Электролитические конденсаторы — Купите в Москве с доставкой: выгодные цены
Производитель: SAMXON
Код товара: KM470/16
Код произв-ля: KM 470U/16V
Конденсатор электролитический, THT, 470мкФ, 16VDC, 8×12мм, ±20%
На складе в Москве: 1535 шт
Допоставка 1400 шт 1 неделя ?
Единица измерения: мкФ
Погрешность, %: 20
Рабочее напряжение макс, В: 16
Тип конденсатора: 14032
Монтаж: THT
единица измерения: мкФ
Шаг выводов: 3.5
Jamicon | 10 мкф 63 в TK | TK | 5 х 11 | 1 шт. | — | — |
Jamicon | 10 мкф 100 в TK | TK | 6,3 х 11 | 1 шт. | 2 р. | V |
SAMWHA | 10 мкф 250 в RD | RD | 1 шт. | 7 р. | V | |
Jamicon | 22 мкф 63 в TL низкоимп. | TL | 6,3 Х 11 | 1 шт. | 2 р. | V |
Jamicon | 47 мкф 50 в TK | TK | 6,3 х 11 | 1 шт. | 3 р. | V |
JB Cap. | 47 мкф 63 в JRB | JRB | 6,3 х 11 | 1 шт. | 3 р. | V |
Jamicon | 47 мкф 450 в TK | TK | 16 х 26 | 1 шт. | 45 р. | V |
Jamicon | 68 мкф 450 в TK | TK | 18 х 35 | 1 шт. | 50 р. | V |
25 шт. | — | — | ||||
100 мкф 25 в TK | TK | 5 х 11 | 1 шт. | 2 р. | V | |
Jamicon | 100 мкф 25 в WL комп. | WL | 6 х 11 | 100 шт. | 150 р. (1,50) | V |
Jamicon | 100 мкф 35 в TK | TK | 6 х 11 | 1 шт. | 3 р. | V |
JB Cap. | 100 мкф 50 в JRC низкоимп. | JRC | 10 x 12 | 1 шт. | 5 р. | V |
Jamicon | 100 мкф 63 в TK | TK | 10 х 13 | 1 шт. | 5 р. | V |
JB Cap. | 100 мкф 63 в JRB | JRB | 8 x 12 | 1 шт. | 5 р. | V |
jamicon | 100 мкф 160 в TK | 13 х 25 | 1 шт. | — | — | |
SAMWHA | 100 мкф 160 в RD | RD | 12 х 25 | 1 шт. | — | — |
Jamicon | 100 мкф 400 в TK | TK | 18 х 35 | 1 шт. | — | — |
SAMWHA | 100 мкф 450 в RD | RD | 18 х 40 | 1 шт. | — | — |
JB Cap/ | 100 мкф 450 в JRB | JRB | 18 х 40 | 1 шт. | 70 р. | V |
Jamicon | 220 мкф 25 в TK | TK | 8 х 11 | 1 шт. | 4 р. | V |
SAMWHA | 220 мкф 35 в RD | RD | 8 х 11 | 1 шт. | 5 р. | V |
220 мкф 50 в JRB | JRB | 10 х 12 | 1 шт. | 6 р. | V | |
Jamicon | 220 мкф 63 в TK | TK | 10 х 16 | 1 шт. | 6 р. | V |
SAMWHA | 220 мкф 63 в RD | RD | 10 х 16 | 1 шт. | 6 р. | V |
Jamicon | 330 мкф 25 в TK | TK | 8 х 11 | 1 шт. | 1185 р. (2,37) | V |
ELZET | 470 мкф 16 в 105С | 8 х 12 | 100 шт. | 161 р. (1,61) | V | |
Jamicon | 470 мкф 25 в TK | TK | 8 х 14 | — | — | — |
JB Cap. | 470 мкф 25 в JRB | JRB | 8 х 14 | 5 р. | V | |
SAMWHA | 470 мкф 25 в RD | RD | 10 х 12 | 1 шт. | — | — |
Jamicon | 470 мкф 35 в TK | TK | 10 х 13 | — | — | — |
SAMWHA | 470 мкф 35 в RD | RD | 10 х 16 | 1 шт. | 6 р. | V |
SAMWHA | 470 мкф 50 в RD | RD | 10 х 20 | 1 шт. | 10 р. | V |
Jamicon | 1000 мкф 6,3 в TK | TK | 8 х 11 | 1 шт. | 3 р. | V |
Jamicon | 1000 мкф 16 в TK | TK | 10 х16 | 1 шт. | 9 р. | V |
SAMWHA | 1000 мкф 16 в RD | RD | 10 х 16 | 1 шт. | —- | — |
Teapo | 1000 мкф 25 в SH | SH | 10 х 20 | 1 шт. | 10 р. | V |
Jamicon | 1000 мкф 25 в TK | TK | 10 х 20 | 1 шт. | 10 р. | V |
JB Cap. | 1000 мкф 25 в JRB (ST) | JRB | 10 х 21 | 1 шт. | 8 р. | V |
JB Cap. | 1000 мкф 25 в JRC комп. | JRC | 10 х 21 | 1 шт. | —- | — |
SAMWHA | 1000 мкф 25 в RD | RD | 10 х 20 | 1 шт. | —- | — |
Jamicon | 1000 мкф 35 в TK | TK | 10 х 21 | 1 шт. | 14 р. | V |
JB Cap. | 1000 мкф 35 в JRB | JRB | 13 х 20 | 1 шт. | 12 р. | V |
SAMWHA | 1000 мкф 35 в RD | RD | 12,5 х 20 | 1 шт. | —- | — |
Jamicon | 1500 мкф 25 в WL комп. | WL | 12,5 х 20 | 1 шт. | 20 р. | V |
Jamicon | 2200 мкф 16 в TK | TK | 13 х 20 | 1 шт. | 12 р. | V |
Jamicon | 2200 мкф 16 в WL комп. | WL | 10 х 26 | 1 шт. | —- | — |
JB Cap. | 2200 мкф 16 в JRC комп. | JRC | 10 х 20 | 1 шт. | 13 р. | V |
Jamicon | 2200 мкф 25 в TK | TK | 13 х 20 | 1 шт. | —- | — |
SAMWHA | 2200 мкф 25 в RD | RD | 13 х 25 | 1 шт. | —- | — |
JB Cap. | 2200 мкф 25 в JRB | JRB | 13 x 21 | 1 шт. | 18 р. | V |
100 шт. | 1150 р. (11,50) | V | ||||
250 шт. | 2750 р. (11,00) | V | ||||
Jamicon | 2200 мкф 35 в TK | TK | 16 х 25 | 1 шт. | 22 р. | V |
50 шт. | 825 р. (16,50) | V | ||||
JB Cap | 2200 мкф 35 в JRC комп, | JRC | 16 х 26 | 1 шт. | 22 р. | V |
75 шт. | 1260 р. (16,80) | V | ||||
Jamicon | 3300 мкф 16 в WL комп. | WL | 12,5 х 25 | 1 шт. | 24 р. | V |
100 шт. | 2000 р. (20,00) | V | ||||
Jamicon | 3300 мкф 16 в WL комп. | WL | 12,5 х 35 | 1 шт. | 18 р. | V |
Зачем нужны электролитические конденсаторы и как их менять
Рубрика: Статьи обо всем, Статьи про радиодетали Опубликовано 13.04.2020 · Комментарии: 0 · На чтение: 5 мин · Просмотры:Post Views: 902
Электролитические конденсаторы обладают большой емкостью. Они используются в основном в цепях питания, где требуется фильтрация напряжения от помех.Их чего состоят
Больших емкостей можно добиться только с помощью химических источников.
Электролитические конденсаторы очень близки к химическим источникам тока. У них, как и у аккумуляторов, есть катод, анод и электролит. А также те же самые недостатки, что и у аккумуляторов.
По составу электролита они бывают: жидкого и сухого типа. Еще есть оксидно-полупроводниковые, а также оксидно-металлические.Поэтому, такие конденсаторы и называются электролитическими. Среди радиолюбителей и электронщиков они сокращенно называются электролитами.
Обозначаются на принципиальных схемах также, как и обычный, но только с указанием полярности в виде знака +.
Характеристики электролитического конденсатора
К характеристикам можно отнести емкость и рабочее напряжение. Они указаны на корпусе.
Маркировки у электролитов по сути нет, основана информация указывается на корпусе. Микрофарады обозначаются µF, а рабочее напряжение в V.
А вообще, есть еще понятие ESR.
Рабочее напряжение ни в коем случае нельзя превышать.
Преимущества и недостатки
Преимущества электролитических конденсаторов:
- Большая емкость;
- Компактность.
Недостатки:
- Со временем электролит высыхает, теряется емкость;
- Работает только на низких частотах;
- Ограничения по эксплуатационным условиям и риск вздутия/взрыва.
Разберём подробнее преимущества и недостатки электролитов.
Большая емкость
Электролитические конденсаторы обладают большой емкостью, и это их отличительная и самая главная особенность среди остальных конденсаторов.
Емкость обозначается в микрофарадах (мкФ), поскольку электролиты с меньшими значениями не выпускают.
Они обычно выпускаются от нескольких мкФ, до нескольких Ф (1 000 000 мкФ).
Компактность
Благодаря использованию химии, конденсаторы большой емкости намного компактнее, чем если бы их делали керамическими или пленочными.
Емкость конденсатора можно увеличить только за счет его обкладок, диэлектрика и геометрии. Поэтому электролиты лидируют по соотношению емкость/габариты.
Ионисторы
Разновидность электролитических конденсаторов — это ионисторы. Они обладают большей емкостью (например, 3000 Ф), и работают в основном как резервный или автономный низковольтный источник питания схемы. А также поддерживает схему в спящем режиме без другого источника. Их кстати в большей степени можно отнести к аккумуляторам.
Высыхание электролита
Основная проблема таких конденсаторов – это высыхание электролита. Обычно такая проблема проявляется из-за того, что техникой долго не пользуются или нарушаются условия эксплуатации (перегрев корпуса). Из-за этого электролит начинает высыхать, поэтому происходит потеря емкости.
Можно восстановить емкость конденсатора путем разбавления засохшего электролита дистиллированной водой (как аккумулятор), но это не выгодно. Лучше и надежнее всего заменить старый на новый, аналогичный по параметрам.
Работа на низких частотах
Это скорее особенность, чем недостаток. Большие емкости — это высокое реактивное сопротивление для высоких частот.
Поэтому, такие конденсаторы используются в низкочастотных цепях. Например, в блоках питания в качестве фильтров и сглаживания пульсаций.
Когда конденсатор вздувается и взрывается
Всегда еобходимо соблюдать полярность подключения.
Конденсаторы, как и аккумуляторы, могут вздуваться и взрываться. Иногда это происходит из-за неправильного включения или перегрева.
Если вы подключите минус источника к плюсу конденсатора и плюс источника к минусу конденсатора, то сразу же начнется вскипание электролита. Такой эффект возникает из-за обратной химической реакции. Конденсатор может взорваться.
В старых конденсаторах типа К-50 корпус монолитный, и он взрывался громко и достаточно разрушительно.
В современных электролитах на корпусе есть небольшой надрез, который в случае вскипания электролита позволяет горячему пару выйти наружу.
Иногда они просто вдуваются без нарушения герметизации, а бывают и такие случаи, когда конденсатор полностью теряет герметичность.
Тем не менее, надрез на корпусе значительно уменьшил взрывы, поэтому конденсаторы теперь чаще вздуваются, а не взрываются.
На корпусах современных конденсаторов вертикальной чертой указывается минусовой контакт.
Внимательно устанавливайте и записывайте прежнее положение, ибо многие производители ставят свои обозначения.
Например, среди радиолюбителей обычно минусовые контакты рисуют в виде квадрата.
А производители печатных плат наоборот, рисуют квадратные контактные площадки под плюс конденсатора. И то, так делают не все.
Так как есть такая путаница среди и радиолюбителей и производителей, всегда обращайте на то. где указан плюсовой контакт. И записывайте прежнее положение детали, иначе это чревато взрывом.
Характерные признаки неисправности электролитов
К таким признакам можно отнести:
- Устройство не включается. Блок питания уходит в защиту или не запускается;
- Устройство включается, но сразу же выключается. Емкость конденсаторов высохла или потеряла свое прежнее значение, поэтому блок питания уходит в защиту;
- Перед неисправностью был писк в блоке питания. Обычно это означает, что конденсатор потерял герметичность и электролит начинает вытекать;
- Нет регулировки яркости в мониторе. Отсутствие нужной емкости приводит к нарушению работы всего устройства. Емкость в данном случае делает функцию настройки;
- Перед неисправностью был взрыв и неприятный запах. Неприятный запах – это электролит;
- Устройство включается через раз. Это значит, что есть большая вероятность протечки фильтра питания.
Внешние признаки неисправности электролитических конденсаторов:
- Вздутие корпуса;
- Повреждение корпуса:
- Наличие электролита под корпусом;
- Вздутие со стороны контактов (внизу корпуса, обычно еле заметно).
Также высокочастотные пульсации вредят электролитам. Поэтому чаще всего они выходят из строя в блоках питания, поскольку именно там много пульсаций.
Правила работы с электролитами
Внимание! Перед тем, как прикоснуться к плате неисправного источника, убедитесь, что емкости разряжены. Даже если неисправен преобразователь, а не электролит, то конденсаторы могут быть заряжены. Им попросту некуда девать свой заряд. Поэтому первым делом аккуратно и не касаясь щупом мультиметра, измерьте емкости с высоким напряжением. Если они заряжены, разрядите их с помощью лампочки.
Как менять старый на новый
Среди электронщиков есть два мнения. Первое это то, что менять нужно неисправный старый конденсатор менять на такой же старый. Это объясняется тем, что вся работы схемы «привыкла» к старому конденсатору.
Но технически правильно и обоснованное мнение – это то, что нужно ставить только новый и только подходящий по параметрам конденсатор. Нет никакого привыкания схемы. Да, многие компоненты устарели и не могут работать как прежде, но у конденсатора по сути нет ничего того, что кардинально влияло бы на ухудшение работоспособности всех схемы. Устройство наоборот, будет работать лучше.
Меняйте старые конденсаторы на новые, максимально близкие по параметрам. Например, емкость можно взять чуть больше, если речь идет о блоке питания. А если это цепь настройки, то увеличив или уменьшив емкость, так можно повлиять на весь режим работы схемы. Нужно действовать по ситуации.
Ставить конденсатор с меньшими рабочим напряжением, чем в схеме, категорически нельзя. Он начнет нагреваться и взорвется. Да, многие разработчики считают с запасом, но лучше не рисковать.
Также не стоит забывать о таком параметре, как ESR (эквивалентное последовательное сопротивление).
Post Views: 902
Электролитические конденсаторы производства YAGEO Corporation – Компоненты и технологии
В одном из предыдущих номеров журнала «Компоненты и технологии» мы познакомили читателя с индуктивными компонентами, производимыми компанией Yageo. Статья очень заинтересовала читателей, мы получили много откликов и по многочисленным просьбам продолжаем знакомство с продукцией компании Yageo и в частности электролитическими конденсаторами.
История конденсатора насчитывает более 250лет. Он был изобретен немецким физиком Эвальдом Юргеном фон Клейстом и голландским физиком Питером Ван Мушенбруком в1745 году в университете немецкого города Лейдена. Устройство, носившее название «Лейденская банка», имело простейшую конструкцию ипозволяло накапливать электрическую энергию в небольших объемах. К сожалению, большого применения конденсатор тогда не нашел и использовался в основном для розыгрышей. Конденсатор заряжали от электрофорной машины, до него дотрагивались люди и получали кратковременный удар электрическим током.
С тех пор конденсаторы очень сильно изменились, появилось множество форм и конструкций, но принципы накопления энергии остались неизменными. Совершенствование технологий и применение новых материалов позволили значительно улучшить конструкцию конденсаторов. Суммарный заряд, который мог накапливаться в лейденской банке объемом 1 литр, теперь можно «уместить» в устройстве размером не больше булавочной головки.
За последние 30 лет размеры конденсаторов уменьшались столь же быстро, сколь быстро происходила миниатюризация в электронике.
Компоненты Yageo Corporation
Yageo Corporation — молодая агрессивная компания, занимающая лидирующие позиции в разработке и внедрении диэлектрических, ферро- и пьезокерамических технологий. Дата основания компании 1977 год. Центры разработки, находящиеся по всему миру, разрабатывают электронные компоненты, которые удовлетворяют самым строгим требованиям производителей электронного оборудования в сфере цифровой обработки сигналов ителекоммуникаций, где новые технологии наиболее востребованы.
Область применения компонентов Yageo не поддается охвату — это компьютерное, телекоммуникационное оборудование, бытовая и автомобильная техника, промышленное оборудование, средства мобильной связи, медицинская техника, автомобильная электроника и многое другое.
На рис. 1 представлена диаграмма, позволяющая оценить спектр электронных компонентов, выпускаемых компанией Yageo.
Электронные компоненты компании Yageo: резисторы, индуктивности, конденсаторы…
Как видно, основную долю по производству занимают резисторы, как поверхностного монтажа, так и выводные, их доля от общего объема выпускаемой продукции составляет около 64%. Компанией также в больших количествах выпускаются многослойные керамические конденсаторы. Доля электролитических конденсаторов в объеме выпускаемой продукции составляет порядка 3%. Сюда входят конденсаторы общего назначения, с малым током утечки, низкоимпедансные, срасширенным диапазоном температур и т. д.
Что же представляет собой электролитический конденсатор, каковы его основные особенности иотличия?
Особенности электролитических конденсаторов
Электролитические конденсаторы представляют собой особый тип конденсаторов, существенно отличающихся по своей конструкции, технологии производства и электрическим параметрам от конденсаторов других типов.
В электролитическом конденсаторе диэлектриком служит тонкая оксидная пленка, образованная в результате электрохимической реакции на алюминиевом аноде, служащем первой обкладкой конденсатора.
Второй обкладкой служит электролит, соприкасающийся с оксидной пленкой.
Электролитические конденсаторы по своей природе полярные и могут работать только в цепях постоянного тока. В случае, если полярность подключения конденсатора будет нарушена, внутри него почти мгновенно нарушится слой окиси, и через конденсатор потечет большой ток, конденсатор начнет греться, что приведет к его выходу из строя.
Несмотря на то что электролитические конденсаторы имеют наибольшую удельную емкость по сравнению с другими типами конденсаторов, область их применения ограничена. Во-первых, использование только в цепях постоянного или пульсирующего тока, что объясняется тем, что подводимое к нему напряжение должно иметь определенную полярность, которую нельзя менять. Во-вторых, электролитические конденсаторы более подвержены электрическому пробою, поскольку слои диэлектрика, используемые в нем, очень тонкие.
Но, несмотря на это, электролитический конденсатор является полностью востребованным элементом электрических цепей.
Одной из особенностей электролитического конденсатора является зависимость срока службы конденсатора от температуры окружающей среды.
Приблизительный срок службы электролитического конденсатора можно рассчитать, используя уравнение Арриенуса:
где T — рабочая температура, t — срок службы при температуре T, Tmax — предельная гарантированная температура, tmax — срок службы при температуре Tmax.
Уравнение для расчета времени жизни конденсатора, учитывающее внешнюю температуру и пульсирующий ток, выглядит следующим образом:
где tпост — время жизни при работе с постоянным током, k — коэффициент усиления импульсов (k = 2, если импульсы не выходят за пределы нормы, k = 4, если выходят), Tmax — предельная гарантированная температура, T — рабочая температура, ΔT — повышение температуры внутри конденсатора.
Гарантируемый срок службы электролитического конденсатора означает, что его номинальная емкость в течение указанного срока не превысит номинального отклонения, обычно это значение равно ±20%. Превышение срока службы электролитического конденсатора не означает, что он прекратит работать в цепи. Конденсатор будет работать, но значение его емкости уже выйдет запределы, указанные в технической документации.
Срок службы электролитического конденсатора можно существенно повысить, снизив рабочую температуру относительно максимальной. Так, время жизни конденсатора будет увеличиваться вдвое при снижении рабочей температуры на каждые 10°С. К сожалению, это правило действует только до 40°С. Дальнейшее снижение температуры не приводит к столь ощутимым результатам.
Для повышения надежности и сроков службы РЭА рекомендуется использовать электролитические конденсаторы с расширенным температурным диапазоном.
Одним из важных параметров электролитических конденсаторов, привлекающим все большее внимание разработчика, является эквивалентное последовательное сопротивление (ESR).
Четкого определения конденсаторов с низким ESR не существует, имеется ряд критериев, установленных разработчиками: срок службы должен быть больше, чем у стандартных конденсаторов; максимальное сопротивление (импеданс) задается на частоте 100кГц и остается неизменным в диапазоне температур от –10 до +20°С; ток пульсаций определяется на частоте 100 кГц.
Алюминиевые электролитические конденсаторы c низким значением ESR широко используются в импульсных преобразователях напряжения. Так, в сравнении со стандартными, алюминиевые электролитические конденсаторы с низким ESR характеризуются большими значениями емкости, большим сроком службы (более 5 тыс. часов) и долговечностью при полной нагрузке, способностью выдерживать более высокие токи пульсации, большим разнообразием размеров корпусов. Самые большие различия получены для таких параметров, как долговечность при полной нагрузке, импеданс (Z) и ESR на частоте 100 кГц. Конденсаторы с малыми значениями ESR и импеданса широко используются в импульсных источниках питания для обеспечения стабильности их характеристик. Конденсаторы с высокими значениями ESR будут слишком нагреваться и не позволят стабилизировать ток.
Электролитические конденсаторы Yageo Corporation
Электролитические конденсаторы являются довольно востребованным звеном электронной техники. Без них не обходится практически ни одно радиоэлектронное устройство.
На рис. 2 представлена диаграмма, позволяющая оценить степень использования электролитических конденсаторов Yageo в различных областях техники.
Рис. 2. Степень применения электролитических конденсаторов Yageo в различных областях техники
Устройство выводного электролитического конденсатора радиального типа представлено на рис. 3.
Рис. 3. Устройство выводного электролитического конденсатора
Компания Yageo занимает ведущее место в мире по производству электролитических конденсаторов, составляя конкуренцию таким мировыми производителям, как Chemicon, Nichicon, Samsung, Philips/BCC.
На рис. 4 представлена классификация электролитических конденсаторов Yageo Corporation.
Рис. 4. Классификация электролитических конденсаторов Yageo Corporation
В линейку выпускаемой продукции входят следующие конденсаторы: общего назначения, с низким ESR, с низким током утечки, неполярные, а также электролитические конденсаторы поверхностного монтажа.
Основные характеристики некоторых серий электролитических конденсаторов Yageo представлены в таблице.
Остановимся более подробно на некоторых сериях электролитических конденсаторов производства Yageo.
Рис. 5. Электролитический конденсатор Yageo дляповерхностного монтажа
Серия SH
Миниатюрные электролитические конденсаторы с верхней температурной границей 105°С. Срок службы — 2000 часов при температуре 105°С. Рабочее напряжение 6,3–450В, диапазон рабочих температур –40… +105°С, точность ±20%.
Конденсаторы этой серии применяются в устройствах, где требуется высокое качество и надежность.
Серия SB
Электролитические конденсаторы этой серии имеют низкий ток утечки, равный 0,002CV спустя две минуты после начала измерения. Рабочее напряжение 6,3–100 В, диапазон рабочих температур –40…+105°С, точность ±20%.
Серия SX
Низкоимпедансные конденсаторы с малым значением ESR. Применяются в импульсных источниках питания. Рабочее напряжение 6,3–100 В. Диапазон рабочих температур –40…+105°С. Диапазон емкостей от 22 до 1500мкФ. Точность ±20%. Ток утечки 0,01CV или 3 мкА спустя 2 минуты после начала измерения. Срок службы конденсаторов при температуре 105°С составляет 2000–5000часов.
Серия SG
Серия предназначена для использования в электронных балластах. Срок службы — 5000 часов при температуре 105°С. Рабочее напряжение от 160 до 450 В, диапазон емкостей от 3,3 до 330 мкФ. Точность ±20%.
Серия SN
Миниатюрные неполярные конденсаторы, предназначенные для использования в схемах с реверсивной полярностью постоянного напряжения. Диапазон рабочих температур –40…+105°С, рабочее напряжение 6,3–100В. Диапазон емкостей от0,47 до2200мкФ. Токутечки равен 0,03CV или 3 мкА.
Серии CA, CB, CE
Корпорация Yageo, помимо выводных, выпускает также электролитические конденсаторы поверхностного монтажа. Выпускаются серии CA, CB, CE. Все серии выпускаются в стандартных типоразмерах поверхностного монтажа (буквенные индексы A-G).
Конденсаторы серии CA имеют срок службы 2000 ч при максимальной температуре 85°С. У конденсаторов серий CB и CE срок службы, соответственно, 1000 и 2000 часов при температуре 105 °С.
Таблица. Краткие характеристики некоторых серий электролитических конденсаторов Yageo
* значение тока утечки измеряется спустя 2 минуты после включения конденсатора в цепь
Заключение
Качество электролитических конденсаторов производства Yageo подтверждается международными сертификатами качества и стандартов ISO-9002 и QS-9000, что допускает их использование, в частности, в автомобильной электронике.
К сожалению, объем журнальной статьи не позволяет подробно рассмотреть всю линейку электролитических конденсаторов, выпускаемых корпорацией Yageo, а также их особенности и сферы применения, поэтому заинтересовавшемуся читателю мы предлагаем посетить сайт корпорации Yageo в России — yageo.alkon.net.
АО Элеконд
Алюминиевые оксидно-электролитические
Алюминиевый электролитический конденсатор представляет собой анодную и катодную фольгу, разделенные электротехнической бумагой и пропитанные рабочим электролитом, который выступает в качестве катодной обкладки.
Танталовые объёмно-пористые
Конденсаторы имеют самый высокий удельный заряд среди конденсаторов с оксидным диэлектриком и жидким электролитом (исключая ионисторы), имеют высокую величину минимальной наработки, низкие значения тока утечки, широкий диапазон рабочих температур (от -60 °С до +175 °С).
Танталовые оксидно-полупроводниковые
По сравнению с электролитическими, оксидно-полупроводниковые конденсаторы имеют заметно меньшее изменение электропараметров при хранении и требуют небольшого времени тренировки. Кроме этого, они допускают работу при напряжениях значительно ниже номинального значения, а это позволяет увеличивать их срок минимальной наработки.
Ниобиевые оксидно-полупроводниковые
Отличаются от танталовых оксидно-полупроводниковых конденсаторов материалом анода. Вместо танталового порошка, применяемого в танталовых ОПК, используется ниобиевый порошок. При диапазоне температур от -40 °С до +60 °С, значения токов утечки у танталовых и ниобиевых ОПК сравнимы, и ниобиевые могут с успехом заменять танталовые.
Суперконденсаторы
Классические симметричные конденсаторы с двойным электрическим слоем. Отличительные особенности:
– отсутствие химических реакций;
– высокие токи разрядки до сотен ампер;
– номинальные ёмкости до 4700Ф;
– диапазон рабочих температур – минус 60…+65˚С
Модули суперконденсаторов
Модули представляют собой готовое решение надежного источника тока на базе суперконденсаторов с необходимыми параметрами по напряжению, ёмкости и токам.
Электролитический конденсатор: история, производство, конструкция
Электролитический конденсатор – это конденсатор, где диэлектриком служит слой оксида металла на аноде, а катодом – электролит. В результате достигается чрезвычайно большая ёмкость при сравнительно высоком рабочем напряжении, обуславливая популярность подобных изделий.
История происхождения электролитических конденсаторов
Эффект электрохимического оксидирования ряда металлов открыт французским учёным Eugène Adrien Ducretet в 1875 году на примере тантала, ниобия, цинка, марганца, титана, кадмия, сурьмы, висмута, алюминия и прочих материалов. Суть открытия: при включении в качестве анода (положительный полюс источника питания) на поверхности нарастал слой оксида, обладающий вентильными свойствами. Фактически образуется подобие диода Шоттки, в избранных работах оксиду алюминия приписывается проводимость n-типа.
Получается, место контакта обладает выпрямляющими свойствами. Теперь легко предположить дальнейшее, если вспомнить о качествах барьера Шоттки. Это низкое падение напряжения при включении в прямом направлении. Применительно к конденсаторам низкое – означает впечатляющую величину. Что касается обратного включения электролитических конденсаторов, люди наслышаны про опасность подобных экспериментов. Барьер Шоттки развивает повышенные токи утечки, за счёт которых слой оксида начинает немедленно деградировать. Немалая роль отведена туннельному пробою. Протекающая химическая реакция сопровождается выделением газов, обеспечивающих негативный эффект. Теоретики говорят, что указанное явление ведёт к выделению тепла.
Конденсаторы разного типа
Годом изобретения электролитического конденсатора называют 1896, когда 14 января Карол Поллак подал заявку в патентное бюро Франкфурта. Итак, на аноде электролитического конденсатора наращивается слой оксида под действием положительного потенциала. Процесс называется формовкой, в условиях современного развития техники длится часами и сутками. По указанной причине в процессе работы рост или деградация оксидного слоя незаметны. Электролитические конденсаторы применяются в электрических цепях с частотой до 30 кГц, что означает время смены направления тока в десятки мкс. За этот промежуток ничего не произойдёт с оксидной плёнкой.
Вначале в российской практике промышленный выпуск электролитических конденсаторов не считался экономически выгодным. В научных журналах даже рассматривалось, как наладить производство. К подобным заметкам относится статья Миткевича (Журнал Русского физико-химического общества, физика №34 за 1902 год). Рассматриваемый электролитический конденсатор состоял из плоского алюминиевого анода и двух железных катодов, расположенных по бокам. Конструкция помещалась в 6-8% раствор пищевой соды. Формовка велась постоянным напряжением (см. ниже по тексту) 100 В до остаточного тока 100 мА.
Первые серьёзные наработки отечественной принадлежности по конденсаторам с жидким электролитом относятся к 1931 году и созданы лабораторией П. А. Остроумова.
Способность вентильных металлов с оксидной плёнкой выпрямлять ток неодинакова. Наиболее ярко качества выражены у тантала. Возможно, по причине пентаоксида тантала, характеризующегося проводимостью p-типа. В результате смена полярности приводит к образованию диода Шоттки, включённого в прямом направлении. Благодаря специфическому подбору электролита деградирующий рабочий слой диэлектрика удаётся восстанавливать прямо в процессе работы. На этом исторический экскурс завершён.
Производство электролитических конденсаторов
Металлы, оксиды которых характеризуются выпрямляющими свойствами, называли вентильными по аналогии с полупроводниковыми диодами. Несложно догадаться, что окисление приводит к образованию материала с проводимостью n-типа. Это считается основным условием существования вентильного металла. Из перечисленных выше ярко выраженными позитивными свойствами обладают лишь два:
- Алюминий.
- Тантал.
Алюминиевые конденсаторы
Первый применяется намного чаще, благодаря относительной дешевизне и распространённости в Земной коре. Тантал используют в крайних случаях. Наращивание оксидной плёнки происходит двумя путями:
- Первой методикой становится поддержание постоянного тока. В процессе роста толщины окисла сопротивление растёт. Следовательно, в цепь последовательно с конденсатором на время формовки включается реостат. Процесс контролируется по падению напряжения на переходе Шоттки, при необходимости шунт подстраивается так, чтобы параметры оставались постоянными. Скорость формовки на начальном этапе постоянна, потом происходит точка перегиба со снижением параметра, через определённый интервал дальнейший рост оксидной плёнки идёт столь медленно, что технологический цикл считается завершённым. При первом перегибе анод часто начинает искрить. Соответственно, и присутствующее напряжение называется аналогично. На второй точке искрение резко усиливается, дальнейший процесс формовки нецелесообразен. А второй перегиб называют максимальным напряжением.
- Вторая методика формовки оксидного слоя сводится к поддержанию на аноде постоянного напряжения. В этом случае ток убывает по экспоненте. Напряжение выбирают ниже напряжения искрения. Процесс идёт до остаточного прямого тока, ниже которого уровень уже не опускается. Потом формовка оканчивается.
Большую роль в процессе формовки играет правильный подбор электролита. В промышленности это сводится к изучению взаимодействия агрессивных сред с алюминием:
- Представители первой группы электролитов, сюда относится борная, лимонная кислота и бура, почти не растворяют алюминий и оксид. Массово используются при производстве электролитических конденсаторов. Длительная формовка приводит к падению напряжения до 1500 В, определяющего толщину слоя диэлектрика.
Высоковольтные электролитические конденсаторы
- Хромовая, серная, янтарная и щавелевая кислоты хорошо растворяют оксид алюминия, но не затрагивают металл. Отличительной особенностью формовки становится сравнительно толстый слой диэлектрика. Причём при дальнейшем наращивании не происходит значительного снижения тока или повышения напряжения. Такой процесс применяется для формирования электрических конденсаторов с относительно низкими рабочими характеристиками (до 60 В). К окиси алюминия в пористых структурах примешиваются гидраты и соли используемой кислоты. Указанные процессы способны использоваться в защитных целях. Тогда формовка идёт по предыдущей схеме (первая группа), а довершается по описанной. Защитный слой гидроксидов предохраняет окисел от разрушения в процессе эксплуатации.
- Третья группа электролитов включает преимущественно соляную кислоту. Эти вещества в процессе формовки не применяются, хорошо растворяют алюминий и его соли. Зато охотно используются для очистки поверхностей.
Для тантала и ниобия все электролиты подпадают под классификацию первой группы. Величина ёмкости конденсатора определяется преимущественно напряжением, при котором окончена формовка. Аналогичным образом используют многоатомные спирты, глицерин и этиленгликоль, соли. Не все процессы идут по схеме, описанной выше. К примеру, при формовке алюминия в растворе серной кислоты по методу постоянного тока на графике выделяют участки:
- Несколько секунд наблюдается быстрый рост напряжения.
- Потом с прежней скоростью наблюдается спад до уровня порядка 70% от достигнутого пика.
- За третью стадию нарастает толстый пористый слой оксида, напряжение растёт крайне медленно.
- На четвёртом участке напряжение резко растёт до наступления искрового пробоя. Формовка заканчивается.
Немало зависит от технологии. На толщину слоя, а следовательно, рабочее напряжение и долговечность конденсатора, влияют концентрация электролита, температура, прочие параметры.
Маркировка на конденсаторе
Конструкция электролитического конденсатора
Обкладки обычно не плоские. Для электролитических конденсаторов чаще свёрнуты в трубочку, спиралью. На срезе напоминает катушку Тесла с вытекающими отсюда последствиями. Это значит, что конденсатор обладает значительным индуктивным сопротивлением, которое в данном контексте считается паразитным. Между обкладками помещается пропитанная электролитом бумага или ткань. Корпус изготавливается из алюминия – металл легко покрывается защитным слоем, не затрагивается электролитом и хорошо отводит тепло (помните про активную составляющую сопротивления анода).
Это конденсаторы с сухим электролитом. Их ключевое преимущество в достойном использовании объёма. Лишний электролит отсутствует, что снижает вес и габариты при прежней электрической ёмкости. Несмотря на характерное название электролит здесь не сухой, скорее, вязкий. Им пропитываются прокладки из ткани или бумаги, расположенные между обкладками. В силу вязкость электролита корпус допускается пластмассовый либо бумажный, для герметизации используется уплотнение из смолы. В результате упрощается технологический цикл изготовления продукции. Исторически разновидности с сухим электролитом появились позже. В отечественной практике первые упоминания приходятся на 1934 год.
На торце зарубежных электролитических конденсаторов нанесены крестом насечки, через которые внутренний объем выдавливается наружу. Это на случай аварии. Подобный испорченный конденсатор легко заметить невооружённым глазом и вовремя заменить, что ускоряет починку. Избежать аварии и неправильной полярности включения помогает маркировка корпуса. У катода на импортных проведена по всей высоте белая полоса с расставленными минусами, а у отечественных с противоположной – крестики (плюсы).
Для увеличения излучательной способности цвет корпуса выполняется темным. Исключения из правила редки. Подобная мера увеличивает теплоотдачу в окружающую среду. При превышении напряжения на рабочим (формовочным) происходит резкое увеличение тока за счёт ионизации, развивается сильное искрение на аноде, частично пробивается слой диэлектрика. Последствия таких явлений легко устраняются в конструкции и с корпусом, используемым в качестве катода: конденсаторы с жидким электролитом занимают сравнительно много места, но хорошо отводят тепло. Зато отлично проявляются при работе на низких частотах. Что обусловливает специфику применения в качестве фильтров блоков питания (50 Гц).
Эти цилиндрические электролитические конденсаторы устроены не так, как показано выше, без бумажных вкладок. В отдельных моделях корпус играет роль катода, анод находится внутри, бывает произвольной формы так, чтобы обеспечивалась максимальная номинальная ёмкость. За счёт механической обработки и химического травления, призванных увеличить площадь поверхности электрода, параметры удаётся поднять на порядок. Конструкция типична для моделей с жидким электролитом. Ёмкость у рассматриваемой конструкции варьируется при выпуске промышленностью от 5 до 20 мкФ при рабочем напряжении 200 – 550 В. Из-за повышения сопротивления электролита с понижением температуры конденсаторы с жидким электролитом и корпусом в качестве катода применяются преимущественно в теплом микроклимате.
Код ТН ВЭД 8532220000. Конденсаторы постоянной емкости алюминиевые электролитические. Товарная номенклатура внешнеэкономической деятельности ЕАЭС
Технические средства для инвалидов
Двигатели и генераторы электрические.. (НДС):
Постановление 1042 от 30.09.2015 Правительства РФ
0% – 27. Специальные средства для обмена информацией,получения и передачи информации для инвалидов с нарушениями зрения, слуха и голосообразования, которые могут быть использованы только для профилактики инвалидности или реабилитации инвалидов
0% – 36. Специальные технические средства для обучения инвалидов и осуществления ими трудовой деятельности, которые могут быть использованы только для профилактики инвалидности или реабилитации инвалидов
0% – 38. Технические средства для развития у инвалидов навыков ориентации в пространстве, самостоятельного передвижения, повседневного самообслуживания, для тренировки речи, письма и общения, умения различать и сравнивать предметы, средства для обучения программированию, информатике, правилам личной безопасности
20% – Прочие
Комплектующие для гражданских воздушных судов
Реакторы ядерные; котлы.. (НДС-авиазапчасти):
Федеральный закон 117-ФЗ от 05.08.2000 ГД РФ
0% – авиационные двигатели, запасные части и комплектующие изделия, предназначенные для строительства, ремонта и (или) модернизации на территории Российской Федерации гражданских воздушных судов, при условии представления в таможенный орган документа, подтверждающего целевое назначение ввозимого товара
20% – Прочие
Вернуться к:
Домашняя страница энциклопедии –
Содержание –
Именной указатель –
Предметный указатель –
Поиск –
Словарь –
Домашняя страница ESTIR –
Домашняя страница ECSКОНДЕНСАТОРЫ ЭЛЕКТРОЛИТИЧЕСКИЕСэм ПарлерCornell Dubilier Electronics, Inc. 140 Technology Place Liberty, SC 29657, USA Электронная почта: [email protected] (март 2005 г.)
По мере увеличения заряда и напряжения на данном конденсаторе в какой-то момент диэлектрик больше не сможет изолировать заряды друг от друга. Затем диэлектрик демонстрирует пробой диэлектрика или высокую проводимость в некоторых областях, что приводит к снижению накопленной энергии и заряда, генерируя внутреннее тепло.Это явление, нежелательное для большинства конденсаторных применений, возникает при напряжении пробоя конденсатора. В таких ситуациях может произойти повреждение или разрушение конденсатора. Обычно характеристики пробоя диэлектриков выражаются как максимальная напряженность поля, которая в основном представляет собой отношение приложенного напряжения к толщине диэлектрика. Массовая плотность энергии конденсатора – это отношение количества энергии, которое конденсатор может хранить при рабочем напряжении, к массе конденсатора, включая корпус.Рабочее напряжение конденсатора определяется как максимальное номинальное напряжение для данного приложения. Рабочее напряжение обычно меньше напряжения пробоя. Исключение из этого правила может иметь место, если переходное пиковое напряжение может превышать установившееся напряжение пробоя. Объемная плотность энергии конденсатора определяется как отношение запасенной энергии к объему конденсатора, включая корпус. Первый конденсатор был изобретен в 1745 году Питером ван Мушенбруком, физиком и математиком из Лейдена, Нидерланды (и назывался Leyden jar ).Это была простая стеклянная банка, покрытая изнутри и снаружи металлической фольгой. Уильям Дубилье изобрел слюдяной конденсатор примерно в 1910 году. Конденсаторы электролитическиеЭлектролитические конденсаторы – это конденсаторы, в которых одна или обе «пластины» представляют собой неметаллическое проводящее вещество, электролит. Электролиты имеют более низкую проводимость, чем металлы, поэтому используются в конденсаторах только тогда, когда металлическая пластина нецелесообразна, например, когда поверхность диэлектрика является хрупкой или шероховатой по форме или когда требуется ионный ток для поддержания диэлектрической целостности.Диэлектрический материал электролитических конденсаторов производится из самого анодного металла в так называемом процессе формовки (или анодирования . Во время этого процесса ток течет от анодного металла, который должен быть вентильным металлом, таким как алюминий, ниобий, тантал, титан или кремний – через токопроводящую ванну со специальным формирующим электролитом к ванне катода. Протекание тока заставляет изолирующий оксид металла вырастать из и в поверхность анода. Толщина, структура и состав анода. изоляционный слой определяет его электрическую прочность.Приложенный потенциал между анодным металлом и катодом ванны должен быть выше напряжения пробоя оксида, прежде чем будет протекать значительный ток. По мере протекания тока прочность пробоя (сформированное напряжение) и толщина оксида увеличиваются. См. Рисунок 2 для сравнения электростатических (классических) и электролитических конденсаторов. «Электролитические конденсаторы» сильно отличаются от «электрохимических конденсаторов » (также называемых ультраконденсаторами), работа которых основана на емкости двойного электрического слоя, и не следует путать с ними.
Преимуществом электролитических конденсаторов является высокая емкость на единицу объема и на единицу стоимости. Высокая емкость возникает из-за высокой диэлектрической проницаемости, высокой напряженности поля пробоя, шероховатости поверхности и чрезвычайно малой однородной толщины анодно сформированного металлического оксида. Причина, по которой электролитические конденсаторы имеют такое равномерное напряжение диэлектрика и могут работать при такой высокой напряженности поля, в пределах 80% от их пробивной силы, порядка 1000 вольт / мкм, объясняется двумя причинами.Во-первых, исходный процесс анодирования («формирование») выполняется при фиксированном напряжении, и диэлектрик повсюду растет до любой толщины, необходимой для поддержания этого напряжения. Во-вторых, как только фольга оказывается в конденсаторе, конденсатор «заполняет» электролит продолжает работу по восстановлению исходного электролита, восстанавливая и локально утолщая диэлектрик по мере необходимости. Этот процесс восстановления управляется постоянным током утечки конденсатора, который возникает всякий раз, когда на конденсатор подается постоянное напряжение, то есть всякий раз, когда он находится в работе.Фактически, электролитические конденсаторы часто служат дольше, когда они находятся в непрерывном, щадящем использовании, когда они только кратковременно заряжаются каждый год или десятилетие. Недостатком электролитических конденсаторов являются неидеальные характеристики потерь, которые возникают из-за свойств полупроводникового оксида, эффекты двойного слоя из области заряда-пространства электролит-оксид, резистивные потери из-за высокого удельного сопротивления электролита, спад частотной характеристики из-за шероховатости поверхностного оксида и конечный срок службы конденсатора из-за пробоя и деградации электролита.Некоторые из этих соображений будут рассмотрены ниже более подробно с точки зрения алюминиевого электролитического конденсатора. Кроме того, диэлектрик из анодного оксида полярен, как и электролитические конденсаторы (в отличие от классических электростатических конденсаторов), то есть конденсаторы должны быть подключены с соблюдением полярности, как указано на маркировке. Соединение с обратным напряжением легко вводит ионы водорода через оксид, вызывая высокую электропроводность, нагрев и восстановление анодной оксидной пленки.Неполярные (или биполярные) устройства могут быть изготовлены с использованием двух анодов вместо анода и катода, или можно соединить положительные или отрицательные стороны двух идентичных устройств вместе, тогда два других терминала будут образовывать неполярный устройство. Большинство электролитических конденсаторов построено с использованием алюминиевых электродов, но также используются тантал и ниобий. Алюминиевый анод самый дешевый – 0,04 доллара за грамм. Таким образом, он используется в больших (даже больше одного литра!) И маленьких (крошечных поверхностных) конденсаторах.Танталовый анодный материал стоит более 2,00 долларов за грамм, но обеспечивает высокую стабильность, большую емкость (в четыре раза больше, чем у алюминия), более низкое сопротивление (до 90% ниже) на размер. Он доступен в виде небольших блоков (обычно менее 5 см 3 ) и для поверхностного монтажа. Анодный порошок ниобия стоит менее 1 доллара за грамм, намного дешевле и доступнее, чем тантал, но все же намного дороже, чем алюминий. Емкость намного больше, чем у алюминия, почти у тантала. Это гораздо более новая технология, чем тантал. H.O. Зигмунд изобрел электролитический конденсатор в 1921 году. Юлиус Лилиенфельд много сделал для развития электролитической теории в 1920-х и 1930-х годах. Cornell Dubilier в то время была крупнейшей в мире компанией по производству конденсаторов и много сделала для развития технологий травления и анодирования. Детали конструкции мокрого алюминиевого электролитического конденсатораПроизводственный процесс
Анод
Катод Катодная алюминиевая фольга обычно тоньше анода и должна иметь гораздо более высокую емкость, чем анод, поскольку емкость катода появляется последовательно с емкостью анода, чтобы получить общую емкость (см. Приложение).Для данной емкости анода максимальная общая емкость возникает, когда емкость катода настолько велика, насколько это возможно. Высокая катодная емкость требует очень низкого напряжения формирования катода. Обычно катод вообще не формируется, но всегда есть тонкий слой (около 2-3 нм) закиси водорода на поверхности алюминия, если он не пассивирован, а двойной электрический слой также имеет большую емкость. Тонкий слой закиси водорода легко образуется на алюминии при контакте с атмосферным воздухом.Пассивация катодной фольги титаном была предпринята в последние годы, чтобы предложить катод с емкостью, приближающейся к 200 мкФ / см 2 . Такая высокая катодная емкость необходима только для низковольтных конденсаторов с анодами с высоким коэффициентом усиления. Обычно емкость катода в пятьдесят раз превышает емкость анода. В этом случае общая емкость всего на 2% меньше емкости анода. Для разрядного конденсатора заряд на анодной пластине должен нейтрализоваться противоположным зарядом на катодной пластине, что требует, чтобы катод был способен накапливать заряд, превышающий или равный заряду анода.Другими словами, произведение емкости и формирующего напряжения для катода должно быть больше, чем для анода. Это требование обычно выполняется автоматически, так как способность накапливания заряда формованной фольги максимальна при низком напряжении формирования. Для катода используется тонкая фольга с протравленной поверхностью, которая дает частотную характеристику, как правило, лучше, чем у анода, и дает достаточно большую емкость, чтобы общая единичная емкость не уменьшалась. Поскольку допустимое напряжение катода обычно составляет всего около одного вольт, электролитический конденсаторный блок ограничен в своем установившемся обратном напряжении примерно до одного вольт.Было обнаружено, что в некоторых случаях переходные обратные напряжения, превышающие 100 вольт, могут появляться на конденсаторе в течение примерно одной миллисекунды без каких-либо отрицательных эффектов в течение тысяч циклов; однако неясно, каков фактический катодный потенциал в этих случаях. Известно, что увеличенное обратное напряжение в течение коротких интервалов времени, равных одной секунде, может вызвать значительный нагрев электролита и оксида анода. Ток, потребляемый во время этих обратных напряжений, может легко достигать сотен ампер постоянного тока.Электролитические конденсаторы могут быть сконструированы со сформированными катодами, чтобы обеспечить реверсирование напряжения без повреждений. Недостатками такой конструкции являются уменьшенная общая емкость, поскольку анод и катод включены последовательно; и уменьшенная плотность энергии из-за уменьшенной емкости и увеличения массы более тяжелого сформированного катода. Сепаратор Сепаратор или прокладка представляет собой абсорбирующий материал в форме рулона, который наматывают между анодом и катодом для предотвращения контакта фольги друг с другом.Прокладка обычно изготавливается из бумаги, которая может быть разных типов, плотности и толщины, в зависимости от требований к напряжению и эффективному последовательному сопротивлению. Помимо разделения анода и катода, распорка должна впитывать и удерживать электролит между пластинами. Сопротивление комбинации прокладка-электролит значительно больше, чем можно было бы объяснить ее геометрией и удельным сопротивлением абсорбированного электролита. Комбинация электролита и прокладки также влияет на емкость конденсатора. частотный отклик. Электролит Основное назначение электролита – служить «пластиной» на внешней поверхности оксида анода, а также соединяться с катодной пластиной. Электролит представляет собой жидкий органический растворитель с высоким удельным сопротивлением, высокой диэлектрической проницаемостью и высокой диэлектрической прочностью с одним или несколькими растворенными ионно-проводящими растворенными веществами. Второстепенное назначение электролита состоит в том, чтобы отремонтировать, залечить или изолировать участки дефектов в анодном оксиде алюминия во время приложения напряжения между анодом и катодом. Вкладки Выступы представляют собой алюминиевые полосы, которые контактируют между токопроводящими пластинами и соединительными клеммами в коллекторе. К каждой пластине может быть подключено несколько язычков. Каждый выступ либо сварен методом холодной сварки, либо приклеен по всей ширине анодной и катодной фольги. Пути вывода обычно проходят от секции конденсатора к выводам таким образом, чтобы поддерживать низкую индуктивность и предотвращать контакт выводов противоположной полярности друг с другом или корпусом во время движения и вибрации конденсаторного блока.Выступы приварены точечной сваркой к нижней стороне клемм в сборке коллектора. Материал вкладки не травится, а формируется под высоким напряжением перед сборкой в конденсатор. Оптимальным размещением язычка вдоль фольги считается такое размещение, которое сводит к минимуму потери мощности из-за сопротивления металлической фольги. Этот оптимум приводит к равному расстоянию от каждого выступа до ближайшего к нему, а половина расстояния между язычками обеспечивается между крайними выступами и концами фольги. Для высоковольтных конденсаторов сопротивление выводов и сопротивление металлической фольги довольно мало по сравнению с сопротивлением оксида и электролита. Упаковка
Применение и применение электролитических конденсаторов
Общее использование конденсаторов во всем мире составляет примерно один триллион единиц в год. Общая рыночная стоимость составляет примерно 17 миллиардов долларов в год.На рисунке 8 показаны месячные колебания общего рынка конденсаторов за последние несколько лет. На Рисунке 9 представлены годовые рынки алюминиевых и танталовых электролитических конденсаторов, которые составляют более 10% от общего объема потребления.
ПриложениеОтношение величины заряда «Q» на каждой пластине к электрическому потенциалу или напряжению «V» между пластинами известно как емкость «C».[1] Емкость устройства в основном зависит от геометрии пластины и природы диэлектрика . Для двух параллельных поверхностей, каждая из которых имеет площадь «А», разделенную расстоянием «d» с диэлектриком с относительной диэлектрической проницаемостью «k»: [2] где «E o » – диэлектрическая проницаемость вакуума (8,85 × 10 -12 Ф / метр). Относительная диэлектрическая проницаемость «k» материала описывает его поляризуемость. Как видно на рисунке 1, когда заряды + Q и -Q устанавливаются на анодной и катодной пластинах, соответственно, поверхностные заряды + Q ‘и -Q’ на диэлектрике индуцируются в соответствии со следующим соотношением, которое определяет «k» для материал: Q ‘= Q × (1-k). Катодная емкость «C c » включена последовательно с анодной емкостью «C a », чтобы получить общую емкость «C» в соответствии с соотношением: [3] Или переставив: [4] Следовательно, в последовательно соединенных конденсаторах преобладает конденсатор более низкого номинала. Применение электролитического конденсатораВыходной фильтр блока питанияКогда синусоидальное переменное напряжение выпрямляется, создается полусинусоидальная форма волны.Эта форма волны обычно преобразуется в постоянное значение постоянного тока с помощью конденсатора, который заряжается до пикового значения полусинусоидального напряжения, а затем подает ток на нагрузку при слегка уменьшающемся напряжении, пока следующий полусинусоидальный пик не восстановит максимум. напряжение на конденсатор. Небольшое изменение напряжения конденсатора известно как напряжение пульсации, а ток, идущий к конденсатору и от него, называется током пульсации. Чтобы поддерживать стабильный выход постоянного тока и минимизировать пульсации напряжения, емкость конденсатора выбирается достаточно большой по сравнению с сопротивлением нагрузки.Более стабильное напряжение требует более высокого значения емкости и более дорогостоящего конденсатора. Для приложений, в которых стабильность напряжения не очень важна, часто выбирают меньшую емкость. Затем следует учитывать ток пульсаций, поскольку слишком малая емкость может иметь большое эффективное последовательное сопротивление (ESR) и может иметь тенденцию к перегреву. Максимальные номинальные значения пульсирующего тока указываются производителями конденсаторов, и эти номинальные значения выводятся из максимально допустимой рабочей температуры конденсатора, а также размера, массы, материалов конструкции и ESR конденсатора.Номинальный ток пульсации в алюминиевых электролитических конденсаторах может достигать 50 ампер (среднеквадратичное значение).Блокировка и байпас по постоянному токуЧастотная характеристика конденсатора такова, что он выглядит как разомкнутая цепь для постоянного постоянного напряжения и виртуальное короткое замыкание на высокие частоты. Таким образом, конденсатор может использоваться для маршрутизации сигналов в соответствии с их частотным составом. Когда сигнал, содержащий как компоненты постоянного, так и переменного тока, отправляется на трансформатор для усиления части переменного тока, часто конденсатор используется последовательно с трансформатором для блокировки компонента постоянного тока, что может вызвать нагрев и искажение сигнала, если он достигнет трансформатора.Для такого применения необходимо проверить линейность частотной характеристики конденсатора, чтобы гарантировать высокую точность, а величина тока конденсатора должна быть ниже его номинального тока пульсаций.Пуск двигателя и прочее неполярноеПусковой момент двигателей переменного тока обеспечивается пусковым конденсатором двигателя, часто биполярным алюминиевым электролитическим конденсатором с низким ESR. Такой конденсатор предназначен для работы в сети переменного напряжения, сильноточной, непродолжительной работы. Конденсаторы для запуска двигателя имеют самый низкий коэффициент рассеяния среди алюминиевых электролитов, всего 2% при 120 Гц.Для достижения такого низкого ESR используется фольга с низким коэффициентом усиления. Корпуса часто делают из пластика, чтобы обеспечить электрическую изоляцию от потенциала электролита, который следует за приложенным напряжением. Плотность энергии довольно низкая, обычно 50 Дж / кг или меньше. Даже с такими низкими потерями конденсаторы для запуска двигателей быстро нагреваются в процессе их применения и рекомендуются только для малых рабочих циклов, таких как одна секунда включения, одна минута отключения.АудиоприложенияНеполярные алюминиевые электролиты номиналом 50 и 100 вольт часто используются в пассивных кроссоверах для коммерческих и бытовых громкоговорителей, где сигналы содержат компоненты среднего переменного напряжения (около 30 вольт пикового значения) с небольшим содержанием постоянного напряжения или без него.Амплитудно-частотная характеристика и виброустойчивость этих конденсаторов – важнейшие критерии. Электролитические конденсаторы имеют положительный коэффициент емкости по напряжению, что приводит к некоторым гармоническим искажениям.Автомобильная аудиосистема (усиление шины): одно идеальное применение – это большие многокиловаттные приложения для повышения жесткости шины автомобильного аудиоусилителя, где шина 13 В постоянного тока может иметь пик в сотни ампер при каждом ударе бас-барабана или каждом ударе или ударе бас-гитары. Это может привести к падению напряжения автомобильного аккумулятора на несколько вольт, затемнению фар в ритме музыки и сокращению срока службы генератора и аккумулятора, не говоря уже об ухудшении искажений звука и уровней выходного сигнала.Решение – использовать электролитические конденсаторы рядом с усилителями. Эти конденсаторы специального назначения имеют номиналы от 0,5 до 2,0 фарад при 15 В постоянного тока. Эти конденсаторы обычно имеют последовательное сопротивление около одного миллиом, поэтому они достаточно эффективны для повышения напряжения аккумуляторной батареи автомобиля при использовании на уровне около 1 фарада на киловатт. Конденсаторы будущего, вероятно, будут иметь номинал 0,2-0,5 Ф при 60 В постоянного тока для более высоких напряжений батареи. Приложения для разряда энергииОбычное применение разряда энергии для алюминиевых электролитических конденсаторов – это фотовспышка для фотографии, как профессиональной, так и потребительской.Эти конденсаторы теперь все больше и больше используются для разряда лазерных фонарей. Военные заинтересованы в алюминиевых электролитах для низковольтных импульсов лазерных радаров с диодной накачкой. В данной статье алюминиевые конденсаторы для электролитического разряда подразделяются на три режима напряжения: 1. Высокое напряжение – номинальное напряжение больше или равно 350 вольт. 2. Среднее напряжение – менее 350 вольт, но больше или равно 150 вольт. 3. Низкое напряжение – менее 150 вольт.Приложения PhotoflashКонденсаторы фотовспышки, используемые во встроенных потребительских камерах, обычно находятся в диапазоне от 100 мкФ до 360 В и могут достигать нескольких сотен микрофарад в отдельных модулях на верхней панели камеры. Эти небольшие блоки часто состоят из двух пористых анодов, расположенных рядом. Типичная плотность энергии составляет 1,5 Дж / грамм или 2 Дж / см 3 . Профессиональные фотографы используют батареи электролитических конденсаторов в портативных, но объемных устройствах весом около 10 кг. Они содержат многие тысячи микрофарад, обычно в переключаемых банках с вентиляторным охлаждением.Обычно это конденсаторы с винтовыми зажимами, конструкция которых очень похожа на обычные фильтрующие конденсаторы. Конденсаторы Photoflash могут использоваться со средней частотой до восьми вспышек в минуту, в зависимости от размера, энергии и управления температурой. Четыре вспышки в минуту более типичны. Фотовспышка часто вызывает адиабатическое повышение внутренней температуры примерно на 0,05 o C (0,09 o F) за одну вспышку. Это приводит к выводу, что для значительного нагрева конденсатора необходимо несколько сотен вспышек.Следовательно, в первые полчаса можно было применять 10 вспышек в минуту без ограничений. Типичный срок службы конденсатора вспышки составляет от 50 000 до 200 000 вспышек. Долговечные конструкции доступны для одного миллиона и более вспышек.Применение стробоскопаКонденсаторы стробоскопа используются с высокой частотой повторения. В случае низковольтных устройств частота повторения может быть очень высокой, достаточно высокой для использования в стробоскопах для вечеринок и в автомобильных тахометрах. Высоковольтные блоки обычно не могут работать в режиме полного заряда-разряда, превышающего частоту повторения 2 или 3 Гц или частоту повторения.В высоковольтных алюминиевых электролитических строб-конденсаторах используется структура диэлектрика из оксида алюминия , отличная от их аналогов с фотовспышкой и фильтром. Конденсаторы строба используют аморфный оксид алюминия, а не обычный кристаллический оксид алюминия. Это достигается в процессе формования при анодировании фольги. Используются различная предварительная обработка, температура процесса и плотность тока, а также различный химический состав электролита. К сожалению, полученный диэлектрик намного толще, чем его кристаллический аналог.По этой причине стробоскопическая фольга имеет большие туннели, а стробоскопические конденсаторы страдают от плотности энергии и стоимости примерно в четыре раза по сравнению с их кристаллическими собратьями. Но их частота повторения может дать улучшение в двадцать раз, а их продолжительность жизни может приблизиться к 1000 раз больше, чем количество устойчивых циклов заряда-разряда. Когда требуется только частичный разряд, такой как разряд от 400 В до 250 В, вместо полного разряда, могут быть разработаны гибридные конструкции конденсаторов, которые обеспечивают высокую частоту повторения, длительный срок службы, без потери стоимости и размера, требуемых аморфной фольгой. .В обычном разрядном конденсаторе конденсатор заряжается медленно, быстро разряжается и претерпевает определенное количество циклов разряда в единицу времени. Время, необходимое для зарядки конденсатора, называется временем зарядки. Время, в течение которого конденсатор разряжается, называется временем разряда. Цикл заряда-разряда известен как выстрел. Количество циклов заряда-разряда в секунду называется частотой повторения и выражается в герцах (Гц).Когда частота повторения очень мала или конденсатор срабатывает не часто, рабочее состояние известно как однократное. Когда конденсатор подвергается прерывистой работе с номинальной повторяемостью, коэффициент заполнения определяется как время включения, деленное на сумму времени включения и периода покоя. Срок службы конденсатора определяется как ожидаемое количество выстрелов до того, как произойдет определенная степень деградации. Обычно предел – это повышение СОЭ. Статьи по темеАнодированиеКонденсаторы электрохимические Дополнительная литератураБиблиография
Перечни книг по электрохимии, обзорных глав, сборников трудов и полные тексты некоторых исторических публикаций также доступны в Информационном ресурсе по науке и технологиям по электрохимии (ESTIR). (http://knowledge.electrochem.org/estir/) Вернуться к: Верх – Домашняя страница энциклопедии – Содержание – Именной указатель – Предметный указатель – Поиск – Словарь – Домашняя страница ESTIR – Домашняя страница ECS |
Конструкция, символы, преимущества и использование
Электролитический конденсатор широко известен как поляризованный конденсатор, у которого на аноде больше положительного напряжения, чем на катоде.Они используются в приложениях фильтрации, фильтрах нижних частот, схемах аудиоусилителей и многих других. Металлы, такие как алюминий, тантал, ниобий, марганец и т. Д., Образуют оксидный слой в электрохимическом процессе, который блокирует электрический ток, текущий в одном направлении, но позволяет току течь в противоположном направлении. Это явление впервые наблюдал Иоганн Генрих Бафф (1805–1878), немецкий физик и химик в 1857 году. Французский исследователь и основатель Эжен Дюкрете в 1875 году был первым, кто реализовал эту идею и изобрел для них термин «вентильный металл». металлы.Фактическая разработка электролитических конденсаторов с намотанной фольгой разделена бумагой, начатой А. Эккелем из Hydra-Werke (Германия) в 1927 году в сочетании с идеей Сэмюэля Рубена о многоярусной конструкции.
Что такое электролитический конденсатор?
Определение электролитического конденсатора – это поляризованный конденсатор, анод которого имеет более высокое или более положительное напряжение, чем катод. Как следует из названия, это поляризованный конденсатор, и функция электролитического конденсатора заключается в том, что он использует электролит для работы с более высоким или более положительным напряжением на аноде, чем на катоде.Поэтому анодный вывод обозначается положительным знаком, а катод – отрицательным. Применение напряжения обратной полярности от 1 до 1,5 В может привести к повреждению конденсатора и диэлектрика, что может привести к взрыву или возгоранию.
В электролитическом конденсаторе используется электролит в твердой, жидкой или гелевой форме – он служит катодом или отрицательной пластиной для достижения гораздо большей емкости на единицу объема. С другой стороны, положительная пластина или анод из металла действует как изолирующий оксидный слой, сформированный путем анодирования.Это позволяет оксидному слою работать как диэлектрик конденсатора.
Конструкция
Конструкция электролитического конденсатора состоит из двух тонких слоев алюминиевой фольги – простой фольги и протравленной фольги. Эти две фольги разделены электролитом. Чтобы установить полярность двух фольг, они анодируются путем химического выращивания тонкого слоя оксида алюминия, который формирует анод и отличается от катода. В процессе изготовления электролитического конденсатора образуются катод и анодированный анод, которые разделены электролитом (бумага, пропитанная электролитом).
Во время стандартной работы анод удерживается в положительном положении относительно катода, поэтому катод обозначен отрицательным знаком (-) на корпусе конденсатора. Поскольку алюминий является поляризованным устройством, приложение обратного напряжения к этим клеммам приведет к образованию изоляции в конденсаторе, что приведет к его повреждению.
Уникальное свойство алюминиевого конденсатора – процесс самовосстановления поврежденного конденсатора. Во время обратного напряжения оксидный слой удаляется с фольги, позволяя току проходить от одной фольги к другой.
Обозначение электролитического конденсатора
Обозначение электролитического конденсатора показано на рисунке ниже. Обозначения конденсаторов бывают двух типов. Второй символ (b) представляет поляризованный конденсатор, который может быть электролитическим или танталовым конденсатором. Изогнутая пластина на символе означает, что конденсатор поляризован и является катодом, который удерживается под более низким напряжением, чем анод. Первый символ (а) на рисунке ниже обозначает неполяризованный конденсатор.
Полярность
Знание полярности любого устройства важно для построения любых электронных схем.В противном случае подключение может повредить конденсатор. Хотя некоторые конденсаторы не поляризованы, например керамические конденсаторы (1 мкФ или меньше), их можно подключать любым способом.
керамический конденсаторВ некоторых случаях положительный провод конденсатора будет длиннее отрицательного. Иногда выводы конденсатора обрезаются, при этом пользователь должен быть осторожен при подключении конденсатора.
Танталовые и алюминиевые конденсаторы имеют полярность, обозначенную знаком плюс (+), указывающую сторону анода.
Электролитический конденсатор с нетвердым электролитом имеет полярность, обозначенную знаком минус (-), указывающую на катодную сторону.
НетвердыеЭлектролитические конденсаторы с твердым электролитом имеют полярность, отмеченную знаком плюс, указывающую на сторону анода, но отсутствуют для цилиндрических светодиодных и полимерных конденсаторов SMD.
ТвердыйЗначения электролитического конденсатора
В зависимости от структуры анода и электролита значения электролитической емкости имеют тенденцию меняться.Электролитические конденсаторы с нетвердым электролитом демонстрируют более широкое отклонение частот и температурных диапазонов, чем твердые электролиты.
Основная единица электролитического конденсатора выражается в микрофарадах (мкФ). В таблицах данных, подготовленных производителями, значение емкости упоминается как номинальная емкость (CR) или номинальная емкость (CN). Это значения, для которых рассчитана емкость.
Электролитические конденсаторы представляют собой большую цилиндрическую конструкцию, поляризованную и имеющую более высокую емкость.
Электролитический конденсатор Значения и единицы измерения разборчиво напечатаны на корпусе конденсаторов. Начиная слева направо, 1 мкФ, 10 мкФ, 100 мкФ, 1000 мкФ.
Типы электролитических конденсаторов
В зависимости от типа материала и используемого электролита электролитические конденсаторы подразделяются на следующие типы.
Алюминиевый электролитический конденсатор
Алюминиевые электролитические конденсаторы – это поляризованные конденсаторы, в которых анодный (+) вывод сформирован из алюминиевой фольги с протравленной поверхностью.В процессе анодирования образуется тонкий изолирующий слой оксида, который действует как диэлектрик. Катод формируется через вторую алюминиевую фольгу, когда нетвердый электролит маскирует шероховатую поверхность оксидного слоя.
Неэлектролитический конденсатор
Неэлектролитические конденсаторы – это те конденсаторы, которые состоят из «изоляционного материала» в качестве диэлектрика в неэлектролитической форме. Конденсаторы такого типа неполяризованы и имеют множество применений.
Танталовый электролитический конденсатор
Танталовый электролитический конденсатор обеспечивает более низкий ток утечки и снижение ESR.В нем используется металлический тантал, который работает как анод, окруженный слоем оксида, который работает как диэлектрик, и дополнительно обернут проводящим катодом. Эти конденсаторы являются поляризованными по своей природе устройствами и очень стабильны. При правильном подключении он работает эффективно с исключительной частотой.
Электролитический конденсатор из оксида ниобия
Конструкция электролитических конденсаторов из оксида ниобия аналогична танталовым конденсаторам. В качестве анода использовался оксид ниобия вместо металлического тантала.Оксид ниобия доступен в изобилии и предлагает чрезвычайно стабильные характеристики, чем танталовый конденсатор.
Области применения / применения
Электролитический конденсатор применяется в следующих областях:
- Используется в приложениях фильтрации для уменьшения пульсаций в источниках питания
- Используется в качестве фильтра нижних частот для сглаживания входных и выходных сигналов
- Используется в схемах усиления звука в качестве фильтров для уменьшения шума
Преимущества и недостатки
Преимущества электролитического конденсатора :
- Используется для достижения высокого значения емкости
- Используется в низкочастотных приложениях
- Танталовые конденсаторы предпочтительнее по сравнению с другими типами из-за высокой стабильности электролитического конденсатора следующие недостатки:
- Необходимо быть внимательным, чтобы убедиться, что конденсаторы исправлены с помощью правильных клемм
- Обратное напряжение может повредить конденсатор
- Легко поддается влиянию из-за изменения температуры
- Конденсатор, когда мы ed с комбинацией неэлектролитов увеличивает емкость конденсатора
FAQ’s
1.Где используются электролитические конденсаторы?
Они используются в приложениях фильтрации, схемах усиления звука и в фильтрах нижних частот.
2. Как определить электролитический конденсатор?
Электролитические конденсаторы обычно маркируются полосой, указывающей на отрицательный вывод. Положительный провод обычно длиннее отрицательного.
3. В конденсаторах есть масло?
Да. Доступны маслонаполненные конденсаторы, обычно они имеют высокую мощность и высокое напряжение.
4. Электролитический конденсатор переменного или постоянного тока?
Электролитические конденсаторы обычно используются в цепях с источником постоянного тока. Напряжение переменного тока может повредить конденсатор.
5. Каков средний срок службы конденсатора?
Ожидается, что средний срок службы конденсатора составит 15 лет. Срок службы может быть уменьшен, если ток пульсаций слишком велик и нагревает конденсатор.
В этой статье читатель узнает об электролитическом конденсаторе.Мы обсудили определение, конструкцию, полярность и маркировку, применение, а также преимущества и недостатки. Далее читатель может узнать типы электролитических конденсаторов.
Конденсаторы электролитические трех видов
Электролитические конденсаторы имеют полярность, в отличие от керамических и пленочных, которые не выдерживают постоянного тока. Их положительные аноды состоят из алюминия, тантала или ниобия. К ним прикрепляется изолирующий слой анодированного оксида, образуя диэлектрик.Наконец, твердый или жидкий электролит окружает их как отрицательный анод
.Алюминиевый электролитический конденсатор: Elcap: Public Domain
Влияние высокой емкости электролитических конденсаторов
«Емкость» – это просто еще один способ описать способность накапливать электрический заряд. Это позволяет избежать путаницы, потому что мы используем термин «емкость» во многих различных контекстах. Электролитические конденсаторы имеют относительно высокую емкость из-за тонкости анодированного оксидного диэлектрика. Кроме того, у них большие аноды.
Эта большая емкость делает их идеальными для хранения большего количества энергии. Фактически они могут обходить или пропускать сигналы в несколько герц. Однако напряжения обратной полярности или токи пульсации всего лишь в один вольт могут разрушить диэлектрик. Это может привести к катастрофическим взрывам и пожару.
Семейство электролитических конденсаторов: Elcap: Public Domain
Разновидности трех различных типов электролитических конденсаторов
Алюминиевые версии используют оксид алюминия в качестве диэлектрика, в то время как другие используют пентоксиды тантала и ниобия соответственно.Эти поверхности спечены или протравлены, чтобы получить шероховатую структуру поверхности. Это создает большую рабочую зону, чем гладкая плоская поверхность. Процесс нанесения аналогичен гальванике. Чем дольше прикладывается напряжение, тем толще слой, но тем меньше емкость.
Как электролитические конденсаторы могут загореться и взорваться
Из-за природы электролита положительный вывод всегда должен находиться под более высоким напряжением. При изменении полярности напряжения изолирующий диэлектрик может начать выходить из строя, что приведет к короткому замыканию на клеммах.Большой ток, протекающий через него, приводит к перегреву конденсатора до точки, при которой корпус лопается. Это похоже на процесс, который мог привести к взрыву аккумуляторов Samsung Galaxy.
Связанные
Керамические конденсаторы на 1 триллион в год
Пленочные конденсаторы не только для фильмов
Конденсатор электролитический
Конденсатор обзор
Электролитические конденсаторы в основном используются при требуется хранение большого количества заряда в небольшом объеме.В электролитические конденсаторы, жидкий электролит действует как один из электроды (в основном действуют как катод). Чтобы лучше понять концепция электролитического конденсатора сначала нам нужно знать работа общего конденсатора.
Конденсатор – это электронное устройство, которое хранит электрический заряд. Он состоит из двух токопроводящих пластин. разделены изоляционным материалом, называемым диэлектриком.Разные типы изоляционных материалов используются для строительства диэлектрик в зависимости от использования.
Проводящие пластины конденсатора хорошие проводники электричества. Поэтому они легко позволяют электрический ток через них. С другой стороны, диэлектрик Среда или материал плохо проводят электричество. Следовательно, он не пропускает через него электрический ток.
При подаче напряжения на конденсатор в таким образом, чтобы отрицательная клемма аккумулятора была подключен к правой боковой пластине и положительной клемме батарея подключена к левой боковой пластине, конденсатор начинает заряжаться.
Из-за этого напряжения питания, электроны начинают течь от отрицательного вывода аккумулятор и дотянитесь до правой боковой пластины.Дойдя вправо боковой пластине, электроны испытывают сильное сопротивление со стороны диэлектрический материал, потому что диэлектрический материал плохой проводник электричества.
В результате большое количество электронов попал в ловушку на правой боковой пластине конденсатора. Однако эти большие количество электронов прикладывает силу или электрическое поле к левая боковая пластина.Следовательно, электроны на левой боковой пластине испытывать силу отталкивания от избыточных электронов справа пластина. В результате электроны удаляются от левой боковой пластины и тянется к плюсовой клемме аккумулятора.
Следовательно, правая боковая пластина становится больше отрицательно заряжен (отрицательный заряд создается) из-за получение лишних электронов. С другой стороны, левая сторона пластина становится более положительно заряженной (накапливается положительный заряд) из-за потери электронов.В результате напряжение устанавливается между пластинами. Вот так нормальный конденсатор работает.
Электролитический конденсатор также заряжается в основном аналогичным образом. Однако материал, используемый в конструкция электролитического конденсатора отличается.
электролитический определение конденсатора
Электролитический конденсатор конденсатор, в котором используется электролит (ионно-проводящая жидкость) в качестве одна из его проводящих пластин для достижения большей емкости или хранение высокого заряда.
Что такое электролит?
Электролит – жидкий электрический проводник. в котором электрический ток переносится движущимися ионами. Для Например, в нашей крови электролиты или минералы несут электрический ток. заряжать. Наиболее распространенные электролиты – это натрий, калий, хлорид, кальций и фосфор.
В электролитах ионы бывают двух типов, а именно: анионы (-) и катионы (+).Анион – это ион с большим числом электронов, чем протонов. Мы знаем, что электроны отрицательно заряжены, а протоны заряжены положительно. Из-за количество электронов больше, чем протонов, общий заряд атом или анион становятся отрицательными. Поэтому анионы называют отрицательно заряженные ионы. Эти отрицательно заряженные анионы несут отрицательный заряд.
С другой стороны, катион имеет меньшее количество электронов, чем протонов.Из-за меньшего количества электронов, чем протонов, общий заряд атома или катиона становится положительным. Поэтому катионы называют положительно заряженные ионы. Эти положительно заряженные катионы несут положительный заряжать.
Типы электролитических конденсаторов
Электролитические конденсаторы классифицируются по три типа в зависимости от материала, из которого изготовлен диэлектрик:
- Конденсаторы алюминиевые электролитические
- Конденсаторы электролитические танталовые
- Конденсаторы электролитические ниобиевые
В этом уроке алюминиевый электролитический конденсатор объяснен.Алюминий, тантал и ниобий электролитические конденсаторы работают аналогичным образом. Тем не менее материал, из которого изготовлены электроды, разный.
Алюминий электролитический конденсатор
Алюминиевый электролитический конденсатор изготовлен из две алюминиевые фольги, слой оксида алюминия, электролитическая бумага или бумажная прокладка, пропитанная электролитической жидкостью или растворами и жидкий или твердый электролит.Электролитическая жидкость содержит атомы или молекулы которые потеряли или приобрели электроны.
В алюминиевом электролитическом конденсаторе, анод (+) и катод (-) изготовлены из чистой алюминиевой фольги. Анодная алюминиевая фольга покрыта тонким слоем изоляционный оксид алюминия (алюминиевый элемент с кислородом элемент). Эта изолирующая алюминиевая фольга действует как диэлектрик электролитический конденсатор, блокирующий прохождение электрического тока.Катод и анод с оксидным покрытием разделены электролитическая бумага (пропитанная электролитической жидкостью).
Катодная алюминиевая фольга также покрыта очень тонкий изолирующий оксидный слой или диэлектрик естественной формы самолетом. Однако этот оксидный слой очень тонкий по сравнению с оксидный слой сформирован на аноде.
Следовательно, конструкция из алюминия электролитический конденсатор выглядит как два конденсатора, соединенные в серия с анодной емкостью C A и катодом емкость C K .
Общая емкость конденсатора составляет полученная таким образом из формулы последовательного соединения двух конденсаторы.
Где, C A = емкость анода
C K = емкость катода
C ecap = Общая емкость электролитического конденсатора
Мы знаем, что емкость или заряд емкость конденсатора прямо пропорциональна поверхности площадь токопроводящих пластин или электродов и наоборот пропорциональна толщине диэлектрика.Другими словами, конденсаторы с большими электродами хранят большое количество заряда в то время как конденсаторы с небольшими электродами хранят небольшое количество заряда. Аналогичным образом конденсаторы очень толстой диэлектрик сохраняет небольшой заряд, тогда как конденсаторы с очень тонким диэлектриком хранит очень большое количество заряда.
В обычных конденсаторах диэлектрик очень толстый, что приводит к низкой емкости на единицу объема.В электролитические конденсаторы, электролит действует как настоящий катод с большой площадью поверхности и очень прочным диэлектриком. тонкий. Поэтому из-за большой площади поверхности электрод и тонкий диэлектрик, большой запас заряда достигается в электролитических конденсаторах.
Электропроводность электролитический конденсатор увеличивается при повышении температуры и уменьшается при понижении температуры.В результате емкость или накопитель заряда алюминиевого электролита конденсатор также увеличивается при повышении температуры и уменьшается при понижении температуры. Следовательно емкость алюминиевого электролитического конденсатора в значительной степени влияет изменение температуры.
Большинство электролитических конденсаторов поляризованный, то есть напряжение, подаваемое на клеммы, должно быть в правильной полярности (положительный вывод подключен к положительному выводу и отрицательный подключен к отрицательной клемме).Если он подключен в обратное или неправильное направление, конденсатор может быть коротким замкнутый, то есть большой электрический ток течет через конденсатор, и это может привести к необратимому повреждению конденсатора.
В поляризованных конденсаторах знак минус (-) или Знак плюс (+) четко обозначен на любом из двух выводов. Эта полярность должна соблюдаться.
Символ электролитического конденсатора
Показан символ электролитического конденсатора. на рисунке ниже.Электролитический конденсатор представлен двумя параллельными прямыми или одной прямой и одной изогнутая линия.
Знак плюс или минус написан рядом с любым линий, чтобы обозначить, является ли он положительным или отрицательным клемма (анод или катод). Напряжение должно подаваться на правильный терминал. В противном случае конденсатор может выйти из строя.
Преимущества электролитических конденсаторов
- Достигнут большой накопитель заряда
- Низкая стоимость
Недостатки электролитических конденсаторов
- Большой ток утечки
- Короткий срок службы
Приложения электролитических конденсаторов
Различные области применения электролитических конденсаторы включают:
- Фильтры
- Цепи постоянной времени
Электролитический конденсатор – обзор
Электролитические конденсаторы
Электролитический конденсатор является предметом отдельного рассмотрения, и его следует рассматривать отдельно от всех других конденсаторов.Принцип состоит в том, что некоторые металлы, в частности алюминий и тантал, могут иметь очень тонкие пленки соответствующих оксидов, образующихся на поверхности, когда напряжение прикладывается с правильной полярностью (положительный металл) между металлом и слабокислой жидкостью. Эти очень тонкие пленки затем изолируют металл от проводящей жидкости, электролита, образуя конденсатор; электролитический конденсатор. Название происходит от сходства с электролитической (металлической) ячейкой.
- •
Этот же эффект вызывает проблему поляризации узлов, см. Главу 7.
В электролитических конденсаторах наиболее распространенного типа используется алюминиевая фольга, которая может быть протравлена, иметь ямочки или гофр для увеличения полезной площади, заключенная в алюминиевую банку, заполненную слабокислым раствором пербората аммония в форме желе. . Конденсатор формируется путем приложения к конденсатору медленно нарастающего напряжения с положительным полюсом фольги и отрицательным полюсом корпуса до тех пор, пока напряжение не достигнет своего номинального уровня, а постоянный ток не упадет до минимума, что указывает на то, что изоляция настолько хороша, насколько это возможно. быть.С этого момента, когда конденсатор используется, к нему должно подаваться постоянное (поляризующее) напряжение той же полярности, чтобы поддерживать изолирующую пленку. Если конденсатор используется с обратным напряжением, пленка растворяется, удаляя любую изоляцию и позволяя большим токам проходить через жидкость, которая испаряется, разрушая банку. Электролит обычно находится в желеобразной форме, но разрушение, которое может быть вызвано взрывом электролита (не говоря уже о шумах), гарантирует, что никто, кто достиг этого, не захочет повторить попытку.
Использование тантала в качестве металла электролита позволяет получить совершенно иную конструкцию, в которой оксидная пленка более устойчива и способна выдерживать перепады напряжения. Танталовые конденсаторы ( tantalytics ) могут использоваться без постоянного поляризующего напряжения, могут работать с практически сухим электролитом и, как правило, имеют лучшие характеристики, чем традиционные алюминиевые электролиты. Опыт использования тантала привел к разработке «сухих» электролитов для алюминиевого типа электролитов.
- •
Танталитические конденсаторы не должны использоваться в приложениях звуковой связи, в которых напряжение смещения мало или отсутствует.
Из-за очень хрупкой природы изолирующей пленки, толщина которой может составлять всего несколько атомов, электролитические конденсаторы всегда склонны к большой утечке, поэтому указывается ток утечки при номинальном напряжении, а не коэффициент мощности. или коэффициенты рассеяния. Утечка часто связана со значением емкости и рабочим напряжением и формулой:
I утечка = 4 + (0.006 × C × V ) Часто используется
, с I в μα, C в F и V в вольтах. Например, использование этой формулы для конденсатора 200 мкФ при 12 В дает ток утечки 4 + (0,006 × 200 × 12) = 18,4 мкА. Некоторые производители будут использовать эту формулу для определения значений утечки. Ни один производитель не может гарантировать электролит с низким значением утечки, но измеренные значения часто бывают удивительно хорошими, если электролит эксплуатируется в разумных условиях.Боб Пиз приводит примеры электролитов 500 мкФ с утечкой 2 нА при рабочем напряжении 10 В.
Рисунок 4.6. Типичные размеры электролитического алюминия (Фото: Nichicon Corp.).
Многие производители также указывают ожидаемый срок службы электролитиков более 100 000 часов при 40 ° C и номинальном напряжении, поскольку все еще существуют некоторые предубеждения против их использования для чего-либо, кроме бытовой электроники. Военные приложения обычно запрещают использование электролитов, но теперь они широко применяются в промышленном оборудовании.Часто указываются диапазоны температур от –40 ° C до + 85 ° C, но при более высоких температурах требуется значительное снижение номинальных характеристик, а при более низких температурах существует риск замерзания гелеобразного электролита. Это до некоторой степени уравновешивается увеличением потерь при замерзании электролита, что приводит к более сильному рассеиванию и последующему оттаиванию. Однако это не тот эффект, на который вам следует полагаться. Некоторые типы могут иметь вентиляционные отверстия для сброса давления газа внутри электролита.
Электролитические компоненты используются в основном в качестве накопительных и сглаживающих конденсаторов для источников питания с частотой сети, поэтому их наиболее важные параметры, кроме емкости и номинального напряжения, касаются величины пульсирующего тока, который они могут пропускать. Для каждого конденсатора производитель указывает максимальный пульсирующий ток (обычно при 100 или 120 Гц), а также два параметра, которые касаются способности конденсатора пропускать ток, ESR и импеданса. ESR – это эффективное последовательное сопротивление в миллиомах, обычно 50 мОм, для низкочастотных токов, и это значение может устанавливать ограничение на ток пульсаций, который может пройти; также к эффективности конденсатора для сглаживания.Другой параметр – это эффективный импеданс в мОм, измеренный при 10 кГц и 20 ° C, который используется для измерения того, насколько эффективно конденсатор будет пропускать токи на более высоких частотах. Если в цепи развязки используется электролитический конденсатор, который может работать с большим диапазоном частот, следует использовать другие типы конденсаторов для работы с частотами выше 10 кГц, например, конденсаторы из полиэфира для диапазона до 10 МГц и слюдяные или керамический для более высоких частот. Полезное практическое правило – иметь один электролит для пяти керамических или дисковых материалов.
В электролизерах общего назначения используется алюминий, часто с отдельным алюминиевым кожухом, рассчитанным на изоляционное значение 1000 В. Физическая форма представляет собой цилиндр с биркой, стержнем или винтовым соединением на одном конце. Диапазон емкости, как правило, очень велик для устройств с более низким напряжением, до 15 000 мкФ при работе 16 В, но при более высоких номинальных напряжениях 400 В значения от 1 мкФ до 220 мкФ более обычны. Многие конструкторы избегают использования электролита при рабочем напряжении более 350 В. Допуск значения большой (от -10% до + 50%), а допустимые токи пульсации колеблются от 1 А до 7 А в зависимости от размера конденсатора.
- •
Исчерпывающий набор руководящих указаний по применению алюминиевых электролитов см. На веб-сайте:
http://www.nichicon-us.com/tech-info.html
Еще одно полезное правило Практический опыт заключается в том, что вам нужно 1000 мкФ сглаживания на ампер выходного постоянного тока, но это не обязательно удовлетворительно. Предположим, например, что конденсатор емкостью 5000 мкФ используется с питанием 6 В при полном номинальном токе пульсаций 5 А и имеет ESR 50 мОм.Пилообразная пульсация составит 6 В от пика к пику, а еще 5 × 0,05 В = 0,25 В из-за ESR почти незначительна. Рассеивание в конденсаторе также будет слишком большим, и в такой схеме лучше использовать несколько конденсаторов параллельно.
Электролитические компоненты меньшего размера предназначены для непосредственного монтажа на печатных платах для развязки или дополнительного сглаживания, они имеют цилиндрическую форму и имеют концевые заделки для проводов, либо осевые (провод на каждом конце), либо радиальные (оба провода на одном конце).Диапазон напряжения может составлять от 10 В до 450 В, с диапазоном рабочих температур от –40 ° C до + 85 ° C (рекомендуется снижение номинальных значений при более высоких температурах) и с коэффициентом мощности, который может быть от 0,08 до самого высокого. как 0,2. Самый большой диапазон значений, обычно от 0,1 мкФ до 4700 мкФ, доступен для меньших рабочих напряжений. Субминиатюрные версии имеют рабочее напряжение от 6,3 В до 63 В и ток утечки не менее 3 мкА, а для более крупных емкостных устройств утечка рассчитывается по формуле: 0.01 C × V . Например, конденсатор 47 мкФ 40 В может иметь утечку: 0,01 × 47 × 40 = 18,8 мкА, но измеренные значения обычно намного меньше, всего 10 нА или даже меньше для современных конденсаторов.
Специализированный тип жидкого электролита предназначен для резервного копирования памяти в цифровых схемах. Микросхемы памяти CMOS могут сохранять данные, если на одном из выводов микросхемы поддерживается напряжение ниже нормального напряжения питания. Потребление тока на этом выводе очень низкое, и поэтому оно может обеспечиваться конденсатором в течение значительных периодов времени.Этот метод используется не для вычислителей, в которых используется батарея, а для таких устройств, как контроллеры центрального отопления, которые должны сохранять свои настройки, если электроснабжение отсутствует на сравнительно короткий период. Типичные значения для этих электролитов – 1F0 и 3F3. Время разряда составляет от 1 до 5 часов при 1 мА и от 300 до 500 часов при более типичном потребляемом токе 5 мкА, но следует учитывать высокий ток утечки.
Типы твердого электролита теперь доступны в алюминиевом диапазоне электролитов.В отличие от алюминиевых электролитов традиционного типа, они не требуют вентиляции и не подвержены испарению электролита. Кроме того, в отличие от традиционных электролитических, они могут работать в течение периодов без поляризующего напряжения и могут принимать обратное напряжение, хотя оно составляет всего около 30% от номинального прямого напряжения при 85 ° C, что значительно меньше при более высоких температурах. Типичные размеры от 2,2 мкФ до 100 мкФ с номинальным напряжением от 10 В до 35 В при 85 ° C. Диапазон температур составляет от –55 ° C до + 125 ° C, и даже при максимальной рабочей температуре 125 ° C ожидаемый срок службы превышает 20 000 часов.Токи утечки довольно высоки, в диапазоне от 9 мкА до 250 мкА, а номинальные значения тока пульсации находятся в диапазоне от 20 мА до 300 мА. Одна важная особенность заключается в том, что спецификации не накладывают ограничений на величину тока заряда или разряда, протекающего в цепи постоянного тока, при условии, что рабочее напряжение не превышается.
ТАНТАЛОВЫЕ ЭЛЕКТРОЛИТИКИ
Танталовые электролиты неизменно используют твердые электролиты наряду с металлическим танталом и имеют гораздо меньшую утечку, чем алюминиевые.Это делает их в высшей степени подходящими для таких целей, как связь сигналов, фильтры, схемы синхронизации и развязка. Обычные формы этих электролитов представляют собой миниатюрные шарики с эпоксидным покрытием или трубчатые осевые частицы. Диапазон напряжения составляет от 6,3 В до 35 В со значениями от 0,1 мкФ до 100 мкФ. Диапазон температур от –55 ° C до + 85 ° C. Танталовые электролиты могут использоваться без какого-либо смещения постоянного тока, а также могут принимать небольшое обратное напряжение, обычно менее 1,0 В. Ожидается минимальный ток утечки 1 мкА, а для более высоких значений емкости и рабочего напряжения ток утечки определяется из емкости, умноженной на коэффициент напряжения, при минимальном гарантированном значении 1 пА.Можно ожидать коэффициентов мощности в диапазоне от 0,02 до 0,2. Следует проявлять осторожность, чтобы не превышать номинальное импульсное напряжение, обычно в 1,3 раза больше номинального номинального напряжения постоянного тока. Обзор электролитического конденсатора
| Инженеры Edge
Связанные ресурсы: приборы
Обзор электролитического конденсатораЭлектролитический конденсатор – это тип конденсатора, в котором в качестве одной из пластин используется электролит, ионно-проводящая жидкость, для достижения большей емкости на единицу объема, чем в других типах.Они используются в относительно сильноточных и низкочастотных электрических цепях, особенно в фильтрах источников питания, где они накапливают заряд, необходимый для смягчения колебаний выходного напряжения и тока на выходе выпрямителя. Они также широко используются в качестве разделительных конденсаторов в цепях, где должен проводиться переменный ток, а постоянный – нет. Обычно используются два типа электролитических конденсаторов: алюминиевые и танталовые.
Электролитические конденсаторы способны обеспечивать самые высокие значения емкости среди конденсаторов любого типа (см. Суперконденсаторы), но у них есть недостатки, ограничивающие их использование.Стандартная конструкция требует, чтобы подаваемое напряжение было поляризованным; одна указанная клемма всегда должна иметь положительный потенциал по отношению к другой. Поэтому они не могут использоваться с сигналами переменного тока без поляризационного смещения постоянного тока. Однако существуют специальные неполяризованные электролитические конденсаторы для переменного тока, которые не требуют смещения постоянного тока. Электролитические конденсаторы также имеют относительно низкое напряжение пробоя, более высокий ток утечки и индуктивность, более низкие допуски и температурный диапазон, а также более короткий срок службы по сравнению с другими типами конденсаторов.
Строительство:
Алюминиевые электролитические конденсаторы состоят из двух проводящих алюминиевых фольг, одна из которых покрыта изолирующим оксидным слоем, и бумажной прокладки, пропитанной электролитом. Фольга, изолированная оксидным слоем, является анодом, а жидкий электролит и вторая фольга действуют как катод. Затем этот пакет сворачивают, снабжают штифтовыми соединителями и помещают в цилиндрический алюминиевый кожух. Двумя наиболее популярными геометрическими формами являются осевые выводы, идущие из центра каждой круговой поверхности цилиндра, или два радиальных вывода или выступа на одной из круглых поверхностей.Оба они показаны на картинке.
Полярность:
В алюминиевых электролитических конденсаторах слой изолирующего оксида алюминия на поверхности алюминиевой пластины действует как диэлектрик, и именно тонкость этого слоя обеспечивает относительно высокую емкость в небольшом объеме. Этот оксид имеет диэлектрическую проницаемость 10, что в несколько раз выше, чем у большинства обычных полимерных изоляторов. Он может выдерживать напряженность электрического поля порядка 25 мегавольт на метр, что является приемлемой долей по сравнению с обычными полимерами.Эта комбинация высокой емкости и достаточно высокого напряжения приводит к высокой плотности энергии.
Большинство электролитических конденсаторов поляризованы и требуют, чтобы один из электродов был положительным по отношению к другому; они могут катастрофически выйти из строя, если поменять напряжение на противоположное. Это связано с тем, что напряжение обратного смещения от 1 до 1,5 В разрушит центральный слой диэлектрического материала в результате электрохимического восстановления (см. Окислительно-восстановительные реакции). После потери диэлектрического материала в конденсаторе произойдет короткое замыкание, и при достаточном токе короткого замыкания электролит быстро нагреется и либо потечет, либо вызовет взрыв конденсатора, часто очень драматично.
Чтобы свести к минимуму вероятность того, что поляризованный электролит будет неправильно вставлен в цепь, полярность очень четко указана на корпусе. Полоса на стороне конденсатора обычно используется для обозначения отрицательного вывода. Кроме того, отрицательный вывод радиального электролита короче положительного и может быть различим в других отношениях. На печатной плате принято указывать правильную ориентацию, используя квадратную площадку со сквозным отверстием для положительного вывода и круглую площадку для отрицательного вывода.
Доступны специальные конденсаторы, предназначенные для работы на переменном токе, обычно называемые «неполяризованными» или «NP» типами. В них перед сборкой на обеих полосах алюминиевой фольги формируются оксидные слои полной толщины. На чередующихся половинах циклов переменного тока одна из полосок фольги действует как блокирующий диод, предотвращая повреждение электролита другой полоски обратным током.
Современные конденсаторы имеют предохранительный клапан, как правило, либо секцию с надрезом, либо специальное торцевое уплотнение для выпуска горячего газа / жидкости, но разрывы все же могут быть значительными.Электролитик может выдерживать обратное смещение в течение короткого периода времени, но будет проводить значительный ток и не работать как очень хороший конденсатор. Большинство из них выживут без обратного смещения постоянного тока или только с напряжением переменного тока, но схемы должны быть спроектированы так, чтобы не было постоянного обратного смещения в течение значительного количества времени.
На иллюстрации показаны наиболее распространенные схематические обозначения электролитических конденсаторов. На некоторых схемах не печатается знак «+» рядом с символом.На более старых схемах электролитические конденсаторы показаны в виде небольшой положительной пластины, окруженной снизу и по бокам большим тарельчатым отрицательным электродом, обычно без маркировки «+».
Емкость:
Значение емкости любого конденсатора является мерой количества электрического заряда, накопленного на единицу разности потенциалов между пластинами. Основная единица емкости – фарада; однако этот блок был слишком большим для общего использования до изобретения двухслойного конденсатора, поэтому чаще используются микрофарады (�F, или, что менее правильно, мкФ), нанофарады (нФ) и пикофарады (пФ).
Многие условия определяют емкость конденсатора, например, толщину диэлектрика и площадь пластины. В процессе производства электролитические конденсаторы изготавливаются в соответствии с набором предпочтительных номеров. Умножив эти основные числа на степень десяти, можно получить любое практическое значение емкости конденсатора, которое подходит для большинства приложений.
Пассивные электронные компоненты, включая конденсаторы, обычно производятся в предпочтительных номиналах (например, IEC 60063 E6, E12 и т. Д.ряд).
Емкость алюминиевых электролитических конденсаторов имеет тенденцию изменяться со временем, и обычно они имеют диапазон допуска 20%. Некоторые из них имеют асимметричные допуски, обычно –20%, но с гораздо большим положительным допуском, поскольку многие схемы просто требуют, чтобы емкость была не меньше заданного значения; это можно увидеть в технических описаниях многих конденсаторов потребительского класса. Танталовые электролиты могут производиться с более жесткими допусками и более стабильными.
Типы:
В отличие от конденсаторов, в которых используется объемный диэлектрик, сделанный из изолирующего материала, диэлектрик в электролитических конденсаторах зависит от образования и поддержания микроскопического слоя оксида металла.По сравнению с объемными диэлектрическими конденсаторами этот очень тонкий диэлектрик обеспечивает гораздо большую емкость в том же единичном объеме, но для поддержания целостности диэлектрика обычно требуется постоянное приложение правильной полярности напряжения, иначе оксидный слой разрушится и разорвется. конденсатор теряет способность выдерживать приложенное напряжение (хотя его часто можно «преобразовать»). Кроме того, в электролитических конденсаторах обычно используется внутренняя влажная химия, и они в конечном итоге выйдут из строя, если вода внутри конденсатора испарится.
Значения электролитической емкости не так строго определены, как для объемных диэлектрических конденсаторов. Особенно в случае с алюминиевыми электролитами, довольно часто можно увидеть электролитический конденсатор, указанный как имеющий «гарантированное минимальное значение» и не имеющий верхнего предела его значения. Этот тип спецификации приемлем для большинства целей (таких как фильтрация источника питания и связь сигналов).
Как и объемные диэлектрические конденсаторы, электролитические конденсаторы бывают нескольких разновидностей:
Алюминиевый электролитический конденсатор:
Компактные, но с потерями, они доступны в диапазоне от <1 ° F до 1 F с рабочим напряжением до нескольких сотен вольт постоянного тока.Диэлектрик представляет собой тонкий слой оксида алюминия. Они содержат агрессивную жидкость и могут лопнуть при обратном подключении устройства. Оксидный изолирующий слой будет иметь тенденцию к ухудшению в отсутствие достаточного восстанавливающего напряжения, и в конечном итоге конденсатор потеряет способность выдерживать напряжение, если напряжение не приложено. Конденсатор, с которым это произошло, часто можно «преобразовать», подключив его к источнику напряжения через резистор и позволяя результирующему току медленно восстанавливать оксидный слой.Биполярные электролитические элементы (также называемые неполяризованными или NP-конденсаторами) содержат две анодированные пленки, которые ведут себя как два последовательно соединенных конденсатора. Они используются, когда один электрод может быть положительным или отрицательным относительно другого в разные моменты времени в цепях переменного тока. Плохие частотные и температурные характеристики делают их непригодными для высокочастотных приложений. Типичные значения ESL составляют несколько наногенри.
Тантал:
Компактные низковольтные устройства с температурой до нескольких сотен ° F, они имеют более низкую плотность энергии и производятся с более жесткими допусками, чем алюминиевые электролиты.Танталовые конденсаторы также поляризованы из-за разнородных электродов. Анодный электрод сформирован из спеченных зерен тантала, а диэлектрик электрохимически сформирован в виде тонкого слоя оксида. Тонкий слой оксида и большая площадь поверхности пористого спеченного материала придают этому типу очень высокую емкость на единицу объема. Катодный электрод образован либо из жидкого электролита, соединяющего внешнюю емкость, либо из химически осажденного полупроводящего слоя диоксида марганца, который затем подключается к внешнему проводу.В разработках этого типа диоксид марганца заменяется проводящим пластичным полимером (полипирролом), который снижает внутреннее сопротивление и исключает самовоспламенение.
По сравнению с алюминиевыми электролитами танталовые конденсаторы имеют очень стабильную емкость, небольшую утечку постоянного тока и очень низкое сопротивление на высоких частотах. Однако, в отличие от алюминиевых электролитов, они не переносят скачков положительного или отрицательного напряжения и разрушаются (часто с сильным взрывом), если подключены в цепи в обратном направлении или подвергаются скачкам напряжения выше их номинального значения.
Танталовые конденсаторы дороже, чем конденсаторы на основе алюминия (с жидким электролитом), и обычно доступны только в низковольтных версиях, но из-за их меньшего размера для данной емкости и более низкого импеданса на высоких частотах они популярны в миниатюрных приложениях, таких как сотовые телефоны.
Твердый алюминиевый электролитический конденсатор с органическим полупроводниковым электролитом или OS-CON (что означает OrganicSemi-Conductive):
Конденсатор нового поколения, в котором слои алюминиевой фольги погружены не в раствор жидкого электролита, а в твердый полупроводящий материал, полученный из изохинолина.Монокристаллический N-н-бутил-изохинолин подвергается термоформованию для придания окончательной формы, что существенно повышает его проводимость, таким образом защищая конденсатор от чрезмерных скачков тепла, и, наконец, банки OS-CON герметизируются эпоксидной смолой. Эти конденсаторы стабильны при использовании в диапазоне от -55 ° C до практически 125 ° C в теории. Основными преимуществами использования этого конкретного полупроводника являются довольно низкое ESR, более широкий частотный диапазон и большая стабильность при использовании по сравнению с алюминиевыми конденсаторами с жидким электролитом и твердыми полимерными конденсаторами из тантала.Конденсаторы OS-CON часто встречаются как SMD.
© Copyright 2000-2021, Engineers Edge, LLC www.engineersedge.com
Все права защищены
Отказ от ответственности | Обратная связь | Реклама
| Контакты
Дата / Время:
Выбор пленочных или электролитических конденсаторов для цепей преобразования мощности
Благодаря низкому эквивалентному последовательному сопротивлению (ESR), обеспечивающему хорошую обработку пульсаций тока, а также высоким номинальным импульсным напряжениям и самовосстановлению, пленочные конденсаторы являются сильными кандидатами. для многих задач по кондиционированию энергии в ключевых приложениях, таких как электромобили, возобновляемые источники энергии и промышленные приводы.Они особенно подходят для сценариев, в которых не требуется задержка (или прохождение), например, в случае сбоя или между пиками пульсаций линейной частоты, а также там, где есть необходимость в передаче или приеме больших высокочастотных сигналов. пульсации тока с высокой надежностью и низкими потерями.
Пленочные конденсаторытакже отлично подходят для приложений, работающих при высоком напряжении на шине постоянного тока, чтобы минимизировать омические потери. Поскольку алюминиевые электролитические конденсаторы доступны только с номиналами до 550 В, приложения, работающие с более высокими напряжениями, требуют последовательного подключения нескольких устройств.Затем возникает необходимость предотвратить дисбаланс напряжений либо путем выбора конденсаторов с согласованными значениями, что дорого и требует много времени, либо путем добавления резисторов для выравнивания напряжения, которые приводят к дополнительным потерям энергии и стоимости спецификации.
С другой стороны, алюминиевый электролит остается сильным выбором, когда первоочередное внимание уделяется плотности накопления энергии (джоуль / см 3 ). Одним из примеров являются обычные автономные источники питания, в которых требуется экономичное накопление большого количества энергии для поддержания выходного напряжения постоянного тока в случае отключения электроэнергии без резервного аккумулятора.Подходящее снижение характеристик может снизить срок службы и проблемы надежности, часто связанные с алюминиевыми электролитами.
Тем не менее, верно, что алюминиево-электролитические конденсаторы могут выдерживать перенапряжения только около 20% до того, как произойдет повреждение, тогда как пленочные конденсаторы могут выдерживать воздействие напряжений, примерно в два раза превышающих их номинальные, в течение коротких периодов. Самовосстановление обеспечивает более безопасную реакцию на периодические стрессы, которые обычно встречаются в реальных приложениях.
Кроме того, пленочные конденсаторы могут обеспечить более простые варианты подключения и монтажа, они неполяризованы и, следовательно, не подвержены ошибкам обратного подключения.Их часто упаковывают в изолированные, эффективные по объему прямоугольные «коробчатые» корпуса. Доступны различные типы электрических соединений, такие как винтовые клеммы, наконечники, «фастоны» или шины.
В таблице 1 сравниваются свойства широко используемых типов пленочных конденсаторов. Типы полиэфиров используются при низких напряжениях, в то время как полипропилен обычно демонстрирует самые низкие потери и самую высокую надежность под нагрузкой благодаря низкому коэффициенту рассеяния (DF) и высокому диэлектрическому пробою на единицу толщины.Пеленгатор также относительно стабилен при изменении температуры и частоты. Также доступен сегментированный высококристаллический металлизированный полипропилен с плотностью энергии, сравнимой с плотностью алюминиевых электролитов.
Таблица 1. Характеристики распространенных типов пленочных конденсаторов. (Источник: Википедия: Пленочный конденсатор)
Выбор подходящего конденсатора
Анализ некоторых распространенных схем преобразования мощности может показать, как выбор конденсаторной технологии сильно влияет на размер, вес и стоимость, в зависимости от того, нужна ли емкость для хранения энергии или для обработки пульсаций или шума.
Например, сравнение электролитических и пленочных конденсаторов, используемых в качестве объемной емкости для автономного преобразователя мощностью 1 кВт, наглядно демонстрирует различия между свойствами этих двух типов. Преобразователь, как показано на рис. , рис. 1 , оснащен входным каскадом с коррекцией коэффициента мощности и имеет номинальное напряжение на шине постоянного тока (Vn) 400 В.
1. Емкость в качестве накопителя энергии при перебоях в подаче электроэнергии.
Предположим, что КПД составляет 90%, а напряжение отключения (Vd) 300 В, ниже которого регулирование выхода теряется.Если происходит сбой, конденсатор большой емкости C1 подает энергию для поддержания постоянной выходной мощности, когда напряжение на шине падает с 400 В до 300 В. Мы можем рассчитать значение C1, необходимое для прохождения 20 мсек до того, как напряжение упадет ниже 300 V:
Алюминиево-электролитический конденсатор емкостью 680 мкФ, 450 В из серии TDK-EPCOS B43508 в корпусе диаметром 35 мм × 55 мм соответствует требованиям с общим объемом 53 см. 3 (около трех кубические дюймы). Напротив, решение с использованием пленочных конденсаторов будет непрактично большим: может потребоваться параллельное подключение до 15 пленочных конденсаторов TDK-EPCOS B32678, в результате чего общий объем составит 1500 см 3 (91 кубический дюйм).
Выбор резко изменился бы, если бы конденсатор был нужен только для управления пульсациями напряжения в линии постоянного тока, например, в трансмиссии электромобилей. Напряжение на шине может быть 400 В, как и раньше, но питаться от аккумулятора, поэтому нет необходимости в прохождении через него. Было бы реалистично попытаться ограничить пульсации в пределах, скажем, 4 В среднеквадратического значения, в то время как преобразователь ниже по потоку потребляет импульсный ток 80 А среднеквадратического значения при частоте переключения 20 кГц. Требуемая емкость:
Электролитический конденсатор емкостью 180 мкФ, 450 В из серии TDK-EPCOS B43508 имеет номинальный ток пульсации около 3.5 А среднеквадр. При 60 ° C, включая частотную коррекцию. Для обработки 80 А потребуется 23 конденсатора, подключенных параллельно, что дает ненужную большую емкость в 4140 мкФ и общий объем около 1200 см 3 (73 кубических дюйма). Это согласуется с эмпирическим правилом 20 мА / мкФ для номинальных значений пульсаций тока электролитических конденсаторов.
Используя пленочные конденсаторы серии TDK-EPCOS B32678, всего четыре параллельно подключенных устройства дают номинальный ток пульсации 132 А среднеквадратичного значения в объеме 402 см. 3 (24,5 кубических дюйма).Более того, если ожидается, что температура окружающей среды останется ниже 70 ° C, можно выбрать конденсаторы в корпусе еще меньшего размера.
Есть и другие причины, по которым пленочные конденсаторы являются лучшим выбором. Чрезмерная емкость параллельных электролитов может вызвать такие проблемы, как управление энергией в пусковом токе. Кроме того, пленочные типы гораздо более устойчивы в случае переходных перенапряжений в цепи постоянного тока, которые часто встречаются в приложениях с малой тягой, таких как электромобили.
Аналогичный анализ был бы применим для таких приложений, как системы ИБП, кондиционирование энергии в ветряных или солнечных генераторах, инверторы, подключенные к общей сети, и сварочные аппараты.
Фильм как первый выбор
Относительная стоимость пленочных или электролитических конденсаторов может быть проанализирована с точки зрения накопления в больших объемах или с точки зрения устойчивости к колебаниям. Цифры, опубликованные в 2013 году, сравнивают типичные затраты на шину постоянного тока с питанием от выпрямленного источника переменного тока 440 В (Таблица 2) .
Таблица 2.Сравнение стоимости пленочных и электролитических конденсаторов.
С учетом этого анализа пленочные конденсаторы являются отличным выбором для развязки, демпфирования переключателя и таких приложений фильтрации, как подавление электромагнитных помех или фильтрация на выходе инвертора.
Разделительный конденсатор, помещенный на шину постоянного тока инвертора или преобразователя, обеспечивает путь с низкой индуктивностью для циркуляции высокочастотных токов. Практическое правило – использовать около 1 мкФ на 100 А коммутируемого тока. Стоит отметить, что соединения с конденсатором должны быть как можно короче, чтобы избежать возникновения переходных напряжений.При большом токе и высокой частоте возможны изменения до 1000 А / мкс. Учитывая, что дорожки на печатной плате могут иметь индуктивность около 1 нГн / мм, каждый миллиметр может соответствовать переходному процессу 1 В в соответствии с:
В схеме переключения-демпфирования конденсатор помещается последовательно с комбинацией резистор / диод и подключается к переключателю питания – обычно IGBT или MOSFET – для управления dV / dt (рис. 2) . Демпфер замедляет звон, контролирует электромагнитные помехи и предотвращает ложное включение / выключение.Демпферная емкость обычно выбирается примерно в два раза больше суммы выходной емкости переключателя и монтажной емкости. Затем выбирается значение сопротивления для критического гашения любого звона.
2. Переключатель демпфера IGBT или MOSFET.
Подавление электромагнитных помех
Пленочные конденсаторытакже идеально подходят в качестве конденсаторов X и Y для снижения дифференциального и синфазного шума, соответственно (рис. 3) , используя их возможности самовосстановления и переходных перенапряжений.Конденсаторы класса безопасности X1 (4 кВ) или X2 (2,5 кВ) подключаются к линиям электропередачи и обычно представляют собой полипропиленовые конденсаторы со значением емкости в микрофарадах, если это необходимо для соответствия применимым стандартам ЭМС.
3. Конденсаторы X и Y для подавления электромагнитных помех.
Конденсаторы типаY с низкой индуктивностью подключения подключаются в положениях “фаза-земля”. На рис. 3 конденсаторы Y1 или Y2, рассчитанные на переходные процессы 8 кВ и 5 кВ, соответственно, подключены в положениях «линия-земля», как показано.Соображения, касающиеся тока утечки, ограничивают допустимую емкость. Хотя низкая индуктивность подключения пленочных конденсаторов помогает поддерживать высокий собственный резонанс, внешние подключения к системе заземления также должны быть короткими.
Фильтрация выхода инвертора
Неполяризованные пленочные конденсаторы в сочетании с последовательными катушками индуктивности, часто в одном модуле, создают фильтры нижних частот для ослабления высокочастотных гармоник на выходе переменного тока приводов и инверторов (рис.4) . Они все чаще используются для соответствия системным требованиям по ЭМС и снижения нагрузки на кабели и двигатели, связанной с dV / dt, особенно когда нагрузка находится далеко от приводного устройства.
4. Пленочные конденсаторы используются для фильтрации ЭМС моторных приводов.
Заключение
Знание относительной прочности электролитических и пленочных конденсаторов для приложений преобразования энергии может помочь разработчикам сделать правильный выбор для оптимального общего размера, веса и стоимости материалов.Их можно резюмировать следующим образом:
Конденсаторы электролитические:
- Более высокая плотность накопленной энергии (джоуль / см 3 )
- Снижение затрат на объемную емкость для «прохода» напряжения на шине постоянного тока
- Поддерживать номинальный ток пульсаций при более высоких температурах
Пленочные конденсаторы:
- Более низкое СОЭ для превосходной обработки пульсаций
- Более высокие значения импульсного напряжения
- Самовосстановление повышает надежность и срок службы системы
Руди Рамос (Rudy Ramos) – менеджер проекта по маркетингу технического контента в Mouser Electronics.