как вариант, для увеличения мощности нескольких резисторов по сравнению с одним.

Расчет параллельного сопротивления

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

 

Сопротивление из
двух резисторов:  
R =  R1 × R2
 R1 + R2

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

Сопротивление параллельных резисторов

 1 
  =  
 1  +  1  +  1  + . ..
R R1 R2 R3

Как видно, вычислить сопротивление двух параллельных резисторов значительно удобнее.

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.
Например: десять резисторов номиналом 1 КОм и мощностью 1 Вт каждый, соединённые параллельно будут иметь общее сопротивление 100 Ом и мощность 10 Вт.
При последовательном соединении мощность резисторов также складывается. Т.е. в том же примере, но при последовательном соединении, общее сопротивление будет равно 10 КОм и мощность 10 Вт.

Соединение резисторов. Типы соединений и формулы расчёта общего сопротивления резисторов.

Как правильно соединять резисторы?

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов.

В жизни последовательное соединение резисторов имеет вид:


Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Общее номинальное сопротивление составного резистора обозначено как Rобщ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2

, R3,…RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Что это значит?

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов.

Можно соединять резисторы и параллельно:


Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Здесь

R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до “наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.


Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.


Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее

0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как можно увеличить сопротивление

Прочитав эту статью вы узнаете, как можно применить Закон Ома для того, чтобы повысить силу тока. Понятие сопротивления. Какие материалы являются проводниками, а какие диэлектриками.

Сопротивление проводников. Удельное сопротивление

Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению ( I = U / R ), где R является коэффициентом, которое связывает напряжение и силу тока. Единица измерения напряжения – Вольт, сопротивления – Ом, силы тока – Ампер.

Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же – нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки – амперметр. При замыкании ключа ток идет через нагрузку. Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома ( I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра – напряжение на зажимах нагрузки. Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.

Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.

Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление – вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза.
Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:
Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R. Главное запомнить, что напряжение находится в вершине треугольника.

В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.
При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p – это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения. Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника. Чтобы увеличить сопротивление необходимо увеличить длину проводника, либо уменьшить его диаметр, либо выбрать материал с большим значением данного параметра. В частности, для меди удельное сопротивление составляет 0,017 ( Ом * мм2 / м ).

Проводники

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди. Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике. Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий.
Следующий материал – это железо. Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется. Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Олово и свинец обычно применяются в сплаве в качестве припоя. Как проводники, для изготовления каких-либо приборов, не применяются.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.

Нихром применяется в нагревательных приборах, так как обладает высоким удельным сопротивлением при большом сечении. Понадобится малое количество его длины, чтобы сделать нагревательный элемент.

Уголь, графит применяются в электрических щетках в электродвигателях.


Проводники применяются с целью пропускать через себя силу тока. При этом ток совершает полезную работу.

Диэлектрики

Диэлектрики имеют большое значение удельного сопротивления, которое в сравнении с проводниками намного выше.

Фарфор применяют, как правило, при изготовлении изоляторов. Для производства изоляторов также используют стекло.

Эбонит чаще всего применяется в трансформаторах. Из него изготовляют каркас катушек, на которые наматывается провод.

Также в качестве диэлектриков часто используют разные виды пластмасс. К диэлектрикам относится материал, из которого произведена изоляционная лента.

Материал, из которого изготовлена изоляция в проводах, также является диэлектриком.

Основное назначение диэлектрика – это защита людей от поражения электротоком, изолировать между собой токопроводящие жилы.

Как правильно соединять резисторы?

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов.

В жизни последовательное соединение резисторов имеет вид:


Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Общее номинальное сопротивление составного резистора обозначено как Rобщ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов.

Можно соединять резисторы и параллельно:


Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до “наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.


Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.


Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Резистор – это элемент электрической схемы, который обладает сопротивлением электрическому току. Классифицируют два типа резисторов: постоянные и переменные (подстроечные). При моделировании той или иной электрической схемы, а также при ремонте электронных изделий, возникает необходимость использовать резистор определенного номинала. Хотя и существует множество различных номиналов постоянных резисторов, в данный момент под рукой может не оказаться требуемого, либо резистора с таким номиналом не существует. Чтобы выйти из такой ситуации, можно использовать как последовательное так и параллельное соединение резисторов. О том, как правильно произвести расчет и подбор различных номиналов сопротивлений, будет рассказано в этой статье.

Последовательное соединение резисторов – это самая элементарная схема сборки радиодеталей, оно применяется для увеличения общего сопротивления цепи. При последовательном соединении, сопротивление используемых резисторов просто складывается, а вот при параллельном соединении необходимо производить расчет по нижеописанным формулам. Параллельное соединение необходимо для снижения результирующего сопротивления, а также для увеличения мощности, несколько параллельно подключенных резисторов имеют большую мощность, чем у одного.

На фотографии можно увидеть параллельное подключение резисторов.

Общее номинальное сопротивление необходимо рассчитывать по следующей схеме:

— R(общ) – общее сопротивление;

— R1, R2, R3 и Rn – параллельно подключенные резисторы.

Когда параллельное соединение резисторов состоит всего из двух элементов, в таком случае общее номинальное сопротивление можно высчитать по следующей формуле:

— R(общ) – общее сопротивление;

— R1, R2 – параллельно подключенные резисторы.

В радиотехнике существует следующее правило: если параллельное подключение резисторов состоит из элементов одного номинала, то результирующее сопротивление можно высчитать, разделив номинал резистора на количество соединенных резисторов:

— R(общ) – общее сопротивление;

— R – номинал параллельно подключенного резистора;

— n – количество соединенных элементов.

Важно учитывать, что при параллельном соединении результирующее сопротивление всегда будет ниже, чем сопротивление самого малого по номиналу резистора.

Приведем практический пример: возьмем три резистора, со следующими значениями номинального сопротивления: 100 Ом, 150 Ом и 30 Ом. Проведем расчет общего сопротивления, по первой формуле:

После расчета формулы мы видим, что параллельное соединение резисторов, состоящее из трех элементов, с наименьшим номиналом 30 Ом, в результате дает общее сопротивление в электрической цепи 21,28 Ом, что ниже наименьшего номинального сопротивления в цепи почти на 30 процентов.

Параллельное соединение резисторов чаще всего используют в тех случаях, когда необходимо получить сопротивление с большей мощностью. В таком случае необходимо взять резисторы одинаковой мощности и с одинаковым сопротивлением. Результирующая мощность в таком случае рассчитывается путем умножения мощности одного элемента сопротивления на общее количество параллельно подключенных резисторов в цепи.

Например: пять резисторов с номиналом в 100 Ом и с мощностью 1 Вт в каждом, подключенные параллельно, имеют общее сопротивление 20 Ом и мощность 5 Вт.

При последовательном подключении тех же резисторов (мощность так же складывается), получим результирующую мощность 5 Вт, общее сопротивление составит 500 Ом.

Соединение резисторов – Основы электроники

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике.
Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов.
Соединение резисторов может производиться последовательно, параллельно и смешанно (то есть и последовательно и параллельно), что показано на рисунке 1.

Рисунок 1. Соединение резисторов.

Последовательное соединение резисторов

Последовательное соединение резисторов это такое соединение, в котором конец одного резистора соединен с началом второго резистора, конец второго резистора с началом третьего и так далее (рисунок 2).

Рисунок 2. Последовательное соединение резисторов.

То есть при последовательном соединении резисторы подключатся друг за другом. При таком соединении через резисторы будет протекать один общий ток.
Следовательно, для последовательного соединения резисторов будет справедливо сказать, что между точками А и Б есть только один единственный путь протекания тока.
Таким образом, чем больше число последовательно соединенных резисторов, тем большее сопротивление они оказывают протеканию тока, то есть общее сопротивление Rобщ возрастает.
Рассчитывается общее сопротивление последовательно соединенных резисторов по следующей формуле:

Rобщ = R1 + R2 + R3+…+ Rn.

Параллельное соединение резисторов

Параллельное соединение резисторов это соединение, в котором начала всех резисторов соединены в одну общую точку (А), а концы в другую общую точку (Б) (см. рисунок 3).

Рисунок 3. Параллельное соединение резисторов.

При этом по каждому резистору течет свой ток. При параллельном соединении при протекании тока из точки А в точку Б, он имеет несколько путей.
Таким образом, увеличение числа параллельно соединенных резисторов ведет к увеличению путей протекания тока, то есть к уменьшению противодействия протеканию тока. А это значит, чем большее количество резисторов соединить параллельно, тем меньше станет значение общего сопротивления такого участка цепи (сопротивления между точкой А и Б.)
Общее сопротивление параллельно соединенных резисторов определяется следующим отношением:

1/Rобщ= 1/R1+1/R2+1/R3+…+1/Rn

Следует отметить, что здесь действует правило «меньше – меньшего». Это означает, что общее сопротивление всегда будет меньше сопротивления любого параллельно включенного резистора.
Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле:

Rобщ= R1*R2/R1+R2

Если имеет место два параллельно соединенных резистора с одинаковыми сопротивлениями, то их общее сопротивление будет равно половине сопротивления одного из них.

Смешанное соединение резисторов

Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением.
На рисунке 4 показан простейший пример смешанного соединения резисторов.

Рисунок 4. Смешанное соединение резисторов.

На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно.
Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:
1. Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.
2. Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.
3. После расчета эквивалентных сопротивлений резисторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.
4. Рассчитывают сопротивления полученной схемы.

Пример расчета участка цепи со смешанным соединением резисторов приведен на рисунке 5.

Рисунок 5. Расчет сопротивления участка цепи при смешанном соединении резисторов.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Мощность при параллельном и последовательном соединении резисторов

Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением. Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при параллельном и последовательном соединении резисторов будет различной. Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.

Свойства и технические характеристики резисторов

Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.

Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется параллельное соединение резисторов, а для делителей напряжения – последовательное.

На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.

Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.

Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.

Для соединения резисторов в схемах используются три разных способа подключения – параллельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

Мощность при последовательном соединение

При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять I = U/R = 100/390 = 0,256 A. На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I2 x R = 0,2562 x 390 = 25,55 Вт.

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

  • P1 = I2 x R1 = 0,2562 x 200 = 13,11 Вт;
  • P2 = I2 x R2 = 0,2562 x 100 = 6,55 Вт;
  • P3 = I2 x R3 = 0,2562 x 51 = 3,34 Вт;
  • P4 = I2 x R4 = 0,2562 x 39 = 2,55 Вт.

Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.

Мощность при параллельном соединение

При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.

Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:

  • 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
  • Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
  • Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
  • Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом: P = I2 x R = 6,0242 x 16,6 = 602,3 Вт.
  • Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов: P1 = U2/R1 = 1002/200 = 50 Вт; P2 = U2/R2 = 1002/100 = 100 Вт; P3 = U2/R3 = 1002/51 = 195,9 Вт; P4 = U2/R4 = 1002/39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1234 = 50+100+195,9+256,4 = 602,3 Вт.

Таким образом, мощность при последовательном и параллельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.

Мощность резистора: обозначение на схеме, как увеличить, что делать, если нет подходящего

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о том, как сделать простую резистивную USB нагрузку для длительного тестирования емкости повербанков (ПБ), анализа качества кабелей и сетевых адаптеров.

Это одна из нескольких возможных статей о самостоятельном изготовлении резистивной нагрузки (на балластных резисторах), при удачном раскладе возможно руки дойдут и до электронной нагрузки, с регулировкой и стабилизацией тока.

Данная нагрузка служит уже достаточно давно и постоянно мелькает в моих обзорах, поэтому если заинтересовало, прошу под кат. В последнее время, такая самоделка уже не очень актуальна, т.к. появились бюджетные электронные нагрузки, поэтому имеет смысл доплатить и купить готовую.

Я же покупал еще по старому курсу, да и электронных нагрузок особо не было. Поэтому, если нужна именно резистивная, то приступим…

Возможные пути приобретения/изготовления резистивной нагрузки:

1) купить готовую плату-нагрузку с резисторами: Плюсы: + готовое работающее устройство (минимум телодвижений) + не нужны штекеры и провода (минимум потерь) + переключатель на 1А/2А (индикация) + небольшие размеры + небольшая стоимость Минусы: — очень сильно нагревается (около 180°С при токе 1А и около 230°С при токе 2А) и начинает жутко вонять (судя по отзывам, сам такой не имею) — не имеет корпуса, токоведущие/нагревающиеся части открыты (можно обжечься/прожечь что-нибудь, закоротить) — сложно прикрепить радиатор Так как изготовление хорошего нагрузочного модуля отнимает силы и время, то можно воспользоваться данной приблудой, но оставлять без присмотра не стоит 2) найти в закромах мощные резисторы (советские ПЭВ, ППБ и подобные), рассеиваемая им мощность для продолжительной работы должна быть не менее 10 Вт Плюсы: + меньший, но все равно достаточно высокий нагрев + не нужно покупать/средняя стоимость (наличие дома/покупка в магазе) + регулировка сопротивления, т. е. можно плавно изменять ток в широких пределах (только некоторые резюки, либо небольшая доработка) Минусы: — нужно припаивать штекер и провода — большие размеры — невозможность крепления радиатора (на большинстве) — нет переключателя (можно переделать, нужен второй резистор) — не имеет корпуса, токоведущие/нагревающиеся части также открыты (можно обжечься/прожечь что-нибудь) Я не имею таких резисторов в наличие, поэтому выбор за вами.

3) покупка резисторов 25-100 Вт в металлическом корпусе для отвода тепла и сборка своего модуля с кожухом

Плюсы: + средний нагрев (могут без опаски работать без доп. радиаторов) + средняя стоимость + возможность крепления дополнительного радиатора Минусы: — нужно припаивать штекер и провода — большие размеры — нет переключателя (можно переделать, нужен второй резистор) При этом они могут работать и без дополнительного охлаждения, но при этом неплохо греются, в пределах нормы, конечно. Я включал 25W резюки на полную разрядку моего ПБ — выдержали, но сильно грелись. Я рекомендую купить 100W резисторы, тогда дополнительный радиатор может совсем не пригодиться.

Итак, если решили собрать самодельный стенд из похожих резисторов, то приступим. Необходимые компоненты:

1) два резистора 25-100W по 4,7 Ом каждый. Как на зло, цены поднялись и многих номиналов уже не стало в продаже. Но наебайке есть 25W, 100W. Ищем по «Power resistor». 2) выключатель, я покупал тут 3) разборный USB штекер «папа», к примеру тут или тут 4) небольшой кусок медного многожильного провода большого сечения, к примеру, акустический провод 5) небольшой алюминиевый радиатор (по желанию) 6) пластиковая коробка

Номиналы резисторов рассчитываются по знакомой всем формуле закона Ома — I=U/R или R=U/I, где R – сопротивление (Ом), I –ток (А) и U – напряжение (V). К примеру, нам нужен ток 2А, поэтому для нагрузки 5V адаптеров нам нужен резюк 2,5Ома, т.к. 5/2=2,5 Ом.

Для 1А рассчитываем аналогично — 5/1=5 Ом. Так как большинство адаптеров/БП снижают напряжение под нагрузкой, то необходимо делать поправку на это и считать в среднем от 4,8V. Тогда на ток 2А нужен будет резюк R= U/I=4,8V/2А=2,4Ома, а для 1А — R= U/I=4,8V/1А=4,8Ома.

Также нужно помнить, что соединительные провода, выключатель и USB штекер также имеют некоторое сопротивление. Напомню одну хитрость, что при последовательном соединении резисторов общее сопротивление складывается, а при параллельном – будет чуть меньше самого маленького резистора.

Общее сопротивление нескольких резисторов можно посчитать здесь.

Чтобы не искать подходящие номиналы и не мудрить со схемой, я рекомендую сделать по моему варианту, правда с другими номиналами – 2 резистора по 4,7 Ом и небольшой выключатель. Для 1А будет задействован один резистор, для 2А – два в параллель. При этом, если мощность резистора или сопротивление не подходят, можете группировать несколько по указанным выше формулам. В своем нагрузочном модуле я использовал 2 резистора: 5,1Ом и 6Ом, т.к. я их выиграл на аукционе наEbay’ки за копейки, на другие номиналы тогда аукционов не было. При соединении параллельно, я получаю 2,7Ома для тока в 2А (в действительности 1,75А), а для тока в 1А (0,95А)задействую 1 резюк на 5,1 Ом. Они чуток не подходят, идеальный вариант был бы при использовании двух резюков по 4,7Ома, но таких лотов на аукционе не было.

Непосредственная сборка:

До этого пользовался вот таким простеньким модулем, он годился даже для длительных нагрузок, хотя при длительной работе он сильно нагревался, но не вонял и не перегорал (доставать, правда, его не удобно, можно было обжечься). Как только приехал второй резюк на 6 Ом, начал собирать стенд. Вот размеры типичных 25W резисторов в алюминиевом корпусе: Обратная сторона неровная и покрыта лаком, к тому же проушины для крепления имеют заусенцы, поэтому резисторы могут неплотно прилегать к радиатору, я рекомендую пройтись нулевой наждачкой: Сам радиатор я взял из старых запасов. Это распиленный пополам радиатор от бюджетных кулеров GlacialTech для процессоров на Socket A. В сервис центрах по ремонту компьютеров и бытовой техники за 50-100р вам отдадут целую пачку, на любой вкус и цвет. Можно использовать цельный радиатор, температура нагрева будет еще меньше. Мой нагрузочный стенд на 2А (точнее 1,75А) выше 70гр не нагревается. К тому же, к цельному радиатору можно приспособить небольшой вентилятор, тогда можно гонять модуль на высоких токах. При использовании 100Вт резисторов радиатор может вообще не понадобиться. Вот тот самый радиатор: Подошва у радиатора неровная, лучше отшлифовать. Можно оставить и так, теплообмен будет чуть похуже. Размеры моего радиатора: Вот что нам понадобится для изготовления модуля (наждачная бумага/шкурка на 1000/2000, стекло, в качестве идеально ровной поверхности, дрель, сверла, метчики для нарезки резьбы и машинное масло): Идеально полировать с пастой ГОИ не имеет особого смысла, хватит и 2000 наждачки. Затем сверлим отверстия и метчиком нарезаем резьбу (как это делать рассказывать не буду, см. в интернете). Если нет подходящего инструмента, то используйте термоклей/термоскотч/термопрокладки (ссылки внизу), сверлить ничего не придется. От себя добавлю, чтобы не сломать инструмент, капайте масло и через два полных оборота метчика, делайте пол оборота назад. Так вы 100% не сломаете метчик. По возможности пройдите чистовым метчиком (смотрите по количеству рисок на нем). Получается в итоге что-то вроде этого: В качестве кожуха я использовал защитный экран от старого холодильника. Можно использовать что угодно: от органики до любых пластиковых штуковин. Оргстекло небольшой толщины легко гнется при нагреве, я как-то гнул его над жалом мощного паяльника, только потом края придется немного подровнять. В общем, используем все, что есть под рукой. Перед окончательной сборкой пройдитесь по отверстиям сверлом большего диаметра, чтобы убрать заусенцы, иначе резюки плотно прилегать не будут (раззенковать): Далее намазываем тонкий слой термопасты на резисторы, можно просто выдавить каплю пасты, при затяжке она сама расползется. Я использовал российскую «народную» термопасту КПТ-8 (покупается в магазинах электрики): У нее средняя эффективность, со временем она подсыхает, но зато стоит копейки и продается в любых магазинах радиоэлектроники, для нашего модуля сгодится. Прикручиваем винты и загибаем вывода резисторов (можно до крепежа): Как видите, излишки термопасты вылезли наружу, они мешать не будут: Берем штекер USB «папа», желательно с позолоченными контактами (см. предыдущие пункты) и акустический провод с медными (не омедненными!) жилами толстого сечения. Для защиты от термического и механического воздействия я натянул термоусадку. Так как провод толстый, ножиком раздраконьте выходное отверстие: Берем выключатель, он будет вкл/выкл режим «2А». Подойдет любой силовой. Я использовал простенький KCD11, рассчитанный на 220V и 3А. В качестве окантовки использовал старый кабель-канал, немного срезав края. В одном из них вырезаем окошко под выключатель. Затем припаиваем выключатель к выводам резисторов: Сам провод припаиваем к резистору, который будет работать на 1А «по умолчанию». В моем случае это резистор 5,1 Ома. Если вы используете два одинаковых резюка по 4,7Ом, то припаиваем к любому: Одна сторона выводов будет соединена через выключатель, т.е. в положении «выкл» ток – 1А, в положении «вкл» — 2А, т.к. включается второй резюк в параллель. Получается вот такая простая схема: Далее прикручиваем кожух: Ставим верхнюю планку из того же кабель-канала или чего-нибудь похожего на место проема. Получается довольно неплохо: Ну и подклеиваем режимы работы, бумага и скотч в помощь: В итоге при хорошем адаптере имеем следующее (0,95А и 1,75А): Температура радиатора при токе 2А (1,75А) ни разу не поднималась выше 70°С, при 0,95А в районе 60°С: Итого: устройство работает, сильно не нагревается, не воняет, свои функции выполняет на 100%. Да, с номиналами чуток не повезло, но ничего страшного. Все мои обзоры ПБ протестированы именно с этой нагрузкой, при желании можно расширить диапазон токов, к примеру, на 0,5А/1А/1,5А/2А/2,5А…

Кисулька:

Мощность при параллельном соединении формула

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно.

Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов

В жизни последовательное соединение резисторов имеет вид:

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

  • Общее номинальное сопротивление составного резистора обозначено как Rобщ.
  • Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.
  • Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом.

Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом.

Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов

Можно соединять резисторы и параллельно:

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

  Акб обратная полярность что это

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.

  1. Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.
  2. Измерение сопротивления при параллельном соединении
  3. Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:
  4. При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Резистор – это элемент электрической схемы, который обладает сопротивлением электрическому току. Классифицируют два типа резисторов: постоянные и переменные (подстроечные). При моделировании той или иной электрической схемы, а также при ремонте электронных изделий, возникает необходимость использовать резистор определенного номинала.

Хотя и существует множество различных номиналов постоянных резисторов, в данный момент под рукой может не оказаться требуемого, либо резистора с таким номиналом не существует. Чтобы выйти из такой ситуации, можно использовать как последовательное так и параллельное соединение резисторов.

О том, как правильно произвести расчет и подбор различных номиналов сопротивлений, будет рассказано в этой статье.

Последовательное соединение резисторов – это самая элементарная схема сборки радиодеталей, оно применяется для увеличения общего сопротивления цепи.

При последовательном соединении, сопротивление используемых резисторов просто складывается, а вот при параллельном соединении необходимо производить расчет по нижеописанным формулам.

Параллельное соединение необходимо для снижения результирующего сопротивления, а также для увеличения мощности, несколько параллельно подключенных резисторов имеют большую мощность, чем у одного.

  Температура плавления клея для клеевого пистолета

  • На фотографии можно увидеть параллельное подключение резисторов.
  • Общее номинальное сопротивление необходимо рассчитывать по следующей схеме:
  • — R(общ) – общее сопротивление;
  • — R1, R2, R3 и Rn – параллельно подключенные резисторы.
  • Когда параллельное соединение резисторов состоит всего из двух элементов, в таком случае общее номинальное сопротивление можно высчитать по следующей формуле:
  • — R(общ) – общее сопротивление;
  • — R1, R2 – параллельно подключенные резисторы.
  • В радиотехнике существует следующее правило: если параллельное подключение резисторов состоит из элементов одного номинала, то результирующее сопротивление можно высчитать, разделив номинал резистора на количество соединенных резисторов:
  • — R(общ) – общее сопротивление;
  • — R – номинал параллельно подключенного резистора;
  • — n – количество соединенных элементов.
  • Важно учитывать, что при параллельном соединении результирующее сопротивление всегда будет ниже, чем сопротивление самого малого по номиналу резистора.
  • Приведем практический пример: возьмем три резистора, со следующими значениями номинального сопротивления: 100 Ом, 150 Ом и 30 Ом. Проведем расчет общего сопротивления, по первой формуле:
  • После расчета формулы мы видим, что параллельное соединение резисторов, состоящее из трех элементов, с наименьшим номиналом 30 Ом, в результате дает общее сопротивление в электрической цепи 21,28 Ом, что ниже наименьшего номинального сопротивления в цепи почти на 30 процентов.

Параллельное соединение резисторов чаще всего используют в тех случаях, когда необходимо получить сопротивление с большей мощностью.

В таком случае необходимо взять резисторы одинаковой мощности и с одинаковым сопротивлением.

Результирующая мощность в таком случае рассчитывается путем умножения мощности одного элемента сопротивления на общее количество параллельно подключенных резисторов в цепи.

Например: пять резисторов с номиналом в 100 Ом и с мощностью 1 Вт в каждом, подключенные параллельно, имеют общее сопротивление 20 Ом и мощность 5 Вт.

При последовательном подключении тех же резисторов (мощность так же складывается), получим результирующую мощность 5 Вт, общее сопротивление составит 500 Ом.

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

  1. Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:
  2. Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Параллельное соединение резисторов — расчет

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом. Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

  Как открутить болт с фиксатором резьбы

  • Общее сопротивление R рассчитывается по формуле:
  • Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.

В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.

Характеристики резисторов

1. Основной параметр резистора – это номинальное сопротивление.

2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.

3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.

4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.

5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.

6. Шумовые характеристики.

7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.

8. Влаго- и термоустойчивость.

Есть еще две характеристики, о которых начинающие чаще всего не знают, это:

1. Паразитная индуктивность.

2. Паразитная ёмкость.

Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.

На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.

  • Мощность резистора
  • Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I
  • Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:
  • I=U/R
  • Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:
  • I=U/R
  • Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.

У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.

В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).

На картинке пример кристаллической решетки, для наглядности.

Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?

То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.

Но как это относится к резисторам?

Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. Из формулы выше станет ясно, что ток снижается, за счет снижения напряжения. Лишнее напряжение можно сказать, что сгорает в виде тепла на резисторе, мощность при этом считается по той же формуле, что и общая мощность:

P=U*I

Здесь U – это количество вольт «сожженных» на резисторе, а I – это ток, который через него протекает.2/1=144/1=144 Вт.

Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.

Какие бывают резисторы и как они обозначаются на схеме

Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5

Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.

Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.

Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.

Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).

Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).

Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.

В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента.

Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е.

охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.

Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.

Что делать, если нет резистора нужной мощности?

Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.

На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.

1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3

2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.

На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.

Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I

Мощность, выделяемая на каждом из них, снизится соответствующим образом.

Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0.5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.

Я не просто так написал «ПОЧТИ ВСЕГДА».

Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.

Заключение

Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.

При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.

Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.

Ранее ЭлектроВести писали, что JinkoSolar объявила, что она установила новый рекорд эффективности для монокристаллических PERC-панелей, который составил 24,38%.

Компания также разработала модуль мощностью 469,3 Вт.

Кроме того, китайский производитель фотоэлектрических элементов поравнялся с фирмой Trina Solar, которая на прошлой неделе заявила о рекордном 24,58% показателе КПД монокристаллических панелей n-типа.

Резистор

Радиоэлектроника для начинающих

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах.

Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом).

Про множители и приставки «кило», «мега» можете почитать здесь.

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов

  • Номинальное сопротивление.
    Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.
  • Рассеиваемая мощность.
    Более подробно о мощности резистора я уже писал здесь.
    При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.
    На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.

    К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.
    Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.
  • Допуск.
    При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах. Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.
    Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.
    Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.
    Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.
    Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25…0,05%.
  • Температурный коэффициент сопротивления (ТКС).
    Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.
    В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.

Первые три параметра основные, их надо знать!

Перечислим их ещё раз:

  • Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм…)
  • Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт…)
  • Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

Так же стоит отметить конструктивное исполнение резисторов.

Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах.

Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.

В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента.

Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2…3 ватт.

Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

Таблица цветового кодирования

Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом.

Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм).

Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Простой способ определить Vf светодиода, чтобы выбрать подходящий резистор

Вы неправильно понимаете, как работает светодиод, так как Vf — это не напряжение, которое вы кладете на светодиод, чтобы заставить его работать, а напряжение, которое появляется (падает) на светодиод, когда ток пропускается через него.

Если вы посмотрите на соответствующий лист данных, вы увидите Vf (min), Vf и Vf (max), заданные для определенного тока, и это означает, что, если вы подадите указанный ток через светодиод, вы можете ожидать Vf падать где-нибудь между Vf (мин) и Vf (макс.), причем Vf является типичным значением.

Итак, ответ на ваш вопрос:

  • Источником питания является любой источник переменного напряжения, R обеспечивает балласт для светодиода, снижая его чувствительность к изменениям источника питания.
  • Это не даст светодиоду испускать свой волшебный дым, если вы случайно запустите источник питания слишком далеко, и его значение [R] не критично, в разумных пределах.
  • Например, если вы используете резистор 1000 Ом и пытаетесь протолкнуть 20 мА через светодиод, эти 20 мА также должны пройти через R, поэтому R будет падать:
  •  E = IR = 0,02 A × 1000 Ом = 20 вольт, E = IRзнак равно0.02A×1000Ωзнак равно20 вольт,
  • и вам понадобится запас для светодиодов.
  • «A» — это амперметр, используемый для измерения тока через светодиод, а «V» — вольтметр, используемый для измерения напряжения на светодиоде.

При использовании, то, что вам нужно сделать, это запустить источник питания с нуля вольт, а затем провернуть его до тех пор, пока амперметр не покажет 20 миллиампер, тогда напряжение, отображаемое на вольтметре, будет Vf для этого конкретного диода при данном конкретном токе и температуре окружающей среды. температура.

  1. Возвращаясь к вашему вопросу, способ определить, какое значение последовательного сопротивления является «правильным» для вашего светодиода, состоит в том, чтобы сначала определить его Vf при желаемом прямом токе (если), а затем использовать закон Ома для определения значения сопротивления, так:
  2. R =  Vс — VеяеR = Вs-Веяе
  3. Если предположить, что Vs (напряжение питания) составляет 12 вольт, то Vf равно 2 вольтам, а If — 20 мА, мы получим
  4. R =  12 В- 2 В0,02 А= 500 ОмR = 12В-2В0.02Aзнак равно500 Ом
  5. Затем, чтобы определить мощность рассеиваемого резистора, мы можем написать:
  6. Pd = (Vs — Vf) × If = 10 В × 0,02 А = 0,2 Вт  Pd = (Vs — Vf)×Если знак равно 10V×0.02Aзнак равно0,2 Вт
  7. 510 Ом — это самое близкое значение E24 (+/- 5%), которое будет сохраняться, если на консервативной стороне 20 мА, и резистор 1/4 Вт должен быть в порядке.
  8. Утиный суп, а? 😉

Последовательное и параллельное соединение резисторов

Последовательное соединение резисторов

Последовательное соединениеэто соединение двух или более резисторов в форме цепи, в которой каждый отдельный резистор соединяется с другим отдельным резистором только в одной точке.

Общее сопротивление R

общ

При таком соединении, через все резисторы проходит один и тот же электрический ток. Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него. Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается, и оно равно сумме всех сопротивлений.

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Параллельное соединение резисторов

Параллельное соединениеэто соединение, при котором резисторы соединяются между собой обоими контактами. В результате к одной точке (электрическому узлу) может быть присоединено несколько резисторов.

Общее сопротивление R

общ

При таком соединении, через каждый резистор потечет отдельный ток. Сила данного тока будет обратно пропорциональна сопротивлению резистора. В результате общая проводимость такого участка электрической цепи увеличивается, а общее сопротивление в свою очередь уменьшается.

Таким образом, при параллельном подсоединении резисторов с разным сопротивлением, общее сопротивление будет всегда меньше значения самого маленького отдельного резистора.

Формула общей проводимости при параллельном соединении резисторов:

Формула эквивалентного общего сопротивления при параллельном соединении резисторов:

Для двух одинаковых резисторов общее сопротивление будет равно половине одного отдельного резистора:

Соответственно, для n одинаковых резисторов общее сопротивление будет равно значению одного резистора, разделенного на n.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности. Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Электрический ток при параллельном соединении

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:


Смешанное соединение резисторов

Смешанным соединением называют участок цепи, где часть резисторов соединяются между собой последовательно, а часть параллельно. В свою очередь, смешанное соединение бывает последовательного и параллельного типов.

Общее сопротивление R

общ

Для того чтобы посчитать общее сопротивление смешанного соединения:

  • Цепь разбивают на участки с только пареллельным или только последовательным соединением.
  • Вычисляют общее сопротивление для каждого отдельного участка.
  • Вычисляют общее сопротивление для всей цепи смешанного соединения.

Так это будет выглядеть для схемы 1:

Также существует более быстрый способ расчета общего сопротивления для смешанного соединения. Можно, в соответствии схеме, сразу записывать формулу следующим образом:

  • Если резисторы соединяются последоватеьно — складывать.
  • Если резисторы соединяются параллельно — использовать условное обозначение «||».
  • Подставлять формулу для параллельного соединения где стоит символ «||».

Так это будет выглядеть для схемы 1:

После подстановки формулы параллельного соединения вместо «||»:

Как работают резисторы – Пиример сопротивления в электронике

СОПРОТИВЛЕНИЕ

Сопротивление – это одна из трех основных величин в электрических или электронных цепях:

Ток – это поток электронов по цепи. Это основная величина, потому что она действительно работает и дает желаемые результаты. Измеряем ток в Амперах. (См. «ЕДИНИЦЫ»)

Напряжение – это сила, которая заставляет ток течь в цепи. Фактически, мы иногда называем напряжение «электродвижущей силой» или «ЭДС».”Мы измеряем его в вольтах.

Сопротивление контролирует прохождение тока. Мы измеряем его в Ом.

Эти три величины настолько важны для электрических и электронных схем, что их связывает простое уравнение, называемое законом Ома. Закон Ома гласит, что ток, протекающий в цепи, пропорционален напряжению, приложенному к цепи, и обратно пропорционален сопротивлению цепи. Другими словами, для данного напряжения ток в цепи будет уменьшаться с увеличением сопротивления.

Математически закон Ома: I = E / R, или ток равен напряжению, деленному на сопротивление. Это простое уравнение можно преобразовать, чтобы найти напряжение или сопротивление с учетом двух других величин. (Например, если вы знаете напряжение и ток в цепи, вы можете рассчитать сопротивление цепи, разделив напряжение на ток.) ​​

Закон Ома действительно фундаментален. Здесь начинается разработка всех электрических или электронных схем!

ПРОВОДНИКИ И ИЗОЛЯТОРЫ

Все материалы являются либо проводниками, либо изоляторами; материал либо проводит электрический ток, либо препятствует его течению.

Не все проводники одинаково способны поддерживать ток. Медь – лучший проводник, чем никель. Серебро – лучший проводник, чем медь. Золото – лучший проводник, чем Серебро. Углерод – плохой проводник.

Точно так же не идеальны изоляторы. В сухом виде дерево является изолятором, но во влажном состоянии становится проводником. Лучшие изоляторы – это стекло и керамика. Пластмассы, такие как эпоксидная смола, обычно являются хорошими изоляторами.

Есть также материалы, которые не являются ни проводниками, ни изоляторами.Их называют «полупроводниками», они используются для изготовления транзисторов. Мы не будем здесь обсуждать транзисторы, но интересно, что на самом деле это только резисторы, которыми могут управлять электронные схемы. Это еще раз показывает, что закон Ома имеет фундаментальное значение для проектирования схем.

РЕЗИСТОРЫ

Есть несколько способов изготовления резисторов для электрических или электронных схем. Углеродные резисторы изготавливаются путем присоединения выводов к стержню или стержню из углеродного материала. Материал обычно изготавливается путем суспендирования углеродных частиц в пластическом материале.Материал «смесь определяет стойкость».

Угольные резисторы

имеют серьезные ограничения. Они не могут рассеивать большую мощность, и их сложно изготовить с небольшими допусками по сопротивлению. Однако автоматизированное производство производит их в больших количествах, поэтому их стоимость невысока.

Некоторые резисторы изготавливаются из металлических пленок или оксидов. Эти резисторы имеют небольшие размеры и могут изготавливаться с хорошими допусками. Но они не могут справиться с более высокими уровнями мощности. Другой тип пленочного резистора изготавливается из токопроводящих чернил.Они недороги, но нестабильны, имеют ограниченное рассеивание мощности и плохие допуски по сопротивлению.

Резисторы с проволочной обмоткой изготавливаются путем наматывания отрезка провода на изолирующий сердечник. Они могут рассеивать большие уровни мощности по сравнению с другими типами и могут быть изготовлены с очень жесткими допусками по сопротивлению и контролируемыми температурными характеристиками.

Его длина, площадь поперечного сечения и материал определяют сопротивление провода. Медь – хороший проводник, но имеет некоторое сопротивление (току.) Медный провод небольшого диаметра, длиной 100 футов, может иметь сопротивление в несколько Ом. Однако проволока из никелевого сплава небольшого диаметра длиной всего один фут может иметь сопротивление в несколько тысяч Ом.

Riedon производит резисторы с проволочной обмоткой, используя проволоку из нескольких металлических сплавов и размеров. Выбор проволоки зависит от нескольких факторов. Например, для конструкции с высоким сопротивлением потребуется длинный медный провод и большой резистор. Тот же резистор может быть изготовлен из проволоки из никелевого сплава короткой длины, в результате чего устройство будет намного меньше.Однако, когда требуется высокоточный резистор, легче подрезать сопротивление, удалив несколько дюймов провода с низким сопротивлением, чем обрезав миллиметры провода с высоким сопротивлением.

МОЩНОСТЬ

Мы измеряем электрическую мощность в ваттах. В резистивной цепи мощность рассчитывается путем возведения тока в квадрат и умножения этого значения на сопротивление. (P = IxR) Резисторы с проволочной обмоткой превосходно подходят для приложений с более высокой номинальной мощностью.

Поскольку резисторы препятствуют прохождению тока, они выделяют тепло.Если резистор работает в пределах своей номинальной мощности, тепло безвредно рассеивается в окружающую среду. Но если мы превысим номинальную мощность, резистор не сможет рассеять избыточное тепло, и его температура повысится. Резистор выйдет из строя, обычно действуя как предохранитель и размыкая цепь. Если резистор используется в среде с высокой температурой, его номинальная мощность должна быть снижена или «понижена».

КОЭФФИЦИЕНТ ТЕМПЕРАТУРЫ

В резисторах с проволочной обмоткой другим фактором выбора является температурная характеристика проволоки.

Сопротивление всех материалов изменяется при изменении их температуры. При понижении температуры сопротивление (обычно) снижается. Фактически, при достаточном охлаждении материал становится «сверхпроводником» без значительного сопротивления. Повышение температуры (обычно) увеличивает сопротивление.

Температурный коэффициент сопротивления (TCR) провода или резистора связывает изменение сопротивления с изменением температуры. Обычно это выражается в «миллионных долях на градус Цельсия» (TCR = ppm / ° C.Таким образом, температурный коэффициент сопротивления показывает, насколько изменится сопротивление (ppm), если температура изменится на один градус Цельсия. (Иногда мы измеряем температуру в градусах Фаренгейта. Но сегодня градусы Цельсия более распространены и приемлемы.)

Специальные сплавы для проволоки имеют особые температурные коэффициенты. Например, «Evenohm» (торговое название проволочного сплава с низким TCR) сформулировано так, чтобы иметь небольшой TCR от 5 до 10 ppm / ° C. Чистый никель имеет гораздо более высокое значение TCR, равное 6700 ppm / ° C.Медь имеет TCR 3900 ppm / ° C. Эти и другие сплавы позволяют нам «адаптировать» резистор к желаемым характеристикам в приложениях, где меняются температуры.

В качестве практического примера, резистор с сопротивлением 1000 Ом, сделанный из чистой никелевой проволоки, будет иметь новое сопротивление 1670 Ом, если мы увеличим его температуру с 20 ° C до 120 ° C. В том же приложении резистор, сделанный из провода Evenohm, увеличился бы только до 1001 Ом.

ИНДУКТИВНОСТЬ

Есть еще одна величина, похожая на сопротивление.Это называется реактивным сопротивлением. Как и сопротивление, мы измеряем реактивное сопротивление в омах, и это соответствует правилу закона Ома.

Реактивность возникает в электрических или электронных цепях, только если ток быстро меняется. Обычно это важно в цепях «переменного тока» (AC), где ток периодически меняет направление и амплитуду с некоторой скоростью, называемой «частотой». Однако реактивное сопротивление не существует в цепях «постоянного тока» (DC), где ток течет в одном направлении и его амплитуда не меняется быстро.

Реактивность возникает из-за того, что все элементы схемы имеют «индуктивность» и «емкость». В цепях переменного тока емкость резисторов с проволочной обмоткой редко бывает достаточно большой, чтобы ее можно было принять во внимание, поэтому мы проигнорируем ее в этом обсуждении. Однако индуктивность резисторов с проволочной обмоткой может быть критической!

Все проводники имеют некоторую индуктивность. Когда проводник скручен в спираль, как это обычно бывает в резисторах с проволочной обмоткой, эта индуктивность становится больше. В цепях переменного тока индуктивность вызывает «индуктивное реактивное сопротивление».«Индуктивное реактивное сопротивление и сопротивление складываются, увеличивая номинал резистора.

Индуктивное реактивное сопротивление увеличивается с увеличением частоты переменного тока. Например, у резистора может быть достаточно индуктивности, чтобы создать 1 Ом реактивного сопротивления на частоте 60 Гц (циклов в секунду). Если мы увеличим частоту до 6000 Гц (звуковая частота), реактивное сопротивление увеличится до 100 Ом. Увеличение частоты до 6 000 000 Гц (радиочастота) увеличивает реактивное сопротивление резистора до 10 000 Ом.

Очевидно, что индуктивность резисторов с проволочной обмоткой может быть значительной в цепях переменного тока! Когда реактивное сопротивление играет важную роль в цепях переменного тока, Riedon может намотать провод особым образом, чтобы устранить или уменьшить индуктивность резистора.

ЕДИНИЦ:

Амперы: («Амперы») Вольт:
миллиампер = 1/1000 ампер, милливольт = 1/1000 вольт
микроампер = 1/1000000 ампер, микровольт = 1/1000000 вольт

Ом:

кОм («кОм») = 1 000 Ом
МОм = 1 000 000 Ом

Ом – Увеличение сопротивления на динамиках

Да можно добавить резистор, НО .

Импеданс громкоговорителя зависит от частоты. Это график зависимости импеданса от частоты двухполосного фазоинвертора, который я случайно искал в Google:

Это типичный график для 2-полосного фазоинвертора. Резонанс низкочастотного динамика и резонанс фазоинвертора создают два пика на низких частотах, а кроссовер между низкочастотным и высокочастотным динамиками очевиден между 1,5 и 3 кГц. Это динамик на 4 Ом. Для динамика на 8 Ом график выглядел бы так же, увеличенный в 2 раза.

При последовательном добавлении резистора образуется делитель напряжения (см. Схему в ответе транзистора), а напряжение на динамике будет зависеть от его частотно-зависимого импеданса. Это означает, что частотная характеристика динамика изменится. Выходной сигнал будет ослаблен больше всего там, где импеданс динамика низкий, но он будет иметь очень маленькое затухание на частотах, соответствующих пикам импеданса. Также изменится демпфирование.

Так что, наверное, он будет звучать иначе, басов станет чуть больше.Это может быть приятно, а может и нет, в зависимости от динамиков, но не удивляйтесь, если вы услышите разницу.

Поэтому я рекомендую приобрести несколько дешевых резисторов 2 Ом 10 Вт и провести быстрый тест.

Обратите внимание, что громкость не станет громче, так как дополнительная мощность будет рассеиваться на резисторах.

Я хочу увеличить сопротивление моих 5 динамиков объемного звука и сабвуфера на 2 Ом с 6 до 8.

Ну, вы не упоминаете, какой усилитель отключает его схему защиты.Скорее всего, усилитель просто отключается и не сообщает вам, какой канал виноват.

Обычно громкоговорители объемного звучания не получают такой большой мощности. Большая часть мощности идет на сабвуфер, а затем на левый / правый / центральный динамики.

Также обычно подавляющая часть мощности уходит на низкие частоты. Любой приличный твитер сделает вас глухим на 1 ватт, но если вы хотите грохотать, вам нужно намного больше мощности.

Поэтому я бы порекомендовал установить громкость так, чтобы сработала защита усилителя, а затем отсоединить саб и / или основные динамики.Он все еще спотыкается?

Если основные передние динамики все еще срабатывают, попробуйте включить функцию highpass на усилителе, чтобы направить все низкие частоты на сабвуфер. Это снизит ток, необходимый для передних динамиков.

Скорее всего, он сработает с подключенным сабвуфером и не сработает, когда он отключен. Это будет означать, что вам не нужны резисторы … возможно, все, что вам нужно, это немного снизить усиление сабвуфера.

Если вы любитель басов, это вас не удовлетворит.Тогда вам понадобится активный сабвуфер или сабвуфер с большей эффективностью. Резисторы не помогут.

Самодельные резисторы

| Sciencing

Электрические резисторы – это пассивные электрические компоненты, которые ограничивают ток в электрической цепи. Резисторы могут быть изготовлены из разных материалов. Некоторые из наиболее распространенных материалов – металл и углерод. Резисторы на основе углерода предпочтительнее резисторов на основе металла, где возникают индукционные помехи. Для многих аналоговых электрических и электронных схем можно использовать резисторы на металлической основе (например, резисторы с проволочной обмоткой) без вредных последствий.

Как работает проволочный резистор

Поток электрического тока объясняется физическим соотношением, обнаруженным Георгом Симоном Омом, немецким физиком девятнадцатого века. Это объяснение известно как «закон Ома».

Закон Ома объясняет, что разность напряжений в электрической цепи является произведением значения электрического тока (в Амперах) на значение сопротивления цепи (в Ом). Объясняется по-другому: электрическая цепь, имеющая разницу в 2 вольта, при протекающем по ней токе в 1 ампер, имеет сопротивление 2 Ом.

Все электропроводящие материалы тоже обладают некоторым сопротивлением. Из-за этого в качестве резистора можно использовать даже хороший электрический провод, например металлическую проволоку. Сопротивление можно регулировать, ограничивая толщину провода, а также увеличивая или уменьшая токопроводящий путь через провод. Сопротивление также можно контролировать с помощью материала проволоки. Некоторые металлы, такие как золото, серебро и медь, являются отличными электрическими проводниками и имеют более низкое значение сопротивления. Другие металлы, такие как железо, олово или платина, не очень хорошо проводят электрический ток из-за их более высоких значений сопротивления.

Создание резистора с проволочной обмоткой

Чтобы создать резистор с проволочной обмоткой, один кусок проволоки должен был бы служить путем для электрического тока, протекающего от одного конца резистора к другому. Чтобы создать резистор с небольшим значением сопротивления (или Ом), используйте более толстый и короткий провод в качестве пути между двумя электрическими выводами. Чтобы создать резистор с большим значением Ом, используйте более тонкий и длинный провод.

Как следует из названия, резистор с проволочной обмоткой обычно каким-то образом наматывают на электрически изолированный материал (например, пластик или керамику).Чтобы удлинить токопроводящий путь и повысить значение сопротивления, оберните более длинный провод вокруг изолятора несколько раз. Более прямой путь снизит значение сопротивления и пропустит больше тока.

Еще одним фактором при создании резистора с проволочной обмоткой является тип используемой проволоки. Стальная проволока не такой хороший проводник, как медная; поэтому, когда требуется большее значение сопротивления, можно использовать стальную проволоку.

Сопротивление и резисторы | Безграничная физика

Закон Ома

Закон

Ома гласит, что ток пропорционален напряжению; цепи являются омическими, если они подчиняются соотношению V = IR.

Цели обучения

Контрастная форма вольт-амперных графиков для омических и неомических цепей

Ключевые выводы

Ключевые моменты
  • Напряжение управляет током, а сопротивление препятствует ему.
  • Закон
  • Ома относится к пропорциональному соотношению между напряжением и током. Это также относится к конкретному уравнению V = IR, которое справедливо при рассмотрении схем, содержащих простые резисторы (сопротивление которых не зависит от напряжения и тока).
  • Цепи или компоненты, которые подчиняются соотношению V = IR, известны как омические и имеют линейные зависимости тока от напряжения, проходящие через начало координат.
  • Существуют неомические компоненты и схемы; их графики I-V не являются линейными и / или не проходят через начало координат.
Ключевые термины
  • простая схема : Схема с одним источником напряжения и одним резистором.
  • омический : То, что подчиняется закону Ома.

Закон Ома

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов V, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток. Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению V.Немецкий физик Георг Симон Ом (1787-1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению: [латекс] \ text {I} \ propto \ text {V} [/ latex ].

Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток – следствием. Это эмпирический закон, подобный закону трения – явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.Напомним, что в то время как напряжение управляет током, сопротивление ему препятствует. Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Следовательно, ток обратно пропорционален сопротивлению: [latex] \ text {I} \ propto \ frac {1} {\ text {R}} [/ latex].

Простая схема : Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленными красными параллельными линиями.Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Единицей измерения сопротивления является Ом, где 1 Ом = 1 В / А. Мы можем объединить два приведенных выше соотношения, чтобы получить I = V / R. Это соотношение также называется законом Ома. В этой форме закон Ома действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах.Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором, даже если его сопротивление невелико.

Падение напряжения : Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Дополнительное понимание можно получить, решив I = V / R для V, что дает V = IR. Это выражение для V можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I.Для обозначения этого напряжения часто используется фраза «падение ИК-излучения». Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывая ток – поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию).В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку E = qΔV, и через каждую из них протекает одинаковое q. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.

В истинно омическом устройстве одно и то же значение сопротивления будет вычисляться из R = V / I независимо от значения приложенного напряжения V. То есть отношение V / I является постоянным, и когда ток отображается как В зависимости от напряжения кривая является линейной (прямая линия).Если напряжение принудительно устанавливается равным некоторому значению V, тогда это напряжение V, деленное на измеренный ток I, будет равно R. Или, если ток принудительно установлен до некоторого значения I, тогда измеренное напряжение V, деленное на этот ток I, также будет R. Мы визуализируем график I против V как прямая линия. Однако есть компоненты электрических цепей, которые не подчиняются закону Ома; то есть их взаимосвязь между током и напряжением (их ВАХ) нелинейная (или неомическая). Примером может служить диод с p-n переходом.

Кривые вольт-амперной характеристики : ВАХ четырех устройств: двух резисторов, диода и батареи.Два резистора подчиняются закону Ома: график представляет собой прямую линию, проходящую через начало координат. Два других устройства не подчиняются закону Ома.

Закон Ома : Краткий обзор закона Ома.

Температура и сверхпроводимость

Сверхпроводимость – это явление нулевого электрического сопротивления и выброс магнитных полей в некоторых материалах при температуре ниже критической.

Цели обучения

Описать поведение сверхпроводника при температуре ниже критической и в слабом внешнем магнитном поле

Ключевые выводы

Ключевые моменты
  • Сверхпроводимость – это сверхпроводимость. Сверхпроводимость – это термодинамическая фаза, обладающая определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.
  • В сверхпроводящих материалах характеристики сверхпроводимости проявляются при понижении температуры ниже критической. Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств.
  • Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.
  • Сверхпроводники могут поддерживать ток без приложенного напряжения.
Ключевые термины
  • высокотемпературные сверхпроводники : материалы, которые ведут себя как сверхпроводники при необычно высоких температурах (выше примерно 30 K).
  • критическая температура : В сверхпроводящих материалах характеристики сверхпроводимости проявляются при этой температуре (и сохраняются ниже).
  • сверхпроводимость : Свойство материала, при котором он не оказывает сопротивления прохождению электрического тока.

Сверхпроводимость – это явление точно нулевого электрического сопротивления и выброса магнитных полей, возникающее в некоторых материалах при охлаждении ниже критической температуры.Он был обнаружен Хайке Камерлинг-Оннес (на фото) 8 апреля 1911 года в Лейдене.

Хайке Камерлинг-Оннес : Хайке Камерлинг-Оннес (1853-1926).

Большинство физических свойств сверхпроводников варьируются от материала к материалу, например теплоемкость и критическая температура, критическое поле и критическая плотность тока, при которых сверхпроводимость разрушается. С другой стороны, существует класс свойств, не зависящих от основного материала.Например, все сверхпроводники имеют точно нулевое удельное сопротивление по отношению к низким приложенным токам, когда нет магнитного поля или если приложенное поле не превышает критического значения. Существование этих «универсальных» свойств подразумевает, что сверхпроводимость является термодинамической фазой и, таким образом, обладает определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.

В сверхпроводящих материалах характеристики сверхпроводимости проявляются, когда температура T понижается ниже критической температуры T c .Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств – отличительным признаком фазового перехода. Например, электронная теплоемкость пропорциональна температуре в нормальном (несверхпроводящем) режиме. При сверхпроводящем переходе он испытывает прерывистый скачок и после этого перестает быть линейным, как показано на.

Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.Эффект Мейснера не вызывает полного выброса поля. Скорее, поле проникает в сверхпроводник на очень малое расстояние (характеризуемое параметром λ), называемое лондонской глубиной проникновения. Он экспоненциально спадает до нуля в объеме материала. Эффект Мейснера – определяющая характеристика сверхпроводимости. Для большинства сверхпроводников лондонская глубина проникновения составляет порядка 100 нм.

Сверхпроводящий фазовый переход : Поведение теплоемкости (cv, синий) и удельного сопротивления (ρ, зеленый) при сверхпроводящем фазовом переходе.

Сверхпроводники также способны поддерживать ток без какого-либо приложенного напряжения – свойство, используемое в сверхпроводящих электромагнитах, таких как те, что используются в аппаратах МРТ. Эксперименты показали, что токи в сверхпроводящих катушках могут сохраняться годами без какого-либо измеримого ухудшения. Экспериментальные данные указывают на текущую продолжительность жизни не менее 100 000 лет. Теоретические оценки времени жизни постоянного тока могут превышать расчетное время жизни Вселенной, в зависимости от геометрии провода и температуры.

Значение этой критической температуры варьируется от материала к материалу. Обычно обычные сверхпроводники имеют критические температуры в диапазоне от примерно 20 К до менее 1 К. Твердая ртуть, например, имеет критическую температуру 4,2 К. По состоянию на 2009 год самая высокая критическая температура, найденная для обычного сверхпроводника, составляет 39 К. для магния. диборид (MgB 2 ), хотя экзотические свойства этого материала вызывают некоторые сомнения в правильности его классификации как «обычного» сверхпроводника.Высокотемпературные сверхпроводники могут иметь гораздо более высокие критические температуры. Например, YBa 2 Cu 3 O 7 , один из первых открытых купратных сверхпроводников, имеет критическую температуру 92 К; Были обнаружены купраты на основе ртути с критическими температурами, превышающими 130 К. Следует отметить, что химический состав и кристаллическая структура сверхпроводящих материалов могут быть довольно сложными, как показано в.

Элементарная ячейка сверхпроводника YBaCuO : Элементарная ячейка сверхпроводника YBaCuO.Атомы обозначены разными цветами.

Сопротивление и удельное сопротивление

Сопротивление и удельное сопротивление описывают степень, в которой объект или материал препятствуют прохождению электрического тока.

Цели обучения

Определить свойства материала, которые описываются сопротивлением и удельным сопротивлением

Ключевые выводы

Ключевые моменты
  • Сопротивление объекта (т. Е. Резистора) зависит от его формы и материала, из которого он состоит.
  • Удельное сопротивление ρ является внутренним свойством материала и прямо пропорционально общему сопротивлению R, внешней величине, которая зависит от длины и площади поперечного сечения резистора.
  • Удельное сопротивление различных материалов сильно различается. Точно так же резисторы могут иметь разные порядки величины.
  • Резисторы
  • расположены последовательно или параллельно. Эквивалентное сопротивление цепи последовательно включенных резисторов является суммой всех сопротивлений.Сопротивление, обратное эквивалентному сопротивлению цепи параллельно включенных резисторов, является суммой обратных сопротивлений каждого резистора.
Ключевые термины
  • Эквивалентное сопротивление серии : сопротивление сети резисторов, расположенных таким образом, что напряжение в сети является суммой напряжений на каждом резисторе. В этом случае эквивалентное сопротивление – это сумма сопротивлений всех резисторов в сети.
  • параллельное эквивалентное сопротивление : сопротивление сети, при котором на каждый резистор действует одинаковая разность потенциалов (напряжение), так что токи, проходящие через них, складываются.В этом случае сопротивление, обратное эквивалентному сопротивлению, равно сумме обратных сопротивлений всех резисторов в сети.
  • удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.

Сопротивление и удельное сопротивление

Сопротивление – это электрическое свойство, препятствующее прохождению тока. Ток, протекающий через провод (или резистор), подобен воде, протекающей по трубе, а падение напряжения на проводе подобно перепаду давления, которое проталкивает воду по трубе.Сопротивление пропорционально тому, сколько давления требуется для достижения заданного потока, в то время как проводимость пропорциональна тому, сколько потока возникает при заданном давлении. Проводимость и сопротивление взаимны. Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорционально его длине L, подобно сопротивлению трубы потоку жидкости.Чем длиннее цилиндр, тем больше зарядов соударяется с его атомами. Чем больше диаметр цилиндра, тем больше тока он может пропускать (опять же, аналогично потоку жидкости по трубе). Фактически, R обратно пропорционально площади поперечного сечения цилиндра A.

Цилиндрический резистор : однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление.Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.

Как уже упоминалось, для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы обладают разным сопротивлением потоку заряда. Мы определяем удельное сопротивление вещества ρ так, чтобы сопротивление объекта R было прямо пропорционально ρ. Удельное сопротивление ρ – это внутреннее свойство материала , независимо от его формы или размера. Напротив, сопротивление R – это внешнее свойство, которое действительно зависит от размера и формы резистора.(Аналогичная внутренняя / внешняя связь существует между теплоемкостью C и удельной теплоемкостью c). Напомним, что объект, сопротивление которого пропорционально напряжению и току, называется резистором.

Типичный резистор : Типовой резистор с осевыми выводами.

Что определяет удельное сопротивление? Удельное сопротивление разных материалов сильно различается. Например, проводимость тефлона примерно в 1030 раз ниже, чем проводимость меди. Почему такая разница? Грубо говоря, металл имеет большое количество «делокализованных» электронов, которые не застревают в каком-либо одном месте, но могут свободно перемещаться на большие расстояния, тогда как в изоляторе (например, тефлоне) каждый электрон прочно связан с одним атомом и требуется большая сила, чтобы оторвать его.Точно так же резисторы могут иметь разные порядки величины. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, тогда как сопротивление человеческого сердца составляет примерно 10 3 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Разность потенциалов (напряжение), наблюдаемая в сети, является суммой этих напряжений, поэтому общее сопротивление (последовательное эквивалентное сопротивление) можно найти как сумму этих сопротивлений:

[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} + \ text {R} _ {2} + \ cdots + \ text {R} _ {\ text {N}} [/ латекс].

В качестве особого случая сопротивление N резисторов, соединенных последовательно, каждый из которых имеет одинаковое сопротивление R, определяется как NR. Каждый резистор в параллельной конфигурации подвержен одной и той же разности потенциалов (напряжению), однако протекающие через них токи складываются . Таким образом, можно вычислить эквивалентное сопротивление (Req) сети:

[латекс] \ frac {1} {\ text {R} _ {\ text {eq}}} = \ frac {1} {\ text {R} _ {1}} + \ frac {1} {\ text {R} _ {2}} + \ cdots + \ frac {1} {\ text {R} _ {\ text {N}}} [/ latex].

Параллельное эквивалентное сопротивление может быть представлено в уравнениях двумя вертикальными линиями «||» (как в геометрии) как упрощенное обозначение.Иногда вместо «||» используются две косые черты «//», если на клавиатуре или шрифте отсутствует символ вертикальной линии. Для случая, когда два резистора включены параллельно, это можно рассчитать по формуле:

[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} \ parallel \ text {R} _ {2} = \ frac {\ text {R} _ {1 } \ text {R} _ {2}} {\ text {R} _ {1} + \ text {R} _ {2}} [/ latex].

В качестве особого случая сопротивление N резисторов, подключенных параллельно, каждый из которых имеет одинаковое сопротивление R, определяется как R / N. Сеть резисторов, которая представляет собой комбинацию параллельного и последовательного соединения, может быть разбита на более мелкие части, которые являются одним или другим, например, как показано на.

Сеть резисторов : В этой комбинированной схеме цепь может быть разбита на последовательный компонент и параллельный компонент.

Однако некоторые сложные сети резисторов не могут быть решены таким образом. Это требует более сложного анализа схем. Одним из практических применений этих соотношений является то, что нестандартное значение сопротивления обычно может быть синтезировано путем соединения ряда стандартных значений последовательно или параллельно. Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных используемых резисторов.В частном случае N идентичных резисторов, все подключенных последовательно или все подключенных параллельно, номинальная мощность отдельных резисторов умножается на N.

Сопротивление, резисторы и удельное сопротивление : краткий обзор сопротивления, резисторов и удельного сопротивления.

Зависимость сопротивления от температуры

Удельное сопротивление и сопротивление зависят от температуры, причем зависимость линейна для малых изменений температуры и нелинейна для больших.

Цели обучения

Сравнить температурную зависимость удельного сопротивления и сопротивления при больших и малых изменениях температуры

Ключевые выводы

Ключевые моменты
  • При изменении температуры на 100ºC или менее удельное сопротивление (ρ) изменяется с изменением температуры ΔT как: [latex] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T }) [/ latex] где ρ 0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления.
  • При больших изменениях температуры наблюдается нелинейное изменение удельного сопротивления с температурой.
  • Сопротивление объекта демонстрирует такую ​​же температурную зависимость, как и удельное сопротивление, поскольку сопротивление прямо пропорционально удельному сопротивлению.
Ключевые термины
  • удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.
  • температурный коэффициент удельного сопротивления : эмпирическая величина, обозначаемая α, которая описывает изменение сопротивления или удельного сопротивления материала в зависимости от температуры.
  • полупроводник : Вещество с электрическими свойствами, промежуточными между хорошим проводником и хорошим изолятором.

Удельное сопротивление всех материалов зависит от температуры. Некоторые материалы могут стать сверхпроводниками (нулевое сопротивление) при очень низких температурах (см.). И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы колеблются быстрее и на больших расстояниях при более высоких температурах, электроны, движущиеся через металл, например, создают больше столкновений, эффективно увеличивая удельное сопротивление.При относительно небольших изменениях температуры (около 100 ° C или менее) удельное сопротивление ρ изменяется с изменением температуры ΔT, как выражено в следующем уравнении:

Сопротивление образца ртути : Сопротивление образца ртути равно нулю при очень низких температурах – это сверхпроводник примерно до 4,2 К. Выше этой критической температуры его сопротивление совершает внезапный скачок, а затем увеличивается почти линейно. с температурой.

[латекс] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]

, где ρ 0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления.Для более значительных изменений температуры α может изменяться, или для нахождения ρ может потребоваться нелинейное уравнение. По этой причине обычно указывается суффикс для температуры, при которой измерялось вещество (например, α 15 ), и соотношение сохраняется только в диапазоне температур вокруг эталона. Обратите внимание, что α положителен для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Температурный коэффициент обычно составляет от + 3 × 10 −3 K −1 до + 6 × 10 −3 K −1 для металлов, близких к комнатной температуре.Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Например, манганин (состоящий из меди, марганца и никеля) имеет α, близкое к нулю, поэтому его удельное сопротивление незначительно меняется с температурой. Это полезно, например, для создания не зависящего от температуры эталона сопротивления.

Обратите также внимание на то, что α отрицательна для полупроводников, что означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока.Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление объекта также зависит от температуры, поскольку R 0 прямо пропорционально ρ. Для цилиндра мы знаем, что R = ρL / A, поэтому, если L и A не сильно изменяются с температурой, R будет иметь ту же температурную зависимость, что и ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, и поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) Таким образом,

[латекс] \ text {R} = \ text {R} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]

– это температурная зависимость сопротивления объекта, где R 0 – исходное сопротивление, а R – сопротивление после изменения температуры T. Многие термометры основаны на влиянии температуры на сопротивление (см.). Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Термометры : Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.

Что произойдет, если сопротивление в цепи уменьшится? – Mvorganizing.org

Что произойдет, если сопротивление в цепи уменьшится?

Ток полностью определяется источником тока.Однако при изменении значения сопротивления напряжение на резисторе будет определяться в соответствии с законом Ома. Увеличение резистора увеличивает напряжение на нем, а уменьшение сопротивления уменьшает напряжение на нем.

Что происходит с мощностью при увеличении сопротивления?

Единица измерения мощности – ватт (Вт). Когда напряжение увеличивается, ток I увеличивается, а мощность, рассеиваемая резистором R, увеличивается. При увеличении номинала резистора I уменьшается, а мощность, рассеиваемая резистором R, уменьшается.

Более высокое сопротивление означает меньшее напряжение?

С точки зрения электричества это представлено двумя цепями с одинаковым напряжением и разным сопротивлением. Цепь с более высоким сопротивлением позволит протекать меньшему количеству заряда, то есть в цепи с более высоким сопротивлением будет меньше тока, протекающего через нее.

Почему сопротивление увеличивается с увеличением напряжения?

По мере увеличения напряжения на резисторе мощность, рассеиваемая резистором, также увеличивается.По мере увеличения мощности температура резистора также увеличивается. По мере увеличения температуры резистора его сопротивление будет изменяться.

Что может вызвать высокое сопротивление в замкнутой электрической цепи?

Если он слишком высокий, одной из возможных причин (среди многих) может быть повреждение проводов из-за горения или коррозии. Все проводники выделяют определенное количество тепла, поэтому перегрев часто связан с сопротивлением. Чем меньше сопротивление, тем больше ток.

Как сопротивление прямо пропорционально длине?

Сопротивление провода прямо пропорционально его длине и обратно пропорционально его площади поперечного сечения. Сопротивление также зависит от материала проводника. См. Удельное сопротивление. Сопротивление проводника или элемента схемы обычно увеличивается с повышением температуры.

Что происходит с током при увеличении площади?

Ответ. Поскольку количество тока, протекающего при постоянном напряжении, увеличивается с увеличением площади поперечного сечения, сопротивление уменьшается.

Больше электронов означает больше тока?

Увеличение напряжения, приложенного к цепи с заданным сопротивлением, увеличивает ток. Этот поток определяется в электронах в секунду после точки. Таким образом, увеличение напряжения увеличивает скорость электронного потока. Число электронов, свободно перемещающихся по материалу, является постоянным.

Что происходит с током, когда длина проводящего провода увеличивается вдвое?

Ответ. Количество проводимого тока через проводящий электрический провод зависит от многих физических характеристик проводящего электрического провода.Таким образом, если длина провода удвоится, сопротивление также увеличится вдвое, и поток электричества соответственно уменьшится.

Увеличивается ли сопротивление с увеличением длины?

Сопротивление прямо пропорционально длине. Это означает, что любое изменение длины материала изменит его значение сопротивления.

Как работают резисторы? Что внутри резистора?

Когда вы впервые узнаете об электричестве, вы обнаружите, что материалы делятся на две основные категории, называемые проводниками и изоляторы. Проводники (например, металлы) пропускают электричество через их; изоляторы (например, пластмассы и дерево), как правило, этого не делают. Но нет ничего так просто, не так ли? Любое вещество будет вести электричество, если на него подать достаточно большое напряжение: даже воздух, который обычно является изолятором, внезапно становится проводником, когда в облаках накапливается мощное напряжение – вот что делает молния.Вместо того, чтобы говорить о проводниках и изоляторах, это часто яснее говорить о сопротивлении: легкость, с которой что-то позволит электричеству течь через него. У проводника низкое сопротивление, в то время как изолятор имеет гораздо более высокое сопротивление. Устройства под названием резисторы позволяют вводить точно контролируемые величины сопротивления в электрические цепи. Давайте подробнее разберемся, что они из себя представляют и как они работают!

Фото: четыре типичных резистора, расположенных бок о бок в электронной схеме.Резистор работает, преобразуя электрическую энергию в тепло, которое рассеивается в воздухе.

Что такое сопротивление?

Электричество течет через материал, переносимый электронами, крошечные заряженные частицы внутри атомов. В широком смысле говоря, материалы, которые хорошо проводят электричество, – это те, которые позволяют электронам свободно течь. через них. В металлах, например, атомы заперты в прочная кристаллическая структура (немного похожа на металлическую подъемную раму в детская площадка). Хотя большинство электронов внутри этих атомов зафиксированные на месте, некоторые из них могут проходить сквозь конструкцию, унося с собой электричество.Поэтому металлы – хорошие проводники: металл относительно небольшое сопротивление протекающим через него электронам.

Анимация: Электроны должны проходить через материал, чтобы переносить через него электричество. Чем тяжелее электронам течь, тем больше сопротивление. Металлы обычно имеют низкое сопротивление потому что электроны могут легко проходить через них.

Пластмассы совсем другие. Хотя часто они твердые, у них нет того же кристаллическая структура.Их молекулы (которые обычно очень длинные повторяющиеся цепи, называемые полимерами), связаны между собой в такие способ, которым электроны внутри атомов полностью заняты. Там Короче говоря, нет свободных электронов, которые могут перемещаться в пластмассах. проводить электрический ток. Пластик – хорошие изоляторы: ставят до высокого сопротивления протекающим через них электронам.

Это все немного расплывчато для такого предмета, как электроника, которая требует точного контроля электрических токов. Вот почему мы определяем сопротивление, точнее, напряжение в вольтах, необходимое для через цепь протекает ток 1 ампер.Если требуется 500 вольт для сделать расход 1 ампер, сопротивление 500 Ом (написано 500 Ом). Ты можешь см. это соотношение, записанное в виде математического уравнения:

V = I × R

Это известно как закон Ома для немецкого языка. физик Георг Симон Ом (1789–1854).

Фото: Используя такой мультиметр, вы можете автоматически определить сопротивление электронного компонента; измеритель пропускает через компонент известный ток, измеряет напряжение на нем и использует закон Ома для расчета сопротивления.Хотя мультиметры достаточно точны, вы должны помнить, что провода и щупы также имеют сопротивление, которое внесет ошибку в ваши измерения (чем меньше сопротивление, которое вы измеряете, тем больше вероятная ошибка). Здесь я измеряю сопротивление громкоговорителя в телефоне, которое, как вы можете видеть на цифровом дисплее, составляет 36,4 Ом. Вставка: переключатель на мультиметре позволяет мне измерять различные сопротивления (200 Ом, 2000 Ом, 20K = 20000 Ом, 200K = 200000 Ом и 20M = 20 миллионов Ом).

Сопротивление бесполезно?

Сколько раз вы слышали такое в фильмах о плохих парнях? Это часто верно и в науке. Если материал имеет высокое сопротивление, он означает, что электричеству будет сложно пройти через него. Чем больше электричеству приходится бороться, тем больше энергии потрачено впустую. Это звучит вроде плохая идея, но иногда сопротивление далеко не «бесполезно» и на самом деле очень полезно.

Фото: Нить накаливания внутри старой лампочки. Это очень тонкий провод с умеренным сопротивлением.Он нагревается, поэтому ярко светится и излучает свет.

В лампочке старого образца, например, электричество проходит через очень тонкий кусок проволоки называется нитью. Провод такой тонкий, что электричество действительно нужно бороться, чтобы пройти через это. Это делает провод чрезвычайно горячий – настолько сильно, что даже излучает свет. Без сопротивление, такие лампочки не работают. Конечно недостаток в том, что приходится тратить огромное количество энергии на нагрев нить.Такие старые лампочки зажигают свет, тепло, поэтому их называют лампами накаливания; Новые энергоэффективные лампочки излучают свет, не выделяя много тепла, благодаря совершенно иному процессу флуоресценции.

Тепло, которое выделяют нити, не всегда тратится впустую. В таких приборах, как электрические чайники, электрические радиаторы, электрические души, кофеварки и тостеры, есть более крупные и прочные версии волокон, называемые нагревательные элементы. Когда через них протекает электрический ток, они получают достаточно горячей, чтобы вскипятить воду или приготовить хлеб.В нагревательных элементах, по крайней мере, сопротивление далеко не бесполезно.

Сопротивление

также полезно в таких вещах, как транзисторные радиоприемники и телевизор. наборы. Предположим, вы хотите уменьшить громкость на телевизоре. Ваш ход ручка громкости, и звук становится тише, но как это происходит? Регулятор громкости на самом деле является частью электронного компонента, называемого переменный резистор. Если вы уменьшите громкость, вы на самом деле повышение сопротивления в электрической цепи, которая приводит в движение громкоговоритель телевизора. Когда вы включаете сопротивление, электрический ток, протекающий по цепи, уменьшается.С меньшим током, меньше энергии для питания громкоговорителя, поэтому он звучит намного тише.

Фотография: «Переменный резистор» – это очень общее название компонента, сопротивление которого может изменяться в зависимости от перемещение диска, рычага или какого-либо элемента управления. Более конкретные типы переменных резисторов включают потенциометры (небольшие электронные компоненты с тремя выводами) и реостаты (обычно намного больше и сделанные из нескольких витков спирального провода со скользящим контактом, который перемещается по катушкам, чтобы «отвести» некоторую часть сопротивления). .Фотографии: 1) Маленький переменный резистор, действующий как регулятор громкости в транзисторном радиоприемнике. 2) Два больших реостата от электростанции. Вы можете увидеть регуляторы набора, которые “отталкивают” большее или меньшее сопротивление. Фото Джека Баучера из журнала Historic American Engineering Record любезно предоставлено Библиотекой Конгресса США.

Как работают резисторы

Люди, занимающиеся изготовлением электрических или электронных цепей для особых рабочие места часто нуждаются в точном сопротивлении. Они могут сделайте это, добавив крошечные компоненты, называемые резисторами.Резистор – это маленький пакет сопротивления: подключите его к цепи, и вы уменьшите ток на точную величину. Снаружи все резисторы выглядят более-менее то же самое. Как вы можете видеть на верхнем фото на этой странице, резистор – это короткий червеобразный компонент с цветными полосами на сторона. Он имеет два соединения, по одному с каждой стороны, так что вы можете зацепить это в цепь.

Что происходит внутри резистора? Если вы сломаете одну открытую и соскоблите внешнее покрытие изоляционной краски, вы можете увидеть изолирующий керамический стержень, проходящий через середину, с медной проволокой, обернутой снаружи.Такой резистор называют проволочной обмоткой. Количество витков меди регулирует сопротивление очень точно: чем больше витков меди, тем тоньше медь, тем выше сопротивление. В резисторах меньшего номинала предназначен для схем малой мощности, медная обмотка заменена на спиральный узор из углерода. Такие резисторы намного дешевле марки и называются карбон-пленкой. Как правило, резисторы с проволочной обмоткой более точны и стабильны при более высоких рабочих температурах.

Фото: внутри резистора с проволочной обмоткой.Разломайте пополам, соскребите краску, и вы сможете отчетливо увидеть изолирующий керамический сердечник и проводящий медный провод, обернутый вокруг него.

Как размер резистора влияет на его сопротивление?

Предположим, вы пытаетесь протолкнуть воду по трубе. Различные виды трубок будут более или менее услужливыми, поэтому более толстая труба будет сопротивляться воде меньше, чем более тонкая и более короткая труба будет оказывать меньшее сопротивление, чем более длительное. Если вы заполните трубу, скажем, галькой или губкой, вода будет по-прежнему просачиваться через него, но гораздо медленнее.Другими словами, длина, площадь поперечного сечения (площадь вы смотрите в трубу, чтобы увидеть, что внутри), и все, что внутри трубы, влияет на ее сопротивление воде.

Электрические резисторы очень похожи – на них действуют те же три фактора. Если вы сделаете провод тоньше или длиннее, электронам будет труднее перемещаться по нему. И, как мы уже видели, электричеству труднее проходить через одни материалы (изоляторы), чем через другие (проводники). Хотя Георг Ом наиболее известен тем, что связывает напряжение, ток и сопротивление, он также исследовал эту взаимосвязь. между сопротивлением и размером и типом материала, из которого изготовлен резистор.Это привело его к другому важному уравнению:

R = ρ × L / A

Проще говоря, сопротивление (R) материала увеличивается с увеличением его длины (поэтому более длинные провода обеспечивают большее сопротивление) и увеличивается с уменьшением его площади (более тонкие провода обеспечивают большее сопротивление). Сопротивление также связано с типом материала, из которого изготовлен резистор, и это обозначено в этом уравнении символом ρ, который называется удельным сопротивлением и измеряется в единицах Ом · м (омметры).У разных материалов очень разные удельные сопротивления: проводники имеют гораздо более низкое удельное сопротивление, чем изоляторы. При комнатной температуре алюминий имеет примерно 2,8 x 10 -8 Ом · м, а медь (лучший проводник) значительно ниже 1,7 -8 Ом · м. Кремний (полупроводник) имеет удельное сопротивление около 1000 Ом · м, а стекло (хороший изолятор). измеряет около 10 12 Ом · м. Из этих цифр видно, насколько разные проводники и изоляторы обладают способностью переносить электричество: кремний примерно в 100 миллиардов раз хуже, чем медь, а стекло снова примерно в миллиард раз хуже!

Диаграмма: Хорошие проводники: сравнение удельного сопротивления 10 обычных металлов и сплавов с удельным сопротивлением серебра при комнатной температуре.Например, вы можете видеть, что нихром, сплав, используемый в нагревательных элементах, имеет примерно в 66 раз большее сопротивление, чем аналогичный кусок серебра. Данные из разных источников.

Сопротивление и температура

Сопротивление резистора непостоянно, даже если это определенный материал фиксированной длины и площади: оно постепенно увеличивается на с ростом температуры. Почему? Чем горячее материал, тем сильнее его атомы или ионы качаются и тем труднее его выдерживать. электроны должны пробираться сквозь них, что приводит к более высокому электрическому сопротивлению.Говоря в широком смысле, удельное сопротивление большинства материалов линейно увеличивается с температурой (поэтому, если вы увеличите температура на 10 градусов, удельное сопротивление увеличивается на определенную величину, а если его увеличивать еще на 10 градусов удельное сопротивление снова возрастает на ту же величину). Если вы охладите материал , вы снизите его удельное сопротивление, а если охладите его до чрезвычайно низкого температуры, иногда можно заставить сопротивление вообще исчезнуть, в известном явлении как сверхпроводимость.

Диаграмма: Сопротивление материала увеличивается с температурой. На этой диаграмме показано, как удельное сопротивление (основное сопротивление материала, независимо от его длины или площади) увеличивается почти линейно при повышении температуры от абсолютного нуля до примерно 600 К (327 ° C) для четырех обычных металлов. Построено с использованием исходных данных из “Удельное электрическое сопротивление выбранных элементов” П. Десаи и др., J. Phys. Chem. Ref. Data, Том 13, № 4, 1984 г. и «Удельное электрическое сопротивление меди, золота, палладия и серебра» Р.Matula, J. Phys. Chem. Ref. Data, Vol 8, No. 4, 1979, любезно предоставлено Национальным институтом стандартов и технологий США. Открытые данные.

Закон

Ома: определение и взаимосвязь между напряжением, током и сопротивлением – видео и стенограмма урока

Закон Ома

Взаимосвязь между напряжением, током и сопротивлением описывается законом Ома . Это уравнение, i = v / r , говорит нам, что ток, i , протекающий по цепи, прямо пропорционален напряжению, v , и обратно пропорционален сопротивлению, r .Другими словами, если мы увеличим напряжение, то увеличится и ток. Но, если мы увеличим сопротивление, то ток уменьшится. Мы увидели эти концепции в действии с садовым шлангом. Увеличение давления привело к увеличению потока, но изгиб шланга увеличил сопротивление, что привело к уменьшению потока.

Эта диаграмма – простой способ решать уравнения.

Как здесь написано уравнение, было бы легко использовать закон Ома, чтобы вычислить ток, если бы мы знали напряжение и сопротивление.Но что, если бы мы вместо этого захотели вычислить напряжение или сопротивление? Один из способов сделать это – переставить члены уравнения для решения других параметров, но есть более простой способ. Приведенная выше диаграмма даст нам соответствующее уравнение для решения любого неизвестного параметра без использования алгебры. Чтобы использовать эту диаграмму, мы просто закрываем параметр, который пытаемся найти, чтобы получить правильное уравнение. Это станет более понятным, когда мы начнем его использовать, поэтому давайте рассмотрим несколько примеров.

Закон Ома в действии

Ниже представлена ​​простая электрическая схема, которую мы будем использовать для выполнения наших примеров. Наш источник напряжения – это аккумулятор, подключенный к лампочке, которая обеспечивает сопротивление электрическому току. Для начала предположим, что наша батарея имеет напряжение 10 вольт, электрическая лампочка имеет сопротивление 20 Ом, и нам нужно вычислить ток, протекающий по цепи. Используя нашу диаграмму, мы закрываем параметр, который мы пытаемся найти, то есть ток, или i , и это оставляет нам напряжение v над сопротивлением r .Другими словами, чтобы найти ток, нам нужно разделить напряжение на сопротивление. Делая математические вычисления, 10 вольт, разделенные на 20 Ом, дают половину ампера тока, протекающего в цепи.

Чтобы найти ток, разделите напряжение (20 вольт) на сопротивление (20 Ом).

Теперь давайте увеличим напряжение, чтобы посмотреть, что происходит с током. Мы будем использовать ту же лампочку, но перейдем на 20-вольтовую батарею.Используя то же уравнение, что и раньше, мы разделим 20 вольт на 20 Ом, и мы получим 1 ампер тока. Как мы видим, удвоение напряжения привело к удвоению тока. Это имеет смысл, когда мы думаем о садовом шланге. Если бы мы увеличили давление в шланге, можно было бы ожидать, что поток воды также увеличится. Всегда полезно перепроверить свою работу, спросив, соответствуют ли результаты тому, что вы ожидали.

Если бы мы увеличили сопротивление лампочки, что бы вы ожидали, что произойдет с током? Чтобы выяснить это, давайте заменим нашу существующую лампочку на другую с сопротивлением 40 Ом.Поскольку мы все еще ищем ток, мы используем то же уравнение, что и раньше. Разделив 20 вольт на 40 Ом, мы получим половину ампера тока. Этот результат говорит нам, что удвоение сопротивления уменьшило ток вдвое. Вы этого ожидали? Если вернуться к нашему шлангу, логично предположить, что перегиб в шланге уменьшит поток воды, точно так же, как увеличение сопротивления в цепи уменьшит ток.

До сих пор мы только рассчитали ток в цепи, но что, если бы кто-то поменял нашу лампочку, когда мы не смотрели, и нам нужно было вычислить сопротивление новой? Что ж, мы знаем, что напряжение нашей батареи составляет 20 вольт, и мы можем измерить ток в цепи с помощью инструмента, называемого амперметром, поэтому все, что нам осталось, – это выполнить некоторые вычисления.Используя нашу диаграмму, мы скрываем параметр, который мы пытаемся найти, а именно сопротивление, r . Схема теперь показывает нам, что нам нужно разделить напряжение на ток. Если наш амперметр измерил ток в 5 ампер, протекающий по цепи, то сопротивление будет равно 20 вольт, разделенным на 5 ампер, что составляет 4 Ом

Чтобы определить напряжение, умножьте силу тока (3 ампера) на сопротивление (4 Ом).

Наконец, представьте, что кто-то заменил нашу батарею, и нам нужно выяснить ее напряжение.Процесс почти такой же. Мы знаем, что наша новая лампочка имеет сопротивление 4 Ом, и мы можем измерить ток в цепи с помощью амперметра. Используя диаграмму, мы покрываем напряжение v , которое говорит нам, что нам нужно умножить ток на сопротивление. Если бы амперметр измерил ток в 3 ампера, тогда напряжение было бы 3 ампера, умноженным на 4 Ом, что составляет 12 вольт. Вот и все. Зная любые два из трех параметров, мы всегда можем вычислить третий, используя закон Ома.

Резюме урока

Закон Ома определяет соотношение между напряжением, током и сопротивлением в электрической цепи: i = v / r . Ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Это означает, что увеличение напряжения приведет к увеличению тока, а увеличение сопротивления приведет к уменьшению тока. Зная любые два из трех параметров, мы можем вычислить третий, неизвестный параметр.Мы можем сделать это, переставив члены в уравнении закона Ома или используя диаграмму, приведенную выше в уроке. Скрытие параметра, который мы пытаемся найти, показывает нам соответствующее уравнение с использованием двух известных параметров.

Результаты обучения

По завершении этого урока вы сможете:

  • Описывать взаимосвязь между напряжением, током и сопротивлением, используя закон Ома
  • Напишите уравнение закона Ома
  • Объясните, как можно найти любую из трех переменных в уравнении закона Ома, если вы знаете две другие
  • Рассчитайте любую из трех переменных, используя уравнение закона Ома
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *