Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Микросхемы КМОП (CMOS). Что такое и зачем нужны?

Общие сведения о микросхемах КМОП (CMOS)

Наглядный пример тому, как всё сложно запутанно в определении приоритетов научно-исследовательских работ, это микросхемы КМОП и их появление на рынке.

Дело в том, что полевой эффект, который лежит в основе МОП-структуры был открыт ещё в конце 20-х годов прошлого века, но радиотехника тогда переживала бум вакуумных приборов (радиоламп) и эффекты, обнаруженные в кристаллических структурах, были признаны бесперспективными.

Затем в 40-е годы практически заново был открыт биполярный транзистор, а уже потом, когда дальнейшие исследования и усовершенствования биполярных транзисторов показали, что это направление ведёт в тупик, учёные вспомнили про полевой эффект.

Так появился МОП-транзистор, а позднее КМОП-микросхемы. Буква К в начале аббревиатуры означает комплементарный, то есть дополняющий. На практике это означает, что в микросхемах применяются пары транзисторов с абсолютно одинаковыми параметрами, но один транзистор имеет затвор n-типа, а другой транзистор имеет затвор p-типа. На зарубежный манер микросхемы КМОП называют

CMOS (Complementary Metal-Oxide Semiconductor). Также применяются сокращения КМДП, К-МОП.

Среди обычных транзисторов примером комплементарной пары являются транзисторы КТ315 и КТ361.

Сначала на рынке радиоэлектронных компонентов появилась серия К176 основанная на полевых транзисторах, и, как дальнейшее развитие этой серии, была разработана ставшая очень популярной серия К561. Эта серия включает в себя большое количество логических микросхем.

Микросхема, изготовленная по технологии CMOS

Поскольку полевые транзисторы не так критичны к напряжению питания, как биполярные, эта серия питается напряжением от +3 до +15V. Это позволяет широко использовать эту серию в различных устройствах, в том числе и с батарейным питанием. Кроме того, устройства собранные на микросхемах серии К561, потребляют очень маленький ток. Да и не мудрено, ведь основу КМОП-микросхем составляет полевой МДП-транзистор.

Например, микросхема К561ТР2 содержит четыре RS-триггера и потребляет ток 0,14 mA, а аналогичная микросхема серии К155 потребляла минимум 10 – 12 mA. Микросхемы на КМОП структурах обладают очень большим входным сопротивлением, которое может достигать 100 МОм и более, поэтому их нагрузочная способность достаточно велика. К выходу одной микросхемы можно подключить входы 10 – 30 микросхем. У микросхем ТТЛ такая нагрузка вызвала бы перегрев и выход из строя.

Поэтому конструирование узлов на микросхемах с применением КМОП транзисторов позволяет применять более простые схемные решения, чем при использовании микросхем ТТЛ.

За рубежом наиболее распространённый аналог серии К561 маркируется как CD4000. Например, микросхеме К561ЛА7 соответствует зарубежная CD4011.

Используя микросхемы серии К561, не следует забывать о некоторых нюансах их эксплуатации. Следует помнить, что хотя микросхемы работоспособны в большом диапазоне напряжений, при снижении напряжения питания падает помехоустойчивость, а импульс слегка «расползается». То есть чем напряжение питания ближе к максимуму, тем круче фронты импульсов.

На рисунке показан классический базовый элемент (вентиль), который осуществляет инверсию входного сигнала (элемент НЕ). То есть если на вход приходит логическая единица, то с выхода снимается логический ноль и наоборот. Здесь наглядно показана комплементарная пара транзисторов с затворами "n" и "p" типов.

Внутреннее устройство КМОП элемента НЕ

На следующем рисунке показан базовый элемент 2И – НЕ. Хорошо видно, что резисторы, которые присутствуют в аналогичном элементе ТТЛ микросхемы, здесь отсутствуют. Из двух таких элементов легко получить триггер, а из последовательного ряда триггеров прямая дорога к счётчикам, регистрам и запоминающим устройствам.

Устройство КМОП элемента 2И-НЕ

При всех положительных качествах интегральных микросхем серии К561 у них, конечно, есть и недостатки. Во-первых, по максимальной рабочей частоте КМОП микросхемы заметно уступают микросхемам с другой логикой и работающей на биполярных транзисторах.

Частота, на которой уверенно работает серия К561, не превышает 1 МГц. Для согласования микросхем основанных на МОП структурах с другими сериями, например, ТТЛ, применяются преобразователи уровня К561ПУ4, К561ЛН2 и другие. Эти микросхемы также синхронизируют быстродействие, которое у разных серий может отличаться.

Но самый большой недостаток микросхем на комплементарных МОП структурах, это сильнейшая чувствительность микросхемы к статическому электричеству. Поэтому на заводах и лабораториях оборудуются специальные рабочие места. На столе все работы производятся на металлическом листе, который подключён к общей шине заземления. К этой шине подключается и корпус паяльника, и металлический браслет, одеваемый на руку работнику.

Некоторые микросхемы поступают в продажу упакованные в фольгу, которая закорачивает все выводы между собой. При работе в домашних условиях также необходимо найти возможность для стекания статического заряда хотя бы на трубу отопления. При монтаже первыми распаиваются выводы питания, а уже затем все остальные.

Главная &raquo Цифровая электроника &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

КМОП Википедия

Последовательность операций травления и осаждения для получения типовой КМОП-структуры

КМОП (комплементарная структура металл-оксид-полупроводник; англ. CMOS, complementary metal-oxide-semiconductor) — набор полупроводниковых технологий построения интегральных микросхем и соответствующая ей схемотехника микросхем. Подавляющее большинство современных цифровых микросхем — КМОП.

В более общем случае — КМДП (со структурой металл-диэлектрик-полупроводник). В технологии КМОП используются полевые транзисторы с изолированным затвором с каналами разной проводимости. Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний). Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов в одной локации кристалла; вследствие меньшего расстояния между элементами КМОП-схемы обладают более высокой скоростью действия и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки.

По аналогичной технологии выпускаются дискретные полевые транзисторы с изолированным затвором (MOSFET, metal-oxide-semiconductor field-effect transistor).

История[ | ]

Схемы КМОП в 1963 изобрёл Фрэнк Вонлас (Frank Wanlass) из компании Fairchild Semiconductor, первые микросхемы по технологии КМОП были созданы в 1968. Долгое время КМОП рассматривалась как энергосберегающая, но медленная альтернатива ТТЛ, поэтому микросхемы КМОП нашли применение в электронных часах, калькуляторах и других устройствах с батарейным питанием, где энергопотребление было критичным.

К 1990 году с повышением степени интеграции микросхем встала проблема рассеивания энергии на элементах. В результате технология КМОП оказалась в выигрышном положении. Со временем были достигнуты скорость переключения и плотность монтажа, недостижимые в технологиях, основанных на биполярных транзисторах.

Ранние КМОП-схемы были очень уязвимы для электростатических разрядов. Сейчас эта проблема в основном решена, но при монтаже КМОП-микросхем рекомендуется принимать меры по снятию электрических зарядов.

Для изготовления затворов в КМОП-ячейках на ранних этапах применялся алюминий. Позже, в связи с появлением так называемой самосовмещённой технологии, которая предусматривала использование затвора не только как конструктивного элемента, но одновременно как маски при получении сток-истоковых областей, в качестве затвора стали применять поликристаллический кремний.

Схемотехника[ | ]

ru-wiki.ru

КМОП Википедия

Последовательность операций травления и осаждения для получения типовой КМОП-структуры

КМОП (комплементарная структура металл-оксид-полупроводник; англ. CMOS, complementary metal-oxide-semiconductor) — набор полупроводниковых технологий построения интегральных микросхем и соответствующая ей схемотехника микросхем. Подавляющее большинство современных цифровых микросхем — КМОП.

В более общем случае — КМДП (со структурой металл-диэлектрик-полупроводник). В технологии КМОП используются полевые транзисторы с изолированным затвором с каналами разной проводимости. Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний). Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов в одной локации кристалла; вследствие меньшего расстояния между элементами КМОП-схемы обладают более высокой скоростью действия и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки.

По аналогичной технологии выпускаются дискретные полевые транзисторы с изолированным затвором (MOSFET, metal-oxide-semiconductor field-effect transistor).

Схемы КМОП в 1963 изобрёл Фрэнк Вонлас (Frank Wanlass) из компании Fairchild Semiconductor, первые микросхемы по технологии КМОП были созданы в 1968. Долгое время КМОП рассматривалась как энергосберегающая, но медленная альтернатива ТТЛ, поэтому микросхемы КМОП нашли применение в электронных часах, калькуляторах и других устройствах с батарейным питанием, где энергопотребление было критичным.

К 1990 году с повышением степени интеграции микросхем встала проблема рассеивания энергии на элементах. В результате технология КМОП оказалась в выигрышном положении. Со временем были достигнуты скорость переключения и плотность монтажа, недостижимые в технологиях, основанных на биполярных транзисторах.

Ранние КМОП-схемы были очень уязвимы для электростатических разрядов. Сейчас эта проблема в основном решена, но при монтаже КМОП-микросхем рекомендуется принимать меры по снятию электрических зарядов.

Для изготовления затворов в КМОП-ячейках на ранних этапах применялся алюминий. Позже, в связи с появлением так называемой самосовмещённой технологии, которая предусматривала использование затвора не только как конструктивного элемента, но одновременно как маски при получении сток-истоковых областей, в качестве затвора стали применять поликристаллический кремний.

ruwikiorg.ru

КМОП - Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 января 2017; проверки требуют 22 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 января 2017; проверки требуют 22 правки. показать/скрыть подробности Последовательность операций травления и осаждения для получения типовой КМОП-структуры показать/скрыть подробности

КМОП (комплементарная структура металл-оксид-полупроводник; англ. CMOS, complementary metal-oxide-semiconductor) — набор полупроводниковых технологий построения интегральных микросхем и соответствующая ей схемотехника микросхем. Подавляющее большинство современных цифровых микросхем — КМОП.

В более общем случае — КМДП (со структурой металл-диэлектрик-полупроводник). В технологии КМОП используются полевые транзисторы с изолированным затвором с каналами разной проводимости. Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний). Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов в одной локации кристалла; вследствие меньшего расстояния между элементами КМОП-схемы обладают более высокой скоростью действия и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки.

По аналогичной технологии выпускаются дискретные полевые транзисторы с изолированным затвором (MOSFET, metal-oxide-semiconductor field-effect transistor).

История[ | ]

Схемы КМОП в 1963 изобрёл Фрэнк Вонлас (Frank Wanlass) из компании Fairchild Semiconductor, первые микросхемы по технологии КМОП были созданы в 1968. Долгое время КМОП рассматривалась как энергосберегающая, но медленная альтернатива ТТЛ, поэтому микросхемы КМОП нашли применение в электронных часах, калькуляторах и других устройствах с батарейным питанием, где энергопотребление было критичным.

К 1990 году с повышением степени интеграции микросхем встала проблема рассеивания энергии на элементах. В результате технология КМОП оказалась в выигрышном положении. Со временем были достигнуты скорость переключения и плотность монтажа недостижимые в технологиях, основанных на биполярных транзисторах.

Ранние КМОП-схемы были очень уязвимы к электростатическим разрядам. Сейчас эта проблема в основном решена, но при монтаже КМОП-микросхем рекомендуется принимать меры по снятию электрических зарядов.

Для изготовления затворов в КМОП-ячейках на ранних этапах применялся алюминий. Позже, в связи с появлением так называемой самосовмещённой технологии, которая предусматривала использование затвора не только как конструктивного элемента, но одновременно как маски при получении сток-истоковых областей, в качестве затвора стали применять поликристаллический кремний.

Схемотехника[ | ]

показать/скрыть подробности Схема логического элемента выполняющего логическую функцию 2И-НЕ показать/скрыть подробности Топология логического элемента 2И-НЕ (схема)

Для примера рассмотрим схему вентиля 2И-НЕ, построенного по технологии КМОП.

  • Если на оба входа A и B подан высокий уровень, то оба транзистора снизу на схеме открыты, а оба верхних закрыты, то есть выход соединён с землёй.

encyclopaedia.bid

КМОП | Наука | Fandom

КМОП (К-МОП; комплементарная логика на транзисторах металл-оксид-полупроводник; англ. CMOS, Complementary-symmetry/metal-oxide semiconductor) — технология построения электронных схем. В технологии КМОП используются полевые транзисторы с изолированным затвором с каналами разной проводимости. Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний). Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов; как следствие, КМОП-схемы обладают более высоким быстродействием и меньшим энергопотреблением, при том характеризуются менее сложным технологическим процессом изготовления и меньшей стоимостью.

Подавляющее большинство современных логических микросхем, в том числе, процессоров, используют схемотехнику КМОП.[1]

    Схемы КМОП в 1963 изобрёл Фрэнк Вонлас (Frank Wanlass) из компании Fairchild Semiconductor, первые микросхемы по технологии КМОП были созданы в 1968. Долгое время КМОП рассматривалась как энергосберегающая, но медленная альтернатива ТТЛ, поэтому микросхемы КМОП нашли применение в электронных часах, калькуляторах и других устройствах с батарейным питанием, где энергопотребление было критичным.

    К 1990 году с повышением степени интеграции микросхем встала проблема рассеивания энергии на элементах. В результате технология КМОП оказалась в выигрышном положении. Со временем была достигнута скорость переключения и плотность монтажа недостижимые в технологиях, основанных на биполярных транзисторах.

    Ранние КМОП-схемы были очень уязвимы к электростатическим разрядам. Сейчас эта проблема в основном решена, но при монтаже КМОП-микросхем рекомендуется принимать меры по снятию электрических зарядов.

    Для изготовления затворов в КМОП-ячейках на ранних этапах применялся алюминий. Позже, в связи с появлением так называемой самосовмещённой технологии, которая предусматривала использование затвора не только как конструктивного элемента, но одновременно как маски при получении сток-истоковых областей, в качестве затвора стали применять поликристаллический кремний. Это было вызвано тем, что алюминий не мог выдержать высокотемпературного процесса «разгонки» примеси, проводимой после получения стока и истока (типичная температура процесса — около 1000°С). Но в настоящее время наблюдается тенденция возвращения к металлическим затворам, для получения которых используются тугоплавкие металлы, выдерживающие высокие температуры. Уход от поликристаллического кремния вызван его неустранимым недостатком — высоким сопротивлением, которое снижает быстродействие схем.

    Схема 2И-НЕ

    Для примера рассмотрим схему вентиля 2И-НЕ, построенного по технологии КМОП.

    • Если на оба входа A и B подан высокий уровень, то оба транзистора снизу на схеме открыты, а оба верхних закрыты, то есть выход соединён с землёй.
    • Если хотя бы на один из входов подать низкий уровень, соответствующий транзистор сверху будет открыт, а снизу закрыт. Таким образом, выход будет соединён с напряжением питания и отсоединён от земли.

    В схеме нет никаких нагрузочных сопротивлений, поэтому в статическом состоянии через КМОП-схему протекают только токи утечки через закрытые транзисторы, и энергопотребление очень мало. При переключениях электрическая энергия тратится в основном на заряд емкостей затворов и проводников, так что потребляемая (и рассеиваемая) мощность пропорциональна частоте этих переключений (например, тактовой частоте процессора).

    Серии микросхем Править

    • На КМОП-транзисторах (CMOS):
      • C — CMOS с питанием 4-15V, аналогична серии 4000;
      • HC — Высокоскоростная CMOS, по скорости аналогична серии LS, 12 нс;
      • HCT — Высокоскоростная, совместимая по выходам с биполярными сериями;
      • AC — Улучшенная CMOS, скорость в целом между сериями S и F;
      • AHC — Улучшенная высокоскоростная CMOS, втрое быстрее HC
      • ALVC — с низким напряжением питания (1,65 — 3,3В), время срабатывания 2 нс;
      • AUC — с низким напряжением питания (0.8 — 2,7В), время срабатывания < 1,9 нс при Vпит=1,8В;
      • FC — быстрая CMOS, скорость аналогична F
      • LCX — CMOS с питанием 3В и 5В-совместимыми входами;
      • LVC — с пониженным напряжением (1,65 — 3.3В) и 5В-совместимыми входами, время срабатывания < 5,5 нс при Vпит=3,3V, < 9 нс при Vпит=2,5В;
      • LVQ — с пониженным напряжением (3,3В)
      • LVX — с питанием 3,3В и 5В-совместимыми входами;
      • VHC — Сверхвысокоскоростная CMOS — быстродействие сравнимо с S;
      • G — Супер-сверхвысокоскоростная для частот выше 1 ГГц, питание 1,65В — 3,3В, 5В-совместимые входы;
    • BiCMOS
      • BCT — BiCMOS, TTL-совместимые входы, используется для буферов;
      • ABT — Улучшенная BiCMOS, TTL-совместимые входы, быстрее ACT и BCT

    См. также

    science.wikia.org

    Сравнение основных характеристик ТТЛ и КМОП микросхем

    Основной родовой признак ТТЛ — использование биполярных транзисторов, причем структуры только п-р-п. КМОП же, как следует из ее названия, осно­вана на полевых транзисторах с изолированным затвором структуры МОП, причем комплементарных, то есть обоих полярностей — и с w- и с /^-каналом. Схемотехника базовых логических элементов ТТЛ и КМОП приведена на рис. 15.1. На западе их еще называют вентилями — чем можно оправдать та­кое название, мы увидим в конце главы.

    Входной многоэмиттерный транзистор ТТЛ мы уже рисовали в главе И — он может иметь сколько угодно (на практике — до восьми) эмиттеров, и эле­мент тогда будет иметь соответствующее число входов. Если любой из эмит­теров транзистора VT1 замкнуть на «землю», то транзистор откроется, а фа-зорасщепляющий транзистор VT2 (с его работой мы знакомы по рис. 6.8) — закроется. Соответственно, выходной транзистор VT3 откроется, а VT4 — закроется, на выходе будет высокий логический уровень, или уровень логи­ческой единицы. Если же все эмиттеры присоединены к высокому потенциа­лу (или просто «висят» в воздухе), то ситуация будет обратная — VT2 откро­ется током через переход база-коллектор VT1 (такое включение транзистора называется «инверсным»), и на выходе установится ноль за счет открытого транзистора VT4. Такой ТТЛ-элемент будет осуществлять функцию «И-НЕ» (логический ноль на выходе только при единицах на всех входах).

    ТТЛ

    Выходной каскад ТТЛ-элемента представляет собой некое подобие ком­плементарного («пушпульного») каскада класса В, знакомого нам по анало­говым усилителям (см. рис. 8.2). Однако воспроизведение р-п-р-транзисторов оказалось для ТТЛ-технологии слишком сложным, потому такой каскад носит еще название псевдокомплементарного— верхний транзистор VT3 работает в режиме эмиттерного повторителя, а нижний — в схеме с общим эмиттером.

    Рис. 15.1. Схемы базовых элементов ТТЛ и КМОП

    Кстати, заметим, что из-за недоступности p-w-p-транзисторов воспроизведе­ние схемы «ИЛИ» для ТТЛгтехнологии оказалось крепким орешком, и ее, схемотехника довольно существенно отличается от показанной на рис. 15.1 базовой схемы элемента «И-НЕ».

    Заметки на полях

    На заре транзисторной техники псевдокомплементарные каскады, подобные выходному каскаду ТТЛ, использовались — о ужас! — для усиления звука. Это построение дало основания для многочисленных попыток приспособить логи­ческие элементы, которые, в сущности, представляют собой усилитель с до­вольно большим (несколько десятков) коэффициентом усиления, для усиле­ния аналоговых сигналов. Излишне говорить, что результаты оказались довольно плачевными, даже с КМОП-элементом, который построен куда более симметрично.

    Как видно из схемы, ТТЛ-элемент существенно несимметричен и по входам, и по выходам. По входу напряжение логического нуля должно быть доста­точно близко к «земле», при напряжении на эмиттере около 1,5 В (при стан­дартном для ТТЛ питании 5 В) входной транзистор уже запирается. Причем при подаче нуля нужно обеспечить отвод довольно значительного тока база-эмиттер— около 1,6 мА для стандартного элемента, отчего для элементов ТТЛ всегда оговаривается максимальное количество одновременно подсое­диненных к выходу других таких элементов (стандартно — не более десят­ка). В то же время логическую единицу на входы можно не подавать вовсе. Практически, однако, подавать ее следует — по правилам незадействованные входы ТТЛ должны быть присоединены к питанию через резисторы 1 кОм.

    Еще хуже дела обстоят на выходе: напряжение логического нуля обеспечива­ется открытым транзистором и действительно довольно близко к нулю — даже при нагрузке в виде десятка входов других таких же элементов оно не превышает 0,5 В, а в нормах на сигнал ТТЛ оговорена величина не более 0,8 В. А вот напряжение логической единицы довольно далеко отстоит от питания и составляет при питании 5 В в лучшем случае (без нагрузки) от 3,5 до 4 В, практически же в нормах оговаривается величина 2,4 В.

    Такое балансирование десятыми вольта (напряжение нуля 0,8 В, напряжение порога переключения от 1,2 до 2 В, напряжение единицы 2,4 В) приводит к тому, что все ТТЛ-микросхемы могут работать в довольно узком диапазоне напряжений питания — практически от 4,5 до 5,5 В, многие даже от 4,75 до 5,25 В, то есть 5 В ±5%. Максимально допустимое напряжение питания со­ставляет для разных ТТЛ-серий от 6 до 7 В, и при его превышении они обыч­но горят ясным пламенем. Низкий и несимметричный относительно питания порог срабатывания элемента приводит и к плохой помехоустойчивости.

    Самым крупным (и даже более серьезным, чем остальные) недостатком ТТЛ является высокое потребление — до 2,5 мА на один такой элемент, это без учета вытекающих токов по входу и потребления нагрузки по выходу. Так что приходится только удивляться, почему микросхемы ТТЛ, содержащие много базовых элементов, вроде счетчиков или регистров, не требуют охла­ждающего радиатора. Сочетание низкой помехоустойчивости с высоким по­треблением — смесь довольно гремучая, и при разводке плат с ТТЛ-микросхемами приходится ставить по развязывающему конденсатору на ка­ждый корпус. Все перечисленное в совокупности давно бы заставило отка­заться от технологии ТТЛ вообще, однако у них до некоторого времени было одно неоспоримое преимущество: высокое быстродействие, которое для ба­зового элемента в виде, показанном на рис. 15.1, может достигать десятков мегагерц.

    В дальнейшем развитие ТТЛ шло по линии уменьшения потребления и улучшения электрических характеристик, в основном за счет использования т. н. переходов Шоттки, на которых падение напряжения может составлять 0,2—0,3 В вместо обычных 0,6—0,7 В (технология ТТЛШ, обозначается бук­вой S в наименовании серии, отечественный аналог— серии 531 и 530). Ба­зовая технология, которая составляла основу широко распространенной в 1960—70-х годах серии 74 без дополнительных букв в обозначении (анало­ги— знаменитые отечественные серии 155 и 133), сейчас практически не используется. ТТЛ-микросхемы в настоящее время можно выбирать из вари­антов, представленных малопотребляющими сериями типа 74LSxx (серии 555 и 533) или быстродействующими типа 74Fxx (серия 1531). Причем по­требление последних практически равно потреблению старых базовых серий при более высоком (до 125 МГц) быстродействии, а для первых все наобо­рот— быстродействие сохранено на уровне базового, зато потребление пи­тания снижено раза в три-четыре.

    КМОП

    КМОП-элементы намного ближе к представлению о том, каким должен быть идеальный логический элемент. Для начала, как можно видеть из рис. 15.1, они практически симметричны, как по входу, так и по выходу. Открытый по­левой транзистор на выходе (либо /?-типа для логической единицы, либо «-типа для логического нуля) фактически представляет собой, как мы знаем.

    просто сопротивление, которое для обычных КМОП-элементов может со­ставлять от 100 до 300 Ом (под «обычными» или «классическими» КМОП мы подразумеваем здесь серию 4000А или 4000В, см. далее). Для дополнитель­ной симметрии на выходе обычно ставят последовательно два инвертора, по­добных показанному на рис. 15.1 справа (жалко, что ли, транзисторов, если потребление не растет?). Поэтому на выходе не сказывается то, что в нижнем плече для схемы «И-НЕ» стоят два таких транзистора последовательно.

    Для схемы «ИЛИ» такие транзисторы будут стоять в верхнем плече — она полностью симметрична схеме «И», что тоже плюс технологии КМОП по сравнению с ТТЛ. Обратите также внимание, что выходной каскад инвертора построен не по схеме «пушпульного» каскада, то есть это не потоковые по­вторители напряжения, а транзисторы в схеме с общим истоком, соединен­ные стоками, что позволяет получить дополнительный коэффициент усиле­ния по напряжению.

    На практике особенности построения элемента приводят к тому, что в КМОП-микросхемах:

    ? на ненагруженном выходе напряжение логической единицы практически равно напряжению питания, а напряжение логического нуля практически равно потенциалу «земли»;

    ? порог переключения близок к половине напряжения питания;

    ? входы практически не потребляют тока, так как представляют собой изо­лированные затворы МОП-транзисторов;

    ? в статическом режиме весь элемент также не потребляет тока от источ­ника питания.

    Из последнего положения вытекает, что схема любой степени сложности, построенная с помощью КМОП-элементов, в «застывшем» состоянии и даже при малых рабочих частотах, не превышающих десятка-другого килогерц, практически не потребляет энергии! Отсюда ясно, как стали возможными такие фокусы, как наручные часы, которые способны идти от малюсенькой батарейки годами, или sleep-режим микроконтроллеров, в котором они по­требляют от 1 до 50 мкА на все десятки тысяч составляющих их логических элементов.

    Другое следствие вышеперечисленных особенностей — исключительная по­мехоустойчивость, достигающая половины напряжения питания. Но это еще не все преимущества. КМОП-микросхемы «классических» серий могут рабо­тать в диапазоне напряжений питания от 2 до 18 В, а современные быстро­действующие — от 2 до 7 В. Единственное, что при этом происходит— при

    снижении питания довольно резко— в разы— падает быстродействие и ухудшаются некоторые другие характеристики.

    Кроме того, выходные транзисторы КМОП, как и любые другие полевые транзисторы, при перегрузке (например, в режиме короткого замыкания) ра­ботают как источники тока — при напряжении питания 15 В этот ток соста­вит около 30 мА, при 5 В — около 5 мА. Причем это в принципе может быть долгосрочный режим работы таких элементов, единственное, что при этом надо проверить — не превышается ли значение суммарного допустимого то­ка через вывод питания, которое обычно составляет около 50 мА. То есть, возможно, придется ограничить число выходов, одновременно подключен­ных к низкоомной нагрузке. Естественно, о логических уровнях в таком ре­жиме уже речи не идет, только о втекающем или вытекающем токе.

    И тут мы подходим к основному недостатку «классической» КМОП-технологии — низкому в сравнении ТТЛ быстродействию. Это обусловлено тем, что изолированный затвор МОП-транзистора представляет собой кон­денсатор довольно большой емкости— в базовом элементе до 10—15 пФ. В совокупности с выходным резистивным сопротивлением предыдущей схе­мы такой конденсатор образует фильтр низких частот. Обычно рассматрива­ют не просто частотные свойства, а время задержки распространения сигнала на один логический элемент. Задержка возникает из-за того, что фронт сиг­нала не строго вертикальный, а наклонный, и напряжение на выходе еще только начнет нарастать (или снижаться), когда напряжение на входе достиг­нет уже значительной величины (в идеале— половины напряжения пита­ния). Время задержки могло достигать у ранних серий КМОП величины 200—250 НС (сравните — у базовой серии ТТЛ всего 7,5 не). На практике при напряжении питания 5 В максимальная рабочая частота «классического» КМОП не превышает 1—3 МГц— попробуйте соорудить на логических эле­ментах генератор прямоугольных сигналов по любой из схем, которые будут разобраны в главе 16, и вы увидите, что уже при частоте 1 МГц форма сигна­ла будет скорее напоминать синусоиду, чем прямоугольник.

    Другим следствием наличия высокой входной емкости является то, что при переключении возникает импульс тока перезарядки этой емкости, то есть чем выше рабочая частота, тем больше потребляет микросхема, и считается, что при максимальных рабочих частотах ее потребление может сравниться с по­треблением ТТЛ (по крайней мере, ТТЛ серии 74LS). Дело еще усугубляется тем, что из-за затянутых фронтов импульсов элемент достаточно длительное время находится в активном состоянии, когда оба выходных транзистора приоткрыты (то есть возникает так называемый эффект «сквозного тока»).

    Это же затягивание фронтов в сочетании с высокоомным входом приводит к снижению помехоустойчивости при перею1ючении — если на фронте сигна­ла «сидит» высокочастотная помеха, то это может приводить к многократ­ным переключениям выхода, как это было у компаратора (см. главу 13). По этой причине в спецификациях на микросхемы часто указывают желатель­ную максимальную длительность фронтов управляющего сигнала.

    Однако в современных КМОП, в отличие от «классических», большинство недостатков, связанных с низким быстродействием, удалось преодолеть (правда, за счет снижения допустимого диапазона питания). Подробнее о се­риях КМОП рассказано далее, а пока несколько еще несколько слов об осо­бенностях этих микросхем.

    Незадействованные входы элемента КМОП нужно обязательно подключать куда-нибудь — либо к земле, либо к питанию (резисторов при этом не требу­ется, так как вход тока не потребляет), либо объединять с соседним вхо­дом — иначе наводки на столь высокоомном входе полностью нарушат рабо­ту схемы. Причем в целях снижения потребления следует делать это и по отношению к незадействованным элементам в том же корпусе (но не ко всем незадействованным выводам, конечно). «Голый» вход КМОП из-за своей вы-сокоомности может быть также причиной повышенной «смертности» чипов при воздействии статического электричества, однако на практике входы все­гда шунтируют диодами, как показано на рис. 11.4. Допустимый ток через эти диоды также оговаривается в спецификациях.

    nauchebe.net

    технология - это... Что такое КМОП-технология?

    
    • КМОП-структура
    • КМПВ

    Смотреть что такое "КМОП-технология" в других словарях:

    • КМОП технология — jungtinių MOP darinių technologija statusas T sritis radioelektronika atitikmenys: angl. CMOS process; complementary MOS process vok. komplementäre MOS Technik, f rus. КМОП технология, f pranc. technologie CMOS, f …   Radioelektronikos terminų žodynas

    • КМОП технология на полупроводниковой подложке — jungtinių MOP darinių su puslaidininkiniu padėklu technologija statusas T sritis radioelektronika atitikmenys: angl. bulk CMOS process; bulk complementary MOS process vok. volumenkomplementäre MOS Technologie, f rus. КМОП технология на… …   Radioelektronikos terminų žodynas

    • КМОП-технология с карманами n-типа — jungtinių MOP darinių su n laidumo kišenėmis technologija statusas T sritis radioelektronika atitikmenys: angl. n well CMOS process; n well CMOS technology vok. komplementäre n Wannen MOS Technik, f rus. КМОП технология с карманами n типа, f… …   Radioelektronikos terminų žodynas

    • КМОП-матрица — …   Википедия

    • КМОП-сенсор — КМОП матрица светочувствительная матрица, выполненная на основе КМОП технологии. КМОП матрица В КМОП матрицах используются полевые транзисторы с изолированным затвором с каналами разной проводимости. Эквивалентная схема ячейки КМОП матрицы: 1… …   Википедия

    • КМОП (значения) — КМОП (комплементарная логика на МОП транзисторах; англ. CMOS, Complementary symmetry/metal oxide semiconductor) технология построения логических электронных схем: КМОП КМОП сенсор КМОП матрица …   Википедия

    • Кмоп (значения) — КМОП (комплементарная логика на МОП транзисторах; англ. CMOS, Complementary symmetry/metal oxide semiconductor) технология построения логических электронных схем: КМОП КМОП сенсор КМОП матрица …   Википедия

    • КМОП — Статический КМОП инвертор КМОП (К МОП; комплементарная логика на транзисторах металл оксид полупроводник; КМДП[1] …   Википедия

    • КМОП-транзистор — Статический КМОП инвертор КМОП (К МОП; комплементарная логика на транзисторах металл оксид полупроводник; англ. CMOS, Complementary symmetry/metal oxide semiconductor) технология построения электронных схем. В технологии КМОП используются полевые …   Википедия

    • КМОП-структура —  CMOS  (Complementary Metal Oxide Semiconductor)  КМОП структура, К МОП, комплементарная логика на транзисторах металл оксид полупроводник   Технология построения электронных схем. В технологии КМОП используются полевые транзисторы с… …   Толковый англо-русский словарь по нанотехнологии. - М.

    • технология КМОП-структур с КНС-структурой — jungtinių MOP darinių ant safyro technologija statusas T sritis radioelektronika atitikmenys: angl. CMOS on sapphire process vok. komplementäre MOS Silizium auf Saphir Technologie, f rus. технология КМОП структур с КНС структурой, f pranc.… …   Radioelektronikos terminų žodynas


    dic.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о