Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Маглев в СССР | Журнал Популярная Механика

Первый поезд на магнитной подушке перевез группу пассажиров в рамках проходившей в Германии Международной транспортной выставки IVA 1979 года. Но мало кто знает, что в том же году свои первые метры по испытательной трассе проехал другой маглев — советский, модель ТП-01. Особо удивительно, что советские маглевы сохранились до наших дней, — они пылятся на задворках истории более 30 лет.

Опыты с транспортом, работающим по принципу магнитной левитации, начались еще до войны. В разные годы и в разных странах появлялись действующие прототипы левитирующих поездов. В 1979-м немцы представили систему, которая за три месяца работы перевезла более 50 000 пассажиров, а в 1984-м в международном аэропорту города Бирмингем (Великобритания) появилась первая в истории постоянная линия для поездов на магнитной подушке. Изначальная длина трассы составляла 600 м, а высота левитации не превышала 15 мм. Система вполне успешно эксплуатировалась на протяжении 11 лет, но затем участились технические отказы из-за состарившегося оборудования. А поскольку система была уникальной, практически любую запчасть приходилось изготовлять по индивидуальному заказу, и было принято решение закрыть линию, приносившую сплошные убытки.

1986 год, ТП-05 на полигоне в Раменском. 800-метровый участок не позволял разогнаться до крейсерских скоростей, но первичные «заезды» этого и не требовали. Вагон, построенный в крайне сжатые сроки, обошёлся почти без «детских болезней», и это было хорошим результатом.

Помимо британцев, серийные магнитные поезда вполне успешно запустили все в той же Германии — компания Transrapid эксплуатировала подобную систему длиной 31,5 км в районе Эмсланд между городами Дерпен и Латен. История эмсландского маглева, правда, закончилась трагически: в 2006 году по вине техников произошла серьезная авария, в которой погибло 23 человека, и линию законсервировали.

В Японии сегодня эксплуатируется две системы магнитной левитации. Первая (для городских перевозок) использует систему электромагнитного подвеса для скоростей до 100 км/ч. Вторая, более известная, SCMaglev, предназначена для скоростей более 400 км/ч и основана на сверхпроводящих магнитах. В рамках этой программы построено несколько линий и установлен мировой рекорд скорости для железнодорожного транспортного средства, 581 км/ч. Буквально два года назад было представлено новое поколение японских поездов на магнитном подвесе — L0 Series Shinkansen. Кроме того, система, аналогичная немецкому «Трансрапиду», работает в Китае, в Шанхае; в ней также используются сверхпроводящие магниты.

Салон ТП-05 имел два ряда сидений и центральный проход. Вагон широкий и при этом на удивление низкий — редактор ростом 184 см практически касался головой потолка. В кабине водителя стоять было невозможно.

А в 1975 году началась разработка первого советского маглева. Сегодня о нем практически забыли, но это очень важная страница технической истории нашей страны.

«Гламурный» СССР: как выглядели спорткары победившего социализма

Поезд будущего

Он стоит перед нами — большой, футуристического дизайна, похожий скорее на космический корабль из научно-фантастического фильма, нежели на транспортное средство. Обтекаемый алюминиевый кузов, сдвижная дверь, стилизованная надпись «ТП-05» на борту. Экспериментальный вагон на магнитном подвесе стоит на полигоне неподалеку от Раменского уже 25 лет, целлофан покрыт густым слоем пыли, под ним — удивительная машина, которую чудом не разрезали на металл по доброй русской традиции. Но нет, он сохранился, и сохранился ТП-04, его предшественник, предназначенный для испытаний отдельных узлов.

«Гламурный» СССР: как выглядели спорткары победившего социализма Экспериментальный вагон в цеху — уже в новой раскраске. Его перекрашивали несколько раз, а для съёмок в фантастическом короткометражном фильме сделали на борту большую надпись Fire-ball.

Разработка маглева уходит корнями в 1975 год, когда при Миннефтегазстрое СССР появилось производственное объединение «Союзтранспрогресс». Несколькими годами позже стартовала государственная программа «Высокоскоростной экологически чистый транспорт», в рамках которой и началась работа над поездом на магнитной подушке. С финансированием было очень неплохо, под проект построили специальный цех и полигон института ВНИИПИтранспрогресс с 120-метровым участком дороги в подмосковном Раменском. А в 1979 году первый вагон на магнитной подушке ТП-01 успешно прошел испытательную дистанцию своим ходом — правда, еще на временном 36-метровом участке завода «Газстроймашина», элементы которого позже «переехали» в Раменское. Обратите внимание — одновременно с немцами и раньше многих других разработчиков! В принципе, СССР имел шансы стать одной из первых стран, развивающих магнитный транспорт, — работой занимались настоящие энтузиасты своего дела во главе с академиком Юрием Соколовым.

«Гламурный» СССР: как выглядели спорткары победившего социализма Магнитные модули (серые) на рельсе (оранжевом). Прямоугольные бруски по центру фотографии — это как раз датчики зазора, отслеживающие неровности поверхности. Электронику с ТП-05 сняли, но магнитное оборудование осталось, и, в принципе, вагон снова можно запустить.

Экспедицию «Популярной механики» возглавил не кто иной, как Андрей Александрович Галенко, генеральный директор ОАО инженерно-научного центра «ТЭМП». «ТЭМП» — это та самая организация, экс-ВНИИПИтранспрогресс, отделение канувшего в Лету «Союзтранспрогресса», а Андрей Александрович работал над системой с самого начала, и вряд ли кто мог бы рассказать о ней лучше него. ТП-05 стоит под целлофаном, и первым делом фотограф говорит: нет, нет, мы не сможем это сфотографировать, тут же ничего не видно. Но затем мы стягиваем целлофан — и советский маглев впервые за долгие годы предстает перед нами, не инженерами и не сотрудниками полигона, во всей красе.

«Гламурный» СССР: как выглядели спорткары победившего социализма

Зачем нужен маглев

Разработку транспортных систем, работающих на принципе магнитной левитации, можно разделить на три направления. Первое — это машины с расчетной скоростью до 100 км/ч; в таком случае наиболее оптимальной является схема с левитационными электромагнитами. Второе — это пригородный транспорт со скоростями 100−400 км/ч; здесь целесообразнее всего использовать полноценный электромагнитный подвес с системами боковой стабилизации. И наконец, самая «модная», если так можно выразиться, тенденция — поезда дальнего сообщения, способные разгоняться до 500 км/ч и выше. В этом случае подвеска должна быть электродинамической, на сверхпроводящих магнитах.

«Гламурный» СССР: как выглядели спорткары победившего социализма

ТП-01 относился к первому направлению и испытывался на полигоне вплоть до середины 1980 года. Масса его составляла 12 т, длина — 9 м, а вмещал он 20 человек; зазор подвеса при этом был минимален — всего 10 мм. За ТП-01 последовали новые градации испытательных машин — ТП-02 и ТП-03, путь удлинили до 850 м, потом появился вагон-лаборатория ТП-04, предназначенный для исследования работы линейного тягового электропривода. Будущее советских маглевов казалось безоблачным, тем более что в мире, помимо Раменского, существовало всего два подобных полигона — в Германии и Японии.

«Гламурный» СССР: как выглядели спорткары победившего социализма Раньше ТП-05 был симметричным и мог двигаться как вперёд, так и назад; пульты управления и лобовые стёкла были с обеих его сторон. Сегодня пульт сохранился только со стороны цеха — второй демонтировали за ненадобностью.

Принцип работы левитирующего поезда относительно прост. Состав не касается рельса, находясь в состоянии парения, — работает взаимное притяжение или отталкивание магнитов. Проще говоря, вагоны висят над плоскостью пути благодаря вертикально направленным силам магнитной левитации, а от боковых кренов удерживаются с помощью аналогичных сил, направленных горизонтально. При отсутствии трения о рельс единственной «преградой» для движения становится аэродинамическое сопротивление — многотонный вагон теоретически может сдвинуть с места даже ребенок. В движение поезд приводится линейным асинхронным двигателем, аналогичным тому, что работает, например, на московском монорельсе (к слову, этот двигатель разработан как раз ОАО ИНЦ «ТЭМП»). Подобный двигатель имеет две части — первичная (индуктор) установлена под вагоном, вторичная (реактивная шина) — на путях. Электромагнитное поле, создаваемое индуктором, взаимодействует с шиной, двигая поезд вперед.

К преимуществам маглева в первую очередь относится отсутствие иного сопротивления, кроме аэродинамического. Кроме того, минимален износ оборудования из-за незначительного количества подвижных элементов системы в сравнении с классическими поездами. К недостаткам — сложность и дороговизна путей. Например, одной из проблем является безопасность: маглев нужно «поднимать» на эстакаду, а если есть эстакада, значит, необходимо продумать возможность эвакуации пассажиров в случае экстренной ситуации. Впрочем, вагон ТП-05 планировался к эксплуатации на скоростях до 100 км/ч и имел относительно недорогую и технологичную путевую структуру.

«Гламурный» СССР: как выглядели спорткары победившего социализма 1980-е. Инженер ВНИИПИ-транспрогресс работает за ЭВМ. Оборудование цеха на то время было самым современным — финансирование программы «Высокоскоростной экологически чистый транспорт» осуществлялось без серьёзных сбоев даже в перестроечные времена.

Все с нуля

Разрабатывая серию ТП, инженеры всё, по сути, делали «с нуля». Выбирали параметры взаимодействия магнитов вагона и пути, затем взялись за электромагнитную подвеску — работали над оптимизацией магнитных потоков, динамикой движения и т. д. Основным достижением разработчиков можно назвать созданные ими так называемые магнитные лыжи, способные компенсировать неровности пути и обеспечить комфортную динамику движения вагона с пассажирами. Адаптация к неровностям реализовывалась с помощью небольших по размеру электромагнитов, связанных шарнирами в нечто подобное цепям. Схема была сложной, но значительно более надежной и работоспособной, чем при жестко закрепленных магнитах. Контроль за системой осуществлялся благодаря датчикам зазора, которые отслеживали неровности пути и давали команды силовому преобразователю, уменьшавшему или увеличивающему ток в конкретном электромагните, а значит, и подъемную силу.

«Гламурный» СССР: как выглядели спорткары победившего социализма ТП-01, первый советский маглев, 1979 год. Здесь вагон стоит ещё не в Раменском, а на коротком, 36-метровом участке пути, построенном на полигоне завода «Газстроймашина». В том же году первый подобный вагон продемонстрировали немцы — советские инженеры шли в ногу со временем.

Именно эта схема и была опробована на ТП-05 — единственном построенном в рамках программы вагоне «второго направления», с электромагнитным подвесом. Работу над вагоном вели очень быстро — его алюминиевый корпус, например, сделали буквально за три месяца. Первые испытания ТП-05 прошли в 1986 году. Он весил 18 т, вмещал 18 человек, остальная часть вагона была занята испытательным оборудованием. Предполагалось, что первая дорога с использованием таких вагонов на практике будет построена в Армении (из Еревана в Абовян, 16 км). Скорость должны были довести до 180 км/ч, вместимость — до 64 человек на вагон. Но вторая половина 1980-х внесла свои коррективы в радужное будущее советского маглева. В Британии к тому времени уже запустили первую постоянную систему на магнитной подушке, мы могли бы догнать англичан, если бы не политические перипетии. Другой причиной свертывания проекта стало землетрясение в Армении, приведшее к резкому сокращению финансирования.

«Гламурный» СССР: как выглядели спорткары победившего социализма Проект В250 — скоростной маглев «Москва — Шереметьево». Аэродинамика была разработана в ОКБ Яковлева, причём были изготовлены полноразмерные макеты сегмента с креслами и кабины. Расчётная скорость — 250 км/ч — была отражена в индексе проекта. К сожалению, в 1993 году амбициозная идея разбилась об отсутствие финансирования.

Предок «Аэроэкспресса»

Все работы по серии ТП были свернуты в конце 1980-х, а с 1990 года ТП-05, успевший к тому времени сняться в научно-фантастической короткометражке «С роботами не шутят», был поставлен на вечный прикол под целлофаном в том самом цеху, где его построили. Мы стали первыми журналистами за четверть века, кто увидел эту машину «вживую». Внутри сохранилось практически все — от пульта управления до обивки кресел. Реставрация ТП-05 не так сложна, как могла бы быть — он стоял под крышей, в хороших условиях и заслуживает место в музее транспорта.

«Гламурный» СССР: как выглядели спорткары победившего социализма

В начале 1990-х ИНЦ «ТЭМП» продолжил тему маглева, теперь уже по заказу правительства Москвы. Это была идея «Аэроэкспресса», скоростного поезда на магнитной подушке для доставки жителей столицы прямо в аэропорт Шереметьево. Проект получил название В250. Опытный сегмент поезда показали на выставке в Милане, после чего в проекте появились иностранные инвесторы и инженеры; советские специалисты ездили в Германию для изучения заграничных наработок. Но в 1993-м из-за финансового кризиса проект был свернут. 64-местные вагоны для Шереметьево остались только на бумаге. Впрочем, некоторые элементы системы были созданы в натурных образцах — узлы подвески и ходовой части, приборы бортовой системы электроснабжения, начались даже испытания отдельных блоков.

«Гламурный» СССР: как выглядели спорткары победившего социализма

Самое интересное, что наработки для маглевов в России есть. ОАО ИНЦ «ТЭМП» работает, реализуются различные проекты для мирной и оборонной отраслей, есть испытательный участок, есть опыт работы с подобными системами. Несколько лет назад благодаря инициативе ОАО «РЖД» разговоры о маглеве снова перешли в стадию проектных разработок — правда, продолжение работ поручено уже другим организациям. К чему это приведет, покажет время.

За помощь в подготовке материала редакция выражает благодарность генеральному директору ИТЦ «Транспорт электромагнитный пассажирский» А.А. Галенко.

Статья «Советский маглев» опубликована в журнале «Популярная механика» (№5, Май 2015).

www.popmech.ru

Shanghai Maglev (Шанхай Маглев) – самый быстрый поезд в мире

Поезд Shanghai Maglev («Маглев Шанхай» или «Шанхайский Маглев») — самый быстрый и , в то же время, самый дорогой поезд в мире. Название «Маглев» происходит от сокращения двух слов: магнитная левитация (англ. magnetic levitation) — под действием мощного электромагнитного поля поезд левитирует (парит) над полотном дороги.

Shanghai Maglev — эта первая в мире коммерческая железнодорожная линия на магнитном подушке. Линия этой железной дороги проходит из центра города в аэропорт и является одной из достопримечательностей как Шанхая, так и всего Китая в целом.

История поезда Шанхайский Маглев

Строительство линии «Маглев» в Шанхае велось в 2001-2003 годах немецкой компанией Transrapid, и 30 километров дороги обошлись в 10 млрд. юаней (1.6 млрд. долларов США). Такие высокие расходы связаны с тем, что значительная часть трассы проходит над заболоченной местностью, и строителям пришлось устанавливать опоры эстакады на специальные бетонные подушки, упирающиеся в скальное  основание. Таких опор, к слову сказать, получилось немало, а толщина некоторых бетонных подушек достигает 85 метров.  Ввод железнодорожной линии «Маглев» в эксплуатацию состоялся 1 января 2004 года.

Маршрут и скорость поезда Маглев

Поезд на магнитной подушке «Маглев» курсирует между международным аэропортом Пудун и станцией метро Лунъян в Шанхае. Как уже было сказано выше, протяжённость Шанхайской скоростной магистрали на магнитной подушке составляет 30 километров. Это расстояние поезд преодолевает всего за 8 минут (от 7 минут 20 секунд до 8 минут 10 секунд в зависимости от времени дня).  Чтобы преодолеть это же расстояние на метро, понадобится 40 минут.

Максимальная скорость поезда «Маглев» — 431 км/ч. Разогнавшись до такой скорости в середине маршрута, поезд удерживает её 1,5-2 минуты.

Средняя скорость движения поезда «Маглев» на всем маршруте составляет 250 км/ч.

Cтанция Лунъян в Шанхае Cтанция Лунъян в ШанхаеПоезд "Маглев" на станции Лунъян в Шанхае Поезд «Маглев» на станции Лунъян в ШанхаеПоезда "Маглев" на маршруте между Шанхаем и аэропортом Поезда «Маглев» на маршруте между Шанхаем и аэропортомПоезд "Маглев" у шанхайского аэропорта Пудун Поезд «Маглев» у шанхайского аэропорта Пудун

Внутри поезда Маглев

Шанхайский поезд «Маглев» укомплектован современными, просторными и удобными вагонами. В каждом есть кондиционер, и пассажиры имеют возможность сами регулировать температуру. Кресла скомплектованы два в ряд (VIP-класс) или по три в ряд (стандартные места). Для пассажиров в вагонах установлены ЖК-экраны, на которых отображается текущая скорость поезда и время. И когда на экране появляется  максимальная скорость (431км/ч), некоторые пассажиры фотографируют экран.

Стандартный вагон поезда "Маглев" Стандартный вагон поезда «Маглев»VIP-класс в поезде "Маглев" VIP-класс в поезде «Маглев»Места пассажиров VIP-класс в поезде "Маглев" Места пассажиров VIP-класс в поезде «Маглев»Табло текущей скорости в поезде "Шанхайский Маглев" Табло текущей скорости в поезде «Шанхайский Маглев»

 

Расписание и билеты на поезд Маглев Шанхай-Аэропорт

Железнодорожная линия «Маглев» Шанхай — Аэропорт Пудун работает с 6:45 утра и до 9: 40 вечера. Интервалы движения составляют 15-20 минут. Актуальное расписание Шанхайского Маглева можно посмотреть на официальном сайте поезда. Там же можно получить информацию о действующих тарифах и ценах. Цена билета зависит от выбранного класса путешествия и от того, путешествуете ли вы в один конец или туда — обратно. Билет туда – обратно действует в течение семи дней. Авиапассажирам, пользующимся услугами в день прилёта/ вылета, предоставляется скидка при предъявлении билета на самолёт или посадочного талона.

Билеты можно свободно приобрести в любое время в одном из центров по их продаже:  на станции Longyang Rd, либо в аэропорту. Примечательно, что дети ростом до 120 см могут путешествовать бесплатно, но обязательно в сопровождении взрослых. Для детей выше 120 см нужно купить билет за полную стоимость.

Поезд на магнитной подушке Маглев — интересные факты

  • Поезд обходится без машиниста. Управление осуществляется с помощью компьютеров из центра управления.
  • В случае потери электропитания срабатывают специальные тормоза, которые создают магнитное поле с обратным вектором. За счёт этого скорость поезда снижается сначала до 10 км в час, затем поезд останавливается и опускается на рельсы.
  • Изначально существовал план по продлению магнитной линии до другого аэропорта Шанхая — до Хунцяо, и далее на юго-запад до Ханчжоу. В итоге длина пути составила бы 175 км. Но проект был заморожен, и вместо этого с 2010 года Шанхай и Ханчжоу соединила высокоскоростная железная дорога.

Фото поезда Шанхайский Маглев

Поезд "Шанхайский Маглев" в ожидании пассажиров Поезд «Шанхайский Маглев» в ожидании пассажировПоезд "Шанхайский Маглев" прибывает на станцию Лунъян Поезд «Шанхайский Маглев» прибывает на станцию ЛунъянПоезд "Шанхайский Маглев" на станции Лунъян Поезд «Шанхайский Маглев» на станции ЛунъянВагон поезда "Шанхайский Маглев" Вагон поезда «Шанхайский Маглев»Вход в поезд "Шанхайский Маглев" Вход в поезд «Шанхайский Маглев»

Видео поезда Маглев

Видео всей поездки поезда «Маглев» из центра Шанхая до аэропорта Пудун:

Контакты железнодорожной линии Маглев

Почтовый адрес:
2100 Long Yang Road
Pudong Shanghai,
China

Телефон: + 86 021 28907700

Официальный сайт поезда Shanghai Maglev

vagon-vokzal.ru

Поезда на магнитной подушке – транспорт, способный изменить мир

Поезда на магнитной подушке, маглевы – самый быстрый вид наземного общественного транспорта. И хотя в эксплуатацию пока введено всего три небольших трека, исследования и испытания прототипов магнитных поездов проходят в разных странах. Как развивалась технология магнитной левитации и что ждет ее в ближайшем будущем вы узнаете из этой статьи.

История становления

Первые страницы истории маглев были заполнены рядами патентов, полученных в начале XX века в разных странах. Еще в 1902 году патентом на конструкцию поезда, оснащенного линейным двигателем, отметился немецкий изобретатель Альфреда Зейден. А уже спустя четыре года Франклин Скотт Смит разработал еще один ранний прототип поезда на электромагнитном подвесе. Немного позже, в период с 1937 года по 1941 год, еще нескольких патентов относящихся к поездам, оснащенным линейными электродвигателями, получил немецкий инженер Герман Кемпер. К слову, подвижные составы Московской монорельсовой транспортной системы, построенной в 2004 г., используют для движения асинхронные линейные двигатели – это первый в мире монорельс с линейным двигателем.

Поезд Московской монорельсовой системы возле станции Телецентр

В конце 1940-х годов исследователи перешли от слова к делу. Британскому инженеру Эрику Лэйзвейту, которого многие называют «отцом маглевов», удалось разработать первый рабочий полноразмерный прототип линейного асинхронного двигателя. Позже, в 1960-х годах, он присоединился к разработке скоростного поезда Tracked Hovercraft. К сожалению, в 1973 году проект закрыли из-за нехватки средств.

Прототип поезда с линейным двигателем RTV 31 (проект Tracked Hovercraft)

В 1979 году появился первый в мире прототип поезда на магнитной подушке, лицензированный для предоставления услуг по перевозке пассажиров – Transrapid 05. Испытательный трек длиной 908 м был построен в Гамбурге и представлен в ходе выставки IVA 79. Интерес к проекту оказался настолько велик, что Transrapid 05 удалось успешно проработать еще три месяца после окончания выставки и перевезти в общей сложности около 50 тыс. пассажиров. Максимальная скорость этого поезда составляла 75 км/ч.

Система Transrapid 05 на выставке IVA 79

А первый коммерческий магнитоплан появился в 1984 году в Бирмингеме, Англия. Железнодорожная линия на магнитном подвесе соединяла терминал международного аэропорта Бирмингема и расположенную рядом железнодорожную станцию. Она успешно проработала с 1984 по 1995 год. Протяженность линии составляла всего 600 м, а высота, на которую состав с линейным асинхронным двигателем поднимался над полотном дороги – 15 миллиметров. В 2003 году на ее месте была построена система пассажирских перевозок AirRail Link на базе технологии Cable Liner.

В 1980-х годах к разработке и реализации проектов по созданию высокоскоростных поездов на магнитной подушке приступили не только в Англии и Германии, но и в Японии, Корее, Китае и США.

Как это работает

О базовых свойствах магнитов мы знаем еще с уроков физики за 6 класс. Если поднести северный полюс постоянного магнита к северному полюсу другого магнита они будут отталкиваться. Если один из магнитов перевернуть, соединив разные полюса – притягиваться. Это простой принцип заложен в поездах-маглевах, которые скользят по воздуху над рельсом на незначительном расстоянии.

В основе технологии магнитного подвеса лежат три основных подсистемы: левитации, стабилизации и ускорения. В то же время на данный момент существует две основных технологии магнитного подвеса и одна экспериментальная, доказанная лишь на бумаге.

Поезда, построенные на базе технологии электромагнитного подвеса (EMS) для левитации используют электромагнитное поле, сила которого изменяется по времени. При этом практическая реализация данной системы очень похожа на работу обычного железнодорожного транспорта. Здесь применяется Т-образное рельсовое полотно, выполненное из проводника (в основном металла), но поезд вместо колесных пар использует систему электромагнитов – опорных и направляющих. Опорные и направляющие магниты при этом расположены параллельно к ферромагнитным статорам, размещенным на краях Т-образного пути. Главный недостаток технологии EMS – расстояние между опорным магнитом и статором, которое составляет 15 миллиметров и должно контролироваться и корректироваться специальными автоматизированными системами в зависимости от множества факторов, включая непостоянную природу электромагнитного взаимодействия. К слову, работает система левитации благодаря батареям, установленным на борту поезда, которые подзаряжаются линейными генераторами, встроенными в опорные магниты. Таким образом, в случае остановки поезд сможет достаточно долго левитировать на батареях. На базе технологии EMS построены поезда Transrapid и, в частности, шанхайский маглев.

Поезда на базе технологии EMS приводятся в движение и осуществляют торможение с помощью синхронного линейного двигателя низкого ускорения, представленного опорными магнитами и полотном, над которым парит магнитоплан. По большому счету, двигательная система, встроенная в полотно, представляет собой обычный статор (неподвижная часть линейного электродвигателя), развернутый вдоль нижней части полотна, а опорные электромагниты, в свою очередь, работают в качестве якоря электродвигателя. Таким образом, вместо получения крутящего момента, переменный ток в катушках генерирует магнитное поле возбуждающихся волн, которое перемещает состав бесконтактно. Изменение силы и частоты переменного тока позволяет регулировать тягу и скорость состава. При этом чтобы замедлить ход, нужно всего лишь изменить направление магнитного поля.

В случае применения технологии электродинамического подвеса (EDS) левитация осуществляется при взаимодействии магнитного поля в полотне и поля, создаваемого сверхпроводящими магнитами на борту состава. На базе технологии EDS построены японские поезда JR–Maglev. В отличие от технологии EMS, в которой применены обычные электромагниты и катушки проводят электричество только в тот момент, когда подается питание, сверхпроводящие электромагниты могут проводить электричество даже после того, как источник питания был отключен, например, в случае отключения электроэнергии. Охлаждая катушки в системе EDS можно сэкономить достаточно много энергии. Тем не менее, криогенная система охлаждения, используемая для поддержания более низких температур в катушках, может оказаться достаточно дорогой.

Главным преимуществом системы EDS является высокая стабильность – при незначительном сокращении расстоянии между полотном и магнитами возникает сила отталкивания, которая возвращает магниты в первоначальное положение, в то же время увеличение расстояния снижает силу отталкивания и повышает силу притяжения, что опять же ведет к стабилизации системы. В этом случае никакой электроники для контроля и корректировки расстояния между поездом и полотном не требуется.

Правда, без недостатков здесь также не обошлось – достаточная для левитации состава сила возникает только на больших скоростях. По этой причине поезд на системе EDS должен быть оснащен колесами, которые смогут обеспечивать движение при низких скоростях (до 100 км/ч). Соответственные изменения также должны быть внесены по всей длине полотна, так как поезд может остановиться в любом месте в связи с техническими неисправностями.

Еще одним недостатком EDS является то, что при низких скоростях в передней и задней частях отталкивающих магнитов в полотне возникает сила трения, которая действует против них. Это одна из причин, по которой в JR–Maglev отказались от полностью отталкивающей системы и посмотрели в сторону системы боковой левитации.

Стоит также отметить, что сильные магнитные поля в секции для пассажиров порождают необходимость установки магнитной защиты. Без экранирования путешествие в таком вагоне для пассажиров с электронным стимулятором сердца или магнитными носителями информации (HDD и кредитные карточки), противопоказано.

Подсистема ускорения в поездах на базе технологии EDS работает точно также, как и в составах на базе технологии EMS за исключением того, что после изменения полярности статоры здесь на мгновение останавливаются.

Третьей, наиболее близкой к реализации технологией, существующей пока только на бумаге, является вариант EDS с постоянными магнитами Inductrack, для активации которых не требуется энергия. До недавнего времени исследователи считали, что постоянные магниты не обладают достаточной для левитации поезда силой. Однако эту проблему удалось решить путем размещения магнитов в так называемый «массив Хальбаха». Магниты при этом расположены таким образом, что магнитное поле возникает над массивом, а не под ним, и способны поддерживать левитацию поезда на очень низких скоростях – около 5 км/ч. Правда, стоимость таких массивов из постоянных магнитов очень высока, поэтому пока и не существует ни одного коммерческого проекта данного рода.

Книга рекордов Гиннесса

На данный момент первою строчку в списке самых быстрых поездов на магнитной подушке занимает японское решение JR-Maglev MLX01, которому 2 декабря 2003 года на испытательной трассе в Яманаси удалось развить рекордную скорость – 581 км/ч. Стоит отметить, что JR-Maglev MLX01 принадлежит еще несколько рекордов, установленных в период с 1997 по 1999 год – 531, 550, 552 км/ч.

Если взглянуть на ближайших конкурентов, то среди них стоит отметить шанхайский маглев Transrapid SMT, построенный в Германии, которому удалось в ходе испытаний в 2003 году развить скорость 501 км/ч и его прародителя – Transrapid 07, преодолевшего рубеж в 436 км/ч еще в 1988 году.

Практическая реализация

Поезд на магнитной подушке Linimo, эксплуатация которого началась в марте 2005 года, был разработан компанией Chubu HSST и до сих пор используется в Японии. Он курсирует между двумя городами префектуры Айти. Протяженность полотна, над которым парит маглев составляет около 9 км (9 станций). При этом максимальная скорость Linimo равна 100 км/ч. Это не помешало ему только в течение первых трех месяцев с момента запуска перевезти более 10 млн пассажиров.

Более известным является шанхайский маглев, созданый немецкой компанией Transrapid и введенный в эксплуатацию 1 января 2004 года. Эта железнодорожная линия на магнитном подвесе соединяет станцию шанхайского метро Лунъян Лу с международным аэропортом Пудун. Общее расстояние составляет 30 км, поезд преодолевает его приблизительно за 7,5 мин, разгоняясь до скорости 431 км/ч.

Еще одна железнодорожная линия на магнитном подвесе успешно эксплуатируется в городе Тэджон, Южная Корея. UTM-02 стал доступен пассажирам 21 апреля 2008 года, а на его разработку и создание ушло 14 лет. Железнодорожная линия на магнитном подвесе соединяет Национальный музей науки и выставочный парк, расстояние между которыми всего лишь 1 км.

Среди поездов на магнитной подушке, эксплуатация которых начнется в ближайшем будущем, стоит отметить Maglev L0 в Японии, его испытания были возобновлены совсем недавно. Ожидается, что к 2027 году он будет курсировать по маршруту Токио – Нагоя.

Очень дорогая игрушка

Не так давно популярные журналы называли поезда на магнитной подушке революционным транспортом, а о запуске новых проектов подобных систем с завидной регулярностью сообщали как частные компании, так и органы власти из разных стран мира. Однако большинство из этих грандиозных проектов были закрыты еще на начальных стадиях, а некоторые железнодорожные линии на магнитном подвесе хоть и сумели недолго послужить на благо населения, позже были демонтированы.

Главная причина неудач в том, что поезда на магнитной подвеске чрезвычайно дороги. Они требуют специально построенной под них с нуля инфраструктуры, которая, как правило, и является самой расходной статьей в бюджете проекта. К примеру, шанхайский маглев обошелся Китаю в $1,3 млрд или $43,6 млн за 1 км двустороннего полотна (включая затраты на создание поездов и постройку станций). Конкурировать с авиакомпаниями поезда на магнитной подушке могут лишь на более длинных маршрутах. Но опять же, в мире достаточно мало мест с большим пассажиропотоком, необходимым для того чтобы железнодорожная линия на магнитном подвесе окупилась.

Что дальше?

На данный момент будущее поездов на магнитной подвеске выглядит туманно в большей степени из-за запредельной дороговизны подобных проектов и длительного периода окупаемости. В то же время множество стран продолжают инвестировать огромные средства в проекты по созданию высокоскоростных железнодорожных магистралей (ВСМ). Не так давно в Японии были возобновлены скоростные испытания поезда на магнитной подушке Maglev L0, который войдет в эксплуатацию к 2027 году.

Японское правительство также надеется заинтересовать собственными поездами на магнитной подушке США. Недавно представители компании The Northeast Maglev, которые планируют соединить с помощью железнодорожной линии на магнитном подвесе Вашингтон и Нью-Йорк, совершили официальный визит в Японию. Возможно поезда на магнитной подвеске получат большее распространение в странах с менее эффективной сетью ВСМ. К примеру, в США и Великобритании, но их стоимость по-прежнему останется высока.

Есть еще один сценарий развития событий. Как известно, одним из путей к увеличению эффективности поездов на магнитной подушке является применение сверхпроводников, которые при охлаждении до близких к абсолютному нулю температур полностью теряют электрическое сопротивление. Однако держать огромные магниты в баках с чрезвычайно холодными жидкостями очень дорого, так как чтобы удерживать нужную температуру, нужны громадные «холодильники», что еще больше повышает стоимость.

Но никто не исключает вероятности, что в ближайшем будущем светилам физики удастся создать недорогое вещество, сохраняющие сверхпроводящие свойства даже при комнатной температуре. При достижении сверхпроводимости при высоких температурах мощные магнитные поля, способные удерживать на весу машины и поезда, станут настолько доступными, что даже «летающие автомобили» окажутся экономически выгодными. Так что ждем новостей из лабораторий.

itc.ua

Поезд маглев – удобное, современное средство передвижения

Больше 200 лет минуло с той поры, когда были изобретены паровозы. С тех пор железнодорожный транспорт стал самым востребованным для перевозки пассажиров и грузов. Однако ученые активно трудились над усовершенствованием данного способа перемещения. В результате был создан маглев или поезд на магнитных подушках.

Поезд Маглев

Идея появилась в начале двадцатого века. Но реализовать ее в то время и в тех условиях не удалось. И лишь в конце 60-х – начале 70-х годов в ФРГ собрали магнитную трассу, где и запустили транспортное средство нового поколения. Тогда он двигался со скоростью максимум 90 км/ч и мог вместить только 4 пассажира. В 1979 году поезд на магнитных подушках модернизировали, и он смог перевезти 68 пассажиров, проезжая 75 километров в час. А в то же время в Японии сконструировали иную вариацию маглева. Он разгонялся до 517 км/ч.

Сегодня стремительность поездов на магнитных подушках может составить реальную конкуренцию самолетам. Магнитоплан мог бы серьезно соперничать с воздушными авиаперевозчиками. Единственное препятствие в том, что скользить по обычным железнодорожным путям маглевы не способны. Они требуют особых магистралей. Кроме того, считается, что необходимое поездам на воздушной подушке магнитное поле может оказать неблагоприятное воздействие на здоровее человека.

Магнитоплан не движется по рельсам, он летит в прямом смысле этого слова. На небольшой высоте (15 см) от поверхности магнитной трассы. Поднимается он над треком за счет действия электромагнитов. Это объясняет и невероятную скорость.

Полотно для маглева выглядит как череда бетонных плит. Магниты расположены под этой поверхностью. Они искусственно создают магнитное поле, по которому «едет» поезд. Во время движения нет трения, поэтому для торможения используется аэродинамическое сопротивление.

Если на простом языке объяснять принцип действия, то получится так. Когда пару магнитов приближают друг к другу одинаковыми полюсами, они как бы отталкиваются один от другого. Получается магнитная подушка. А при приближении противоположных полюсов магниты притягиваются, и поезд останавливается. Такой элементарный принцип и положен в основу работы магнитоплана, который движется по воздуху на небольшой высоте.

Сегодня применяются 3 технологии подвеса маглевов.

Поезд Маглев

1. Электродинамическая подвеска, EDS.

Иначе это называется на сверхпроводящих магнитах, то есть на вариациях с обмоткой из сверхпроводящего материала. Такая обмотка обладает нулевым омическим сопротивлением. И если она замкнута накоротко, то электрический ток в ней сохраняется бесконечно долго.

2. Электромагнитная подвеска, EMS (или на электромагнитах).

3. На постоянных магнитах. Сегодня это наименее затратная технология. Процесс передвижения обеспечивается линейным двигателем, то есть электродвигателем, где один элемент магнитной системы разомкнут и имеет развёрнутую обмотку, создающую бегущее магнитное поле, а второй сделан в виде направляющей, отвечающей за линейное перемещение подвижной части двигателя.

Многие задумываются: безопасный ли это поезд, он не упадет? Разумеется, не упадет. Нельзя сказать, что маглев на дороге ничего не удерживает. Он опирается на трек посредством особенных “клешней”, расположенных снизу поезда, в которых и поставлены электромагниты, поднимающие поезд в воздух. Там же расположены и те магниты, которые удерживают магнитоплан на треке.

Те, кто прокатился на маглеве, утверждают, что ничего вдохновляющего не ощутили. Поезд идет настолько тихо, что умопомрачительная скорость не чувствуется. Объекты за окном пролетают быстро, но расположены очень далеко от трека. Разгоняется магнитоплан плавно, так что перегрузок тоже не ощущается. Интересен и необычен только момент, когда поезд поднимается.

Итак, основные преимущества маглева:

Достоинства Маглева

  • максимально возможная скорость движения, которая достигается на наземном (неспортивном) транспорте,
  • требуется небольшое количество электроэнергии,
  • из-за отсутствия трения малозатратны в обслуживании,
  • тихое передвижение.

Недостатки:

  • необходимость больших финансовых затрат при строительстве и обслуживании трека,
  • электромагнитное поле способно нанести вред здоровью тем, кто работает на этих линиях и живет в окрестных районах,
  • для постоянного контроля расстояния между поездом и треком необходимы быстродействующие системы управления и сверхпрочные приборы,
  • требуются сложная схема путей и дорожная инфраструктура.

‘; blockSettingArray[0][“setting_type”] = 6; blockSettingArray[0][“elementPlace”] = 2; blockSettingArray[1] = []; blockSettingArray[1][“minSymbols”] = 0; blockSettingArray[1][“minHeaders”] = 0; blockSettingArray[1][“text”] = ‘

‘; blockSettingArray[1][“setting_type”] = 6; blockSettingArray[1][“elementPlace”] = 0; blockSettingArray[3] = []; blockSettingArray[3][“minSymbols”] = 1000; blockSettingArray[3][“minHeaders”] = 0; blockSettingArray[3][“text”] = ‘

ekoenergia.ru

На поезде со скоростью 500 км/ч

Главная железнодорожная компания Японии (Central Japan Railway Company) еще в 2010 году получила одобрение на разработку поездов на магнитной подушке (маглев). В 2011 году у компании появились первые прототипы таких поездов – они получили название Series L0. Еще в 2013 году была запущена лишь тестовая ветка от Токио до Нагоя. Лицевая часть поезда отличается необычайно длинным заострением для снижения сопротивления воздуха, длина насчитывает 16 вагонов, способных перевозить между упомянутыми городами до 1000 пассажира. Расстояние в 320 км поезд преодолевает за 40 минут. Аналогичные высокоскоростные поезда способны преодолеть такое расстояние «лишь» за 95 минут.

Несмотря на то, что о данной разработке было объявлено еще почти 10 лет назад, утверждали, что маглевы появятся в Японии не раньше 2027 года.

Однако уже в этом году …

Участок длиной 42 км, между Токийским ж/д вокзалом и станцией Тзуру, префектура Yamanashi, поезд на магнитной подушке проходит со скорость 500 км/ч. Такая скорость достигается за счет системы «L-Zero». Сначала состав разгоняется до 160 км/ч, затем включается магнитная подвеска, и благодаря снижению сопротивления, состав разгоняется до рекордной скорости

 

 

 

Фото 2.

Фото 3.

 

Японский маглев серии L0 во время испытаний (фото: pref.yamanashi.jp)

 

Фото 4.

Фото 5.

Фото 6.

Фото 7.

Фото 8.

Фото 9.

Сама идея подвесить транспорт в магнитном поле далеко не нова. Экспериментальные маглевы появились в Берлине, Эмсланде и Бирмингеме ещё в середине восьмидесятых годов прошлого века. Однако в ходе эксплуатации даже на малых скоростях возникало множество непредвиденных проблем. Решить их тогда не удалось из-за общего уровня технического развития. Маглевы обладали низкой надёжностью и невысоким уровнем комфорта. Спустя разное время соответствующие проекты были закрыты. Большинство специалистов сосредоточилось на развитии скоростных линий для обычных поездов.

Скоростные магистрали Синкансэн и электропоезда одноимённой серии служат японцам вот уже почти полвека. В следующем году исполняется 50 лет со дня открытия линии Токайдо-синкансэн. Сегодня она считается самой загруженной в мире, и для дальнейшего развития железнодорожной сети уже требуется что-то принципиально новое.

 

Скоростной электропоезд Синкансэн (фото: metawell.de)

 

Сегодня видится два основных варианта повышения пропускной способности железных дорог: улучшение характеристик электропоездов существующего типа или постепенный перевод железнодорожных составов на «магнитную левитацию». До недавнего времени первый вариант казался менее затратным.

Так, во Франции аналогичную проблему давно и отчасти успешно пытается решить компания Alstom Transport. Создаваемые в рамках проекта Vitesse 150 электропоезда обходится без магнитной подушки, но вполне могут составить им конкуренцию.

 

 

Весной 2013 года один из таких экспериментальных поездов разогнался до 574,8 км/ч. Справедливости ради надо отметить, что для установления рекорда поезд TGV POS был подвергнут глубокой модернизации. По сравнению с реально используемыми вариантами его мощность увеличили вдвое, оставили только три вагона (не считая моторных) и закрыли промежутки между ними для лучшей аэродинамики.

Сейчас подобные составы (правда, с гораздо меньшей скоростью) регулярно курсируют по линии LGV Est europeenne, соединяющей французские муниципалитеты Бодрекур и Вер-сюр-Марн.

 

Скоростной электропоезд TGV POS (фото: zwitserlandpertrein.nl)

 

Поезда серии TGV четвёртого поколения также ходят между Францией, Германией и Швейцарией. Их принципиальная конструкция близка к традиционной – вагоны установлены на колёсные тележки и катятся по рельсам. Однако раскрыть свой потенциал они могут только на специализированных линиях LGV, постройка и обслуживание которых сопоставимо по затратам с вводом в эксплуатацию магистралей на магнитных подушках. На обычных путях машинистам приходится двигаться со скоростью до двухсот километров в час.

В долгосрочной перспективе наиболее привлекательно выглядят именно поезда на магнитной подушке. Перемещаясь над магистралью в магнитном поле, они практически не испытывают трения. Потери энергии при движении у них обусловлены, главным образом, аэродинамическим сопротивлением.

Для его минимизации поезду придаётся сильно вытянутая форма. При общей длине головного вагона двадцать восемь метров около пятнадцати из них формирует обтекатель носового отсека.

Величина зазора между поездом на магнитной подушке и полотном магистрали колеблется в районе нескольких сантиметров. Набегающий поток воздуха создаёт дополнительную подъёмную силу.

По сравнению с обычным электропоездом, испытывающим трение колёс, маглев способен быстрее переместить груз той же массы на такое же расстояние, затратив примерно вдвое меньше энергии. Таким образом, несмотря на высокую стоимость ввода в эксплуатацию, поезда на магнитных подушках позволяют экономить государству и пассажирам.

Отсутствие у маглевов трения о полотно имеет и другой немаловажный плюс – низкий уровень шума и вибрации. На всех скоростных электропоездах сейчас установлены мощные пневматические подвески, компенсирующие биение колёсных пар при прохождении над стыками рельс.

 

Шанхайский маглев (фото: alexiptoto.com)

 

По предварительным расчётам со временем маглевы смогут разгоняться как минимум до тысячи километров в час, что полностью сместит приоритеты при выборе способа путешествия. С учётом расположения железнодорожных станций и отсутствия существенных ограничений на перевозку багажа, доля пассажирских авиаперелётов в будущем резко сократится.

Интересно отметить, что одним из главных направлений развития транспорта на магнитной подушке были трассы между крупными городами и аэропортами. Вот видео, снятое из окна шанхайского маглева, следующего в аэропорт на скорости до 430 км/ч.

 

 

Согласно плану развития японской железнодорожной сети, аналогичная скоростная линия свяжет Токио с Осакой уже к 2045 году. Для японских поездов maglev L0 есть хорошие перспективы и на внешнем рынке.

В Китае скоростная железнодорожная сеть начала строиться в 2007 году и на сегодня уже достигла статуса самой крупной в мире. Сейчас курсирующие по ней поезда классического типа развивают скорость до 300 км/ч. Параллельное развитие магистралей для поездов с магнитными подушками позволит увеличить пропускную способность транспортной сети, обеспечит плавный перевод на более высокий уровень и создаст хороший запас для будущего роста.

 

[источники]

источники

https://plus.google.com/109305089163533994571/posts/3FfoEYikGKC

http://hi-news.ru/technology/strana-vosxodyashhego-solnca-poezda-so-skorostyu-bolee-500-kmch.html

http://www.computerra.ru/70388/japan-maglev-500-kph/

 

А вот пост двухлетней давности про Скоростные поезда Китая Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия – http://infoglaz.ru/?p=53776

masterok.livejournal.com

Советский маглев: будущее, которое не случилось: picturehistory — LiveJournal


В 1979 году сразу две страны — Германия и СССР — запустили экспериментальные образцы пассажирских маглевов. Маглев (magnetic levitation) — поезд на магнитной подушке, который при движении парит в воздухе, не касаясь никакой опоры. Немцы сделали из этого настоящую рекламу — маглев по коротенькой трассе возил посетителей Международной транспортной выставки IVA. У нас же с рекламой всегда было плохо, поэтому первый советский маглев ТП-01 ездил по заводской 36-метровой трассе.

Что такое маглев

Маглев — поезд на магнитной подушке, магнитоплан — это поезд, приводимый в движение мощным электромагнитным полем, которое одновременно приподнимает его над дорогой. Зазор совсем небольшой, примерно 15 мм (плюс-минус), но всё же маглев фактически летит. Никаких вам выхлопов. Никакого грохота многочисленных колёсных пар по рельсам, никакого рёва дизелей или гудения электромоторов. Сам по себе маглев перемещается бесшумно, только при большой скорости — несколько сотен километров в час — будет возникать аэродинамический шум.

Единственное, что ограничивает скорость маглева — мощность магнитов и аэродинамическое сопротивление. То есть в теории маглевы могут конкурировать со среднемагистральной авиацией.

Правда, есть у технологии и два важных недостатка: для движения маглевов нужно прокладывать отдельную дорожную сеть, а стоимость строительства и обслуживания одного километра гораздо выше, чем у традиционного ЖД-транспорта. С другой стороны, это отчасти компенсировалось крайне низким износом подвижного состава — ведь у маглева нет механической ходовой части, ничто не крутится, не стирается, не накапливает усталость металла. По сути, маглев — это капсула, висящая над дорогой благодаря отталкиванию магнитных полюсов.

Советский маглев

В 1970-х городское население в СССР быстро росло. С ним увеличивалась и потребность в расширении транспортной сети. Наряду с «консервативными» методами решения проблемы — например, увеличением парка традиционных поездов и авиации — рассматривались и более смелые идеи. Одной из них стал проект пассажирских линий, по которым с большой скоростью курсируют магнитопланы небольшой вместимости (по сравнению с обычными электричками). Конечно, покрыть всю страну маглев-сетью не смог бы позволить себе даже СССР. Но на некоторых наиболее нагруженных направлениях маглевы могли бы быть экономически целесообразны.

В 1975 году было создано транспортное объединение «Союзтранспрогресс», в рамках которого организовали институт ВНИИПИтранспрогресс. Инженеры и учёные этого НИИ и занялись разработкой прогрессивного транспортного средства. И в 1979-м, одновременно с немцами, первый советский маглев ТП-01 проехал по заводской тестовой линии.

ТП-01 имел массу 12 т и вмещал 20 пассажиров. В сжатые сроки были созданы новые испытательные маглевы — ТП-02 и 03. Их тестировали на 180-метровой трассе в подмосковном городе Раменское, где находился ВНИИПИтранспрогресс. Вскоре трассу удлинили до 850 метров. Маглев ТП-04 стал передвижной лабораторией.

Успехи, продемонстрированные конструкторами на первых образцах, позволили запланировать создание экспериментальных линий, на которых маглевы уже перевозили бы пассажиров. Первыми республиками с действующими маглевами должны были стать Казахская и Армянская ССР. Но затем алма-атинский проект трансформировался в метрополитен, и остался ереванский. Столицу республики планировали соединить с городом Абовяном, расположенным в 16-ти км. Он должен был стать своего рода огромным «спальным районом» Еревана, и маглев представлялся идеальным решением проблемы транспортной доступности.

В 1986-м инженеры ВНИИПИтранспрогресса создали свой последний и наиболее совершенный прототип маглева — ТП-05.

ТП-05

Одной из «изюминок» конструкции ТП-05 было использование вдоль вагона цепи из небольших магнитов. При его движении датчики измеряли величину зазора между вагоном и дорогой, а система меняла силу тока на конкретных магнитах, увеличивая или уменьшая их отталкивание. Тем самым компенсировались неровности дороги и обеспечивалась плавность хода.

Маглев имел алюминиевый корпус, весил 18 т и мог перевозить 18 человек. В принципе, мог и больше, просто остаток объёма был занят дополнительным испытательным и измерительным оборудованием. Изначально планировалось испытывать ТП-05 на скоростях до 100 км/ч.

Ереванский маглев должен был стать не только испытательной линией, но и своеобразной технологической витриной. Даже выбор Абовяна в качестве конечной точки маршрута был не случаен: в этом небольшом городе создавались высокотехнологичные производства, а немалая часть населения относилась к научно-технической интеллигенции.

Нам нужно было «догнать Запад» — в 1984-м в Великобритании запустили первый в мире коммерческий маглев, с жалкой протяжённостью трассы в 600 м, и в том же году в Германии запустили испытательную линию беспилотных маглевов длиной 31,5 км.

У нас были все шансы стать одной из первых стран, создающих и эксплуатирующих маглевы. В 1986-м у нас началось возведение опытной линии длиной 3,2 км. Запуск в эксплуатацию советского маглева был запланировано на 1991 год. Сначала считалось, что вагоны будут перемещаться со скоростью 250 км/ч и перевозить по 64 человека. То есть 16 километров от Еревана до Абовяна маглев должен был пролетать примерно за четыре минуты. Но из-за доступной мощности тяговой электроподстанции, которая должна была питать линию электричеством, максимальную скорость пришлось снизить до 180 км/ч.

В 1987-м ТП-05 даже сняли в фантастической теленовелле «С роботами не шутят».


Увы, но все планы пошли прахом. Через два года после начала строительства линии, в 1988 году произошло Спитакское землетрясение. За полминуты с лица земли был стёрт город Спитак и десятки деревень, под завалами в течение нескольких дней погибло не менее 25 тыс. человек, многие промышленные предприятия лежали в руинах. На восстановление Армении были брошены силы всей страны. Кроме того, в 1987-89-м годах стремительно раскручивался маховик Нагорно-Карабахского конфликта. Какой уж тут маглев… А в 1991-м не стало и СССР.

Но удивительное дело — ТП-05 умудрился пережить 1990-е. Он до сих пор стоит в том же цехе, где его собрали. Его не растащили по частям, не распилили на цветмет. Говорят, так и стоит под полиэтиленовой плёнкой, немного подреставрировать — и хоть сейчас в музей транспорта.


См.также:

Что такое Гиробусы

Гироскопическая железная дорога

Советский реактивный поезд

«Рельсолёт» Республики Советов

История киевского фуникулера

picturehistory.livejournal.com

будущее, которое не случилось / Mail.ru Group corporate blog / Habr

В 1979 году сразу две страны — Западная Германия и СССР — запустили экспериментальные образцы пассажирских маглевов. Маглев (magnetic levitation) — поезд на магнитной подушке, который при движении парит в воздухе, не касаясь никакой опоры. Немцы сделали из этого настоящую рекламу — маглев по коротенькой трассе возил посетителей Международной транспортной выставки IVA. У нас же с рекламой всегда было плохо, поэтому первый советский маглев ТП-01 ездил по заводской 36-метровой трассе.


Что такое маглев

Маглев — поезд на магнитной подушке, магнитоплан — это поезд, приводимый в движение мощным электромагнитным полем, которое одновременно приподнимает его над дорогой. Зазор совсем небольшой, примерно 15 мм (плюс-минус), но всё же маглев фактически летит. Никаких вам выхлопов. Никакого грохота многочисленных колёсных пар по рельсам, никакого рёва дизелей или гудения электромоторов. Сам по себе маглев перемещается бесшумно, только при большой скорости — несколько сотен километров в час — будет возникать аэродинамический шум.

Единственное, что ограничивает скорость маглева — мощность магнитов и аэродинамическое сопротивление. То есть в теории маглевы могут конкурировать со среднемагистральной авиацией.

Правда, есть у технологии и два важных недостатка: для движения маглевов нужно прокладывать отдельную дорожную сеть, а стоимость строительства и обслуживания одного километра гораздо выше, чем у традиционного ЖД-транспорта. С другой стороны, это отчасти компенсировалось крайне низким износом подвижного состава — ведь у маглева нет механической ходовой части, ничто не крутится, не стирается, не накапливает усталость металла. По сути, маглев — это капсула, висящая над дорогой благодаря отталкиванию магнитных полюсов.


Советский маглев

В 1970-х городское население в СССР быстро росло. С ним увеличивалась и потребность в расширении транспортной сети. Наряду с «консервативными» методами решения проблемы — например, увеличением парка традиционных поездов и авиации — рассматривались и более смелые идеи. Одной из них стал проект пассажирских линий, по которым с большой скоростью курсируют магнитопланы небольшой вместимости (по сравнению с обычными электричками). Конечно, покрыть всю страну маглев-сетью не смог бы позволить себе даже СССР. Но на некоторых наиболее нагруженных направлениях маглевы могли бы быть экономически целесообразны.

В 1975 году было создано транспортное объединение «Союзтранспрогресс», в рамках которого организовали институт ВНИИПИтранспрогресс. Инженеры и учёные этого НИИ и занялись разработкой прогрессивного транспортного средства. И в 1979-м, одновременно с немцами, первый советский маглев ТП-01 проехал по заводской тестовой линии.

ТП-01 имел массу 12 т и вмещал 20 пассажиров. В сжатые сроки были созданы новые испытательные маглевы — ТП-02 и 03. Их тестировали на 180-метровой трассе в подмосковном городе Раменское, где находился ВНИИПИтранспрогресс. Вскоре трассу удлинили до 850 метров. Маглев ТП-04 стал передвижной лабораторией.

Успехи, продемонстрированные конструкторами на первых образцах, позволили запланировать создание экспериментальных линий, на которых маглевы уже перевозили бы пассажиров. Первыми республиками с действующими маглевами должны были стать Казахская и Армянская ССР. Но затем алма-атинский проект трансформировался в метрополитен, и остался ереванский. Столицу республики планировали соединить с городом Абовяном, расположенным в 16-ти км. Он должен был стать своего рода огромным «спальным районом» Еревана, и маглев представлялся идеальным решением проблемы транспортной доступности.

В 1986-м инженеры ВНИИПИтранспрогресса создали свой последний и наиболее совершенный прототип маглева — ТП-05.


ТП-05

Одной из «изюминок» конструкции ТП-05 было использование вдоль вагона цепи из небольших магнитов. При его движении датчики измеряли величину зазора между вагоном и дорогой, а система меняла силу тока на конкретных магнитах, увеличивая или уменьшая их отталкивание. Тем самым компенсировались неровности дороги и обеспечивалась плавность хода.

Маглев имел алюминиевый корпус, весил 18 т и мог перевозить 18 человек. В принципе, мог и больше, просто остаток объёма был занят дополнительным испытательным и измерительным оборудованием. Изначально планировалось испытывать ТП-05 на скоростях до 100 км/ч.

Ереванский маглев должен был стать не только испытательной линией, но и своеобразной технологической витриной. Даже выбор Абовяна в качестве конечной точки маршрута был не случаен: в этом небольшом городе создавались высокотехнологичные производства, а немалая часть населения относилась к научно-технической интеллигенции.


Ходовая часть.

Нам нужно было «догнать Запад» — в 1984-м в Великобритании запустили первый в мире коммерческий маглев, с жалкой протяжённостью трассы в 600 м, и в том же году в Западной Германии запустили испытательную линию беспилотных маглевов длиной 31,5 км.

У нас были все шансы стать одной из первых стран, создающих и эксплуатирующих маглевы. В 1986-м у нас началось возведение опытной линии длиной 3,2 км. Запуск в эксплуатацию советского маглева был запланировано на 1991 год. Сначала считалось, что вагоны будут перемещаться со скоростью 250 км/ч и перевозить по 64 человека. То есть 16 километров от Еревана до Абовяна маглев должен был пролетать примерно за четыре минуты. Но из-за доступной мощности тяговой электроподстанции, которая должна была питать линию электричеством, максимальную скорость пришлось снизить до 180 км/ч.

В 1987-м ТП-05 даже сняли в фантастической теленовелле «С роботами не шутят».


Увы, но все планы пошли прахом. Через два года после начала строительства линии, в 1988 году произошло Спитакское землетрясение. За полминуты с лица земли был стёрт город Спитак и десятки деревень, под завалами в течение нескольких дней погибло не менее 25 тыс. человек, многие промышленные предприятия лежали в руинах. На восстановление Армении были брошены силы всей страны. Кроме того, в 1987-89-м годах стремительно раскручивался маховик Нагорно-Карабахского конфликта. Какой уж тут маглев… А в 1991-м не стало и СССР.

Но удивительное дело — ТП-05 умудрился пережить 1990-е. Он до сих пор стоит в том же цехе, где его собрали. Его не растащили по частям, не распилили на цветмет. Говорят, так и стоит под полиэтиленовой плёнкой, немного подреставрировать — и хоть сейчас в музей транспорта.

habr.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *