Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Назначение, устройство и работа магнитного пускателя

11 Фев 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. С этой статьи мы начнем изучение магнитного пускателя и все, что с ним связано, а идею этой темы подсказал постоянный читатель сайта Сергей Кр.

Магнитный пускатель является коммутационным аппаратом и относится к семейству электромагнитных контакторов, позволяющий коммутировать мощные нагрузки постоянного и переменного тока, и предназначен для частых включений и отключений силовых электрических цепей.

Магнитный пускатель

Магнитные пускатели применяются в основном для пуска, останова и реверсирования трехфазных асинхронных электродвигателей, однако, из-за своей неприхотливости они прекрасно работают в схемах дистанционного управления освещением, в схемах управления компрессорами, насосами, кран-балками, тепловыми печами, кондиционерами, ленточными конвейерами и т.д. Одним словом, у магнитного пускателя обширная область применения.

Как таковой магнитный пускатель уже трудно встретить в магазинах, так как их практически вытеснили контакторы. Причем по своим конструктивным и техническим характеристикам современный контактор ничем не отличается от магнитного пускателя, а различить их можно только по названию. Поэтому, когда будете приобретать в магазине пускатель, обязательно уточняйте, что это — магнитный пускатель или контактор.

Мы рассмотрим устройство и работу магнитного пускателя на примере контактора типа КМИ – контактор малогабаритный переменного тока общепромышленного применения.

Принцип работы магнитного пускателя.

Принцип работы очень простой: напряжение питания подается на катушку пускателя, в катушке возникает магнитное поле, за счет которого вовнутрь катушки втягивается металлический сердечник, к которому закреплена группа силовых (рабочих) контактов, контакты замыкаются, и через них начинает течь электрический ток. Управление магнитным пускателем осуществляется кнопками «Пуск», «Стоп», «Вперед» и «Назад».

Устройство магнитного пускателя.

Магнитный пускатель состоит из двух частей: сам пускатель и блок контактов.

Магнитный пускатель и блок контактов

Хотя блок контактов и не является основной частью магнитного пускателя и не всегда он используется, но если пускатель работает в схеме где должны быть задействованы дополнительные контакты этого пускателя, например, реверс электродвигателя, сигнализация работы пускателя или включение дополнительного оборудования пускателем, то для размножения контактов, как раз, и служит блок контактов или, как его еще называют — приставка контактная.

Блок контактов или приставка контактная.

Блок контактов магнитного пускателя

Внутри блока контактов (приставки контактной) встроена подвижная контактная система, которая жестко связывается с контактной системой магнитного пускателя и стает с ним как бы одним целым. Крепится приставка в верхней части пускателя, где для этого предусмотрены специальные полозья с зацепами.

Полозья с зацепами для крепления блока контактов

sesaga.ru

100 фото современных моделей и схемы их подключения

Коммутационный аппарат, предназначенный для дистанционного управления электропитанием трехфазных электродвигателей, именуют магнитным пускателем. Посредством этого устройства выполняется пуск, отключение или реверс электромоторов, в паре с тепловым реле защищает их от перегрузок. Модели магнитных пускателей представлены на фото в нашей статье и в галерее.

Разновидности

В зависимости от схемы подключения различают нереверсивные и реверсивные МП. Первый – осуществляет подключение и отключение потребителей от сети, второй же может менять подключение фаз и в этом случае ротор изменяет направление вращения.

А по месту установки виды магнитных пускателей бывают:

  • Открытого типа. Их размещают в щитках или других местах, защищенных от действия неблагоприятных факторов окружающей среды;
  • Защищенного исполнения. Монтируют в непыльных помещениях;
  • Влагонепроницаемые. Могут располагаться как с внутренней, так и с наружной стороны здания, если имеются навесы либо козырьки, защищающие от негативного воздействия солнца и воды.

Некоторые модели пускателей имеют на корпусе контрольную лампочку «включено».

Конструктивные особенности

Вверху пускателя находятся подвижные контакты, а также перемещающая часть магнита, которая воздействует на силовые контакты. Крышка керамическая, она же и камера для гашения дуги.

mojdominfo.ru

Контактор и магнитный пускатель в автоматике

Магнитный пускатель (контактор) — это устройство, предназначенное для коммутации силовых электрических цепей. Чаще всего применяется для запуска/останова электродвигателей, но так же может использоваться для управления освещением и другими силовыми нагрузками.

Чем отличается контактор от магнитного пускателя?

Многих читателей могло покоробить от данного нами определения, в котором мы (сознательно) смешали понятия «магнитный пускатель» и «контактор», потому что в данной статье мы постараемся сделать упор на практику, нежели на строгую теорию. А на практике эти два понятия обычно сливаются в одно. Немногие инженеры смогут дать вразумительный ответ, чем же они действительно отличаются. Ответы различных специалистов могут в чём-то сходиться, а в чём-то противоречить друг другу. Представляем Вашему вниманию нашу версию ответа на этот вопрос.

Контактор — это законченное устройство, не предполагающее установки дополнительных модулей. Магнитный пускатель может быть оборудован дополнительными устройствами, например тепловым реле и дополнительными контактными группами. Магнитный пускателем может называться бокс с двумя кнопками «Пуск» и «Стоп». Внутри может находится один или два связанных между собой контактора (или пускателя), реализующими взаимную блокировку и реверс.

Магнитный пускатель предназначен для управления трёхфазным двигателем, поэтому всегда имеет три контакта для коммутации силовых линий. Контактор же в общем случае может иметь другое количество силовых контактов.

Устройства на этих рисунках правильнее называть магнитными пускателями. Устройство под  цифрой один предполагает возможность установку дополнительных модулей, например теплового реле (рисунок 2). На третьем рисунке блок «пуск-стоп» для управления двигателем с защитой от перегрева и схемой автоподхвата. Это блочное устройство — тоже называют магнитным пускателем.

А вот устройства на следующих рисунках правильнее называть контакторами:

Они не предполагают установку на них дополнительных модулей. Устройство под цифрой 1 имеет 4 силовых контакта, второе устройство имеет два силовых контакта, а третье -три.

В заключение скажем: обо всех названных выше отличиях контактора и магнитного пускателя полезно знать для общего развития и помнить на всякий случай, однако придётся привыкнуть к тому, что на практике эти устройства никто обычно не разделяет.

Устройство и принцип работы магнитного пускателя

Устройство контактора чем-то похоже на электромагнитное реле — оно так же имеет катушку и группу контактов. Однако контакты магнитного пускателя  — разные. Силовые контакты предназначены для коммутации той нагрузки, которой управляет этот контактор, они всегда нормально открытые. Существуют еще дополнительные контакты, предназначенные для реализации управления пускателем (об этом речь пойдёт ниже). Дополнительные контакты могут быть нормально открытыми (NO) и нормально закрытыми (NC).

В общем случае устройство магнитного пускателя выглядит так:

Когда на катушку пускателя подаётся управляющее напряжение (обычно контакты катушки обозначаются А1 и А2), подвижная часть якоря притягивается к неподвижной и это приводит к замыканию силовых контактов. Дополнительные контакты (при наличии) механически связаны с силовыми, поэтому в момент срабатывания контактора они также меняют своё состояние: нормально открытые — замыкаются, а нормально закрытые, наоборот, размыкаются.

Схема подключения магнитного пускателя

Так выглядит простейшая схема подключения двигателя через пускатель. Силовые контакты магнитного пускателя KM1 подключены к клеммам электродвигателя. Перед контактором установлен автоматический выключатель QF1 для защиты от перегрузки. Катушка реле (А1-А2) запитана через нормально разомкнутую кнопку «Пуск» и нормально замкнутую кнопку «Стоп». При нажатии кнопки «Пуск» на катушку приходит напряжение, контактор срабатывает, запуская электродвигатель. Для остановки двигателя нужно нажать «Стоп» — цепь катушки разорвётся и контактор «расцепит» силовые линии.

Эта схема будет работать только если кнопки «пуск» и «стоп» — с фиксацией.

Вместо кнопок может быть контакт другого реле или дискретный выход контроллера:

Контактор можно включить и выключить с помощью ПЛК. Один дискретный выход контроллера заменит кнопки «пуск» и «стоп» — они будут реализованы логикой контроллера.

Схема «самоподхвата» магнитного пускателя

Как уже было сказано, предыдущая схема с двумя кнопками работает только если кнопки с фиксацией. В реальной жизни её не используют из-за её неудобства и небезопасности. Вместо неё используют схему с автоподхватом (самоподхватом).

На этой схеме используется дополнительный нормально открытый контакт пускателя. При нажатии на кнопку «пуск» и сработки магнитного пускателя дополнительный контакт КМ1.1 замыкается одновременно с силовыми контактами. Теперь кнопку «пуск» можно отпустить — её «подхватит» контакт КМ1.1.

Нажатие кнопки «стоп» разорвёт цепь катушки и вместе с этим разомкнётся доп. контакт КМ1.1.

Подключение двигателя через пускатель с тепловым реле

На рисунке изображён магнитный пускатель с установленным на него тепловым реле. При нагревании электродвигатель начинает потреблять больший ток — его и фиксирует тепловое реле. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.

Нормально закрытый контакт теплового реле использует в цепи питания катушки пускателя и рвёт её при сработке теплового реле, обеспечивая аварийное отключение двигателя. Нормально открытый контакт теплового реле может быть использован в сигнальной цепи, например для того, чтобы зажечь лампу «авария» при отключении электродвигателя по перегреву.

Реверсивный пускатель

Реверсивный магнитный пускатель — устройство, с помощью которого можно запускать вращение двигателя в прямом и обратном направлениях. Это достигается за счёт смены чередования фаз на клеммах электродвигателя. Устройство состоит из двух взаимоблокирующихся контакторов. Один из контакторов коммутирует фазы в порядке А-В-С, а другой, например, А-С-В.

Взаимная блокировка нужна, чтобы нельзя было случайно одновременно включить оба контактора и устроить межфазное замыкание.

Схема реверсивного магнитного пускателя выглядит так:

Реверсивный пускатель может изменить чередование фаз на двигателе, коммутируя питающее двигатель напряжение через контактор КМ1 или КМ2. Обратите внимание, что порядок следования фаз на этих контакторов различается.

При нажатии Кнопки «Прямой пуск» двигатель запускается через контактор КМ1. При этом размыкается дополнительный контакт этого пускателя КМ1.2. Он блокирует запуск второго контактора КМ2, поэтому нажатие кнопки «Реверсивный пуск» ни к чему не приведёт. Для того чтобы запустить двигатель в обратном (реверсивном) направлении, нужно сначала остановить его кнопкой «Стоп».

При нажатии кнопки «Реверсивный пуск» срабатывает контактор КМ2, а его дополнительный контакт КМ2.2 блокирует контактор КМ1.

Автоподхват контакторов КМ1 и КМ2 осуществляется с помощью нормально открытых контактов КМ1.1 и КМ2.1 соответственно (см. раздел «Схема самоподхвата магнитного пускателя»).


lazysmart.ru

назначение и виды, устройство, принцип действия и схема подключения

Магнитный пускатель, или электромагнитный контактор, это коммутационный аппарат, коммутирующий мощные потоки постоянного и переменного тока. Его роль – систематическое включение и отключение источников электричества.

magnitniy-puskatel

magnitniy-puskatel

Назначение и устройство

Магнитные пускатели встраиваются в электрические цепи для удаленного пуска, остановки и обеспечения защиты электрооборудования, электродвигателей. В основе работы лежит использование принципа действия электромагнитной индукции.

Основой конструкции являются тепловое реле и контактор, объединенные в одно устройство. Такое устройство способно работать в том числе и в трехфазной сети.

Подобные устройства постепенно вытесняются с рынка контакторами. Они по своим конструктивным и техническим характеристикам ничем не отличаются от пускателей, и различить их возможно только по названию.

Между собой они отличаются напряжением питания магнитной катушки. Оно бывает 24, 36, 42, 110, 220, 380 Вт переменного тока. Устройства выпускают с катушкой для постоянного тока. Их использование в сети переменного тока тоже возможно, для чего нужен выпрямитель.

Конструкцию пускателя принято делить на верхнюю и нижнюю часть. В верхней части находится подвижная система контактов, совмещенная с дугогасительной камерой. Также здесь размещается подвижная часть электромагнита, механически соединенная с силовыми контактами. В

odinelectric.ru

Схемы подключения магнитного пускателя | Электрик



Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.

Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.

Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического “отключения” оборудования при “пропадание” электричества.
Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка “Пуск”.

Схемы подключения магнитного пускателя

Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на “3” контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

Обратите внимание. В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.
Например если катушка магнитного пускателя на 220 вольт – один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.


Если номинал катушки на 380 вольт – один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.

В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.


Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.


Как выглядит монтажная (практическая) схема подключения магнитного пускателя?

Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на “3” контакт кнопки «Пуск».

elektt.blogspot.com

Как подключить магнитный пускатель. Схема подключения.

02 Мар 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем. В первой части статьи мы с Вами познакомились с устройством, назначением и работой магнитного пускателя, а сегодня рассмотрим его электрическую схему подключения.

Но прежде чем собирать схему, давайте сделаем небольшое отступление и познакомимся с одним важным элементом схемы управления работой магнитного пускателя – кнопка.

Кнопки для управления магнитным пускателем

Как Вы уже догадались кнопками «Пуск», «Стоп», «Вперед», «Назад» осуществляется дистанционное управление магнитным пускателем, а значит и нагрузкой, которую он коммутирует. Управляющие кнопки выпускают двух видов: с размыкающим и замыкающим контактом.

Кнопка «Стоп».

Кнопку «Стоп» легко отличить по красному цвету.
В кнопке используется размыкающий (нормально замкнутый) контакт, через который проходит напряжение питания в схему управления пускателем.

В начальном положении, когда кнопка не нажата, подвижный контакт кнопки поддавливается снизу пружиной и собой замыкает два неподвижных контакта, соединяя их между собой. И если кнопка стоит в электрической цепи, то в этот момент через нее протекает ток.
Когда же необходимо разомкнуть цепь — кнопку нажимают, подвижный контакт отходит от неподвижных контактов и цепь размыкается.

Рабочие контакты кнопки "Стоп"

При отпускании кнопка опять возвращается в исходное положение пружиной, поддавливающей подвижный контакт, и он опять замыкает собой оба неподвижных контакта. На рисунке показаны контакты кнопки в нажатом и не нажатом положении.

Кнопка «Пуск».

Как правило, кнопку «Пуск» раскрашивают в черный или зеленый цвета.
В кнопке используется замыкающий (нормально разомкнутый) контакт, при замыкании которого через кнопку начинает проходить электрический ток.

Кнопка «Пуск» устроена так же, как и кнопка «Стоп», и отличается лишь только тем, что в начальном положении ее подвижный контакт не замыкает неподвижные контакты — то есть всегда находится в не замкнутом состоянии. В левой части рисунка видно, что подвижный контакт не замкнут и пружиной поддавливается вверх.

Рабочие контакты кнопки "Пуск"

При нажатии на кнопку подвижный контакт опускается и замыкает оба неподвижных контакта. Когда же кнопка отпускается, то ее подвижный контакт под действием пружины возвращается в исходное верхнее положение и контакты размыкаются.

Схемы подключения магнитного пускателя.

Первая, классическая схема, предназначена для обычного пуска электродвигателя: кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.

sesaga.ru

Магнитный пускатель

Всегда по кайфу сидеть и смотреть как работают другие. Но для этого нужно состояться как руководитель, а вот просто сидеть на стуле рабочего и точать болванки не руками, а при помощи робототехнических комплексов это вполне реально. Сам станок начинен мозгами и датчиками. Датчики сообщают мозгам параметры, а мозги вырабатывают управляющие сигналы, которые поступают на управляющие элементы – тиристорные сборки. Такие станки выпускают в Европе, а у нас все управление сидит на пускателях, нет никаких мозгов или датчиков, а тупо все кнопками, концевиками и пускателями. Так просто сидеть не получится – постоянно надо жать и двигать, но это все равно лучше и точнее чем вручную. Но Запад по-прежнему делает пускатели, так что для пускателей еще не все кончено – просто их немного подвинули в промышленных центрах и они ушли в деревни.

Управление технологическими процессами происходит при помощи кнопок и рычагов. Кнопка по размерам всегда соизмерима той мощности которую она коммутирует. Чем больше кнопка, тем больше ее контакты и тем больший ток она сможет через себя пропустить. Но кнопки совсем не предназначены для коммутации больших токов. Зато эта кнопка управляет магнитным пускателем, который в свою очередь коммутирует большие токи. Эта хитрость помогает сэкономить на длине больших и толстых проводов, безопасности при работе с такими кнопками, ведь управление магнитными пускателями может осуществляться и при малых напряжениях и токах. В принципе, пускатель – устройство логики, который откликается на команды кнопок и концевиков.

Магнитный пускатель – прибор для коммутации нескольких больших нагрузок сравнительно небольшой управляющей мощностью и при этом одной кнопкой можно запустить хоть все двигатели в Беларуси.

Магнитный пускатель основан на принципе самого обычного магнита. Если взять стальной штырь и намотать на него достаточное количество медной изолированной проволоки, то при подключения напряжения к концам проволоки, вокруг штыря создастся магнитное поле, которое притянет к штырю стальные опилки. Если использовать намотку проволоки на каркас без стального штыря, то проволока просто сгорит. Это связано с тем , что энергия от катушки не будет поглощаться сердечником, а замкнется на себя, а в результате вся энергия от сети будет подключена к длинной проволоке, что сравнимо обычному короткому замыканию, правда, за минусом нескольких ом на длину и индукцию.. Чтобы отвести от катушки поле и увеличить индуктивное сопротивление внутрь катушки устанавливается стальной сердечник. Сердечник сделан из трансформаторной стали и поглощает магнитный поток катушки. Конструкция всех пускателей одинакова. Две разнесенные Ш – образные половинки нвходятся одна над одной. На центральный штырь нижней буквы Ш одета катушка. При подключении напряжения верхняя Ш притянется к нижней, а при отключении напряжения верхняя Ш поднимется наверх за счет пружин.

Трансформаторная сталь – Ш-образные тонкие пластины из специальной стали. Каждая пластинка достаточно тонкая и покрыта слоем изоляции. Именно так минимизируются потери на перемагничивание сердечника.

Существует несколько видов наших пускателей. ПМА – отличный пускатель. Есть камеры для гашения электрической дуги при коммутации, контакты доступны для осмотра и чистки. Все исходные данные приведены на крышке магнитного пускателя. Uкат – напряжение, которое необходимо для того, чтобы обе Ш соединились. Тильда (~) означает, что напряжение катушки – переменное и составляет 24 В частотой 50 Гц. Каждый пускатель рассчитан на коммутацию определенного тока и конкретно данным пускателем можно коммутировать ток 40 А на каждой фазе. Напряжение между фазами 380 В. Но если необходимо подключить плитку с током 100 А, но напряжением 220 В, то можно запараллелить три контакта, а ноль пустить напрямую на плитку. Важно понять, что нельзя превышать номинальный коммутационный ток пускателя даже если напряжение между фазами будет 1 В.

Кроме силовых контактом и контактов подключения катушки на многих пускателях существуют вспомогательные контакты. Контакты нужны для логических операциях на схеме. Например при реверсе фазы должны поменяться местами и если нажать на обе кнопки одновременно произойдет небольшой бамсик и сработают автоматы защиты. Чтобы таких случаев было поменьше задействуют вспомогательные контакты обоих пускателей чтобы когда был включен один пускатель второй нельзя было включить ни при каких обстоятельствах. Также вспомогательные контакты необходимы чтобы постоянно не жать на кнопку, а нажать и отпустить, а пускатель бы продолжил работать.

Верхняя крышка крепится на двух винтах М4 и выполнена из диэлектрика. Крышка литая и разделена на три секции по количеству коммутируемых секций. Разделение на секции нужно для гашения электрической дуги. Ток не любит когда его прерывают на полуфазе, поэтому ток заручается поддержкой электрического поля, которое и переносит ток. Поле ионизирует вокруг себя пространство и при разрыве воздух может провести ток, перехлестнув фазы, что вызовет бумсик. Ребристые дугогасители ограничивают разгул фазы не давая им перехлестываться. Заметно, что пластины пускателя разрывают фазы сразу в двух местах – это увеличивает надежность при коммутации.

Сами контакты представляют собой медные пластинки с серебряными напайками. Контакт стандартный имеет вид ромба. Серебряные напайки нужно чистить тонким слоем спирта, но спирт очень специфическая жидкость и поэтому контакты чистят обычно мелкой наждачной бумагой. Когда контакты становятся очень низкими можно немного согнуть контактную пластину.

Контактные пластинки подпружинены стальными изогнутыми пластинками. Подпружиненность необходима когда контакты нагреваются и расходятся, а пружинные пластинки не дают контакту ослабнуть.

Когда подвижные контакты все сняты становятся видны неподвижные контакты. Неподвижные контакты соединяются непосредственно с проводами, которые соединяют сеть и двигатель. Между парой неподвижных контактов находится подвижный сердечник Ш – образной формы.

Неподвижные контакты с подвижным сердечником на профессиональном сленге называется головой. Часто ток прошивает сам пластик из которого сделан пускатель и появляется проводимость между фазами. В таком режиме все выбивает сразу после включения пускателя. Голова крепится на четырех винтах М4.

Голова имеет отверстия для подвижного сердечника. Именно подвижные контакты и подпружиненные пластинки закрепляют подвижный сердечник с головой.

Голова создает направление движения подвижного сердечника. Без головы обе половины сердечника никак не взаимодействуют. Вверх сердечник выталкивается двумя пружинами на которых закреплены дополнительные контакты. Таким образом достигается две цели – сердечник при отключении напряжения подается вверх и разрывает электрическую цепь силовых контактов, а также размыкает или замыкает дополнительные контакты.

Подвижный сердечник очень часто покрыт слоем ржавчины. Ржавчина ухудшает прилегание обоих половинок сердечника и вызывает гудение и вибрацию. Ржавчину нужно счищать либо напильником, либо наждачной бумагой.

В сборе голова и подвижный сердечник имеют сложную форму, но достаточно красиво смотрятся вместе.

Корпус пускателя без сердечника выглядит голо. Пружинки выталкивают пластиковые крепления с контактами достаточно высоко. Пластиковые крепления удерживают дополнительные контакты и распределяют давление для выталкивания подвижного сердечника.

Катушка представляет собой пластиковый каркас на который намотана медная изолированная проволока. Марка проволоки ПЭВ-1. Поверх всех витков крепится бумажка с исходными данными о параметрах катушки.

На данной катушка стоит маркировка 50 Гц 24 V – означает что катушка работает на переменном токе частотой 50 Гц при напряжении 24 В. Чтобы создать такое напряжение необходим трансформатор. Тип провода обмотки ПЭТВ-2 и используется проволока диаметром 0,71 мм. Для пускателей типа ПМА для переменного напряжения 24 В обходимо 3000 витков вокруг каркаса. Намотка делается виток к витку слоями. Между каждым слоем – изолировочная бумага.

На одну сторону катушки в местах прилегания контактов находится две пластинки. Пластинка катушка опускается на подпружиненные контакты и напряжение передается на катушку.

С подвижным магнитным сердечником все понятно, а вот неподвижный сердечник приносит небольшие сюрпризы. Вся сталь покрыта оксидом железа – ржавчиной, которую необходимо удалить. Видны контактные подпружиненные пластинки на которые устанавливается катушка своими контактами. Но фишка сердечника не в этом, а в двух прямоугольниках, которые вставлены в металл по концам Ш – образного сердечника. Эти прямоугольники называются короткозамкнутыми витками. Витки сделаны из меди.

Суть короткозамкнутого витка в том, что при работе на переменном токе сердечник как и трансформатор должен перемагничиваться с частотой тока, т.е 50 Гц. Это означает, что катушка будет притягиваться и отталкиваться 50 раз в секунду. Никакого контакта не получится раз контакты постоянно опускаются и поднимаются и понятно, что никому такая коммутация не нужна. Тогда придумали короткозамкнутые витки. Виток при движении сердечника вверх индуцирует в себя внутреннюю электродвижущую силу, т.е. напряжение. Величина напряжения сравнительно небольшое, около 6 В и длительность возникновения напряжения тоже невелика, но этого напряжения хватает, чтобы при переходе синусоиды через ноль сердечники не расходились, а удерживались вместе, преодолевая силу отталкивания пружин.

Подпружиненные контакты катушки также необходимо чистить и протирать. В сердечнике очень любят жить тараканы – там тепло, магнитные поля, недоступное пространство – короче отличный домик.

Снизу неподвижного сердечника располагается подпружинивающая пластинка, которая не дает сердечнику уходить вниз при нажимании сверху подвижного сердечника.

Отталкивающие пружины достаточно длинные и легко упрыгивают. Чтобы пружинки держались крепко в пластиковых направляющие сделаны технологические отверстия в которые и вставляются пружинки. Пружинками также зафиксированы внутри пластиковой крепежа дополнительные контакты. На дополнительных контактах есть выступы которые не дают пружинке выскочить.

Менее качественный и надежный пускатель называется ПМЛ, типа как у Земы только без «моя». Данный пускатель пускается на территории Украины. Особенностью данного типа является приставная голова. Дело в том, что у пускателя есть только 4 нормальноразомкнутых контакта. Все недостающие нормальнозамкнутые контакты поставляются отдельно с дополнительной пристегивающейся головой. Все контакты пускателя находятся внутри самого пускателя и вроде как не тянут электрическую дугу, но вместе с тем возникают дополнительные проблемы с чисткой контактов.

Голова пристегивается при помощи специального подпружиненного крючка. Крючок осуществляет фиксацию головы. Голова задвигается в специальные технологические направляющие. Если бы это сделали на Западе, то скорее всего вместо пружинки была бы литая пластмаска, наподобие сетевых фишек.

Голова сама по себе бывает одноэтажной и двухэтажной. В принципе, ограничение высоты и следовательно количество контактов ограничено только физическими возможностями сердечника прижать все эти контакты.

Пускатель можно использовать и без головы. Если достаточно только включать двигатель по сигналу с кнопки – пожалуйста. Но если нужно предусмотреть блокировку и защиту от дурака, то необходимо ставить голову.

В отличии от пускателя ПМА, где все параметры наплавлены на крышке, на пускателе ПМЛ стоит наклейка с параметрами. Наклейка также информирует о положении контактов в нормальном состоянии и токах, которые можно коммутировать этим пускателем.

Данные о катушке выплавлены возле самих контактов катушки. Эти контакты располагаются ниже основных контактов. Катушка работает при переменном напряжении 24 В частотой 50 Гц или 26 В частотой 60 Гц.

Верхняя часть пускателя крепится при помощи двух винтов М4. Подвижный сердечник крепко держится за счет контактов в пускателе. Так же при ремонте необходимо металл весь очистить от грязи и ржавчине.

Катушка намотана на каркас. Каркас сделан из пластика и имеет неправильную форму с выступами. Именно из-за странной формы каркаса и материала из которого он изготовлен каркас становится неремонтопригодным. При межвитковом замыкании катушки она нагревается и расплавляет пластик. В результате пластик обволакивает отверстие для хода сердечника и блокирует сердечник, а в результате движение, которым управляет пускатель может продолжиться несмотря на отключение кнопки, а в результате может кто-то или что-то пострадать.

Катушка имеет вот такой вид. Перематывать ее при расплавлении пластика достаточно сложно. Необходимо убрать все подтеки пластика по размеру сердечника, а затем уже наматывать витки.

Неподвижный сердечник закреплен в корпусе. Чистка его также затруднена. Пускатель рассчитан на работу от переменного напряжения и на сердечнике находятся короткозамкнутые витки. Если такие витки отсутствуют, а прорези есть – можно использовать толстую медную проволоку, которую нужно всунуть в прорезь и спаять оба конца. Нужно добиться того, чтобы при подаче напряжения пускатель не гудел.

Верхняя часть выглядит неприступной и неразборной. Она полностью скрывает контакты и сердечник. Видны только крепежные винты под провода.

Если открутить все винты для проводов и сдвинуть на себя вкладыши с резьбой, то за него можно вытянуть контакт пускателя. Получается, что раз пускатель коммутирует 4 провода, то достать нужно 8 контактов. Именно они удерживают сердечник в закрепленном положении.

На сердечнике установлен пластиковый держатель с контактами. Контакты подпружинены. Как видно чтобы произвести чистку такого пускателя необходимо полностью снять пускатель с оборудования, разобрать его и почистить. Все это только удорожает стоимость ремонта. Понятно, что если пускатель рассчитан на 100.000 циклов и полностью их выходит, а после этого пускатель выбрасывают и ставят новый, тогда закрытость контактов оправдывает себя, но все стараются экономить и чтобы заставить пускатель работать вечно нужно использовать пускатели ПМА.

При выгорании контакта на пластинах нужно заменить пластину. Можно попробовать сделать напайки, но это экономически невыгодно в силу того, что надежность будет примерно нолевая.

При сборке важно правильно поставить голову и верхнюю часть чтобы пазы в которые входит крепеж головы были на одном уровне с пазами корпуса. В противном случае все придется разбирать.

Магнитный пускатель ПМЕ выполнен из пластика, все контакты скрыты. Дополнительных контактов нет.

Пускатель сравнительно небольшой и разработчики решили не заморачиваться крепежом, а просто взяли корпус пускателя и разрезали не поперек, а вдоль. Скрепление обеих половинок происходит с помощью стальных скоб ломаной формы.

Если снять скобы и осторожно снять одну половинку, то взгляду предстанут все внутренности пускателя. Сразу видны подпружиненные подвижные контакты, оба сердечника, катушка и пружинки.

К катушке ведут проводки, которые имеют на конце вилки, которые крепятся к корпусу пускателя.

На корпусе пускателя закреплены неподвижные контакты и контакт для прикручивания вилочки катушки.

Сердечник прикреплен к текстолитовой основе. В текстолите есть штыри для фиксации пружин.

Все исходные данные находятся на катушке. Катушка работает при напряжении 380 В частотой 50 Гц. Тип провода ПЭВ-2 диаметром 0,49 мм, количество витков 9000.

Вот такие основные наши пускатели. На мой взгляд лучший из них ПМА, но нужно учитывать так же и габарит пускателя. Габарит это параметр, зависящий от величины коммутируемого тока. Чем больший ток, тем больший габарит.

Схемы с применением магнитных пускателей имеют следующий вид

Обычная схема без блокировок применяется там, где нужно жать на кнопку, тогда действие идет, отпускаешь кнопку – действие прекращается. Обычно это нужно там, где нужно чем-то занять руки, чтобы их не сунуть в механизм. Примером может служить прессовое оборудование.

Схема с блокировкой – обычная схема для пускателей, где по команде кнопки пускатель включается и своими нормальноразомкнутыми контактами выкорачивает кнопку Пуск.

Реверс… Отличная схема когда нужно менять направление вращение асинхронного двигателя.

www.volt-220.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *