Генератор электрического тока: виды приборов, принцип работы
Выбор генератора — процесс, который во многом опирается на личные предпочтения. Для кого-то предпочтительны мобильность с малым весом. Другим важна автоматизация, длительная работа при любых условиях. Но в любом случае надо опираться ещё и на подходящую мощность. Есть другие параметры, способные сказаться на итоговом решении, когда выбирают генератор электрического тока.
Как работает
В камерах двигателя размещается сжатое топливо, которое может воспламеняться. В процессе горения образуются газы, начинающие вращать коленвал. Из-за этого начинает работать ротор альтернатора. В статоре образуется магнитное поле.
Электрический генератор
Результат процессов, описанных ранее, — появление индукционного электрического тока в обмотке. Он доступен для потребления сразу на выводе устройства, любыми другими приборами. Поездки на природу, резервное питание — ситуации, когда подобные решения становятся актуальными. В этом случае электрический генератор незаменим.
Типы генераторов
Одна из классификаций генераторов основана на источнике, из которого поступает энергия. Ток в результате работы внутренних компонентов тоже выделяется разный, что помогает выделить и другие группы. У каждой разновидности свои особенности, положительные и отрицательные стороны.
Бензиновый
В большинстве своём мощность таких устройств не превышает 20 кВт. Сфера использования приборов достаточно широкая:
- Загородные дома.
- Дачи.
- Питание ручных электроинструментов.
- Небольшие станки, и так далее.
Модели
Освещение придомовой территории, торговых площадей, автомобильных стоянок — работы, выполнение которых для таких видов генераторов электрического тока не представляет хлопот.
Интересно! АИ-92 — марка бензина, которая стандартно выступает в качестве источника топлива для большинства моделей. 76 и 95 — разновидности топлива, которые тоже разрешают использовать, но кратковременно.
Бензиновые генераторы для переменного тока бывают мобильными, либо стационарными. Колёсной парой оснащают установки, характеризующиеся повышенной мощностью. Ручной запуск или стартер применяют в равной степени, в зависимости от основных характеристик модели. Звукопоглощающий кожух используют, чтобы работа устройства была не такой шумной.
Дизельные
Мощность приборов этого класса может достигать 3 мВт. Для загородных домов и дач это неплохие источники постоянной энергии. Мощное деревообрабатывающее оборудование тоже часто питается за счёт автономных дизельных источников переменного электрического тока. То же касается станков с другим назначением. Дизель-генераторы иногда используют для обеспечения током целых посёлков.
Внутреннее устройство
Установки и в этом случае отличаются стационарным либо мобильным исполнением. Отличительная черта — шумная работа. Поэтому в некоторых случаях не обойтись без специальных кожухов, поглощающих звуки от электрических генераторов.
Дизель-генераторы отличаются от бензиновых аналогов уменьшенным потреблением топлива. И сами исходные материалы стоят дешевле. У дорогих моделей поддерживаются дополнительные функции:
- Управление процессом генерации энергии.
- Автоматическое включение в работу при возникновении аварийных ситуаций.
Газовые
При выборе главное — определиться, в каком режиме оборудование будет работать на постоянной основе. Здесь специалисты дают несколько рекомендаций:
- При организации полного автономного электроснабжения дома рекомендуется отдать предпочтение моделям с жидкостным охлаждением ДВС, рассчитанным на бесперебойную эксплуатацию.
- Резервные модели актуальны, если на территории участка часто отключают свет. Обычно они не могут работать дольше 10-20 часов. После этого требуется перерыв, не обойтись и без технического регламентного обслуживания.
Запуск
Устройства могут работать на сжиженном либо природном газе. Последний вариант больше подходит для приспособлений, настроенных на основное энергосбережение. Резервные варианты лучше применять совместно с баллонами сжиженного газа. Сейчас выпускаются модели, поддерживающие обе разновидности топлива сразу.
Некоторые допускают работу с помощью бензина. Поэтому можно не волноваться о том, что владельцы останутся без электричества.
Классификация генераторов
Существует несколько признаков, на основании которых электрический генератор можно отнести к одной из разновидностей:
- Сфера применения.
- Режимы работы.
- Фазность.
- Автономность.
Эксплуатация
По каждому из признаков надо изучить модель заранее, тогда и выбор проще будет сделать.
Автономность
Полная независимость от централизованных источников энергии — одно из главных преимуществ, которыми обладают современные генераторы. В зависимости от этого показателя, модели делятся на мобильные либо стационарные.
Стационарные
Речь идёт о генераторных станциях, в основе работы которых — дизельные двигатели. Подходят для снабжения электрической энергии потребителей, удалённых от других подобных объектов. Обеспечивают снабжение током на тех территориях, где даже малейшая остановка производственных процессов приведёт к серьёзным негативным последствиям.
Мобильные
Чаще всего эти агрегаты — самые компактные. Допускают перемещение в пространстве установки. У передвижных станций сфера применения довольно широка:
- Электросварка.
- Местное освещение.
- Снабжение током бытовых электроприборов, и так далее.
Обслуживание и ремонт
Внутри оборудования размещают двигатель внутреннего сгорания, который способен работать на дизельном топливе либо бензине. Агрегаты отличаются друг от друга по габаритам. Одного человека хватает, чтобы перемещать только самые маленькие устройства. Но есть мобильные варианты, монтаж которых проводят на автомобильных прицепах.
Фазность
Агрегаты разделяют на трёх- и однофазные в зависимости от внутренней структуры устройств.
Однофазные
Отличаются способностью производить однофазный ток. Питание бытовых приборов — главное назначение устройств. Обычно аппараты выпускают мобильными, чтобы с ними было проще обращаться. Частные домовладения — объекты, внутри которых однофазные агрегаты можно встретить чаще всего. Например — для удовлетворения различных нужд на бытовом уровне.
Трёхфазные
Питание силового электрооборудования — вот в чём состоит основная функция. Иногда происходит разделение такой энергии по нескольким фазам. Для питания электропроводки это очень удобное решение, позволяющее развести линию на несколько частей.
Интересно! Главное — чтобы мощность потребления у всех линий оставалась примерно одинаковой. Генератор быстро выходит из строя, если между значениями образуется серьёзная разница.
Режимы работы
Основные и резервные — две главные разновидности режимов работы согласно этой классификации.
Основные
Такие аппараты созданы, чтобы работать на постоянной основе. Группу промышленных установок представляют мощные электрогенераторы, снабжённые дизельными двигателями. Актуальны для объектов, которым наличие электрической энергии требуется постоянно.
Резервные
По названию легко понять, что такие электрические генераторы применяются лишь в некоторых, исключительно крайних случаях. Например, если централизованное электроснабжение отключают на некоторое время. Такие приборы могут включаться, если срабатывает реле, реагирующее на уменьшение напряжения. Беспрерывная работа допустима только на протяжении нескольких часов.
Сфера применения
Генераторы выпускают с расчётом на два основных направления — бытовые условия либо промышленные объекты.
В быту
Выбор бытовых генераторов на современном рынке порадует любого потребителя, вне зависимости от масштабов и запросов. Обычно выбирают однофазные установки, способные наладить бесперебойное снабжение электрическим током при аварийных ситуациях. Питание выносного электрооборудования — ещё одна сфера применения. Качество тока становится особенно важным показателем, если речь идёт о бытовых электроприборах, применяющих цифровую элементную базу. В этом случае энергия должна обладать такими параметрами: 220 В, 1 А, 50 Ггц.
На даче
При электросварочных работах применяют установки, обладающие повышенной мощностью. Преимущество в том, что для формирования электромеханической дуги вырабатывается ток с серьёзной силой.
Обратите внимание! Если в инструкции не описано сразу применение для электросварки, то стоит отказаться от подобной идеи. Иначе генераторы быстро портятся.
Промышленные объекты
Чаще речь идёт о независимых мощных стационарных установках. Они актуальны для промышленных предприятий и целых жилых районов, больниц, общественных учреждений с высокой проходимостью. Тогда такие механические приспособления актуальны.
Качество эксплуатации: от каких факторов зависит?
Есть некоторые важные параметры, без расчёта которых нельзя сделать правильный выбор.
Для этого надо заранее посчитать, какую мощность потребляют все устройства, установленные дома. Нагрузка от основных потребителей может быть активной и реактивной. Главное — учитывать некоторый запас, применять соответствующие коэффициенты.
Что внутри?
1-1,3 — в таком диапазоне находится коэффициент активной нагрузки для бытовых электрических приборов. 3 — тот же параметр, но для устройств, работающих с реактивной нагрузкой.
Важно! Нужно сложить все виды нагрузки друг с другом, чтобы понять, какой агрегат требуется в том или ином случае. 15% откладывают про запас сверху. Ведь со временем иногда увеличивают количество электрических приборов. При пуске некоторые приборы потребляют гораздо больше энергии, чем указано в сопроводительной документации.
- Разновидность нагрузки, с которой работает генератор.
Бывают сети с напряжением 220 и 380 В. Многие думают, что последний вариант — универсальный, потому ему и следует отдать предпочтение в большинстве случаев. Но лучше всё-таки остановить выбор на однофазной сети, если нет планов по подключению приборов с соответствующими характеристиками.
Иначе при монтаже электропроводки возникают проблемы, которые не удаётся предвидеть сразу.
- Разновидности используемого топлива для генерирования тока.
Надёжность большинства современных установок остаётся практически одинаковой. Существенное отличие — только в стоимости приборов и источников энергии для них.
Выбор агрегата
При покупке генератора рекомендуют сразу решить, для каких целей нужна установка. Если это резервный источник питания — учёту подлежит минимальный набор приборов. Чтобы организовать полностью автономную систему, надо посчитать все приборы, добавить к ним минимум 20%.
Работа зимой
Выбирая между бензиновыми и дизельными агрегатами, покупатель должен ответить для себя на несколько вопросов:
- Количество фаз.
- Разновидность запуска двигателя для той или иной ситуации.
- Допустимый уровень по шуму.
- Необходимый показатель мощности.
- Траты на приобретение агрегата.
- Какому производителю решено довериться? Это важно и для неэлектрических установок.
Каким компаниям доверять?
Выпуском электрических генераторов занимаются не только известные компании, но и те, что появились совсем недавно. В имеющемся ассортименте легко запутаться без некоторой подготовки.
Стационарная установка
Отечественному покупателю хорошо известны следующие несколько названий:
- «Вепрь». Пользуется наибольшим спросом среди российских компаний, занимающихся этим направлением. Мощность находится в диапазоне от 2 до 230 кВт. Генераторы подходят как для бытового, так и для промышленного применения. WAY — модели, подходящие для эксплуатации в домашних условиях.
- SDMO. Ещё один производитель, модели которого встречаются в большом количестве. Агрегаты и в этом случае с двигателями, работающими на 1 либо на 3 фазах. Мощность, внешнее исполнение — главное отличие между разными моделями. Корпус с шумопоглощением отлично подходит тем, кто использует именно бытовые разновидности генераторов. Воздушное охлаждение, мощность до 10 кВа — характеристики отдельного класса устройств. Они часто снабжаются дополнительными выходами для переменного либо постоянного тока. Электростартер дополняет стационарные разновидности моделей. Они устанавливаются на раме или внутри контейнеров с функцией шумоизоляции.
- Geko. Производитель с широкой линейкой продукции для любых условий. Создаёт не только бытовые модели, но и варианты с более узкой специализацией. Внутри моделей устанавливают одно- или трёхфазный двигатель в зависимости от того, какие цели преследует потребитель. Запуск — ручной либо его заменяет электростартер. У некоторых моделей есть кожухи, поглощающие шумы. Встроенная панель автоматического запуска тоже становится неплохим дополнением к стандартным электростанциям.
О сварочных генераторах
Пользователи часто интересуются, можно ли соединять с генераторами сварочное оборудование. Производители говорят, что такое возможно, но только для сварочных инверторов. Главное — эксплуатировать оборудование без перегрузки. Это напрямую влияет на продолжительность эксплуатационного срока.
Подключение
Для варки рекомендуют применять электрод не более 2 мм. Больший диаметр нецелесообразно выбирать, это негативно скажется на сварке.
Обеспечение требований безопасности
Обычно генераторы устанавливают вне закрытых мест. Главное — чтобы они находились там, где гарантирована полная защита от осадков, других воздействий внешней среды. Токсичность продуктов выхлопа — главная причина, по которой генераторы запрещается эксплуатировать именно в закрытых помещениях.
Обратите внимание! Твёрдая неподвижная горизонтальная поверхность без возвышений — оптимальная опора для установки. При монтаже надо проследить за тем, чтобы присутствовало свободное пространство площадью минимум 1 квадратный метр. Такое расстояние должно остаться с каждой стороны от генератора. Это необходимо, чтобы организовать свободную циркуляцию воздуха, исключить теплопередачу от генератора в сторону окружающих предметов.
Со стороны выпускного отверстия не должно быть посторонних предметов. Они могут повредить конструкцию либо стать источником дополнительной опасности для неё. На вентиляционные отверстия тоже не должно попадать никаких загрязнений.
К генератору не должны иметь доступ дети и другие посторонние лица. То же касается других людей, которым не знаком принцип безопасной эксплуатации.
Самостоятельный ремонт генераторов под запретом, для этого надо приглашать специалистов.
Нахождения источников пламени, тлеющего горения рядом с агрегатом недопустимо. Иначе преобразовывать энергию безопасно не получится.
Компактные приборы
Дополнительная информация о подключении, эксплуатации
Установку тоже лучше доверить специалистам, чтобы прибор работал в дальнейшем без перебоев. В этом случае он не станет и источником опасности для окружающих. Подключение прибора предполагает соединение его электропроводки с централизованной сетью. Поэтому требуется соблюдение дополнительных правил по безопасности.
Вот основные рекомендации:
- Когда монтажные работы завершены — агрегат готовят к эксплуатации.
- Для этого проверяют уровень масла в картере.
- Такую процедуру осуществляют, пока агрегат находится на ровной горизонтальной поверхности.
- По мере расходования производят заправку топливом.
- Если агрегат внутри помещения — при обслуживании обязательно проветрить.
- Заправка не допускает курение, использование открытого огня.
- Бензин заливают максимально аккуратно, не допуская протечек.
Один из вариантов
Когда подготовительные работы завершены, двигатель запускают. За это отвечает ручной или электрический стартер, в зависимости от модели.
Генераторы переменного тока на современном рынке представлены в большом количестве моделей. Каждый делает окончательный выбор в зависимости от потребностей, целей использования. Различные системы питания, диапазон мощности определяются объектом, внутри которого монтируют установку. Иногда оценивают доступность конкретных видов топлива на территории того или иного региона. Рекомендуется выбирать модели, обслуживание которых требует наименьших затрат.
rusenergetics.ru
Виды генераторов электрического тока
Другие направления деятельности ООО «Кронвус-Юг»
www.4akb.ruОборудование для
обслуживания аккумуляторов
Промышленное и
автосервисное оборудование
Производство мебели
специального назначения
Слесарные верстаки и
производственная мебель
Генераторы представляют собой устройства, которые преобразуют механическую энергию в электрическую. Как правило, они производят электрический ток двух видов – постоянный и переменный.
Генераторы постоянного и переменного тока
Если рассматривать генератор постоянного тока, то в его состав его конструкции входит неподвижный статор с вращающимся ротором и дополнительной обмоткой. За счет движения ротора вырабатывается электрический ток. Генераторы постоянного тока в основном используются в металлургической промышленности, морских судах и общественном транспорте.
Генераторы переменного тока вырабатывают энергию за счет вращения ротора в магнитном поле. Путем вращения прямоугольного контура вокруг неподвижного магнитного поля, механическая энергия преобразуется в электрический ток. Данный вид генератора имеет преимущество в том, что ротор (основной движущий элемент) вращается быстрее, чем в генераторах переменного тока.
Синхронные и асинхронные генераторы
Генераторы, вырабатывающие переменный ток бывают синхронными и асинхронными. Они отличаются друг от друга своими возможностями. Мы не будем подробно рассматривать их принцип работы, а остановимся лишь на некоторых особенностях.
Синхронный генератор конструктивно сложнее асинхронного, вырабатывает более чистый ток и при этом легко переносит пусковые перегрузки. Синхронные агрегаты отлично используются для подключения техники, которая чувствительно реагирует на перепады напряжения (компьютеры, телевизоры и различные электронные устройства). Также, отлично справляются с питанием электродвигателей и электроинструментов.
Асинхронные генераторы, благодаря простоте конструкции достаточно стойки к короткому замыканию. По этой причине они используются для питания сварочной техники и электроинструментов. К данным агрегатам ни в коем случае нельзя подключать высокоточную технику.
Однофазные и трехфазные генераторы
Необходимо учитывать характеристику, связанную с типом вырабатываемого тока. Однофазные модели выдают 220 В, трехфазные – 380 В. Это очень важные технические параметры, которые необходимо знать каждому покупателю.
Однофазные модели считаются самыми распространенными, поскольку часто используются для бытовых нужд. Трехфазные позволяют напрямую снабжать электроэнергией крупные промышленные объекты, здания и целые поселки.
Перед покупкой генератора, необходимо владеть определенной технической информацией, понимать, чем они отличаются, поскольку это поможет Вам выбрать достойную модель, конкретно для ваших нужд, а также избавиться от лишних хлопот и сэкономить средства.
Компания «ООО «Кронвус-Юг»» реализует и изготавливает бензиновые, дизельные, и газовые электростанции, которые вы можете купить по выгодной цене.
www.one-power.ru
Устройство генератора тока | У электрика.ру
Приветствую всех на нашем сайте. Сегодня мы поговорим об устройстве генератора тока. Попробуем максимально охватить данную тему и рассмотреть устройство генераторов постоянного и переменного токов.
На самом деле, не совсем верно называть это устройство генератором именно переменного или постоянного тока, поскольку, ток возникает только в замкнутом контуре. В общем, в обмотках генератора возникает ЭДС, а не ток. Ток начинает протекать только тогда, когда к обмоткам подключается какой-либо потребитель. Однако, в этой статье мы будем пользоваться устоявшимися понятиями.
Какие бы ни были электрические генераторы основной их принцип – выработка электрической энергии за счёт вращения обмотки в магнитном поле. Это значит, что можно выделить два схематических вида генераторов: либо мы вращаем магнитное поле в неподвижном проводнике, либо вращаем проводник в неподвижном магнитном поле.
Содержание:
Устройство генератора переменного тока
Итак, относительно устройства генератора переменного тока и принципа его действия.
Наибольшее распространение получили генераторы переменного тока с неподвижным проводником. Обусловлено это тем, что ток возбуждения по отношению к току, который получают с генератора, небольшой. Если посмотрите на картинку, то увидите два кольца, по которым протекает ток обмотки возбуждения и это слабое звено любого генератора с обмоткой возбуждения. То есть, либо по кольцам через щётки мы подаем небольшой ток возбуждения, либо через кольца снимаем большой рабочий ток. В электричестве неподвижная часть генераторов или двигателей, на которой находится обмотка, называется статором. Подвижная часть может называться ротором или якорем.
Основные виды генераторов переменного тока
Видов генераторов довольно много. Попробуем классифицировать их по основным направлениям.
- По виду используемой энергии:
- Энергия ветра
- Энергия газа
- Энергия жидкого топлива
- Энергия тепла
- Энергия воды
- По типу генератора:
- Однофазный
- Трёхфазный
- Синхронный
- Асинхронный
- По количеству полюсов статорной обмотки
Есть и другие типы, но они менее распространены.
- По типу возбуждения:
- Независимое возбуждение. В этом случае на одном валу с генератором переменного тока находится еще и генератор постоянного тока, который питает только обмотку возбуждения. Возбуждение в таком случае может выполняться и любым другим источником тока, например, аккумулятором.
- Самовозбуждение. В этом случае, напряжение для обмотки возбуждения получают непосредственно с используемого генератора.
- Возбуждение с помощью магнитов, которые располагаются на статоре или на якоре, что значительно упрощает устройство генератора, но с помощью такого способа получить мощные генераторы не получится.
Синхронный генератор : схема, устройство, принцип работы
Что значит синхронный по отношению к двигателю или генератору? Если совсем просто, то частота переменного тока жёстко зависит от скорости вращения ротора электрической машины и наоборот. Таким образом, можно относительно легко контролировать частоту переменного тока. Сам по себе синхронный генератор имеет ряд преимуществ, благодаря которым стал наиболее распространенным. Скажу вам по большому секрету, именно синхронные генераторы используются на всех станциях, где производят электричество.
Приводным двигателем (на схеме обозначен как ПД) может выступать любое вращающее устройство: двигатель, турбина, крыльчатка ветряной мельницы или водяного колеса. На одном валу с ПД находится ротор генератора с обмоткой возбуждения. На обмотку подается постоянное напряжение и вокруг обмотки образуется магнитное поле. Когда ротор вращается, в обмотках статора возникает ЭДС, то есть появляется напряжение, только уже переменное, частота которого зависит от скорости вращения ротора n1 и количества пар полюсов p. Частоту ЭДС можно высчитать по формуле.
Асинхронный генератор: схема, устройство, принцип работы
Устройство асинхронного генератора
Асинхронный генератор, это, по сути, асинхронный двигатель. То есть, любой асинхронный двигатель можно перевести в режим генерации энергии и наоборот. Конструктивно, устройство, которое называют генератором, выполнено таким образом, чтобы иметь хорошее охлаждение. Глубоко останавливаться на принципе действия асинхронных машин не будем, но вкратце расскажу, почему их называют асинхронными на примере двигателя.
Когда на обмотки статора подается напряжение, образуется магнитное поле, у трёхфазных двигателей оно круговое, у однофазных эллипсообразное, стремящееся к круговому. Магнитное поле начинает пересекать витки обмотки статора. В короткозамкнутой обмотке ротора возникает ЭДС, то есть напряжение, а поскольку обмотка короткозамкнутая, по ней начинает протекать ток, который тоже создает магнитное поле. Взаимодействие этих магнитных полей приводит ротор в движение. Что будет, если скорость ротора станет равна скорости магнитного поля, создаваемого статором? Правильно, магнитное поле статора перестанет пересекать обмотку ротора. Это можно сравнить с тем, что две машины двигаются на одинаковой скорости. Вроде бы машины двигаются, но при этом по отношению друг к другу они словно стоят на месте, просто земля с большой скоростью проносится под машинами. Так вот, как только скорость ротора и скорость магнитного поля статора станут одинаковыми, в обмотке ротора перестанет вырабатываться ЭДС, прекратится взаимодействие магнитных полей статора и ротора и ротор начнёт останавливаться. Поэтому скорость вращения ротора асинхронного двигателя всегда несколько меньше скорости вращения магнитного поля статора и эта величина называется скольжение.
Так вот, чтобы асинхронный двигатель стал генератором, надо определить скольжение и увеличить скорость вращения ротора на эту величину. Допустим, мы имеем однополюсный трехфазный асинхронный двигатель со скоростью вращения вала 2800 оборотов. Если бы такой двигатель был синхронным, скорость вращения составила бы 3000 оборотов. То есть скольжение составляет 200 оборотов в минуту. Это значит, что если мы начнём вращать ротор со скоростью 3200 оборотов в минуту, то двигатель перейдёт в генераторный режим и будет уже не потреблять, а вырабатывать ЭДС.
Сложность применения таких генераторов в том, что они подвержены провалам. Например, если включить активную нагрузку (лампочку накаливания или нагреватель), пусковой ток будет небольшим. Значительной перегрузки не произойдет, и генератор будет работать стабильно. Если же включить реактивную нагрузку, например, двигатель, то будет большой пусковой ток, превышающий номинальный в 5-20 раз, который «провалит» генератор, то есть вызовет резкое падение напряжения на обмотках генератора. После такого провала асинхронный генератор снова нужно возбуждать. Так что, простота асинхронного генератора перевешивается серьезным недостатком.
Ну и еще нужна конденсаторная установка для возбуждения короткозамкнутой обмотки ротора. Если подобрать неверно ёмкость конденсаторов, то в случае «недобора» от генератора мы получим меньше тока, а в случае «перебора», наш генератор будет сильно перегреваться.
Схемы подключения
Собственно, даже не схемы включения, а варианты. Их, как правило, три:
- Автоматическое включение. В этом случае устанавливается специальный блок аварийного включения. Как только отключают напряжение в сети, блок подаёт команду на запуск генератора и переключает сеть с внешнего источника питания, на генераторную установку.
- Ручное включение. В этом случае, пользователь сам проводит операцию переключения с внешнего источника питания на генераторную установку и вручную запускает генератор.
- Синхронная работа. Такой режим, в основном используется на крупных станциях, генераторы которых объединены в одну сеть. Все генераторы этой сети работают синхронно, с одной частотой, с одной очерёдностью фаз и с одинаковым напряжением на обмотках статора.
Однофазный генератор
Здесь я подробно останавливаться не буду. Такие устройства сейчас можно встретить в любом магазине инструментов. Если однофазный генератор используется как запасной источник электроэнергии, то подключается к домовой сети, как правило, посредством рубильника. То есть, одновременно внешний источник питания и генератор на одну сеть не могут – либо то, либо другое. Во-первых, незачем, во-вторых, это сильно усложнило бы и увеличило стоимость бытовых генераторов. Единственное, на чём могу здесь остановиться, это включение однофазного генератора в трёхфазную сеть.
Включение однофазного генератора в трёхфазную сеть
Однако у такого метода есть свой недостаток. Трёхфазные двигатели в такой сети работать не будут, если же их включить, то очень быстро нагреются и выйдут из строя.
Трехфазный генератор
Трёхфазные генераторы могут быть бытовыми и промышленными. Устройство генератора трёхфазного тока в бытовом варианте практически ничем не отличается от однофазного, как и схема включения. Единственное условие при включении бытового генератора в сеть, если в такой сети имеются трёхфазные двигатели – соблюдать очередность фаз. В случае же, если нагрузка в доме однофазная, то такой предосторожностью можно пренебречь.
Устройство генератора трёхфазного тока в промышленном варианте – это устройство, оснащенное автоматическим пуском и иногда может быть оснащено устройством синхронизации. Подключение таких генераторов лучше доверить специалистам.
Ну а бытовой генератор точно так же, как и однофазный включается в сеть через рубильник. Следовательно, в зависимости от положения рубильника работает либо внешний источник питания, либо генератор.
Устройство генератора постоянного тока
Чтобы узнать, что такое генератор постоянного тока, устройство и принцип действия вернёмся немного назад. Мы уже выяснили, как работает генератор переменного тока. Давайте подробнее рассмотрим процесс возникновения ЭДС. Поскольку ротор вращается, у нас есть цикл равный одному обороту ротора или 360°. Давайте узнаем, что происходит в этом цикле:
- 0° — ЭДС =0
- 90° — ЭДС достигает максимального значения со знаком «+»
- 180° — ЭДС снова равна 0
- 270° — ЭДС достигает пикового значения со знаком «-»
Как же сделать так, чтобы не менялась полярность напряжения? Великие умы придумали следующее – применить коллектор, то есть, снимать напряжение только нужной полярности. Помните, мы говорили, что в генераторе переменного тока, рабочей является обмотка статора, а на роторе находится обмотка возбуждения. Так вот, в генераторе постоянного тока напряжение снимается только с ротора, который называется якорем.
Схема генератора постоянного тока
Если такой генератор будет иметь только одну пару полюсов, как на картинке, то мы получим пульсирующее постоянное напряжение, где частота будет в два раза больше скорости вращения. То есть, если скорость вращения будет 50 оборотов в секунду, то частота пульсации будет 100 Гц. Чтобы снизить пульсацию напряжения увеличивают количество пар полюсов.
С момента изобретения генератора постоянного тока схематично и по принципу действия он практически не изменился, изменилась лишь технология изготовления и сейчас он выглядит так:
Основные виды генераторов постоянного тока
В настоящее время набирают популярность двигатели постоянного тока без коллектора. Возможен ли вариант бесколлекторного генератора? К сожалению, пока решить эту задачу не удалось. Так что, если вы где-то увидите название «Бесколлекторный генератор постоянного тока», знайте, что это генератор переменного тока с выпрямительным блоком.
По этой причине, генераторы постоянного тока характеризуют только по типу возбуждения:
- Генераторы, возбуждаемые магнитами. Большую мощность такие генераторы развить не могут, поэтому нашли применение только там, где требуются небольшие мощности. Ну и, конечно же, применение магнитов ощутимо удешевляет стоимость таких генераторов.
- Независимое возбуждение. Точно так же, как и у генераторов переменного тока, для возбуждения применяется внешний источник питания, не связанный с генератором.
- Зависимое возбуждение, которое делится на три типа:
- Параллельное возбуждение. Как можно понять из названия, обмотка возбуждения в таком генераторе подключена параллельно обмотке якоря. Иногда такой вид возбуждения называют шунтовый.
- Последовательное возбуждение. Здесь обмотка возбуждения подключается как гирлянда, последовательно обмотке якоря. Такой вид иногда называют сериесным.
- Смешанное возбуждение или компаундное. Обмотка возбуждения таких генераторов состоит из двух частей, первая подключается шунтовым методом, вторая сериесным.
Генераторы с независимым возбуждением: схема, устройство, принцип работы
Схема генератора независимого возбуждения
Принцип работы этого генератора довольно прост. Однако простота генератора является его же недостатком – он требует внешнего независимого источника питания. Якорь генератора разгоняют до необходимой скорости, затем с помощью реостата начинают возбуждать генератор. На обмотках якоря возникает ЭДС и при подключении нагрузки начинает протекать ток.
Нагрузочная способность такого генератора очень хорошая. Как правило, разница между напряжением холостого хода, когда нагрузка не подключена и напряжением при номинальной нагрузке генератора, когда потребитель загружает полностью – составляет всего 5-10%.
Преимущество генератора с независимым возбуждением ещё и в том, что его можно запускать под нагрузкой, то есть, с присоединенными электроприборами.
Генераторы с параллельным возбуждением: схема, устройство, принцип работы
Схема генератора параллельного возбуждения
У генератора с параллельным включением обмотки возбуждения, в принципе, тоже неплохие нагрузочные характеристики, хотя и несколько хуже, чем у схем с независимым возбуждением – 10-30%. У схем с зависимым возбуждением есть одна особенность, для того, чтобы произошло возбуждение, металл генератора должен иметь остаточную намагниченность. Достаточно 2-3% остаточной намагниченности чтобы запустился процесс самовозбуждения. Конечно же, при этом направление обмотки возбуждения должно совпадать с направлением поля остаточной намагниченности.
Якорь генератора раскручивают до номинальных оборотов, за счет остаточного намагничивания происходит самовозбуждение, то есть, в контуре генератор-обмотка возбуждения появляется ЭДС, появляется небольшой ток. Он увеличивает ЭДС, следовательно, ток снова увеличивается и так происходит до тех пор, пока не будет достигнут баланс между падением напряжения в обмотке генератора и падением напряжения в обмотке возбуждения.
В работе генератора есть одна особенность. Если плавно увеличивать нагрузку вплоть до короткого замыкания, то в какой-то момент мощность генератора достигнет пиковых значений, затем пойдет на спад. По сути, если в момент номинальной загрузки генератора устроить короткое замыкание, то ничего страшного не произойдет. Но если это сделать при небольшой нагрузке, то ток короткого замыкания достигает критических значений 8-10 Iн, а значит, такие генераторы крайне настоятельно рекомендуется защищать от короткого замыкания любым доступным способом.
Такие генераторы получили наибольшее распространение, поскольку не требуют внешних источников питания, имеют неплохую нагрузочную способность и позволяют контролировать ток возбуждения.
Генераторы с последовательным возбуждением: схема, устройство, принцип работы
Схема генератора последовательного возбуждения
Поскольку ток обмотки возбуждения в данном случае равен току в цепи, а значит, достигает больших значений, обмотка возбуждения выполняется толстым проводом и имеет меньшее количество витков, чем в предыдущих двух схемах. Принцип работы такой же, как и у предыдущей схемы. Обмотка и поле остаточной намагниченности должны совпадать по направлению. При раскручивании якоря до номинальной частоты возникает ЭДС, поднимается ток и дальше по нарастающей, пока не будет достигнут баланс.
Но здесь есть один небольшой нюанс. Ток обмотки возбуждения изменяется от тока нагрузки, и регулировать ток возбуждения возможности нет. А это приводит к тому, что очень сильно изменяется и напряжение. Здесь мы получаем самый настоящий генератор тока, а не напряжения. Именно поэтому область применения генератора с последовательным возбуждением сильно ограничена.
Генераторы со смешанным возбуждением: схема, устройство, принцип работы
Схема генератора со смешанным возбуждением
На этом типе соединения нужно остановиться подробнее. У нас есть две обмотки, а значит, их можно включать как согласованно, так и встречно. Здесь я приведу график внешних характеристик такого генератора, и мы по ним пройдемся.
График внешних характеристик генератора постоянного тока со смешанным возбуждением
Итак, раскручиваем якорь до номинальных оборотов. Остаточная намагниченность возбуждает параллельную обмотку, генератор выходит на рабочий режим. Теперь, если мы подключим нагрузку, при этом последовательная обмотка включена согласованно, то возникает дополнительный ток возбуждения. Последовательная обмотка становится, как бы, поддерживающей или опорной. Этот вид включения, если последовательная обмотка была рассчитана, как компенсирующая, позволяет довольно жестко поддерживать напряжение в заданных пределах. На графике это очень хорошо видно по кривой №1.
Если требуется получить некий запас напряжения, например, генератор находится на значительном удалении от потребителя и требуется учесть потери на кабельных линиях, то в последовательной катушке возбуждения увеличивают количество витков. Тем самым, мы получаем более крутую внешнюю характеристику, но поддержание напряжения на номинальных нагрузках остается по-прежнему жестким. Это видно по кривой №2.
Для сравнения, кривая №3 показывает внешнюю характеристику генератора только с параллельным возбуждением.
Так зачем же требуется встречное включение катушек возбуждения? Если вы посмотрите на кривую №4, то можете догадаться, что в случае короткого замыкания, ток возрастает до определенного момента, затем начинает падать. Из графика видно, что ток не достигает даже номинального значения, то есть, примерно 0,7 Iн. В таком варианте включения обмоток генератор без риска повреждения можно использовать для частых коротких замыканий, например сварочные работы.
К сожалению, у всех схем, где используется зависимое возбуждение, есть один существенный недостаток. Поскольку это трудно назвать возбуждением, скорее это самовозбуждение, то запускать такие генераторы вместе с нагрузкой не представляется возможным. Как я уже говорил выше, возбуждение происходит за счёт остаточного намагничивания, которое составляет буквально 2-3%. А значит, если к выводам генератора будет подключена нагрузка, ток будет стремиться по пути наименьшего сопротивления, то есть самой нагрузки. Другими словами, вместе с нагрузкой тока будет недостаточно для формирования магнитного поля.
Думаю, на этом можно закончить ознакомительную статью по генераторам переменного и постоянного тока.
Поделиться ссылкой:
Похожее
uelektrika.ru
Электрогенераторы. Виды и устройство. Применение и как выбрать
Для питания электроприборов в случае отсутствия проложенной линии электропередач или при аварийном отключении напряжения используются электрогенераторы. Они представляют собой технические устройства, которые вырабатывают электричество, потребляя при этом бензин, дизельное топливо или газ.
Что такое электрогенератор и его конструкция
Прибор представляет собой устройство, состоящее из двигателя внутреннего сгорания, который обеспечивает раскручивание якоря небольшого электромотора, сделанного по принципу генератора. В результате постоянного поддержания высоких оборотов создается электрическое напряжение, снимаемое на специальные клеммы и выводимое на внешнюю розетку, используемою для подключения потребителей энергии.
Электрогенераторы могут быть рассчитаны на кратковременное включение и на постоянную работу. По этому критерию они делятся на резервные источники питания и постоянные. Резервные применяются в тех случаях, когда требуется обеспечить питание приборов на короткий период, пока не будет возобновлено электроснабжение сети. Постоянные станции применяются, когда подключение к линии электропередач вообще отсутствует. В этом случае генератор является единственным источником энергии, поэтому работает непрерывно. В зависимости от предназначения оборудование генератора может оснащаться системой воздушного или водяного охлаждения. Воздушные обеспечивают эффективное снижение температуры корпуса устройства на несколько часов, а водяные не допускают перегрев вообще.
Стоит учитывать, что во время работы двигатель создает большой шум, что не всегда приемлемо. По этой причине электрогенераторы могут производиться не только в открытом, но и в шумопоглощающем корпусе, который значительно снижает уровень шума. Устройство с открытым корпусом представляет собой силовую раму, на которую устанавливается ДВС, топливный бак и генератор, при этом они являются открытыми, и все составляющие легко просматриваются. Устройство в шумопоглощающем корпусе имеет специальный защитный кожух, препятствующий распространению звука и вибрации.
Виды электрогенераторов
Электрические генераторы принято разделять на 3 вида в зависимости от используемого топлива для выработки энергии:
- Бензиновые.
- Дизельные.
- Газовые.
Каждая разновидность имеет свои достоинства и недостатки, которые нужно оценить и выбирать подходящую модель уже отталкиваясь от задач, запланированных для генератора.
Бензиновый
Бензиновые станции работают на бензине, за что и получили свое название. Данная категория устройств является самой дешевой при покупке, но очень дорогой в обслуживании. Работающие на бензине генераторы имеют компактный корпус и сравнительно небольшой вес, что делает такие станции максимально мобильными. Зачастую их можно разместить в багажнике легкового автомобиля.
Благодаря дешевизне их преимущественно выбирают для использования в качестве аварийного источника питания. Включение на несколько часов 5-10 раз в год потребует не таких уж и больших затрат на покупку бензина, что на фоне низкой стоимости самой станции является очень выгодным решением. В тех случаях, когда генератор должен работать постоянно, бензиновый вариант совершенно неприемлем. Во-первых, потребуется ежедневно тратить большие суммы на заправку горючего, а во-вторых, моторесурс таких устройств сравнительно короткий.
Дизельный
Дизельные электрогенераторы являются более экономичными в плане потребления топлива, но стоят значительно дороже, а также весят больше. Их моторесурс в 3-4 раза выше, чем у бензиновых аналогов. Дизельная станция может работать непрерывно по 10 и более часов на одной заправке. Такое оборудование редко выбирают для резервного питания частного дома в связи с дороговизной. Практическая экономия топлива при нескольких включениях в год будет незначительной и не покроет затраты на покупку генератора.
Дизельные станции выбирают в тех случаях, когда требуется постоянная выработка электричества. Это могут быть строительные объекты, которые еще не подключены к центральной сети электроснабжения, а также загородные участки и дачи, с такой же проблемой. Стоит отметить, что устройство на дизельном топливе являются более мощными и стойкими к поломкам, но очень шумными.
Газовый
Газовые генераторы еще называют двухтопливными, поскольку они оснащены гибридным двигателем, который может работать как на бензине, так и на баллонном газе. Такие устройства используют в качестве резервного источника энергии. Станция вырабатывает одинаковое количество электричества как на газе, так и на бензине. При питании гибридного двигателя из баллона существенно снижаются затраты на выработку энергии, поскольку стоимость газа намного ниже чем бензина. Стоит отметить, что двухтопливные станции довольно тяжелые и не такие компактные как бензиновые. Их моторесурс тоже не идет ни в какое сравнение с дизельными системами.
Однофазные или трехфазные
Электрогенераторы бывают однофазные и трехфазные. Первые используется для питания бытовых приборов, которые рассчитаны для работы от сети 220В и 50Гц. Они выбираются для установки в частные дома и офисы, где основная задача заключается в обеспечении работы бытовых приборов, таких как телевизор, холодильник, компьютер, водяной насос, фен, зарядка телефона, кондиционер и прочее. Также однофазные генераторы применяют строители при работе на объектах, поскольку именно от такой сети питаются шуруповерты, дрели, перфораторы, компрессоры и прочее оборудование.
Трехфазные электрогенераторы выдают 380 вольт. Для домашнего использования они применяются редко. Их применяют для питания промышленного оборудования. Такая станция позволит продолжить производство даже в том случае, если электроснабжение было остановлено. Особенность трехфазного генератора заключается в том, что на его корпусе имеется две розетки. Первая выдает одну фазу и обеспечивает питание обычных бытовых приборов на 220В, а вторая выводит 380В для промышленного оборудования.
Расчет мощности
Предлагаемые на рынке электрогенераторы имеют большой диапазон мощности от 0,6 и до 10 и выше кВт. Чем производительней станция, тем она дороже, шумнее и менее экономичная. По этим причинам следует подойти к выбору мощности генератора со всей серьезностью. Если мощности будет недостаточно, то при критической нагрузке устройство будет отключаться или просто выйдет из строя. В том случае, когда взять слишком высокий запас производительности, то устройство будет выдавать неоправданно большой поток, который не будет использоваться. В результате будет значительный расход горючего, что существенно увеличит себестоимость выработанной энергии.
Чтобы выбрать электрический генератор требуемых параметров следует провести расчет потребление энергии каждого прибора, который будет работать от него.
К примеру, требуется обеспечение одновременного питания:
- Холодильника на 700 Вт.
- Кондиционера на 1000 Вт.
- Лампы на 23 Вт.
- Компьютера на 50 Вт.
В результате подсчета можно определить, что для одновременного питания всех этих потребителей необходимо, чтобы генератор выдавал 1773 Вт. Кроме этого, нужно учитывать, что отдельные приборы в момент включения не доли секунды потребляют больше энергии, чем непосредственно в период нормальной работы. Данное явление называется коэффициент пускового тока. У холодильника и кондиционера он составляет 3,5. По этой причине в момент включения холодильник резко потребует 2450 Вт, а кондиционер 3500 Вт.
Таким образом, чтобы приборы с высоким коэффициентом пускового тока смогли работать, нужен генератор с мощностью не на 1773, а на 6023 Вт. К этому показателю нужно прибавить запас на 20%, который позволит исключить остановку и сгорание генератора при небольших скачках потребления, в случае включения дополнительной лампочки, утюга или фена. Фактически для таких потребителей нужна станция мощностью 7 кВт и более. Нужно отметить, что в указанном примере предложены приборы с очень высоким коэффициентом пускового тока. Если использовать более скромные потребители, которые не тянут много энергии при включении, то для частного дома, где электричество отключено на несколько часов, нужен только свет, телевизор и компьютер, поэтому даже генератор на 3 кВт справится с легкостью. Холодильник вполне постоит несколько часов выключенным.
Типы запуска
По типу запуска электрогенераторы делятся на 4 группы с:
- Ручным стартером.
- Электростартером.
- Дистанционным запуском.
- Системой ATS.
Генератор с ручным стартером имеет специальный шнурок, при вытягивании которого обеспечивается раскручивание коленвала, что и запускает двигатель. Это самые бюджетные устройства. Чтобы запустить такой генератор может понадобиться несколько раз дернуть за пусковой шнур, что требует некоторых усилий, особенно в холодную погоду. Завести двигатель ручным способом в мороз очень тяжело, особенно у мощного генератора с высокой компрессией мотора.
Генераторы с электростартером запускаются как и любой автомобиль. Достаточно просто вставить ключ и повернуть. Стартер работает от аккумулятора. Также бывают генераторы с дистанционным запуском. Они являются модификацией модели с электростартером, которые дополнительно оснащены пультом дистанционного управления. Пульт напоминает обычную автосигнализацию. Он позволяет провести включение не выходя из дома.
Электрогенераторы с системой ATS работают автоматически. Они оборудованы специальным прибором, который постоянно контролирует наличие в системе электричества. В случае его отключения проводится автоматический запуск станции, и питание электроприборов возобновляется. При включении электроснабжения генератор сам отключается. Это позволяет исключить перерасход топлива в те моменты, когда это уже не нужно.
Похожие темы:
tehpribory.ru
Генератор переменного тока – типы устройств и принцип работы
Любой генератор переменного тока представляет собой устройство электрического типа, предназначенное для преобразования механической энергии в электроэнергию с переменными токовыми величинами.В большинстве современных генераторов используется традиционный принцип действия вращающегося магнитного поля.
Электрический генератор переменного тока
Выделяется пара основных видов электрических генераторов, имеющих конструкционные отличия, представленные:- Устройствами, имеющими неподвижную часть в виде статора и вращающийся элемент, который представлен магнитными полюсами. Данный тип популярен у потребителей и очень активно эксплуатируется благодаря наличию неподвижной обмоточной части, не требующей снимать избыточную нагрузку электрической сети.
- Устройствами электрического типа, имеющими вращающийся якорь и магнитные неподвижные полюса.
Таким образом, в конструкцию генератора любого типа входят две наиболее важные части: подвижная и неподвижная, а также некоторые связующие элементы, представленные щетками и проводными соединениями. Электрогенераторами переменного тока производится как активная энергия, так и реактивная, передающаяся и распределяемая по электросетям.
Электрические генераторы ПТ, наряду с трансформаторами, рассчитаны на определенные номинальные токовые величины и достаточное количество номинального напряжения, зависящие от конструкционных особенностей такой машины, а также типоразмеры рабочих частей и связующих элементов.Типы генераторов переменного тока
Существует несколько типов машин или установок, предназначенных для преобразования неэлектрического вида энергии в электроэнергию.
Самые популярные виды представлены:
- компактным преобразователем Стирлинга, имеющим линейный генератор ПТ;
- однофазным генератором ПТ;
- двухфазным генератором ПТ;
- трехфазным генератором ПТ;
- генератором ПТ на 380 Вольт без наличия двигателя;
- стандартным генератором ПТ на 220 Вольт;
- генератором ПТ на тиристоре;
- синхронным генератором ПТ;
- индукционным;
- переносными.
Генератор переменного тока ЭГВ – 32 У1
В зависимости от конструкционных особенностей выделяются устройства, имеющие:
- неподвижные магнитные полюса и вращающийся якорь;
- вращающиеся магнитные полюса и неподвижный статор.
В зависимости от способа возбуждения:
- с обмотками возбуждения, питающимися постоянными токовыми величинами с использованием посторонних источников электроэнергии, включая аккумуляторные батареи;
- с обмотками возбуждения, питающимися с использованием сторонних генераторов ПТ, которые отличаются маломощными токами с одного вала;
- с обмотками самовозбуждения, питающимися выпрямленными токовыми величинами;
- с возбуждением, получаемым в процессе функционирования магнитных элементов постоянного типа.
В зависимости от типа соединения фазной обмотки:
- не обладающая практическим значением система Тесла;
- подсоединение типа «Звезда»;
- подсоединение типа «Треугольник»;
- подсоединение типа «Славянка».
Последний вариант сочетает в себе шесть обмоточных элементов типа «Звезда» и одну обмотку «Треугольник» на каждом статоре.
С конструктивной точки зрения могут быть выделены преобразующие энергию устройства или машины электрического типа, имеющие явно и неявно выраженные полюса.
Устройство
Конструкция и внутреннее устройство преобразователя одного вида энергии в другой может иметь существенные отличия. Самыми распространенными являются автомобильные генераторы ПТ, представленные следующими основными конструктивными элементами:
- двухкрышечной корпусной частью со специальными вентиляционными отверстиями;
- роторной однообмоточной электромагнитной частью, вращаемой посредством шкива в паре подшипников;
- двумя медными кольцами и графитовыми щетками, подающими ток на роторную часть;
- регулирующей релейной частью, отвечающей за выдачу генераторного напряжения в оптимальных пределах.
Общая схема устройства генератора переменного тока
Статорная часть имеет три медных обмотки, объединенные «треугольником» с подключением полупроводникового диодного моста, благодаря которому происходит преобразование типа напряжения.
Современные автомобильные генераторы относятся к категории высокооборотных агрегатов, поэтому частота оборотов может составлять девять тысяч в одну минуту.
Схема генератора переменного тока
Принцип действия генераторов ПТ базируется на свойствах электромагнитной индукции, что и отражается в схеме таких агрегатов:
- неподвижная якорная часть;
- вращающаяся индукторная часть;
- кольца контактного типа;
- скользящая щеточная часть.
Характерным отличием трехфазных генераторов является электрическая схема, отображающая особое соединение на фазных обмотках.
Синхронный и асинхронный
В зависимости от принципа работы, генератор может быть представлен устройством синхронного и асинхронного типа. Для любых асинхронных генераторов характерна конструктивная простота и дешевизна изготовления, а также достаточно высокая устойчивость к короткому замыканию или перегрузкам.
Асинхронные электрические генераторы прекрасно зарекомендовали себя в работе с активным уровнем нагрузки, включая лампы накаливания, электронагреватели, современную электронику и электрические конфорки.
Разница синхронного и асинхронного генераторов
Тем не менее, даже в условиях кратковременного перегруза отмечается выход устройства из строя. Именно по этой причине подключение приборов с индуктивной нагрузкой, включая электрические двигатели, не электронные сварочные аппараты и энергозависимый инструмент, потребует применения асинхронного генератора с трех- или четырехкратным запасом по уровню мощности.
Генераторы синхронного типа востребованы в работе любого индуктивного потребителя, имеющего высокие параметры пусковых токовых величин. Современные синхронные устройства электрического типа легко выдерживают пятикратный уровень секундной токовой перегрузки, что обусловлено линейной зависимостью числа оборотов вращения магнитного поля от количества роторных оборотов или угловой скорости генератора.
Асинхронные и синхронные генераторы отличаются своим устройством, но первый вариант принято считать конструктивно более надежным, что объясняется отсутствием в них традиционного щеточного узла.
Однофазный
В соответствии с количеством фаз, все генераторы представлены двумя большими группами:
- Однофазными.
- Трехфазными.
Первый вариант предназначается исключительно для работы с любыми однофазными потребителями электрической энергии, а трехфазные генераторы относятся к категории универсальных, но дорогостоящих машин, нуждающихся в затратном обслуживании.
Однофазный тип генератора
Простейшие конструкции представлены магнитным полем, вращающейся рамкой и обычным коллекторным щеточным узлом, отводящим ток.
Благодаря коллекторному узлу, рамочное вращение через щетки создает постоянство контакта с половинкой рамки в условиях отсутствия циклического изменения положения. Токовые величины, изменяющиеся в соответствии с законами гармоники, передаются на щетки и в схему потребителей энергии.
Трехфазный тип генератора
Однофазные генераторы в настоящее время являются самыми популярными автономными источниками тока и предназначаются для питания любых однофазных потребителей электрической энергии, к которым относятся практически все бытовые приборы.
Принцип работы
Основным принципом функционирования генераторов переменного тока являются вращательные движения токопроводящей рамки, располагаемой между парой постоянных магнитов, имеющих противоположные полюса. В большинстве случаев, конструкция стандартна и функционал таких устройств достаточно прост.
Схема работы трехфазного генератора
Например, роторы, которые установлены в промышленные индукционные генераторы, вращаются благодаря турбине, а статор бывает дополнен достаточно мощным электромагнитом. Внутри роторных обмоточных витков происходит индукция ЭДС, благодаря чему формируется суммарное напряжение, необходимое для потребителей.
Принцип работы генераторов основан на законе электромагнитной индукции Фарадея, согласно которому происходит индукция ЭДС в прямоугольной контурной части проволочной рамки.
Назначение
Генераторы являются основными источниками электроэнергии в системах энергоснабжения, позволяющих обеспечивать питание любых потребителей и заряжать аккумуляторную батарею в процессе функционирования двигателя.Современные генераторы, имеющие встроенные кремневые диоды, обладают небольшими габаритами, простой конструкцией, надежностью и долгим сроком эксплуатации, что является отличным дополнением высокой удельной мощности таких устройств-преобразователей при малой вращательной частоте.
Некоторое время назад генераторы отличались довольно узкой областью применения, но благодаря усилиям разработчиков, техников и специалистов, преобразователи энергии были в значительной степени усовершенствованы. На сегодняшний день область применения данных устройств очень широка, поэтому генераторы ПТ стали незаменимыми в промышленной и бытовой сфере.
proprovoda.ru
от первого электрического генератора до современных устройств
Что такое генератор? Это электромеханический прибор, который преобразует кинетическую энергию в электрический переменный ток. Основой энергетического преобразования является вращающееся магнитное поле. Понятие генератора включает в себя массу устройств различного принципа действия. Это гальванические, электростатические приборы, солнечные батареи, турбины электростанций и пр. В статье пойдёт речь именно о генераторах электрической энергии.
Электрогенераторы
Принцип работы электрогенератора
В основу работы агрегатов, преобразующих энергию, положен закон Фарадея об электродвижущей силе (ЭДС). Учёный открыл закон, который объяснил природу появления тока в металлическом контуре (рамке), вращающемуся в однородном магнитном поле (явление индукции). Ток возникает также при вращении постоянных магнитов вокруг металлического контура.
Простейшая схема генератора представляется в виде вращающейся металлической рамки между двумя разно полюсными магнитами. На оси рамки помещают токосъёмные кольца, которые получают заряд электрического тока и передают его дальше по проводникам.
В действительности статор (неподвижная часть прибора) состоит из электромагнитов, а ротором служит группа рамных проводников. Устройство представляет обратный электромотор. Электродвигатель поглощает электрический ток и заставляет вращаться ротор. Электрический генератор, преобразовывающий кинематическую энергию механического вращения в ЭДС, называют индукционным генератором.
Классификация генераторов
Классификация преобразователей энергии даёт чёткое понятие – что такое генератор электрического тока. Различают электрические генераторы по следующим признакам:
- автономность;
- фазность;
- режим работы;
- сфера применения.
Автономность
Главное преимущество, которым обладает электрический генератор, – это его полная независимость от централизованных поставщиков энергии. Автономность электротехнического оборудования бывает стационарной и мобильной.
Стационарные
Обычно это генераторные станции, работающие от дизельных двигателей. Станции используют для электроснабжения потребителей в местах, удалённых от централизованных электрических сетей.
Стационарные генераторные станции необходимы для обеспечения током производственных процессов там, где даже кратковременные перебои поставки электроэнергии недопустимы.
Мобильные
Электрогенераторы мобильного типа выполнены в виде компактных аппаратов, которые можно перемещать в пространстве. Передвижные станции используют для электросварки, местного освещения, снабжения током бытовых электроприборов и многое другое.
Оборудование включает в себя двигатель внутреннего сгорания, работающий на бензине или дизельном топливе. Агрегаты имеют различные габариты. Компактный аппарат может транспортировать один человек. Существуют мобильные агрегаты, которые устанавливаются на специальном автомобильном прицепе.
Бензиновый генератор на колёсной паре
Фазность
По фазовой структуре электрического потока различают однофазные и трёхфазные агрегаты.
Однофазные
Генераторы, производящие однофазный ток, предназначены в основном для питания бытовых приборов. Чаще всего это мобильные аппараты. Однофазными агрегатами хозяева оснащают свои частные домовладения для бытовых нужд (освещения, питания электротехники и др.).
Трёхфазные
Генераторные источники трёхфазного тока используются для питания силового электрооборудования. В некоторых случаях получаемый трёхфазный ток разделяют по фазам. Таким образом, делают развод электропроводки по всему дому для питания бытовых электроприборов.
Важно! Все ветви фазового разделения должны равняться между собой мощности потребления. Если разница нагрузок будет велика, то генератор быстро выйдет из строя.
Режимы работы
В зависимости от того, в каком режиме эксплуатируются агрегаты, их подразделяют на основные и резервные.
Основные
Аппараты предназначены для работы в постоянном режиме. Мощные электрогенераторы с дизельными двигателями относят к промышленным установкам. Устанавливаются там, где требуется получение электроэнергии круглосуточно.
Резервные
Само название агрегатов говорит о применении их в исключительных случаях – при внезапном отключении централизованного электроснабжения. Генераторы могут включаться в работу при срабатывании реле, реагирующего на исчезновение напряжения в электросети централизованного источника. Резервные аппараты рассчитаны на беспрерывную работу в течение нескольких часов.
Сфера применения
Генераторы изготавливают, рассчитанные на две сферы применения: для быта и производства.
Быт
Сейчас торговая сеть предлагает широкий выбор бытовых генераторов. Это однофазные установки, предназначенные для аварийного обеспечения электроэнергией частных домостроений. Также компактные агрегаты используют для питания выносного электрооборудования. Для бытовых электроприборов, использующих цифровую элементную базу важно качество тока. Устройство должно выдавать электроэнергию следующих параметров: 220 В, 1 А, 50 Гц.
Мощные бытовые агрегаты используют для электросварочных работ. Их преимуществом является способность производить ток большой силы для получения электрической дуги.
Обратите внимание! Если в инструкции бытового аппарата производитель не оговаривает применение для электросварки, то его нельзя использовать для сварочных работ. В противном случае генератор выйдет из строя.
Производство
Независимыми мощными стационарными генераторами оснащают цеха промышленных предприятий, жилые районы, строительные объекты, больницы и объёмные общественные здания.
Виды бытовых генераторов
Электротехническая промышленность выпускает бытовые генераторы переменного тока трёх видов:
- газовые;
- бензиновые;
- дизельные.
Газовые
Генераторы газового типа выдают ток низкой себестоимости. Стоимость 1 кВт/ часа составляет 3 рубля. Газовые агрегаты используют как резервные источники электроэнергии. Устройства предназначены для режима кратковременного включения при сбое поставки электрического тока централизованной сетью электроснабжения.
В частных домов используют газовые установки мощностью 5 кВт. Агрегаты оснащены системой автозапуска. При отключении электричества аппарат автоматически включается в работу и восстанавливает напряжение в электросети дома. Генераторы с воздушным охлаждением после 12 часов непрерывной работы требуют перерыва.
Выгодно устанавливать такие преобразователи энергии при центральном газопроводе. Автономное снабжение сжатым природным газом установок связано с рядом условий, таких, как наличие газобаллонного сервиса поставки энергоносителя и технически исправного приёмного оборудования в доме.
Бытовой газовый генератор
Одними из достоинств газовых агрегатов является то, что генераторы работают практически бесшумно, выхлоп продуктов сгорания топлива сведён к 0.
Газовые генераторы устанавливают вне дома. Для обеспечения бесперебойной работы устройства в зимний период помещают в специальные кожухи. Существующие модели – с жидкостным охлаждением, какое допускает их установку внутри дома.
Бензиновые
Бензиновые генераторы в основной своей массе изготавливают мощностью, не превышающей 20 кВт. Устройства используют для аварийного обеспечения электричеством загородных домов, дач, а также для питания ручных электроинструментов, небольших станков и прочее. Генераторы могут поддерживать освещение придомовой территории, автомобильной стоянки и торговых площадей.
Бензогенератор
Дополнительная информация. Стандартное топливо для агрегатов – это бензин марки АИ-92. Кратковременно можно заливать в бак оборудования бензин АИ-76 и АИ-95.
Бензиновые генераторы переменного тока могут быть мобильными и стационарными. Особо мощные тяжёлые установки оснащают колёсной парой. В зависимости от модели, устройства оснащают ручным запуском или стартером. Для понижения шумности работы двигателя внутреннего сгорания аппарат помещают в звукопоглощающий кожух.
Дизельные
Дизельные генераторы переменного тока представляют устройства, мощность которых достигает до 3 мВт. Агрегаты могут служить постоянными источниками электроэнергии для загородных домов и дач. Автономные дизельные источники переменного электрического тока питают мощное деревообрабатывающее оборудование, станки различного назначения. Дизель-генераторы могут снабжать током целые посёлки.
Дизель-генератор для сварочных работ
Дизельные установки изготавливают в стационарном и мобильном варианте. Агрегаты обладают большой шумностью. Поэтому в некоторых случаях их помещают в специальные шумоизоляционные кожухи.
По сравнению с бензиновыми аналогами, дизель-генераторы потребляют топливо в меньшем объёме, которое стоит дешевле, чем бензин. Дорогие модели способны контролировать управление процессом генерации энергии, автоматически включаться в работу при возникновении аварийных ситуаций в сети центрального электроснабжения.
Современный рынок электротехники располагает огромным ассортиментом генераторов переменного тока. Модели различных систем питания с большим диапазоном мощности удовлетворят любые требования потребителей.
Видео
amperof.ru
Виды генераторов для электростанций
В состав электрогенераторов входят два основных агрегата – силовая установка, которая приводит в действие генератор и альтернатор. В данной статье будут рассмотрены виды генераторов в зависимости от типа альтернатора.
Базовая основа для установок, которые генерируют электричество при помощи электромагнитов, была разработана британским экспериментатором и физиком Майклом Фарадеем в 1831 году, который затем построил диск Фарадея, являющийся одним из первых генераторов. После этого электрогенераторы постоянно совершенствовались в течение полутора веков. Были созданы асинхронные и синхронные альтернаторы, одно и трехфазные, без инверторного управления и с ним. В чем отличие всех этих типов?
Синхронные генераторы
В синхронном альтернаторе электроэнергия производится с совпадением частоты вращения статора и ротора. Электродвижущая сила или ЭДС создается, когда поле, сформированное магнитными полюсами ротора, пересекает стартерную обмотку. В таком генераторе ротор является либо постоянным магнитом, либо электромагнитом, который имеет число полюсов кратное двум. Двухполюсный ротор, который имеет частоту вращения 3000 об/мин, устанавливается в резервных генераторах, а в основных генераторах, которые вырабатывают электроэнергию круглые сутки, ротор вращается с частотой 1500 об/мин.
После запуска синхронного генератора, ротор формирует довольно слабое магнитное поле, но постепенно количество его оборотов возрастает и ЭДС повышается. На выходе стабильность напряжения контролируется с помощью блока автоматической регулировки (AVR), который изменяет магнитное поле во время поступления напряжения на ротор с обмотки возбуждения. При работе синхронных генераторов возможно возникновение «реакции якоря», то есть при активации индуктивной нагрузки генератор размагничивается и при этом падает напряжение. А в том случае, когда подается емкостная нагрузка, наоборот, генератор подмагничивается и напряжение растет.
Преимуществом синхронных генераторов заключается в стабильном напряжении на выходе, но их недостатком является склонность к перегрузкам, которые возможны тогда, когда нагрузки растут и превышают допустимый уровень, то есть ток в роторной обмотке чрезмерно увеличивается блоком AVR.
Синхронный генератор способен кратковременно произвести на выдаче такой ток, который может превысить номинальное значение в несколько раз. Так как некоторым электроприборам, к которым относятся электродвигатели, компрессоры, насосы и некоторые другие, требуется повышенный стартовый ток, и они оказывают повышенную нагрузку на сеть, то лучшим источником, как основного, так и резервного питания для них будут как раз такие альтернаторы.
Асинхронные генераторы
Вращение ротора в таких генераторах немного опережает по оборотам магнитное поле, которое создается статором. У таких электрогенераторов в комплекте идут роторы с двумя видами обмотки – короткозамкнутой и фазной. У асинхронного генератора принцип работы точно такой же, как и у его синхронного аналога – статор создает магнитное поле на вспомогательной обмотке, которое затем передается ротору и формирует на статорной обмотке ЭДС. Но разница заключается в том, что частота, с которой вращается магнитное поле, неизменна, то есть недопустима ее регулировка. Именно поэтому и частота электрического тока, который вырабатывается альтернатором, и напряжение, имеют прямую связь с числом оборотов ротора, которые в свою очередь зависят от стабильной работы приводного двигателя электрогенератора.
Асинхронные альтернаторы имеют высокую защиту от действий извне и довольно малочувствительны к коротким замыканиям, благодаря чему они отлично подходят для сварочных аппаратов. Данные генераторы также хорошо подходят для запитывания приборов, имеющих омическую (активную) нагрузку, которые преобразуют практически всю электроэнергию, поставляемую им, в работу – компьютеры, осветительные лампы, кухонные конфорки, нагреватели и т.п.
Высокая реактивная (стартовая) нагрузка, которая возникает при включении, например, насосного оборудования, длится около секунды, но при этом электрогенератор должен выдержать ее. А дело вот в чем – допустим, что вам необходимо сдвинуть с места тяжелую тележку, которая установлена на горизонтальной поверхности. Для того, чтобы сдвинуть тележку, необходимо приложить намного больше усилий, что нужно для того, чтобы поддерживать ее движение. Именно такая же ситуация возникает при запуске компрессора холодильника или сплит-системы, электродвигателей и любых насосов, поэтому справиться с ней под силу только синхронному электрогенератору.
Реактивные нагрузки в центральной электросети компенсируются при помощи дросселей или конденсаторов, а также с помощью специально повышенного сечения электрических кабелей и трансформаторов.
У асинхронного альтернатора есть существенный недостаток – от не способен выдерживать повышенные нагрузки. Но, не смотря на это, он проще по конструкции и дешевле, чем синхронный аналог. Помимо этого, асинхронные электрогенераторы имеют закрытую конструкцию, которая способна обеспечить им хорошую защиту от влаги и внешних загрязнений.
Трехфазный и однофазный генератор
Некоторые люди убеждены, что однофазный генератор электроэнергии хуже, чем трехфазный. Логику тех, кто не разбирается в электричестве, легко понять – одна фаза меньше, чем три, поэтому и хуже. На самом деле выбирать между трех- и однофазным энергоснабжением необходимо исходя из нужд конечных потребителей.
Электрогенератор, который имеет три фазы, нужен не для того, чтобы питать три группы однофазных потребителей, а для того, чтобы питать трехфазные устройства.
Бывает так, что разводка трехфазного ввода в доме выполняется на однофазные группы, но это выгодно делать не жильцам, а электрикам, так как для этого нужна очень дорогая защита энергосистемы, а ее монтаж стоит очень дорого. Почти вся современная бытовая техника является однофазной, а трехфазными были старые модели электродвигателей и электрических плит.
У трехфазных электродвигателей есть один существенный недостаток – при мощности альтернатора, к примеру, 10 кВт, мощность каждой фазы будет 3,3 кВт. Среди фаз максимально возможное смещение мощностной нагрузки не может превышать 25% от номинала, который равен 1/3 общей мощности генератора. Исходя из этого, однофазный генератор, имеющий мощность 4,5 кВт, будет мощнее, чем трехфазный генератор на 10 кВт.
Инверторный генератор
Инверторный альтернатор имеет электронный блок управления, который способен обеспечить выработку электричества отличного качества, с отсутствием при этом каких-либо перепадов напряжения. Инверторные альтернаторы отлично подходят для питания таких потребителей, которые нуждаются только в номинальном напряжении.
Устанавливается инверторная система управления на синхронный альтернатор и действует в три ступени: производит напряжение с частотой 20 Гц; затем из него формирует постоянный ток 12 В; далее постоянный ток преобразуется в переменный номинальный, имеющий частоту 50 Гц.
Инверторные генераторы делятся на три типа по импульсному напряжению на выходе:
- Для самых дешевых моделей характерен прямоугольный импульс. Такие модели могут питать лишь строительные электроинструменты. Такой тип инверторов уже почти не продается, так как он имеет малую популярность и очень ограниченные возможности.
- Генераторы средней ценовой зоны могут обеспечить трапециевидный импульс. Это позволяет им питать довольно сложные бытовые электроприборы, такие как холодильник. Но для наиболее чувствительной техники такое качество напряжения часто оказывается недостаточным.
- При синусоидальном импульсе создаются самые лучшие условия для работы любых приборов – от самых простых до самых сложных. Синусоидальное напряжение имеет стабильные характеристики и точно соответствует всем параметрам электричества, которое поставляется центральными электросетями. Стоимость подобных инверторов гораздо выше, чем у двух других типов.
Достоинства генераторов-инверторов:
- гораздо меньший вес и размеры, если сравнивать с простыми генераторами такой же мощности;
- меньшая шумность во время работы, которая достигается за счет того, что изменяется скорость вращения ротора;
- очень малый расход топлива, который достигается с помощью электронного управления процессом выработки электроэнергии. Генератором производится такое количество энергии, которое требуется в данный момент всем потребителям, а его производительность уменьшается или возрастает при соответственном уменьшении или увеличении числа потребителей;
- так как в их основе лежит синхронный альтернатор, инверторы могут кратковременно снабжать высоким пусковым током энергоемкое оборудование. К тому же, у некоторых моделей генераторов-инверторов есть функция «режим перегрузки», при котором инвертор может производить мощности на 50% больше, чем номинальная. Но этот режим может действовать примерно 20-30 минут;
- хорошая наработка на отказ – около 3 тысяч часов.
Недостатки:
- максимальное время непрерывной работы составляет 8 часов;
- имеют более высокую стоимость по сравнению с не инверторными аналогами такой же мощности;
- довольно чувствительный к температурным перепадам электронный блок управления, а его ремонт достаточно дорог;
- максимальная мощность у генераторов подобного типа – 7,2 кВт, а моделей, имеющих большую мощность, нет.
Выводы
Все рассмотренные выше типы генераторов, кроме инверторных, могут применяться не только в маломощных бытовых моделях электростанций, но и в крупных генераторных системах, которые вырабатывают мегаватты электроэнергии.
dekormyhome.ru