Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Резистор, для чего он нужен, где применяется в автомобилях

Сегодня мы поговорим про резистор, как основной элемент любой электрической цепи автомобиля. Для чего он нужен, какие бывают резисторы, принципы их работы, какие подходят для той или иной электрической цепи.

Эти знания могут пригодиться при ремонте автомобиля.

Три основные составляющие электрического тока

Электроэнергия достаточно плотно вошла в нашу жизнь. Используется она практически везде, и в автотранспорте в том числе.

Данный вид энергии имеет три основных составляющих – напряжение, сила тока и сопротивление.

Что касается последнего параметра, то благодаря возможности создания дополнительного сопротивления в любой точке электрической цепи можно влиять на первые два параметра.

Основным элементом для создания сопротивления является резистор. Данный элемент относится к самым востребованным, и ни одна электрическая цепь без него не обходится, и заменить его чем-либо другим не получится. А в любом автомобиле электрических цепей предостаточно.

Назначение

Основное назначение резистора – создание сопротивления для возможности контроля и регулировки силы тока и сопротивления. По сути, он является своеобразным фильтром, позволяющим на выходе из него получить электроэнергию с определенными параметрами.

Обеспечивает он все это за счет удержания тока, деления и уменьшения напряжения.

Основным параметром резистора является сопротивление, которое он создает в цепи, и измеряется оно в Омах.

Резистор, для чего он нужен, где применяется в автомобилях

Резисторы в электрической цепи автомобиля.

Именно благодаря своей функции этот элемент так часто используется в автомобилях. Ниже мы рассмотрим одни из основных составляющих авто, где используется резистор и какую конкретно функцию он там выполняет.

Система охлаждения

Итак, нагрузочный резистор используется в системе охлаждения автомобиля, а точнее, – в цепи питания вентилятора радиатора.

Стоит отметить, что раньше этот электрический элемент не использовался в данной цепи, и все работало очень просто – при достижении определенной температуры охлаждающей жидкости, температурный датчик замыкал контакты цепи питания вентилятора, и он включался в работу.

Использование же резистора позволило сделать работу электродвигателя вентилятора двух — и даже трехрежимной.

Процесс подачи питания на вентилятор при этом несколько изменился. В систему добавились также реле, а за включение вентилятора у современных авто уже отвечает электронный блок управления.

Резистор, для чего он нужен, где применяется в автомобилях

То есть, электронный блок анализирует температурные показатели датчика, и подает сигнал на реле.

В зависимости от температуры реле направляет электроэнергию по определенной цепи. Если температура охлаждающей жидкости превышена незначительно, но уже требуется ее снижение, и сигнал от ЭБУ поступил, реле направляет электроэнергию через нагрузочный резистор, который создает сопротивление, и вентилятор начинает вращаться с небольшой скоростью.

Если температура будет дальше повышаться и достигнет критической точки, реле перенаправит электроэнергию по другой цепи – в обход резистора, напрямую к вентилятору, что обеспечит его работу на полную мощность, с большой скоростью вращения.

Это схема двухрежимной работы вентилятора, которая обеспечивается наличием нагрузочного резистора в цепи. Причем она упрощенная, чтобы было более понятно.

Резистор, для чего он нужен, где применяется в автомобилях

В авто с трехрежимной работой вентилятора, принцип остается тот же, но у него уже используется два резистора – один отвечает за малые обороты вращения вентилятора, второй – за средние.

Третий же режим – аварийный, при котором вентилятор вращается с максимальной скоростью, обеспечивается за счет подачи питания на него напрямую.

Система зажигания

Второй элемент автомобиля, где можно встретить резистор – это свечи зажигания. Но далеко не все свечи оснащены им.

В конструкции данных элементов он начал появляться не так давно, и задача его заключается в подавлении радиопомех.

Резистор, для чего он нужен, где применяется в автомобилях

Кстати, сейчас ведется очень много споров, нужен ли он в свечах. Ведь резистор создает сопротивление, которое в конечном итоге влияет и на искру. А ведь чем сильнее последняя, тем лучше воспламеняется горючая смесь.

Но на самом деле на качестве искры наличие резистора сказывается незначительно, а вот на свечу – только положительно. Очень сильный искровой заряд приводит к разрушению электродов, а сопротивление снижает напряжение искры.

Но не в этом его главное назначение. Мощный искровой разряд создает достаточно сильные помехи в радиочастотном диапазоне, которые могут повлиять на работу аудиосистемы автомобиля, мобильного телефона и любого другого оборудования, чувствительного к помехам данного типа.

Интересно, что необязательно устанавливать на автомобиль свечи зажигания, оснащенные резисторами.

Дело в том, что во многих моделях шумоподавляющий элемент устанавливается в наконечники проводов высокого напряжения. Также некоторые виды самих проводов обладают достаточно неплохим сопротивлением, которого хватает для подавления радиопомех.

Резистор также может быть установлен и в бегунок трамблера, причем встречается он там на многих моделях. Его задача – та же, что и в свече зажигания или наконечнике.

Резистор, для чего он нужен, где применяется в автомобилях

Важно понимать, что во всех перечисленных элементах зажигания одновременно использоваться резисторы не могут.

При последовательном подключении этих элементов все сопротивление, которое они создают, суммируется.

То есть, если резистор будет установлен в бегунке трамблера, наконечнике, свече, то они будут создавать настолько сильное сопротивление, что значительно послабят искровой заряд, и он уже не сможет качественно воспламенять смесь. А это приведет к перебоям в работе двигателя, потере мощности, увеличению расхода топлива.

Поэтому принимать решение, стоит ли устанавливать на автомобиль свечи зажигания с резистором необходимо, тщательно ознакомившись с техдокументацией, идущей к авто.

Если изготовитель указывает, что необходимо использование таких свечей, то ими лучше пользоваться.

Система обогрева салона

Еще один элемент в конструкции автомобиля, где используется резистор – система отопления салона, а точнее, – управление работой электродвигателя печки.

В любом автомобиле используется переменный резистор для изменения скорости работы электромотора обогревателя.

В нем при помощи вращающегося элемента обеспечивается возможность изменения значения сопротивления.

При включении электродвигателя на 1-ю скорость вращения, резистор обеспечивает максимальное сопротивление, при переключении на 2-ю – оно уменьшается, а при переходе на 3-ю скорость — практически полностью убирается.

Резистор, для чего он нужен, где применяется в автомобилях

 

Осветительные приборы

В последнее время резисторы стали использоваться вместе со светодиодными лампами. Данный вид ламп все больше начал применяться на авто.

Резистор, для чего он нужен, где применяется в автомобилях

Но далеко не все машины пока идут с завода, укомплектованные светодиодными осветительными приборами, а вот отдельно их купить и установить вместо штатных ламп накаливания тех же поворотников или стоп-сигналов вполне можно и многие так делают.

Но здесь возникает проблема, которая обязывает использовать резисторы.

Дело в том, что потребление электроэнергии этими лампами очень малое, из-за чего электронный блок расценивает работу светодиодов как неисправность штатной лампы.

Чтобы исправить ситуацию, используются резисторы, создающие нагрузку на линии проводки, запитывающей те осветительные приборы, в которых установлены светодиодные лампы.

Резистор, для чего он нужен, где применяется в автомобилях

В результате ЭБУ воспринимает сопротивление элемента, как работу лампы накаливания, поэтому кода ошибки не возникает.

Интересно, что при использовании таких обманок основное достоинство светодиодных ламп – малое потребление энергии, сводится к нулю, и у них остается только одно преимущество перед обычными лампами накаливания – длительный срок эксплуатации.

Резистор, для чего он нужен, где применяется в автомобилях

Виды резисторов, их особенности

Из описанных выше резисторов, которые используются в конструкции автомобиля, можно отметить два типа – нагрузочные, они же постоянные и переменные. В целом – это и есть два основных вида, которые имеют достаточно широкое применение в разных сферах.

Конечно, есть еще целый ряд всевозможных резисторов, которые отличаются по своим конструктивным особенностям. К примеру, терморезисторы, в которых сопротивление меняется от температуры, или фоторезисторы, меняющие свои параметры от освещенности. Но их мы пока касаться не будем, а рассмотрим лишь указанные два вида.

Постоянные резисторы называются так потому, что сопротивление, которое они создают – неизменное.

Резистор, для чего он нужен, где применяется в автомобилях

К примеру, если указано, что основной параметр данного элемента составляет 30 Ом, то сопротивление именно этого значения он обеспечивает и поменять его невозможно.

В переменных же резисторах сопротивление можно менять, притом вручную. Примером тому является уже упомянутое управление электродвигателем системы отопления.

Резистор, для чего он нужен, где применяется в автомобилях

К переменным резисторам относятся также подстроечные.

В таких резисторах тоже можно изменять параметр вручную, но регулировка его выполняется не в любой момент, как это делается в переменном, а лишь когда требуется перенастроить работу всей схемы, куда он включен, на длительный срок.

Резистор, для чего он нужен, где применяется в автомобилях

В автотранспорте подстроечные элементы не используются, хотя их часто можно встретить в бытовой технике.

Подбор резистора по сопротивлению

Большинство людей при выходе из строя какого-то электроприбора сдают его в ремонт или заменяют, хотя во многих случаях виноват именно резистор, тем более что он – один из самых распространенных элементов в любой схеме. Но находятся и такие, кто самостоятельно берется за ремонт.

И часто у любителей самостоятельного ремонта возникает вопрос, как правильно подобрать резистор для той или иной схемы.

Для этого возьмем простейшую схему, включающую источник питания и один потребитель.

Еще вначале было указано, что электроэнергия имеет три основные характеристики – напряжение, сила тока и сопротивление. Именно по этим параметрам и производятся все необходимые расчеты, используя для этого закон Ома.

Согласно этого закона, поскольку нам необходимо определение сопротивления, следует напряжение поделить на силу тока.

К примеру, наш источник питания обеспечивает цепь напряжением 12 В, с силой тока 0,02 А.

Чтобы определить сопротивление проводим математические расчеты – 12/0,02 и получаем сопротивление цепи 600 Ом.

Теперь непосредственно о том, как высчитать сопротивление резистора для использования в той или иной схеме. Для примера возьмем источник питания на 12 В и потребитель (лампу накаливания 3,5 В, 0,28 А).

Вначале рассчитывается сопротивление лампы – 3,5/0,28 = 12,5 Ом. Теперь узнаем, какая сила тока потечет через имеющуюся лампу – для этого берем напряжение источника питания и делим на сопротивление: 12/12,5 = 0,96 А, что в 3,5 раза превышает необходимую для работы потребителя силу тока, и если подключить потребитель, то нить лампы попросту перегорит.

Чтобы перегорания не произошло, необходимо сопротивление в цепи, равное 43,75 Ом (12,5 * 3,5). А поскольку лампа сама создает сопротивление, то в схему необходимо подключить добавочный резистор на 30 Ом. В ходе расчетов получаем – 12 В/ 42,5 Ом (сопротивление лампы и резистора) = 0,28 А.

Резистор, для чего он нужен, где применяется в автомобилях

То есть получили силу тока, необходимую для нормальной работы потребителя. В данном случае включенный в схему элемент выступил в качестве ограничителя силы тока.

Мощность рассеивания

Помимо сопротивления у резистора есть еще один немаловажный параметр – мощность рассеивания.

Любой резистор выступает своего рода ограничителем и благодаря своему сопротивлению проводит через себя только определенное напряжение и силу тока. При этом излишки, которые он не пропустил в себе не накапливает, а преобразует их в тепловую энергию и рассеивает.

Поэтому предусмотрены обозначения резисторов по мощности рассеивания.

Резистор, для чего он нужен, где применяется в автомобилях

Несоответствие данного элемента по мощности рассеивания приведет к его перегреву и разрушению. Мощность рассеивания измеряется в Ваттах.

Определить мощность рассеивания можно как по напряжению, проходящему через него, так и по силе тока.

Что касается напряжения, то формула для расчета выглядит так:

Где:

  1. Р – мощность;
  2. U – напряжение в цепи;
  3. R – сопротивление резистора.

Для расчета по силе тока формула имеет такой вид:

Где:

  1. P – мощность;
  2. I – сила тока, проходящая через резистор;
  3. R – сопротивление.

Важным условием при выборе резистора по данному параметру является то, что мощность рассеивания у него должна быть вдвое больше, чем полученная при расчетах.

К примеру, мы имеем силу тока в 0,1 А и сопротивление резистора в 100 Ом.

Исходя из формулы, получаем мощность рассеиваний в 1 Ватт (0,12 * 100 = 1), но для нормальной работы элемента выбираем резистор с мощностью рассеивания в 2 Ватт.

Отметим, что все изготавливаемые резисторы имеют строго определенное значение мощности рассеивания, что облегчает их выбор.

К тому же можно даже визуально определить, какая у резистора мощность рассеивания. Здесь все просто, чем больше по размерам элемент, тем выше значение.

Резистор, для чего он нужен, где применяется в автомобилях

Здесь мы рассмотрели резисторы – одни из самых распространенных элементов в любой электрической схеме автомобиля. Ведь они позволяют контролировать основные параметры электрической энергии благодаря воздействию всего лишь на одну из ее характеристик.

Напоследок отметим, что при расчетах необходимо следить за размерностью параметров. То есть, использовать только амперы, вольты и омы, и если указано, что сила тока составляет 20 мА, то следует перевести это значение в амперы, получив для расчетов значение в 0,02 А.

autotopik.ru

Работа резистора в цепи электрического тока

Подробности
Категория: Начинающим

Резистор – это структурный (пассивный) элемент электрических цепей, функциональным значением служит создание сопротивления электрическому току для регулировки напряжения и тока. В устройствах радиоэлектроники наличие резисторов составляет более 50% всех элементов. Иногда их применяют для измерений температуры или сопротивления, а также в качестве нагревательного элемента.

Резисторы это элементы электронной аппаратуры и вполне могут применяться как составные части либо дискретные компоненты интегральных микросхем. Все выпускаемые резисторы отличаются между собой по величине сопротивлений, допустимым отклонениям от номинального значения сопротивления. Параметры указываются непосредственно на корпусе, иногда в виде нескольких цветных полосок. Размер элемента часто зависит от его мощности.

Работа резистора основана на создании дополнительного сопротивления потоку электронов в кристаллическое решетке металла с высоким сопротивлением.

Что такое резистор, сопротивление резисторов, сопротивление, работа резисторов.

Сопротивление резисторов

Определяются размером и физическими свойствами их токопроводящей части. В зависимости от материалов, из которых состоит токопроводящая часть, резисторы могут быть разделены на полупроводниковые, металлические, жидкостные, углеродистые и керамические типы.

По конструктивному исполнению токопроводящая часть резисторов может быть из пластины, ленты, проволоки или в виде пленки. Для защиты от пыли, механических воздействий или пыли она покрывается стеклоэмалью, которая может служить и изоляцией между отдельных витков токопроводящей части. Существуют резисторы, как с переменным сопротивлением, так и с постоянным. Величина переменного сопротивления может изменяться путем перемещений реостата, либо из-за нелинейной зависимости между напряжением и током.

Сопротивление проволочных и металлических резисторов иногда может зависеть и от температуры. При этом зависимость от температуры является практически линейная. Даже идеальный резистор при высоких температурах способен становиться источником шума. Каждый резистор имеет свою мощность, по сути это та работа резистора которую он совершает за единицу времени.

  • < Назад
  • Вперёд >
Добавить комментарий

radio-magic.ru

Что такое резистор? | AUDIO-CXEM.RU

Резистор представляет собой пассивный элемент электрической цепи, то есть не вносит в электрическую цепь энергию, а только потребляет её. В электротехнике резистор, как идеализированный элемент электрической цепи, характеризующийся только сопротивлением электрическому току, называют сопротивлением.

При сопротивлении протеканию электрического тока через резистор, последний нагревается, преобразуя энергию электрического тока в тепловую энергию, рассеивая тепло в окружающую среду.

Если говорить простым языком, то резистор ограничивает ток, текущий по проводнику.

Для полного понимания, сразу приведу аналогию. Представим, что у нас есть трубопровод, по которому течет вода с определенным давлением. В нашей аналогии диаметр трубы и будет резистором (сопротивлением), а количество воды, проходящее через данный диаметр трубы в единицу времени, будет силой тока. Чем меньше диаметр трубы, тем больше сопротивление, следовательно, меньше сила тока. Напряжением в нашей аналогии будет давление воды в трубе.

Что такое резистор?Что такое резистор?

Одной из основных характеристик резистора является сопротивление. Сопротивление измеряется в Омах.

1 кОм = 1000 Ом

1 Мом = 1000000 Ом
Следующая основная характеристика, это рассеиваемая мощность, которая измеряется в Ваттах.

Самые распространенные резисторы с рассеваемой мощностью от 0.125 до 2 Вт и более.

Погрешность тоже бывает различная, в основном 5%. В моем городе других не продают. Есть высокоточные резисторы с погрешностью 1% и менее, но таких компонентов в нашем городе нет.

Есть и другие характеристики, но они не так важны.

Давайте наглядно посмотрим, как резистор ограничивает ток. Соберем простую схему:

Пример работы резистораПример работы резистораАмперметр показывает потребление тока равное 19 мА. Напряжение подаваемое в цепь 3.3 В. Светодиод светит ярко.

Как работает резистор.Как работает резистор. Как работает резистор.Как работает резистор.

Теперь добавим в цепь резистор, сопротивлением 1.3 кОм. Схема будет выглядеть так:

светодиод_2светодиод_2Соберем схему на монтажной плате:

Как работает сопротивлениеКак работает сопротивление

Мы видим, что яркость светодиода уменьшилась. Ток, текущий через светодиод и резистор уменьшился с 19 до 0.5 мА.


Похожие статьи

audio-cxem.ru

Резистор в цепи затвора или как делать правильно / Habr

Всем доброго времени суток!

Эта небольшая статья возможно станет шпаргалкой для начинающих разработчиков, которые хотят проектировать надежные и эффективные схемы управления силовыми полупроводниковыми ключами, обновит и освежит старые знания опытных специалистов или может хотя бы где-то поцарапает закрома памяти читателей.

Любому из этих случаев я буду очень рад.

В этой заметке я попробую описать наиболее распространенные вопросы выбора затворных резисторов для силовых электронных устройств. Она базируется на знаниях, почерпнутых мной из разной литературы, апноутов от TOSHIBA, Infineon, Texas Instruments а также из скромной практики. Стоит заметить, что эта информация не дает прямо универсальных рекомендаций для каждого силового ключа. Тем не менее, можно проанализировать какие предположения могут быть важны и какое влияние они могут оказать на выбор резисторов затвора для дискретных силовых транзисторов, а также для силовых модулей.

Основы


Затворный резистор расположен в цепи между драйвером силового транзистора и затвором самого транзистора, как показано на изображении в шапке статьи.

Открыт или закрыт полевой ключ (IGBT/MOSFET) зависит от приложенного к затвору напряжения. Изменение этого напряжения заряжает или разряжает затворные емкости силового устройства, которые состоят из емкостей затвора-коллектора и затвора-эмиттера и небольшой емкости самого затвора. Заряд входных емкостей ключа включит его (ток ), а разряд выключит (ток ).

Резистор в данной цепи ограничивает ток заряда/разряда входных емкостей, помимо этого, правильно подобранный резистор не даст ключу самопроизвольно открываться, что иногда может случиться, из-за быстрого изменения напряжения на силовых выводах ключа например, такое может случиться, когда в полумостовой топологии соседний ключ открывается. В таком случае емкость перезаряжается и ток, протекающий через затворный резистор вызывает на нем падение напряжения, которое и может открыть ключ. К тому же порог открывания ключа часто сильно опускается при росте температуры кристалла полупроводника.

Что нужно знать и как выбрать “правильный” резистор


1. Максимальный ток заряда/разряда выхода драйвера

Любая микросхема драйвера имеет такой параметр, как максимальный выходной ток. Если ток затвора при открытии/закрытии ключа превысит значение максимального выходного тока, то драйвер может выйти из строя, поэтому, в данном случае, затворный резистор ограничит выходной ток драйвера.

Можно составить эквивалентную модель цепи, по которой и рассчитать необходимое значение резистора:

Следуя несложным умозаключениям, можем получить формулы для расчета тока драйвера, и подобрать резистор затвора таким, чтобы не превысить максимально допустимые параметры драйвера:


2. Рассеиваемая мощность

Также одна из важных функций затворного резистора — рассеивать мощность выходного каскада микросхемы драйвера. В соответствии с моделью выше, рассеиваемую мощность можно посчитать с помощью следующих формул:


Тут — заряд затвора ключа, а — частота коммутации.
После расчета и подбора резистора важно соблюдать следующее условие:

где — собственное потребление драйвера.

Тут еще есть небольшое примечание, в большинстве даташитов на ключи указывают заряд затвора при определенных условиях, например при напряжении управления затвором +15В…-15В, если же в Вашей схеме другое напряжение управления, например +15В...0В, или же +15…-8В, то достаточно точно определить заряд затвора помогут следующие соотношения:


3. Скорость включения и электромагнитная совместимость

Давайте рассмотрим потери на переключение, как функцию от сопротивления затворного резистора. Я возьму ключ, который я недавно использовал в своем небольшом проекте — IKW40N120 от любимых Infineon:

Как можно заметить, при увеличении сопротивления затвора, скорость переключения уменьшается и потери на переключения растут. Соответственно это повлияет на эффективность системы в целом. Напротив, если применять меньшее сопротивление затвора, переключение станет более быстрым и потери уменьшаться, но при этом шум, вызванный быстрым нарастанием тока и напряжения, будет увеличиваться, что может быть критично, когда нужно отвечать требованиям электромагнитной совместимости поэтому значение сопротивления затвора нужно выбирать очень аккуратно.

4. То самое “паразитное” включение

В начале, когда я писал о функциях затворного резистора, я упоминал о возможности ключа самопроизвольно включиться. Чтобы такого не случилось, можно рассчитать напряжение, которое может появиться на затворе транзистора, посмотрим на изображение ниже и запишем две небольшие формулы:

И не стоит забывать, что напряжение открытия ключа сильно зависит от температуры кристалла, и это тоже нужно учитывать.

Заключение


Теперь у нас есть формулы для оптимального (в какой-то степени) подбора с первого взгляда такого простого элемента силовой схемы, как затворный резистор.

Вполне возможно вы не нашли тут ничего нового, но я надеюсь, что хоть кому-то эта заметка окажется полезной.

Также для расширения кругозора в том числе в области управлении силовыми ключами очень советую выделять часик-два в неделю на прочтение всяких статей и апноутов от именитых производителей силовой электроники, в особенности о применении микросхем драйверов. Уверен, найдёте там очень много интересностей. Для старта, и чтобы углубится в рассмотренную тему предлагаю вот эту.

Спасибо за прочтение!

habr.com

принцип работы, типы и потенциометр на схеме

В данной статье мы подробно рассмотрим потенциометры, рассмотрим принцип работы, потенциометр на схеме и типы.

Описание и принцип работы

Резисторы обеспечивают фиксированное значение сопротивления, которое блокирует или сопротивляется потоку электрического тока вокруг цепи, а также вызывает падение напряжения в соответствии с законом Ома. Резисторы могут быть изготовлены так, чтобы иметь либо фиксированное значение сопротивления в Омах, либо переменное значение сопротивления, отрегулированное некоторыми внешними средствами.

Потенциометр, который обычно называют как «котел», представляет собой три-терминал с механическим приводом поворотного аналоговое устройство, которое можно найти и использовать в самых разнообразных электрических и электронных схем. Это пассивные устройства, то есть им не требуется источник питания или дополнительная схема для выполнения их основной функции линейного или поворотного положения. Купить потенциометр на Алиэкспресс:

Переменные потенциометры доступны в различных механических вариациях, что позволяет легко регулировать управление напряжением, током или регулированием смещения и усиления схемы для получения нулевого состояния.

Название «потенциометр» представляет собой сочетание слов «разность потенциалов» и «измерение» , появившихся на заре развития электроники. Тогда считалось, что при регулировке больших резистивных катушек с проволочной обмоткой измеряется установленная величина разности потенциалов, что делает его типом прибора для измерения напряжения .

конструкция потенциометра

Сегодня потенциометры намного меньше и намного более точны, чем те, которые раньше были большими и громоздкими с переменным сопротивлением, и, как и в случае большинства электронных компонентов, существует множество различных типов и названий, начиная от переменного резистора, пресета, триммера, реостата и, конечно, переменного потенциометра.

Но какими бы ни были их названия, все эти устройства функционируют абсолютно одинаково, так как их значение выходного сопротивления может быть изменено движением механического контакта или контактной щетки, вызванным каким-либо внешним воздействием.

Переменные резисторы в любом формате, как правило, связаны с определенной формой управления, будь то регулировка громкости радиоприемника, скорости транспортного средства, частоты генератора или точная настройка калибровки цепи, однооборотный и многократный потенциометры, триммеры и реостаты могут найти широкое применение в бытовых электротоварах.

Термин « потенциометр» и « переменный резистор» часто используются для описания одного и того же компонента, но важно понимать, что соединения и работа этих двух устройств различны. Однако оба имеют одинаковые физические свойства в том смысле, что два конца внутренней резистивной дорожки выведены на контакты, в дополнение к третьему контакту, соединенному с подвижным контактом, называемым «ползунком» или «контактной щеткой».

Потенциометр на схеме

Потенциометр

При использовании потенциометра выполняются соединения с обоих концов, а также с контактной щеткой, как показано на рисунке. Положение контакной щетки обеспечивает соответствующий выходной сигнал (контакт 2), который будет варьироваться между уровнем напряжения, приложенного к одному концу резистивной дорожки (контакт 1), и уровнем напряжения на другом (контакт 3).

Потенциометр представляет собой трехпроводное резистивное устройство, которое действует как делитель напряжения, вырабатывающий непрерывно изменяемый выходной сигнал напряжения, который пропорционален физическому положению контактной щетки вдоль дорожки.

Переменный резистор на схеме

Переменный резистор на схеме

При использовании переменного резистора соединения выполняются только с одним концом резистивной дорожки (контакт 1 или 3) и контактной щетки (контакт 2), как показано на рисунке. Положение контактной щетки используется для изменения величины эффективного сопротивления, соединенного между собой, подвижным контактом и неподвижным концом.

Иногда целесообразно выполнить электрическое соединение между неиспользованным концом резистивной дорожки и контактной щеткой, чтобы предотвратить условия разомкнутой цепи.

Тогда переменный резистор представляет собой двухпроводное резистивное устройство, которое обеспечивает бесконечное число значений сопротивления, контролирующих ток, предлагаемый для подключенной цепи, пропорционально физическому положению контактной щетки вдоль дорожки. Обратите внимание, что переменный резистор, используемый для управления очень высокими токами цепи, обнаруженными в лампах или нагрузках двигателя, называется реостатами.

Типы потенциометров

Переменные потенциометры представляют собой аналоговое устройство, состоящее из двух основных механических частей.

1. Фиксированный или стационарный резистивный элемент, дорожка или проволочная катушка, которая определяет его значение сопротивления, например 1 кОм, 10 кОм и т.д

2. Механическая часть, которая позволяет контакту перемещаться по всей длине изменения резистивной дорожки, его значение сопротивления, как он движется. Существует много разных способов перемещения контакта через резистивную дорожку либо механически, либо электрически.

Но наряду с резистивной дорожкой и стеклоочистителем потенциометры также содержат корпус, вал, ползунковый блок и втулку или подшипник. Движение скользящего контакта само по себе может быть вращательным (угловым) действием или линейным (прямым) действием. Существует четыре основных группы переменного потенциометра.

Поворотный потенциометр

Поворотный Потенциометр

Поворотный потенциометр (наиболее распространенный тип) изменяет свое значение сопротивления в результате углового движения. Вращение ручки или циферблата, прикрепленного к валу, приводит к тому, что внутренний контакт перемещается вокруг изогнутого резистивного элемента. Наиболее распространенное использование вращающегося потенциометра — это регулятор громкости.

Углеродные поворотные потенциометры предназначены для монтажа на передней панели корпуса, в корпусе или печатной плате (PCB) с помощью кольцевой гайки и стопорной шайбой. Они также могут иметь одну одиночную резистивную дорожку или несколько дорожек, известных как групповой потенциометр, в котором все вращаются вместе, используя один единственный стержень. Например, горшок с двумя бандами для одновременной регулировки левого и правого уровня громкости радио или стереоусилителя. В некоторых вращающихся горшках есть выключатели.

Вращающиеся потенциометры могут давать линейный или логарифмический выход с допусками, как правило, от 10 до 20 процентов. Поскольку они управляются механически, их можно использовать для измерения вращения вала, но однооборотный поворотный потенциометр обычно предлагает менее 300 градусов углового перемещения от минимального до максимального сопротивления. Тем не менее, имеются многооборотные потенциометры, называемые триммерами, которые обеспечивают более высокую степень точности вращения.

Многооборотные потенциометры позволяют вращать вал более чем на 360 градусов механического перемещения от одного конца резистивной дорожки к другому. Многооборотные горшки более дорогие, но очень стабильные с высокой точностью, используемой в основном для обрезки и точной регулировки. Два наиболее распространенных многооборотных потенциометра — это 3-ходовые (1080 o ) и 10-поворотные (3600 o ), но доступны 5-поворотные, 20-поворотные и более высокие 25-поворотные банки с различными омическими значениями.

Ползунковые потенциометр (слайдер)

Слайдер Потенциометр

Ползунковые потенциометры или ползунки предназначены для изменения значения их контактного сопротивления с помощью линейного движения, и, как таковая, существует линейная зависимость между положением ползункового контакта и выходным сопротивлением.

Слайд-потенциометры в основном используются в широком спектре профессионального звукового оборудования, такого как студийные микшеры, фейдеры, графические эквалайзеры и пульты управления звуком, что позволяет пользователям видеть с позиции пластиковой квадратной ручки или рукоятки пальца фактическую настройку слайда.

Одним из основных недостатков ползункового потенциометра является то, что они имеют длинную открытую щель, позволяющую наконечнику контакта свободно перемещаться вверх и вниз по всей длине резистивной дорожки. Этот открытый слот делает внутреннюю резистивную дорожку чувствительной к загрязнению от пыли и грязи, а также от пота и жира от рук пользователя. Прорезные войлочные крышки и экраны могут быть использованы для минимизации воздействия загрязнения гусениц.

Поскольку потенциометр является одним из самых простых способов преобразования механического положения в пропорциональное напряжение, их также можно использовать в качестве резистивных датчиков положения, также известных как датчик линейного перемещения. Потенциометры с подвижной углеродной дорожкой измеряют точное линейное (прямое) движение, при этом часть датчика линейного датчика является резистивным элементом, прикрепленным к скользящему контакту. Этот контакт в свою очередь прикреплен через стержень или вал к механическому механизму, подлежащему измерению. Затем положение ползуна изменяется в зависимости от измеряемой величины (измеряемой величины), которая, в свою очередь, изменяет значение сопротивления датчика.

Пресеты и триммеры

Пресеты и триммеры

Потенциометры с предустановкой или триммером представляют собой небольшие потенциометры типа «установил и забыл», которые позволяют легко выполнять очень тонкие или случайные регулировки в цепи (например, для калибровки). Однооборотные поворотные потенциометры представляют собой миниатюрные версии стандартного переменного резистора, предназначенного для монтажа непосредственно на печатной плате, и регулируются с помощью отвертки с небольшим лезвием или аналогичного пластикового инструмента.

Как правило, эти предустановленные банки с линейным углеродным каналом имеют конструкцию с открытым каркасом или форму замкнутого квадрата, которые после того, как схема настроена и установлена ​​на заводе-изготовителе, затем остаются с этой настройкой, и их корректируют снова, только если происходят некоторые изменения в настройках схемы.

Будучи открытой конструкцией, предустановки каркаса подвержены механическому и электрическому ухудшению, влияющему на производительность и точность, поэтому они не подходят для непрерывного использования, и поэтому предустановленные горшки рассчитаны только на несколько сотен операций. Однако их низкая стоимость, небольшой размер и простота делают их популярными в некритических схемных приложениях.

Предварительные настройки можно регулировать от минимального до максимального значения в течение одного оборота, но для некоторых цепей или оборудования этот небольшой диапазон регулировки может быть слишком грубым, чтобы обеспечить очень чувствительные настройки. Однако многооборотные переменные резисторы работают, перемещая рычаг контакта. с помощью небольшой отвертки на несколько оборотов, в диапазоне от 3 до 20 оборотов, что обеспечивает очень точную настройку.

Потенциометры триммера или «триммеры» представляют собой многооборотные прямоугольные устройства с линейными направляющими, которые предназначены для установки и пайки непосредственно на монтажную плату через сквозное отверстие или для поверхностного монтажа. Это дает триммеру как электрические соединения, так и механический монтаж, а также закрытие дорожки в пластиковом корпусе позволяет избежать проблем пыли и грязи во время использования, связанных с предустановками каркаса.

Реостаты

реостат

Реостаты — большие мальчики мира потенциометров. Они представляют собой два переменных резистора подключения, сконфигурированных для обеспечения любого резистивного значения в пределах их омического диапазона для управления потоком тока через них.

Хотя теоретически любой переменный потенциометр может быть сконфигурирован для работы в качестве реостата, обычно реостаты представляют собой большие переменные резисторы с проволочной обмоткой большой мощности, используемые в приложениях с высоким током, поскольку основным преимуществом реостата является их более высокая номинальная мощность.

Когда переменный резистор используется в качестве двухполюсного реостата, только часть полного резистивного элемента, который находится между концевым выводом и подвижным контактом, будет рассеивать мощность. Кроме того, в отличие от потенциометра, выполненного в виде делителя напряжения, весь ток, протекающий через резистивный элемент реостата, также проходит через цепь контакта. Тогда контактное давление контакта на этот проводящий элемент должно выдерживать тот же ток.

Потенциометры доступны в различных технологиях, таких как: углеродная пленка, проводящий пластик, металлокерамика, проволочная обмотка и т.д. Номинальное или «резистивное» значение потенциометра или переменного резистора относится к резистивному значению всей стационарной дорожки сопротивления от одного фиксированного контакта до другой. Таким образом, потенциометр с номиналом 1 кОм будет иметь резистивную дорожку, равную значению фиксированного резистора 1 кОм.

В простейшей форме электрическую работу потенциометра можно считать такой же, как и для двух последовательно включенных резисторов со скользящим контактом, изменяющим значения этих двух резисторов, что позволяет использовать его в качестве делителя напряжения.

В нашем уроке о последовательных резисторах мы увидели, что через последовательную цепь течет один и тот же ток, поскольку существует только один путь для тока, и мы можем применить закон Ома, чтобы найти падения напряжения на каждом резисторе в серии цепи. Затем последовательная резистивная схема действует как сеть делителей напряжения, как показано на рисунке.

Серия цепей делителей напряжения

В этом примере выше два резистора соединены последовательно через источник питания. Поскольку они последовательны, эквивалентное или полное сопротивление, R T , следовательно, равно сумме двух отдельных резисторов, то есть: R 1  + R 2 .

Также являясь последовательной сетью, через каждый резистор протекает тот же ток, что и некуда идти. Однако падение напряжения на каждом резисторе будет отличаться из-за различных омических значений резисторов. Эти падения напряжения могут быть рассчитаны с использованием закона Ома с их суммой, равной напряжению питания в последовательной цепи. Так вот в этом примере V IN = V R1  + V R2 .

Потенциометр как делитель напряжения

Потенциометр как делитель напряжения

Когда сопротивление потенциометра уменьшается (стеклоочиститель движется вниз), выходное напряжение с контакта 2 уменьшается, создавая меньшее падение напряжения на R 2 . Аналогично, когда сопротивление потенциометра увеличивается, выходное напряжение с контакта 2 увеличивается, вызывая большее падение напряжения. Тогда напряжение на выходном выводе зависит от положения контакта, при этом значение падения напряжения вычитается из напряжения питания.

Резюме потенциометра

В этой статье о потенциометрах мы видели, что потенциометр или переменный резистор в основном состоит из резистивной дорожки с соединением на любом конце и третьей клеммы, называемой стеклоочистителем, с положением стеклоочистителя, разделяющего резистивную дорожку. Положение стеклоочистителя на направляющей регулируется механически путем вращения вала или с помощью отвертки.

Переменные резисторы можно разделить на один из двух режимов работы — делитель переменного напряжения или реостат переменного тока. Потенциометр — это трехполюсное устройство, используемое для управления напряжением, а реостат — это двухполюсное устройство, используемое для управления током.

Мы можем суммировать это в следующей таблице:

ТипПотенциометрРеостат
Количество 
соединений
Три ТерминалаДва терминала
Количество ходовОднооборотный и многооборотныйТолько однооборотный
Тип соединенияПараллельно подключен к источнику напряженияПодключено последовательно с нагрузкой
Что контролируетУправляет напряжениемУправляет током
Тип конусности законаЛинейный и логарифмическийТолько линейный

Тогда потенциометр, триммер и реостат являются электромеханическими устройствами, сконструированными таким образом, что их значения сопротивления могут быть легко изменены. Они могут быть выполнены в виде однооборотных горшков, пресетов, ползунков или многооборотных триммеров. Реостаты с проволочной обмоткой в ​​основном используются для контроля электрического тока. Потенциометры и реостаты также доступны как многоканальные устройства и могут быть классифицированы как имеющие либо линейную, либо логарифмическую конусность.

В любом случае, потенциометры могут обеспечивать высокоточное измерение и измерение линейного или вращательного движения, поскольку их выходное напряжение пропорционально положению стеклоочистителей. Преимущества потенциометров включают в себя низкую стоимость, простоту в эксплуатации, множество форм, размеров и конструкций и могут использоваться в широком спектре различных применений.

Однако, как и у механических устройств, их недостатки включают в себя возможный износ стеклоочистителя и / или направляющей скольжения, ограниченные возможности управления током (в отличие от реостатов), ограничения электрической мощности и углы поворота, которые ограничены менее чем 270 градусами для однооборотных баков.

В следующей статье мы подробно рассмотрим реостат.

meanders.ru

последовательное и параллельное соединение, токоограничивающие и подтягивающие сопротивления [Амперка / Вики]

Резистор (сопротивление) — один из наиболее распространённых компонентов в электронике. Его назначение — простое: сопротивляться течению тока, преобразовывая его часть в тепло.

Основной характеристикой резистора является сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем большая часть тока рассеивается в тепло. В схемах, питаемых небольшим напряжением (5 – 12 В), наиболее распространены резисторы номиналом от 100 Ом до 100 кОм.

Закон Ома

Закон Ома позволяет на заданном участке цепи определить одну из величин: силу тока I, напряжение U, сопротивление R, если известны две остальные:

Для обозначения напряжения наряду с символом U используется V.

Рассмотрим простую цепь

Расчитаем силу тока, проходящего через резистор R1 и, соответственно, затем через лампу L1. Для простоты будем предполагать, что сама лампа обладает нулевым собственным сопротивлением.

Аналогично, если бы у нас был источник питания на 5 В и лампа, которая по документации должна работать при токе 20 мА, нам нужно бы было выбрать резистор подходящего номинала.

В данном случае, разница в 10 Ом между идеальным номиналом и имеющимся не играет большого значения: можно смело брать стандартный номинал — 240 или 220 Ом.

Аналогично, мы могли бы расчитать требуемое напряжение, если бы оно было не известно, а на руках были значения сопротивления и желаемая сила тока.

Соединение резисторов

При последовательном соединении резисторов, их сопротивление суммируется:

При параллельном соединении, итоговое сопротивление расчитывается по формуле:

Если резистора всего два, то:

В частном случае двух одинаковых резисторов, итоговое сопротивление при параллельном соединении равно половине сопротивления каждого из них.

Таким образом можно получать новые номиналы из имеющихся в наличии.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

  1. Токоограничивающий резистор (current-limiting resistor)

  2. Стягивающий, подтягивающий резистор (pull-down / pull-up resistor)

  3. Делитель напряжения (voltage divider)

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

Мощность резисторов

Резисторы помимо сопротивления обладают ещё характеристикой мощности. Она определяет нагрузку, которую способен выдержать резистор. Среди обычных керамических резисторов наиболее распространены показатели 0.25 Вт, 0.5 Вт и 1 Вт. Для расчёта нагрузки, действующей на резистор, используйте формулу:

При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении — резистор может начать плавиться и вызвать воспламенение. Будьте осторожны!

wiki.amperka.ru

Резистор - это что такое? Резистор

В электротехнике, электронике, физике встречается такое понятие, как резистор. Это довольно распространенный элемент электронных схем. Тем, кто не сталкивался с принципами радиотехники, тяжело разобраться в большом количестве составляющих систем любого прибора. Для начала следует понять принцип работы такого простого и широко распространенного элемента, как резистор. Без него не функционирует практически ни одна электросхема.

Что такое резистор

Это название берет свое начало от англ. resist, что переводится как «сопротивляться». Поэтому резистор еще называют сопротивлением.

резистор это

Электрический ток, поступающий к различным приборам, в силу разных причин испытывает сдерживающий эффект. Его величина зависит от типа проводника и внешних условий.

Величина такого влияния на электроток измеряется в омах. Чем лучше резистор способен рассеять мощность в тепловую энергию, тем он больше. Его работа не должна мешать соседним деталям схемы, поэтому учитывается тот нагрев, который выделяется при уменьшении силы тока.

Роль, которую играет в цепи этот элемент, переоценить трудно. Резистор позволяет обеспечить стабильность работы системы и контролирует напряжение.

Другие составляющие схемы также несколько рассеивают силу тока, однако у него это главная задача. Вот почему резистор - это сопротивление.

Это пассивный элемент электронной схемы. Но его роль тяжело переоценить.

Виды

Продвигаясь по пути изучения вопроса о том, что такое резистор, следует рассмотреть их разновидности. Эти элементы бывают переменными, постоянными и подстроечными.

Постоянные резисторы не меняют своего сопротивления (внизу на схеме: I - американское обозначение; II - европейское).

резистор это проводникПеременные их разновидности бывают потенциометрами (манипулируют напряжением) и реостатами (манипулируют силой тока).

Подстроечный резистор – это проводник, который относится к классу переменных элементов схемы, но его настройку производят вручную при помощи отвертки или шестигранника.

Чтобы понять, является резистор материалом или оборудованием, следует рассмотреть его подвиды.

Встречаются фоторезисторы, термисторы, варисторы. Они различны по своему устройству и области применения.

Термисторы производят на основе полупроводников. Их функции находятся в зависимости от температуры кружащей среды.

Варисторы резко изменяют сопротивление при увеличении напряжения. Такое свойство просто незаменимо в цепях, подвергающихся скачкам напряжения.

Фоторезисторы, соответственно, меняют сопротивление при попадании на них солнечных лучей.

Опираясь на все перечисленные качества, можно смело ответить на вопрос о том, резистор - это материал или оборудование. В электросхеме это прибор сопротивления.

Идеальный резистор

Существует понятие того, каким должен быть идеальный резистор. В действительности его не существует, но некоторые элементы схемы могут быть приближенно похожи на безупречный вариант.

Идеальный резистор является проводником со строго обозначенным, не меняющимся сопротивлением, надписанным на корпусе. Данная функция оборудования не зависит в этом случае от силы тока и окружающих условий. Такой прибор не имеет внутренней емкости, но при этом он отличается идеальной технологией полного отвода тепла при работе.

Размеры его должны быть нулевыми, чтобы не занимать место на электросхеме. Идеальный резистор является электротехническим элементом, имеющим систему бесшумной работы.

Но в реальности такие приборы не соответствуют подобному образу.

Реальный резистор

Резонно возникает следующий вопрос: "Реальный резистор – это что?" В жизни это оборудование, стремясь к идеальному, предполагает наличие всего нескольких совершенных качеств.

резистор это сопротивление

В зависимости от типа оборудования применяются соответствующие разновидности резисторов. Они выполняют строго определенные функции, которые обеспечат правильную работу в конкретно взятых условиях.

Для этого разработчикам резисторов приходится либо жертвовать площадью, которую оборудование занимает на схеме, либо учитывать влияния окружения, а также предусматривать дополнительные внутренние емкости и т. д.

Реальные резисторы имеют сопротивление, отличное от указанного на корпусе, что связано с влиянием разных внешних условий.

Показатели, влияющие на тип резистора

Любой резистор постоянного сопротивления включает ряд характеристик, обозначенных на корпусе при его производстве. Основными из них являются сопротивление, класс точности, а также мощность рассеивания.

Существуют и другие характеристики, но они разнятся в зависимости от типа оборудования.

Резистор – это источник тока, величина которого зависит от таких факторов, как длина и площадь поперечного сечения проводника, температура. Имеет значение напряжение, которое было приложено к концам проводника. Величина резистора также зависит от силы тока и материала, из которого выполнен проводник.

Электронные конструкции используют разные резисторы. В соответствии с определенными условиями применяют соответствующие разновидности приборов.

Сопротивление

В электротехнике применяют резисторы, имеющие различное сопротивление. Приборы, у которых оно меньше 1000 Ом, имеют на корпусе букву R. Встречаются экземпляры, на которых вообще не указывают никакой буквы. Однако они все равно относятся к подобной разновидности оборудования.

Если прибор имеет сопротивление больше 1000 Ом, применяют для обозначения величины килоомы, мегаомы.

Резистор – это электротехнический элемент, имеющий довольно маленькие размеры. Поэтому, даже написав на их корпусе маркировку, производители понимают, что прочесть ее будет сложно. Широко используется цветовая маркировка резисторов, которую можно рассмотреть на фото ниже.

резистор это что

Класс точности

Большинство резисторов изготавливается из особого материала. Но даже в условиях промышленного производства практически нереально сделать их абсолютно идентичными.

резистор это электротехнический элемент

В силу разных обстоятельств происходит разброс параметров оборудования для электросхем. Производитель рассчитывает величину отклонения от номинального значения и указывает его в процентах. Допустимая погрешность может находиться в указанном диапазоне, который резистор не превышает.

Для определенного типа устройств необходимо соблюдать более точные показатели сопротивления. Поэтому резистор имеет неодинаковые показатели погрешности для каждого типа электроприборов.

Указанная в процентах величина отклонения подразумевает, что погрешность может быть как в положительную, так и в отрицательную сторону.

Мощность рассеивания

Резистор – это прибор, применяющийся в цепях с различной силой тока. Для маломощных схем подойдут резисторы любой мощности. Их работа будет стабильной и не приведет к негативным последствиям.

Совсем другая картина наблюдается в цепи, по которой осуществляется течение тока значительной силы. Если резистор будет иметь недостаточную мощность, он перегреется, выйдет из строя, а то и может стать причиной пожара.

Расчет мощности рассеивания для подобных систем является обязательным действием. Это обеспечит страховку в процессе эксплуатации техники и позволит подобрать подходящий прибор сопротивления.

На маломощных резисторах производители обычно не указывают величину рассеивания. На более крупных экземплярах этот показатель указан в обязательном порядке и может быть обозначен римскими или арабскими цифрами.

Опираясь на такие обозначения, а также на расчет мощности цепи, подбирают требуемое оборудование.

Крепление резисторов

Резистор – это электротехнический элемент, который чаще всего имеет два выхода для подсоединения к схеме. Существуют также разновидности оборудования с тремя выводами. Их можно встретить среди переменных и подстроечных резисторов.

Используются также специальные их разновидности, имеющие отводы. Обычно их несколько.

резистор это материал или оборудование

В современной электронике все чаще применяются резисторы, предназначенные для поверхностного монтажа. Они выглядят как крохотные детали прямоугольной формы и не имеют привычных проволочных выводов. Вместо этого для подключения подобной детали предназначены две полоски из металла, расположенные по краям резистора.

Поверхностный монтаж производится путем припаивания элемента сопротивления на печатные проводники, находящиеся на плате.

Популярность подобных деталей объясняется их минимальными размерами, что соответствует современным требованиям электротехнического оборудования. Их маркировка имеет отличную от проволочных резисторов систему.

Роль резисторов в схеме

Резистор – это элемент, который может выполнять в электросхеме различные функции. Самыми распространенными являются токоограничивающая, стягивающая и разделительная роль.

Токоограничивающий резистор представляет собой прибор, предназначенный для обеспечения требуемой силы тока, при которой компонент оборудования будет функционировать бесперебойно.

Стягивающий (растягивающий) резистор применяют на входе логических компонентов схемы, которым важно знать только наличие или отсутствие напряжения (логическая единица или ноль). Резистор в подобной схеме нужен для обеспечения нормальной работы системы, чтобы она не оставалась в подвешенном состоянии. Нежелательный ток, поступающий извне на вход, будет при помощи стягивающего резистора уходить в землю. Это гарантирует определение входом позиции "логический ноль".

Делитель напряжения требуется для взятия только определенной части тока, необходимой для правильной работы электрокомпонента.

Маркировка

Существует определенный принцип выделения основных качеств резисторов. Его широко применяют во всем мире.

Резистор – это (фото представлено ниже) небольшая деталь, имеющая цветовую или знаковую маркировку.

резистор это фото Главной характеристикой детали электросхемы является ее сопротивление, поэтому именно данный показатель определен на корпусе. Буквенные обозначения характеризуют систему измерений: R – омы, К – килоомы, М – мегаомы.

В последнее время многие производители переходят на другой тип маркировки – цветовой. Он проще в нанесении при больших объемах производства.

Самые точные резисторы имеют до 6 цветов на корпусе. Две первые полосы соответствуют номиналу напряжения.

Рассмотрев, что собой представляет элемент сопротивления в схеме приборов различной техники, следует сделать вывод, что резистор – это оборудование, обеспечивающее всю систему необходимой для работы силой тока.

www.syl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *