Как определить межвитковое замыкание электродвигателя
До 40 процентов случаев проблем с электродвигателем связано с межвитковым замыканием. Как правило, оно возникает в катушке обмотки возбуждения. Основные причины:
- Перегрузка двигателя из-за неправильной его эксплуатации либо механических повреждений. Вследствие этого происходит перегрев обмоток статора и повреждение или разрушение их изоляционного слоя. В результате уменьшается сопротивление цепи, и контакт витков катушки ведет к замыканию и выходу двигателя из строя.
- «Сухие» или заклинившие подшипники.
- Заводской брак обмоток (либо их неудачная перемотка).
- Попадание влаги внутрь агрегата из-за несоблюдения условий его хранения (например, во влажном месте).
Итак, причины более или менее понятны, теперь мы попытаемся разобраться: как определить межвитковое замыкание электродвигателя?
Способы определения межвиткового замыкания двигателя
Если какая-либо часть статора сильно нагревается, стоит прекратить работу и провести диагностику агрегата.
- Токовые клещи. Измеряется нагрузка на каждую фазу, и, если на какой-либо из них она значительно увеличена, то это признак межвиткового замыкания. Однако чтобы избежать ошибки из-за, например, перекоса фаз на подстанции, стоит также измерить приходящее напряжение вольтметром.
- Прозвон обмоток тестером. Прозванивается каждая обмотка в отдельности, затем полученные результаты сопротивления сверяются. Но следует учесть, что этот способ может оказаться неэффективным при замыкании 2-3 витков, т.к. в этом случае расхождение будет небольшим.
- Измерения мегомметром. Чтобы обнаружить замыкание на корпус, один щуп прикладывается к корпусу двигателя, второй – к выходу обмоток в борно.
- Проверить межвитковое замыкание электродвигателя также можно визуально. Агрегат разбирается и тщательно осматривается на предмет наличия сгоревшей части обмотки.
- Проверка с помощью понижающего трехфазного трансформатора и шарика от подшипника или пластинки от трансформаторного железа.
Этот способ считается самым надежным. Предупреждение: ни в коем случае не используйте данный алгоритм при напряжении в 380 вольт, это опасно для жизни! Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии. Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание. Пластинка прикладывается к железу внутри статора. Если она «примагничивается», причин для беспокойства нет, а ее дребезжание указывает на межвитковое замыкание.
Следует также отметить, что все перечисленные выше способы проверки производятся исключительно с заземленным двигателем.
Таким образом, зная, как проверить обмотку электродвигателя на межвитковое замыкание, вы сможете самостоятельно выявить причину неисправности и принять решение о ее своевременном устранении.
Межвитковое замыкание.

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.
Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.
Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.
Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.
С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.
При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.
Как найти межвитковое замыкание
Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.
Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.
Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.
Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.
Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.
Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.
Самодельный прибор для определения виткового замыкания
Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.
Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.
Намотаны эти катушки как раз на П-образном трансформаторном железе.
Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.
При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.
Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.
Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.
Рассчитываем количество витков катушек по формуле для трансформаторов.
13200 делим на сечение сердечника в см2. Сечение нашего сердечника:
3,6 см х 2,1 см = 7,56 см2.
13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.
На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.
Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.
Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую.
Сравним дроссель фабричный и самодельный.
Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.
Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.
Межвитковое замыкание якоря
Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.
Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.
Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.
Способ №2 проверки якоря на витковое замыкание
Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.
Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.
Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора. Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.
Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.
Межвитковое замыкание трансформатора
У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.
При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.
Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.
Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.
Межвитковое замыкание статора
Часто на неисправном двигателе имеется межвитковое замыкание. Сначала проверяют обмотку статора на сопротивление. Это ненадежный метод, так как мультиметр не всегда может точно показать результат замера. Это зависит и от технологии перемотки двигателя, от старости железа.
Клещами тоже можно измерить сопротивление и ток. Иногда проверяют по звуку работающего мотора, при условии, что подшипники исправны, смазаны, редуктор привода исправен. Еще проверяют межвитковое замыкание осциллографом, но они имеют большую стоимость, не у каждого имеется этот прибор.
Внешне осматривают двигатель. Не должно быть следов масла, подтеков, запаха. Измеренный по фазам ток, должен быть одинаковый. Хорошим тестером проверяют обмотки на сопротивление. При разнице в замерах более 10% есть вероятность замыкания витков обмоток.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
ПохожееКак определить межвитковое замыкание в двигателе | Электрик Инфо
Добрая половина всех случаев неисправностей электродвигателей приходится на межвитковое замыкание. Межвитковым замыканием называется короткое замыкание между разными витками одной катушки или секции обмотки электрической машины. Причин межвитковых замыканий может быть несколько.
Причины межвитковых замыканий
Одна из причин межвиткового замыкания — перегрузка электродвигателя по току, когда нагрузка на двигатель в течение значительного промежутка времени превышает номинальную. В этом случае обмотка статора разогревается от чрезмерного тока настолько сильно, что изоляция в каком-то ее месте может разрушиться и способствовать короткому замыканию между соседними витками. Нормальный ток статора под нагрузкой всегда можно посмотреть в паспорте двигателя либо на информационном шильдике на его корпусе.
Перегрузка может случиться, например, из-за нештатного режима эксплуатации оборудования, приводимого в действие данным двигателем. Кроме того причиной токовой перегрузки может стать механическое повреждение непосредственно двигателя: заклинивание ротора, стопорение подшипников и т. д.
Не исключен также заводской брак обмотки, либо нарушение целостности изоляции во время ручной перемотки статора в кустарных условиях. При несоблюдении условий хранения или эксплуатации электродвигателя, случайно попавшая внутрь влага способна навредить изоляции и привести к межвитковому замыканию.
Так или иначе, какой бы ни оказалась причина межвиткового замыкания, с ним пострадавший двигатель нормально работать уже точно не сможет, либо проработает, но недолго. Поэтому при обнаружении симптомов межвиткового замыкания, следует незамедлительно начать его поиск с целью скорейшего устранения.
Как выявить межвитковое замыкание
Существует несколько простых проверенных способов выявить наличие межвиткового замыкания. Симптомом обычно является перегрев одной части статора по отношению ко всем остальным его частям. Если данное явление наблюдается, то двигатель необходимо остановить, если надо – снять с оборудования, и подвергнуть точной диагностике.
Прежде всего можно воспользоваться токовыми клещами. Достаточно по очереди измерить токи каждой из фаз обмотки статора, и если в одной из них ток существенно больше чем в остальных, то это – явный признак того, что место замыкания находится в соответствующей части обмотки. Предварительно необходимо убедиться, что напряжение на все выводы (между каждой парой из трех фаз) подается одинаковое, то есть проверить отсутствие перекоса фаз. Для этого пользуются вольтметром, поочередно измеряют напряжения на трех фазах.
Три части трехфазной обмотки следует прозвонить омметром. Сопротивления всех трех обмоток по-отдельности должны быть одинаковыми. Используемый прибор должен обладать достаточно высокой точностью, ведь если имеет место замыкание всего между двумя витками, то различие в сопротивлениях будет минимальным, и его невозможно будет различить если обмотка выполнена толстым проводом.
Наличие замыкания на корпус можно проверить при помощи мегаомметра. Для этого один щуп прибора прикладывается к корпусу двигателя, второй — поочередно к каждому из выводов обмоток. В исправном двигателе сопротивление на каждой из фаз должно быть значительным (смотрите – Как правильно пользоваться мегаомметром).
Не будет лишним визуально рассмотреть обмотку статора. Чтобы это сделать, нужно будет снять с двигателя крышки, вытащить ротор и внимательно рассмотреть всю обмотку секция за секцией. Если замыкание есть, то подгоревшее место наверняка будет видно сразу.
Если у вас под рукой есть понижающий трехфазный трансформатор на напряжение в районе 40 вольт, то используйте его для проверки целостности статора. Выньте ротор, подключите трансформатор, включите его в сеть. Возьмите железный шарик от подшипника и запустите его в статор, немного ускорив щелчком пальца, так чтобы шарик начал бегать по кругу вслед за вращающимся магнитным полем, имитируя вращение ротора. В случае если шарик остановился и застрял на одном месте статора — значит в этом месте межвитковое замыкание.
Если нет шарика, возьмите пластину трансформаторной стали или железную линейку, приложите ее внутри к статору и перемещайте по кругу. В том месте где пластинка начнет заметно дребезжать — есть межвитковое замыкание. Если межвиткового замыкания нет, то пластинка будет везде примагничиваться к статору. Прежде чем использовать способ с шариком или с пластинкой, убедитесь, что двигатель питается от понижающего трансформатора, иначе можно получить поражение электрическим током.
Смотрите также: Несколько способов проверки обмотки на короткое замыкание в картинках
Рекомендую также посмотреть:
Как сделать простейший двигатель за 10 минут (интересные эксперименты)
Как правильно пользоваться токоизмерительными клещами
Донат на развитие проекта Электрик Инфо: Пожертвование на развитие сайта
Межвитковое замыкание электродвигателя
Межвитковое замыкание электродвигателя
Причины межвиткового замыкания
Если вы читали предыдущие статьи, то знаете что межвитковое замыкание электродвигателя составляет 40% неисправностей электродвигателей. Причин для межвиткового замыкания может быть несколько.
Перегруз электродвигателя – нагрузка на электроустановку превышает норму вследствие чего обмотки статора нагреваются и изоляция обмоток разрушается что приводит к межвитковому замыканию. Нагрузка может возникнуть из за неправильной эксплуатации оборудования. Номинальную нагрузку можно определить по паспорту электроустановки или прочитать на табличке электродвигателя. Также перегруз может возникнуть из за механических повреждений самого электродвигателя. Заклинившие или сухие подшипники тоже могут стать причиной межвиткового «коротыша».
Не исключена возможность заводского брака обмоток, и если электродвигатель перематывался в кустарной мастерской, то большая вероятность что «межвитняк» уже стучится в ваши двери.
Также неправильная эксплуатация и хранение электродвигателя может стать причиной попадания влаги внутрь двигателя отсыревшие обмотки тоже весьма распространенная причина межвиткового замыкания.
Как правило с таким замыканием электродвигатель уже не жилец, и работать будет весьма непродолжительное время. Я думаю хватит разбирать причины давайте перейдем к вопросу « как определить межвитковое замыкание».
Поиск межвиткового замыкания.
Определить межвитковое замыкание не слишком сложно, и для это есть несколько подручных способов.
Если при работе электромотора какая то часть статора нагрелась больше чем весь двигатель, то вам стоит подумать об остановке и точной диагностике.
Также помогут определить замыкание обыкновенные токовые клещи, меряем по очереди нагрузку на каждую фазу и если на одной из них она больше чем на других то это признак того что возможно есть межвитняк обмотки. Но следует учитывать что может быть перекос фаз на подстанции для того что бы убедится мереям вольтметром приходящие напряжение.
Можно прозвонить обмотки тестером. Для этого прозваниваем каждую обмотку в отдельности и сверяем полученные результаты сопротивления. Этот способ может и не сработать если замыкают всего пару витков, то расхождение будет минимальным.
Не будет лишним брякнуть электродвигатель мегомметром в поиске замыкания на корпус, один щуп прикладываем к корпусу электродвигателя, а второй к по очереди к выходу обмоток в борно.
Если у вас остались еще сомнения, то вам придется разобрать электромотор. Сняв крышки и ротор, визуально рассматриваем обмотки. Вполне вероятно, что вы увидите сгоревшую часть.
Ну и самый точный способ проверки межвиткового замыкания это проверка при помощи трехфазного понижающего трансформатора (36-42 вольта) и шарика от подшипника.
На стартер разобранного электродвигателя подаем три фазы с понижающего трансформатора. С маленьким разгоном кидаем туда шарик, если шарик начинает бегать по кругу внутри статора то все в порядке. Если он, сделав пару оборотов прилип к одному месту, то значит там межвитковое замыкание.
Вместо шарика можно использовать пластинку от трансформаторного железа, прикладываем внутри статора к железу и в том месте где межвитковое она начнет дребезжать, а там где все в порядке пластина будет примагничиваться.
Обязательно используйте все выше перечисленные способы с заземленным электродвигателем и строго при помощи понижающего трансформатора.
Проверка шариком и пластинкой при напряжении в 380 вольт запрещена и очень опасна для вашей жизни.
< Немного об электродвигателях | Центровка электродвигателей > |
---|
< Предыдущая | Следующая > |
---|
Как определить межвитковое замыкание электродвигателя мультиметром
В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.
Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.
Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.
Виды обмотокЕсли не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.
Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
- Материал провода обмотки должен быть однородным по всей длине.
- Форма и площадь поперечного сечения провода должны иметь определенную точность.
- На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
- Провод обмотки должен обеспечивать прочный контакт при соединении.
Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.
Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.
Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).
На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.
Возможные неисправностиВизуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:
- Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
- Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
- Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
- Пробиванием изоляции между корпусом статора и обмоткой.
Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.
Проверка обмоток электродвигателя на короткое замыканиеПри коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.
Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.
Проверка обмоток электродвигателя на межвитковое замыканиеЭто самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.
Проверка обмоток электродвигателя способом омметраЭтот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.
Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.
Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.
Измерение тока в каждой фазеСоотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.
Проверка обмоток электродвигателя переменным токомНе всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.
Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.
Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.
Проверка обмоток электродвигателя шарикомЭтот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.
Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.
Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.
Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.
Определение полярности обмоток электрическим методомУ обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.
Чтобы определить маркировку, применяют некоторые способы:
- Слабым источником постоянного тока и амперметром.
- Понижающим трансформатором и вольтметром.
Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.
Определение маркировки выводов обмотки амперметром и батарейкойНа наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.
Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.
Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.
Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.
Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.
Определение полярности вольтметром и понижающим трансформаторомПервый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.
Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).
Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.
Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.
Электродвигатели применяются во многих бытовых устройствах, поэтому если прибор, в котором установлен агрегат начинает барахлить, то, во многих случаях, диагностические мероприятия следует начинать с прозвона обмотки движка. Как прозвонить электродвигатель мультиметром, и сделать это правильно, будет подробно описано ниже.
Как прозвонить: условия
Прежде чем проверить электродвигатель на неисправность, необходимо убедиться в том, что шнур и вилка прибора абсолютно исправны. Обычно об отсутствии нарушения подачи электрического тока в устройство, можно судить по светящейся контрольной лампе.
Убедившись в том, что электрический ток поступает к электродвигателю, необходимо осуществить демонтаж его из корпуса устройства, при этом сам прибор должен быть полностью обесточен, во время выполнения данной операции.
Проверка якоря и статора электродвигателя производится мультиметром. Последовательность измерений зависит от модели электрического агрегата, при этом, прежде чем прозвонить электродвигатель, следует убедиться в исправности измерительного прибора.
Наиболее частой «поломкой» мультиметров является уменьшение заряда батареи, в этом случае можно получить искажённые результаты замеров сопротивления.
Ещё одним важным условием для того чтобы прозвонить электрический агрегат правильно, является полное приостановление каких-либо других дел и полностью посвятить время на выполнение диагностических работ, иначе можно легко пропустить какой-либо участок обмотки электродвигателя, в котором и может быть причина неполадок.
Прозвонка асинхронного двигателя
Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:
- Произвести замеры сопротивления между выводами двигателя.
Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата. - Провести диагностику утечки тока на «массу».
Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.
Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.
При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.
Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.
Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.
Как прозвонить коллекторный двигатель
Коллекторный агрегат также можно прозвонить мультиметром. Данный тип электродвигателей используется в цепи постоянного тока.
Коллекторные двигатели переменного тока встречаются реже, например в различных электроинструментах. Наиболее качественно прозванивать такие изделия можно в том случае, если полностью разобрать электрический двигатель.
Проверить якорь электродвигателя, а также прозвонить обмотку статора можно будет с помощью мультиметра, который должен быть переведён в режим измерения сопротивления до 200 Ом.
Наиболее часто статор коллекторного агрегата состоит из двух независимых обмоток, которые и требуется прозвонить мультиметром для определения их исправности.
Точное значение данного показателя, можно узнать в документации к электродвигателю, но о работоспособности обмотки можно судить в том случае, если прибор покажет небольшое значение сопротивления.
В мощных двигателях постоянного тока электрооборудования автомобиля, значение сопротивления статора будет настолько малым, что его отличие от короткозамкнутого проводника, может составлять десятые доли Ома. Менее мощные устройства имеют сопротивление обмотки статора в пределах 5 — 30 Ом.
Для того чтобы прозвонить мультиметром обмотки статора коллекторного электродвигателя, необходимо соединить щупы измерительного прибора с выводами данных обмоток. Если в процессе диагностических мероприятий будет выявлено отсутствие сопротивления даже в одном контуре, дальнейшая эксплуатация агрегата не осуществляется.
Ротор коллекторного электродвигателя состоит из значительно большего количества обмоток, но проверка якоря не займёт много времени.
Для того чтобы прозвонить эту деталь, необходимо включить мультиметр в режим измерения сопротивления до 200 Ом и расположить щупы мультиметра на коллекторе таким образом, чтобы они находились на максимальном удалении друг от друга.
Таким образом щупы займут место щёток двигателя и одну из нескольких обмоток якоря можно будет прозвонить. Если мультиметр покажет какое-либо значение, то не снимая щупов измерительного устройства с коллектора, следует провернуть слегка ротор, до момента соединения следующей обмотки со щупами устройства.
Таким образом проверить обмотку можно без особых усилий. Если мультиметр покажет примерно одинаковое значение сопротивления каждого контура, то это будет означать, что якорь устройства абсолютно исправен.
Для того чтобы правильно прозвонить данный тип двигателя, необходимо осуществить проверку возможной утечки электрического тока на «массу».
Это нарушение может привести не только к выходу из строя электродвигателя, но и к увеличению вероятности получения электротравмы. Проверить якорь и статор коллекторного двигателя на пробой не составит большого труда, для этого необходимо включить режим измерения сопротивления до 2 000 кОм. Для проверки статора достаточно подключить одну клемму к корпусу, а вторую к одной из обмоток.
Чтобы прозвонить эту часть электродвигателя правильно, во время выполнения данной операции запрещается прикасаться руками к металлической части щупов мультиметра, или к корпусу статора и проводки измеряемого контура.
Если не придерживаться этого правила, то можно получить ложноположительные результаты, так как через тело человека будет проходить достаточный электрический потенциал. В этом случае мультиметр покажет сопротивление человека, а не «пробой» между корпусом статора и обмоткой.
Аналогичным образом измеряется и возможная утечка электротока на корпус якоря электродвигателя.
Чтобы прозвонить отсутствие «пробоя» на массу устройства, необходимо поочерёдно присоединять щупы мультиметра к корпусу и различным обмоткам ротора электромотора.
Для того чтобы прозвонить различные типы электродвигателей с помощью мультиметра, необходимо приобрести мультиметр, который имеет режим измерения сопротивления.
Сверхточность, при осуществлении подобных действий, не требуется, поэтому можно с успехом использовать дешёвые китайские устройства. Прежде чем прозвонить обмотки двигателя мультиметром, необходимо убедиться в его исправности.
Следует также иметь в виду, что неисправность электродвигателя может иметь различные признаки. Даже в том случае если электрический прибор находится в рабочем состоянии, но обороты двигателя не достигают максимального значения, следует незамедлительно прозвонить возможные повреждения обмоток.
После того как будет произведены все диагностические мероприятия, и электродвигатель будет отремонтирован, производится испытание устройства прежде чем устанавливать его в бытовой прибор или инструмент.
При осуществлении любых электромонтажных или диагностических работ, необходимо полностью отсоединить прибор от сети 220 В. или трёхфазного тока.
До 40 процентов случаев проблем с электродвигателем связано с межвитковым замыканием. Как правило, оно возникает в катушке обмотки возбуждения. Основные причины:
- Перегрузка двигателя из-за неправильной его эксплуатации либо механических повреждений. Вследствие этого происходит перегрев обмоток статора и повреждение или разрушение их изоляционного слоя. В результате уменьшается сопротивление цепи, и контакт витков катушки ведет к замыканию и выходу двигателя из строя.
- «Сухие» или заклинившие подшипники.
- Заводской брак обмоток (либо их неудачная перемотка).
- Попадание влаги внутрь агрегата из-за несоблюдения условий его хранения (например, во влажном месте).
Итак, причины более или менее понятны, теперь мы попытаемся разобраться: как определить межвитковое замыкание электродвигателя?
Способы определения межвиткового замыкания двигателя
Если какая-либо часть статора сильно нагревается, стоит прекратить работу и провести диагностику агрегата. Мы предлагаем следующие варианты:
- Токовые клещи. Измеряется нагрузка на каждую фазу, и, если на какой-либо из них она значительно увеличена, то это признак межвиткового замыкания. Однако чтобы избежать ошибки из-за, например, перекоса фаз на подстанции, стоит также измерить приходящее напряжение вольтметром.
- Прозвон обмоток тестером. Прозванивается каждая обмотка в отдельности, затем полученные результаты сопротивления сверяются. Но следует учесть, что этот способ может оказаться неэффективным при замыкании 2-3 витков, т.к. в этом случае расхождение будет небольшим.
- Измерения мегомметром. Чтобы обнаружить замыкание на корпус, один щуп прикладывается к корпусу двигателя, второй – к выходу обмоток в борно.
- Проверить межвитковое замыкание электродвигателя также можно визуально. Агрегат разбирается и тщательно осматривается на предмет наличия сгоревшей части обмотки.
- Проверка с помощью понижающего трехфазного трансформатора и шарика от подшипника или пластинки от трансформаторного железа. Этот способ считается самым надежным. Предупреждение: ни в коем случае не используйте данный алгоритм при напряжении в 380 вольт, это опасно для жизни! Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии. Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание. Пластинка прикладывается к железу внутри статора. Если она «примагничивается», причин для беспокойства нет, а ее дребезжание указывает на межвитковое замыкание.
Следует также отметить, что все перечисленные выше способы проверки производятся исключительно с заземленным двигателем.
Таким образом, зная, как проверить обмотку электродвигателя на межвитковое замыкание, вы сможете самостоятельно выявить причину неисправности и принять решение о ее своевременном устранении.
Межвитковое замыкание и ремонт
Всем хорошо известно, что такое короткое замыкание, которое часто возникает, например, из-за того, что неизолированные элементы где-то соприкоснулись. А в результате в квартире даже лампочка не горит. Но короткие замыкания бывают и в электрических устройствах.Бывает замыкание обмотки на металлический корпус. Бывает и так называемое межвитковое замыкание. Так называется замыкание между собой обмоток ротора или статора. Либо витков обмоток трансформаторов. Например, вы работаете с пылесосом в руках, и вдруг – искрение коллектора. Это и означает, что произошло межвитковое замыкание.
Опытный мастер по ремонту оборудования, конечно, еще проверит, нет ли повышенной нагрузки на двигатель. Она бывает тогда, когда засорилась воздушная система или заедает двигатель. Если все в порядке – значит, произошло межвитковое замыкание.
Межвитковое замыкание в обмотке якоря или статора обычно сопровождается не только сильным круговым искрением, но и неприятным запахом горящей изоляции. Работать с таким пылесосом нельзя. Нужно его ремонтировать. А ремонт следует начать с того, что нужно определить, где произошло межвитковое замыкание.
Для начала следует осмотреть якорь. На обмотках не должно быть вспучиваний изоляции и почернений. Не должно быть и запаха паленой изоляции. Чтобы определить это, не нужно никаких приборов. Достаточно просто понюхать.
Осмотрите коллектор. Иногда замыкания бывают замыкания между пластинами. Их нетрудно обнаружить даже после поверхностного осмотра.
Если хотя бы один признак подтвердился, то «диагноз» для техники плачевный. Якорь для пылесоса, например, найти не так-то просто. И если якорь не удалось найти, то остается только перемотать якоря. Такая поломка связана со многими проблемами. Ведь перемотать якорь может только очень квалифицированный обмотчик. Ко всему, как ни печально, но срок службы перемотанных якорей обычно короткий.
Определить, есть ли замыкание в обмотке статора, – дело достаточно простое. Необходимо вынуть щетки и произвести измерение сопротивления обмотки статора, а также сопротивления между корпусом и обмотками. Разница между сопротивлениями обмоток должна быть крайне незначительной. На корпус они звонится не должны. Если разница превышает 10%, тогда ту обмотку, которая с меньшим сопротивлением, меняем. Ее можно намотать и самостоятельно.
9 типичных неисправностей электродвигателя и способы их устранения
В этом обзоре мы рассмотрим типичные неисправности трехфазных асинхронных электродвигателей и способы их предупреждения и устранения.
Электрические неисправности электродвигателя
Электрические неисправности двигателя всегда связаны с обмоткой.
- Межвитковое замыкание может возникнуть при ухудшении изоляции в пределах одной обмотки. Возможные причины: перегрев обмотки, некачественная изоляция, износ изоляции вследствие вибрации. Определить межвитковое замыкание бывает сложно. Основной метод диагностики – сравнение сопротивления и рабочего тока всех трех обмоток. Первые симптомы межвиткового замыкания – повышенный нагрев двигателя и падение момента на валу. При этом по одной из фаз ток больше, чем по двум другим.
- Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии должной электрической защиты может возникнуть короткое замыкание и пожар.
- Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если неправильно выполнены заземление и защита от короткого замыкания. Однако в работе он будет смертельно опасен, так как его потенциал будет находиться под фазным напряжением.
- Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то двигатель резко теряет мощность и начинает перегреваться. При правильно выполненной защите двигатель отключится, поскольку ток по другим фазам будет повышен.
Для устранения большинства из этих поломок требуется перемотка двигателя.
Механические неисправности электродвигателя
Механические неисправности электродвигателя связаны с его конструкцией.
- Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В этом случае требуется замена подшипников, иначе неисправность приведет к перегреву и падению производительности двигателя.
- Проворачивание ротора на валу. Ротор может вращаться в магнитном поле статора, а вал будет неподвижен. Требуется механическая фиксация ротора на валу.
- Зацепление ротора за статор. Эта проблема связана с механической поломкой подшипников, их посадочных мест или корпуса двигателя. Кроме того, подобная неисправность приводит к повреждению обмотки статора. Практически не подлежит ремонту.
- Повреждение корпуса двигателя. Может происходить из-за ударов, повышенных нагрузок, неправильного крепления или низкого качества двигателя. Ремонт является трудоемким из-за трудностей соосной установки переднего и заднего подшипников.
- Проворачивание или повреждение крыльчатки обдува. Несмотря на то, что двигатель продолжит работать, он будет перегреваться, что существенно сократит срок его службы. Крыльчатку необходимо закрепить (для этого используется шпонка или стопорное кольцо) или заменить.
Аварийные ситуации при работе электродвигателя
Существуют неисправности, не связанные непосредственно с двигателем, но влияющие на его работу, характеристики и срок службы. Большинство этих неисправностей вызваны механической перегрузкой, увеличением тока, и, как следствие, перегревом обмоток и корпуса.
- Увеличение нагрузки на валу вследствие заклинивания привода либо приводимых механизмов.
- Перекос напряжения питания, который может быть вызван проблемами питающей сети либо внутренними проблемами привода.
- Пропадание фазы, которое может произойти на любом участке питания двигателя – от питающей трансформаторной подстанции до обмотки двигателя.
- Проблема с обдувом (охлаждением). Может возникнуть из-за повреждения крыльчатки двигателя при собственном охлаждении, из-за останова вентилятора внешнего принудительного охлаждения или вследствие значительного повышения температуры окружающей среды.
Способы защиты электродвигателя
Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.
1. Мотор-автоматы и тепловые реле
Мотор-автоматы (автоматы защиты двигателя) и тепловые реле используют для обнаружения превышения тока по одной или всем фазам двигателя. В случае превышения через некоторое время происходит отключение привода.
В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.
Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.
Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.
2. Электронные реле защиты двигателей
Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.
3. Термисторы и термореле
Когда по какой-то причине не сработала тепловая защита по перегрузке, последний рубеж обороны — термозащита. Внутрь обмотки устанавливается термочувствительный элемент (как правило, термистор или позистор), который меняет свое сопротивление в зависимости от температуры. При пересечении порога срабатывает соответствующая защита, и двигатель отключается.
Возможно применение более простых дискретных термореле (термоконтактов), которые размыкают контрольную или тепловую цепь, что приводит к аварийной остановке электродвигателя.
4. Преобразователи частоты
Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Кроме того, возможно ограничение момента и тока. В этом случае на двигатель будет подаваться напряжение с меньшим уровнем и частотой, если будет обнаружена перегрузка. При этом будет выдано соответствующее сообщение оператору, а двигатель может продолжать работать.
Также производители частотных преобразователей рекомендуют устанавливать защитный автомат на входе ПЧ, тепловое реле на выходе и термисторную защиту.
Другие полезные материалы:
Выбор электродвигателя для компрессора
Как определить параметры двигателя без шильдика?
Выбор мотор-редуктора для буровой установки
1. Включите двигатель :: City Technology – Engineering for Pre K
Обзор
Многие ученики знают, как соединить проводом батарею и лампочку, чтобы лампочка загорелась. В Уроке 1 студенты повторяют свои знания об электричестве и применяют их, чтобы заставить двигатель работать. Они узнают, как реверсировать двигатель и как использовать аккумулятор и двигатель для проверки изоляторов и проводов.Наконец, обсуждается переключение, ведущее к Switch Hunt: поиску переключателей дома.
Предварительная подготовка
- Настроить игрушку Penguin Race Toy
- Сделайте образец держателя батареи.
- Фотокопия рабочих листов: Урок 1, часть 1: Двигатели и часть 2: охота за переключателями. Скачать ниже.
- Приготовьте школьные тетради и полиэтиленовые пакеты.
Материалы
- Батарейка АА, провод и моторчик на каждого ученика
- Материалы держателя батареи: две бумажные застежки, картон 2 x 3 дюйма, лента и резинка для каждого ученика.
- Игрушка «Гонка пингвинов» – по одной на класс
- Рабочие листы для двигателей и Switch Hunt (Загрузить внизу этой страницы)
Процедура
Проверка электричества: Проведите краткий обзор электрических цепей в классе (см. Видео). Используйте диаграмму, чтобы определить, что необходимо для зажигания лампочки с батареей и проводом. (Если доступна игрушка Penguin Race Toy, вот как ее использовать в качестве модель электрической схемы.) Основные понятия Полная цепь: Батарея, провод и лампочка должны быть соединены, чтобы электроны могли проходить от батареи через лампочку и обратно к батарее. Напряжение : Напряжение – это мера количества энергии, которую выдает аккумулятор. Батарея дает электронам «энергетический удар», которого достаточно, чтобы они могли самостоятельно пройти через остальную часть цепи. В цепи электроны теряют свою энергию, когда они заставляют загораться лампочку, издают звук в зуммер или приводят в движение двигатель. Текущий: Ток – это мера того, сколько электронов проходит через цепь.
Что такое мотор: Сначала студенты проводят мозговой штурм, где они видели моторы. Они, вероятно, идентифицируют газовые двигатели, но поясняют, что здесь мы говорим о электродвигателях . В список «мозгового штурма», где можно найти электродвигатели, могут входить электрический вентилятор, стиральная машина, электрическая точилка для карандашей, пылесос или электричка.Затем спроси: Что делает мотор? Разработайте идею о том, что двигатель использует электрическую энергию, чтобы что-то вращаться. Он преобразует электрическую энергию в кинетическую энергию , что означает «энергия движения».
Включите двигатель: Раздайте каждому ученику провод, аккумулятор и мотор. Задача состоит в том, чтобы заставить двигатель работать. Спросите: Как вы узнаете, когда двигатель работает? Дайте студентам время поэкспериментировать и записать свои выводы в Рабочем листе. Важное примечание по безопасности: Как и другие батареи, они не могут вызвать электрошок. Однако другие виды электричества чрезвычайно опасны. Ни при каких обстоятельствах ученики не должны подключать что-либо к сетевой розетке или подключенному к розетке электроприбору. Затем представьте задачу заставить двигатель вращаться в обратном направлении. Просмотрите направления, в которых что-то может вращаться: по часовой стрелке (CW) или против часовой стрелки (CCW). Вот видео о направлении вращения. Раздайте студентам ленту.Каждый ученик должен прикрепить небольшой кусок ленты к своему двигателю и следить за направлением вращения: В какую сторону он движется, если смотреть с конца вала: по часовой стрелке или против часовой стрелки? В какую сторону он идет, если смотреть с противоположного конца: по часовой стрелке или против часовой стрелки? Что вам нужно сделать, чтобы он двигался в обратном направлении с каждого ракурса? Дайте студентам время поэкспериментировать и записать свои выводы в Рабочем листе.
Изготовить держатель батареи: Батарейный отсек значительно упрощает работу со схемами.Покажите студентам, как его сделать.
Изоляторы и проводники: Студенты могли обнаружить, что когда покрытая часть провода (а не металлический центр) касается батареи, двигатель не работает. Металлическая проволока – это проводник. Он пропускает электричество. Покрытая часть провода представляет собой изолятор. Это предотвращает протекание электричества. Попросите студентов набрать
- Подсоедините конец одного провода двигателя к аккумулятору. *
- Поместите различные предметы между концом второго провода двигателя и другим концом батареи.*
- Какие объекты позволяют двигателю работать? Это проводники. *
- Какие предметы не позволяют двигателю работать? Это изоляторы. *
- Студенты составляют список изоляторов и список проводников в своих научных тетрадях.
Класс собрания: Обсудите следующие темы и представьте домашнее задание:
- Батареи, нагрузки и преобразование энергии: Введите термин нагрузка для всего, что может использоваться электричеством. Вход в нагрузку – это электрическая энергия. Выход от нагрузки – это энергия в некоторой другой форме.
- Какая энергия переходит в двигатель? Какая форма энергии выходит?
- Какая энергия переходит в лампочку? Какая форма энергии выходит?
- Переключатели: Спросите студентов:
- В схемах, которые вы сделали до сих пор, что вам нужно было сделать, чтобы включить или выключить их?
- Когда вы включаете или выключаете телевизор, свет или фен, что вы делаете?
- Это обсуждение должно подготовить почву для домашнего задания Switch Hunt (см. Ниже).
Выходы:
- Электрическая цепь требует батареи (или другого источника), нагрузки и пути, который соединяет каждую сторону нагрузки с другой стороной батареи.
- Двигатель преобразует электрическую энергию в механическую или кинетическую (энергию движения).
- Чтобы изменить направление вращения двигателя, измените способ подключения проводов к аккумулятору, например, прикрепите красный провод к стороне «-» аккумулятора, а черный провод к клемме «+» вместо наоборот. .
- Слова-стена со словами: это слова, используемые в уроке, которые могут быть новыми для учащихся. Это не словарные слова, которые нужно запоминать, а слова, вывешенные на стене для использования учащимися в письменной и устной речи. Это слова в Уроке 1: электрическая цепь, батарея, источник, электроны, модель, ток, напряжение, полная цепь, электродвигатель, электрическая энергия, кинетическая энергия, направление движения, по часовой стрелке, против часовой стрелки, нагрузка, вход, выход, проводник. , изолятор.
Домашнее задание: Охота на переключателя.Предоставьте ученикам рабочий лист Switch Hunt, чтобы перечислить переключатели, которые они могут найти дома или в другом месте. Для каждого из них они должны указать, где он расположен, что он контролирует и что вы должны делать, чтобы с ним работать. Например, выключатель света расположен на стене, он контролирует, будет ли электрическая энергия течь к светильнику, и вы управляете им, толкая его вверх (включено) или потянув вниз (выключение). Другими способами управления переключателем могут быть поворот ручки, скольжение чего-либо или нажатие кнопки и удерживание ее.
– Инженерное мышление
Узнайте, как работает двигатель постоянного тока, чтобы понять основной принцип работы двигателя постоянного тока. Мы рассматриваем обычный ток, поток электронов, обмотку, якорь, ротор, вал, статор, щетки, щетки, клеммы, ЭДС, электромагниты, магнитное притяжение, а также детальные анимации того, как работает двигатель постоянного тока.
Прокрутите вниз, чтобы просмотреть руководство YouTube.
🎁 Получите БЕСПЛАТНО руководство по эксплуатации Fleming в формате PDF ➡️ Здесь
Детали двигателя постоянного тока
DC MotorДвигатели постоянного тока выглядят примерно так, как показано выше, хотя есть довольно много вариантов. Они используются для преобразования электрической энергии в механическую, и мы можем использовать их, например, в наших электроинструментах, игрушечных машинках и охлаждающих вентиляторах.
Используется для преобразования электрической энергии Когда мы смотрим на двигатель постоянного тока, мы сначала видим металлический защитный кожух, который образует статор.
На одном конце у нас есть конец вала, выступающий через кожух, на который мы можем прикрепить шестерни, лопасти вентилятора или шкивы.
На другом конце пластиковая заглушка с двумя выводами. Мы можем подключить к этим клеммам источник питания, чтобы вращать вал.
Если мы снимем кожух и заглянем внутрь двигателя, то обнаружим два магнита, которые образуют статор. Это постоянные магниты, которые образуют северный и южный магнитные полюса.
Магниты внутри двигателяПроходя через центр двигателя, мы видим стержень, который называется валом.Это используется для передачи механической энергии. К валу прикреплен ротор. Ротор состоит из нескольких дисков, которые соединены вместе, каждый диск имеет эти Т-образные рычаги, врезанные в них.
На Т-образные рычаги ротора обмотаны катушки, по которым проходит электрический ток от батареи. Когда ток проходит через катушки, он создает электромагнитное поле, мы контролируем синхронизацию и полярность этого магнитного поля, чтобы создать вращение.
Внутри двигателяКонцы катушек подключены к коммутатору.Коммутатор представляет собой кольцо, разделенное на несколько пластин, расположенных концентрично вокруг вала. Пластины разделены и электрически изолированы друг от друга, а также от вала. Концы каждой катушки подключаются к разным пластинам коммутатора, они делают это для создания цепи, и мы вскоре увидим это подробно.
Основы двигателя постоянного токаВнутри пластиковой задней крышки находятся щетки, рычаги и клеммы. Пластины коммутатора находятся между двумя щетками.
Щетки, рычаги и клеммыЩетки трутся о сегменты коммутатора, замыкая цепь.Затем электричество может течь через клемму, через плечо, в щетку, через сегмент коммутатора, в катушку, затем в другой сегмент коммутатора, в противоположную щетку и обратно в другую клемму.
Компоненты двигателя постоянного токаЭти компоненты представляют собой наш основной двигатель постоянного тока. Чтобы понять, как работает двигатель постоянного тока, нам нужно понять некоторые основы электричества, а также то, как работают компоненты внутри.
Основы электроэнергетики
Электричество – это поток электронов по проводу.Когда много электронов движется в одном направлении, мы называем это током. Электричество постоянного тока означает, что электроны текут только в одном направлении, от одного вывода батареи непосредственно к другому. Если перевернуть батарею, ток будет течь в обратном направлении.
Основы электричестваВнутри медного провода мы находим атомы меди. Обращаясь к каждому атому, мы находим свободные электроны, их называют свободными электронами, потому что они могут свободно перемещаться к другим атомам. Они естественным образом перемещаются к другим атомам сами по себе, но это происходит во всех направлениях случайным образом, что для нас бесполезно.Нам нужно, чтобы много электронов текло в одном направлении, и мы можем сделать это, приложив разность напряжений к проводу. Напряжение подобно давлению заставляет электроны двигаться. Электроны текут только по замкнутому контуру. Они всегда пытаются вернуться к своему источнику, поэтому, когда мы даем им путь, такой как провод, они будут проходить через него. Даже если мы временно создадим путь, они воспользуются им, как только он станет доступен. Мы можем разместить компоненты на этом пути, чтобы они проходили через него и выполняли работу за нас, например, освещали лампу.
Атомы медиВ этих анимациях мы будем использовать два термина. Это поток электронов и обычный ток. Электронный поток – это то, что на самом деле происходит с электронами, протекающими от отрицательного вывода к положительному выводу. Обычный ток движется в противоположном направлении от положительного к отрицательному. Традиционный ток был исходной теорией, и она все еще широко преподается и используется сегодня, потому что ее легче понять. Просто помните о двух терминах и о том, какой из них мы используем.
Электронный поток и условный токПостоянные магниты
МагнитКак вы, наверное, уже знаете, магниты поляризованы с северного и южного концов. Эти типы известны как постоянные магниты, потому что их магнитное поле всегда активно. Находясь рядом с другим магнитом, одинаковые концы отталкиваются, а противоположные концы притягиваются. Итак, мы получаем эти толкающие и тянущие силы, вызванные магнитным полем магнитов.
Линии магнитного поляМагниты имеют эти изогнутые линии магнитного поля, которые проходят от северного полюса к южному и простираются, изгибаясь вокруг внешней стороны.Магнитное поле наиболее сильное на концах, мы видим это, потому что силовых линий магнитного поля больше, плотно прилегающих друг к другу.
Мы действительно можем увидеть магнитное поле магнита, посыпав магнит железными опилками.
Магнитное поле магнита с использованием железных наполнителейКогда два магнита находятся в непосредственной близости друг от друга, их магнитные поля взаимодействуют. Два одинаковых конца будут отталкивать друг друга, и их силовые линии магнитного поля не будут соединяться. Однако две противоположные полярности будут притягиваться друг к другу, и силовые линии магнитного поля сойдутся в область высокой концентрации.
Магнитное поле противоположных концов объединится.Поэтому мы помещаем два магнита противоположной полярности в статор двигателя, чтобы сформировать сильное магнитное поле через ротор.
Электромагниты
Когда мы подключаем провод к положительной и отрицательной клемме батареи, ток электронов будет течь через провод от отрицательной клеммы к положительной.
Когда электроны проходят через медную проволоку, они создают вокруг нее электромагнитное поле.Мы действительно можем это увидеть, поместив несколько магнитов вокруг провода. Когда мы пропускаем электричество по проводу, магниты вращаются. Когда мы меняем направление тока на противоположное, магниты также меняют направление и выравнивают в противоположном направлении.
Итак, мы можем создать магнитное поле, которое действует так же, как постоянный магнит, за исключением того, что с помощью этого типа мы можем выключить магнитное поле.
Проблема с электромагнитным полем в проводе в том, что оно довольно слабое. Но мы можем сделать его намного сильнее, просто свернув провода в катушку.Каждый провод по-прежнему создает электромагнитное поле, но они объединяются в гораздо большее и более сильное магнитное поле, которое мы используем для создания катушек в роторе.
Сделайте электромагнитное поле сильнее, свернув провода в катушку.Обмотки
Катушки с проволокой называются обмотками. Самый простой двигатель постоянного тока имеет всего одну катушку. Это более простой дизайн; Однако проблема в том, что они могут выравниваться магнитным полем, что блокирует двигатель и останавливает его вращение. Чем больше у нас наборов катушек, тем плавнее будет вращение, это особенно полезно для низкоскоростных приложений.Поэтому мы обычно находим в двигателе как минимум три катушки, чтобы обеспечить плавное вращение.
Чем больше наборов катушек, тем плавнее вращениеКаждая катушка расположена под углом 120 градусов друг от друга. Между каждой катушкой находим пластину коммутатора. Каждая катушка соединена с двумя пластинами коммутатора. Пластины электрически изолированы друг от друга, за исключением того, что они соединены через катушки. Итак, если мы подключим положительную и отрицательную клеммы к двум пластинам коммутатора, мы сможем замкнуть цепь, ток будет течь, и в катушках будет генерироваться магнитное поле.
Основы катушкиРотор
Ротор, или якорь, состоит из нескольких металлических дисков, соединенных вместе.
РоторКаждый диск электрически изолирован друг от друга лаковым покрытием. Если бы якорь был сплошным куском металла, внутри закручивались бы большие вихревые токи. Они вызваны наведенной электродвижущей силой или ЭДС. Эти вихревые токи влияют на КПД двигателя. Чтобы уменьшить их, инженеры сегментируют ротор на изолированные диски, вихревые токи по-прежнему будут течь, но они будут намного меньше.Чем тоньше диск, тем меньше будет вихревой ток.
Более тонкий диск; Меньший вихревой ток будетКоммутатор
Коммутатор состоит из небольших медных пластин, которые крепятся к валу. Каждая пластина электрически изолирована друг от друга, а также от вала. Конец каждой катушки соединен с другой пластиной коммутатора. В этой конструкции каждая пластина коммутатора соединена с 2 катушками.
Пластины подают электричество к катушкам.Чтобы передать электричество от батареи к пластинам, у нас есть несколько щеток, которые трутся о пластины. Держатели щеток удерживают их на месте. Когда мы замыкаем цепь, электричество будет течь в сегменты коммутатора через щетки, а затем течь в 1 или 2 катушки, когда становится доступным путь.
Ток между щеткамиВ определенных точках вращения щетки соприкасаются с двумя пластинами. Это создаст дугу, и при этом мы получим небольшие вспышки синего света.Дуги из-за трения со временем разрушат кисть.
Правило для левой руки Flemings
Что-то, что мы должны понять, – это правило левой руки Флемингса, и для этого нам нужно использовать левую руку в этой забавной форме. Вы должны помнить, что правило Флемингса использует ОБЫЧНЫЙ ТОК, а не поток электронов. Обычный ток – от положительного до отрицательного.
Мы используем правило левой руки Флемингса, чтобы определить, в каком направлении катушка будет толкать и тянуть, поскольку электромагнитное поле взаимодействует с магнитным полем постоянного магнита.
Если мы посмотрим на провод и представим, какой конец подключен к положительному или отрицательному, мы можем определить направление силы.
Для этого вытяните левую руку и представьте, что это большой палец, а затем пальцы 1, 2, 3 и 4. Сведите пальцы 4 и 3. Укажите палец 2 вправо, палец 1 направьте прямо вперед и направьте большой палец вверх.
Ваши 2 и пальца указывают в направлении обычного тока от положительного к отрицательному. Палец 1 st указывает на магнитное поле постоянного магнита с севера на юг.Ваш большой палец укажет направление движения.
Правило левой руки ФлемингаМы сделали руководство в формате PDF, в котором есть несколько примеров, которые помогут вам это запомнить.
🎁 Получите БЕСПЛАТНО руководство по эксплуатации Fleming в формате PDF ➡️ Здесь
Итак, если мы посмотрим на этот пример, обычный ток идет к нам, а магнитное поле идет слева направо. Итак, мы направляем наши 2 и пальца к себе, а 1 -й палец в направлении магнитного поля. Таким образом, наш большой палец направлен вверх, что означает, что сила, действующая на провод, будет перемещать его вверх.
Восходящая силаВ этом примере мы видим, что обычный ток в проводе меняет направление, поэтому он движется от нас. Поэтому мы переворачиваем руку так, чтобы наши 2 и пальца были направлены от нас. Наш первый палец по-прежнему указывает в направлении магнитного поля, а большой – вниз. Это означает, что сила, действующая на провод, будет перемещать его вниз.
Сила, направленная внизЕсли мы свернем провод в катушку, как теперь будут действовать силы? Что ж, нам нужно рассматривать катушку как две половинки.В левой половине обычный ток течет от нас, поэтому наша рука переворачивается, и мы видим, что мы получаем направленную вниз силу. Справа обычный ток течет к нам, поэтому сила направлена вверх. Следовательно, у нас есть объединенная сила, направленная вверх и вниз, поэтому катушка будет вращаться. Итак, теперь мы видим, как вращается мотор, давайте рассмотрим подробнее.
Левая сторона Правая сторонаРабота
Хорошо, давайте рассмотрим работу двигателя постоянного тока в замедленном режиме. Мы просто укажем на основные части, это северный и южный магниты, которые концентрируют магнитное поле через центр.В центре мы находим вал, прикрепленный к валу, у нас есть ротор, обернутый вокруг ротора, у нас есть катушки, соединяющие катушки, у нас есть коммутатор и обеспечивающий питание коммутатора, у нас есть щетки и щетки. Затем у нас есть блок питания.
Ротор, катушки и коммутатор будут вращаться, все остальное останется неподвижным.
Деталь двигателя постоянного токаМы собираемся рассмотреть протекание обычного тока и силы, возникающие на длинных сторонах каждой катушки.Мы также обозначим эти катушки 1,2 и 3. И пластины коммутатора a, b и c.
Позиция 1- В этом первом положении обычный ток будет течь от плюса батареи к пластине A, затем через обе катушки 1 и 3, через пластины B и C в правую щетку и обратно к батарее. Правая сторона катушки 1 имеет направленную вниз силу, а левая сторона – восходящую силу. Катушка 3 имеет восходящую силу с этой стороны и нисходящую силу с этой стороны. И так оно вращается.
2.Теперь ток течет через пластину A только в катушку 1, а затем выходит через пластину B. Это создает восходящую силу слева и нисходящую силу справа.
Позиция 33. Теперь ток течет через пластины A и C через катушки 1 и 2 в пластину B. Катушка 1 имеет направленную вверх силу слева и направленную вниз справа. Катушка 2 имеет направленную вверх силу слева и направленную вниз справа.
Позиция 44. Теперь ток течет через пластину c в катушку 2 и на пластину b. левая сторона катушки 2 имеет направленную вверх силу, а правая – направленную вниз.
Позиция 55. Теперь ток течет через пластину c в катушки 3 и 2 и выходит через пластины a и b. это дает нам наши восходящие и нисходящие силы на катушки.
Позиция 66. Теперь ток течет через пластину c в катушку 3, а затем выходит через пластину a, создавая наши восходящие и нисходящие силы.
Позиция 77. Теперь ток течет через пластины c и B, через катушки 3 и 1 и выходит через пластину a, давая нам силы с каждой стороны.
Позиция 88. Теперь ток течет через пластину b в катушку 1 и выходит через пластину a, которая создает наши силы.
Позиция 99. Теперь ток течет через пластину b в катушки 2 и 1, затем выходит через пластины c и a.
Позиция 1010. Теперь ток течет через пластину b в катушку 2, а затем выходит через пластину c.
Позиция 1111. Теперь ток течет через пластины B и A в катушки 2 и 3, а затем выходит через пластину c.
Это повторяется снова и снова, что дает нам вращающую силу, которую мы используем для вращения вентиляторов, шестерен, колес и шкивов.
Потоки тока, создающие силы Если мы перевернем источник питания, мы изменим направление тока, и это изменит направление сил и, следовательно, направление вращения, так что мы используем магнитные силы и электричество для создания простого двигателя.
Типичные причины отказов обмоток электродвигателей и способы их предотвращения – Accelix
Электродвигатели служат важнейшим компонентом любого объекта. Однако электродвигатели могут быть подвержены любому количеству проблем, которые приводят к неисправностям и сбоям электродвигателей, что может нарушить бизнес-операции, снизить производительность и отрицательно повлиять на прибыль компании.
Тем не менее, мониторинг состояния электродвигателей обычно не является приоритетом для большинства организаций.Важность реализации программ профилактического обслуживания может дать огромные преимущества при обнаружении, выявлении и оценке неисправностей электродвигателя. Без надлежащей видимости увеличивается вероятность поломки двигателя, что приведет к неожиданным простоям.
Для обеспечения бесперебойной работы критически важно внедрение программ профилактического обслуживания для обнаружения, выявления и оценки участков электродвигателей, которые подвержены отказам. Для этого понимание основных причин отказа двигателя имеет решающее значение для определения наилучшего курса действий в случае отказа.В рамках программы регулярного технического обслуживания инструменты диагностики и обслуживания нового поколения, включающие в себя подключенные инструменты, датчики и программное обеспечение, предлагают лучший способ контролировать состояние электродвигателя.
Причины выхода из строя обмоток электродвигателя
Что вызывает отказ электродвигателей? Неблагоприятные условия эксплуатации – электрические, механические или экологические – могут значительно сократить срок службы электродвигателя. Управление электромеханики (EASA) приводит множество причин отказов обмоток электродвигателей, в том числе:
- Электрические сбои, включая однофазные сбои обмотки (соединение звездой или треугольником), вызванные размыканием из-за перегоревшего предохранителя, открытого контактора, обрыва линии питания или плохого соединения, которое нарушает подачу питания на двигатель.
- Нарушения изоляции, в том числе обмотка, закороченная между фазами или между витками, закороченная катушка, заземленная на краю разъема или в разъеме или закороченное соединение – все это обычно вызывается загрязнениями, истиранием, вибрацией или скачком напряжения.
- Термическое ухудшение изоляции в одной фазе обмотки статора, которое может быть результатом неравномерного напряжения между фазами из-за несбалансированной нагрузки на источнике питания, плохого соединения на клеммах двигателя или контакта с высоким сопротивлением; или термическое повреждение всех фаз обмотки статора, как правило, из-за требований к нагрузке, превышающих номинальные параметры двигателя, или из-за очень высоких токов в обмотке статора из-за блокировки ротора.Это также может произойти в результате частых запусков или реверсирования.
- Люфт и выход из строя подшипников. Другая распространенная неисправность возникает из-за механического трения, которое может быть результатом ослабления вала двигателя и / или подшипников двигателя. Наиболее распространенные механические неисправности – это дисбаланс вала, неплотность, несоосность и подшипники. Часто эти механические неисправности связаны: дисбаланс, неплотность или несоосность вала, если их не исправить, вызовут повышенные нагрузки на подшипники, что приводит к быстрому износу подшипников.
Профилактическое обслуживание и диагностика Ключ к предотвращению выхода из строя обмотки электродвигателя
Процентная ставка (ROI) и преимущества надежности и обслуживания на основе состояния были известны в течение десятилетий, но только недавно объединились, чтобы создать методы прогнозного контроля, портативный мониторинг состояния, удаленное управление и мониторинг и программное обеспечение для компьютеризированного управления техническим обслуживанием SaaS (CMMS ) доступный и экономичный. Эти инструменты обслуживания и обеспечения надежности нового поколения поддерживают создание, сбор и консолидацию данных от датчиков, инструментов и существующих систем с возможностью удаленного мониторинга через подключенные устройства, включая настольный компьютер, планшет или смартфон.
Преимущества этих инструментов:
- Облачная CMMS обеспечивает гибкий и простой в использовании метод управления активами, управления рабочими процессами и отчетности.
- Подключенные инструменты и датчики предлагают всем ключевым заинтересованным сторонам доступ к нужным им данным, включая руководителей предприятий, стремящихся поддерживать работоспособность двигателей, инженеров, которые полагаются на точные данные для мониторинга состояния оборудования, и менеджеров по техническому обслуживанию, пытающихся опережать отказы двигателей .
- Инструменты интеграции данных и мобильности объединяют сторонние системы для подключения отделов технического обслуживания объектов к операционным показателям.Сочетание интеграции данных, управления данными и мобильного интерфейса дает обслуживающему и операционному персоналу возможность сопоставлять информацию об автоматизации процессов с данными технического обслуживания и инвентарными записями.
Использование этих инструментов и технологий может дать важную информацию о состоянии электродвигателей. После выявления и понимания основных причин внедрение процедур профилактического обслуживания посредством диагностических испытаний – лучший способ помочь устранить отказы обмоток электродвигателя.
Для диагностики проблемы в каждой категории есть три шага, которые помогут быстро и эффективно управлять рабочим процессом ремонта:
- Шаг 1: Просмотрите свои машины, чтобы определить, какие из них исправны, а какие могут иметь проблемы. Используйте простые инструменты для проверки, такие как измерители вибрации и тепловизоры, которые дают быстрые ответы.
- Шаг 2: Выполните поиск и устранение неисправностей, чтобы выявить основную причину проблемы и проверить машину на наличие неисправностей с указанием серьезности неисправности и рекомендаций по ремонту.Тестеры вибрации должны использоваться для механических неисправностей, а анализаторы двигателей – для электрических неисправностей.
- Шаг 3: Устраните основную причину проблемы. Замените подшипники, отрегулируйте вал и / или выровняйте валы.
Перед возвратом машины в эксплуатацию произведите быструю проверку, чтобы убедиться, что ремонт завершен.
Если вы подозреваете, что проблема связана с обмоткой электродвигателя, существует три категории измерений, помогающих определить вероятный источник неисправности – электрический, механический и тепловой.
Чтобы получить полную картину, оцените вероятные режимы отказа и сопоставьте правильные технологии обслуживания с наиболее вероятным режимом отказа. Программное обеспечение для обслуживания и устройства для сбора данных, которые интегрируются со сторонними поставщиками решений, идеально подходят для этого.
Проблемы с электрикой
ScopeMeter и датчик качества электроэнергии могут помочь в поиске неисправностей в приводе и выходе привода, распределении мощности, выявлении потерь энергии и повышении эффективности.Эти инструменты могут оценивать электронные гармоники, исследования искажений и нагрузки.
Тестер двигателя и изоляции обеспечивает безопасную работу, продлевает срок службы электрических систем и двигателей. Это устройство проверяет скорость, крутящий момент, мощность и КПД двигателя, а также проверяет отсутствие повреждений изоляции двигателя.
Проблемы с перегревом
Инфракрасные тепловизоры – лучшая технология для обнаружения горячих точек в распределительных устройствах и контроллерах двигателей, для проверки процессов и механических активов.Тепловизоры проверяют неисправные соединения, перегретые подшипники и уровни в баке.
Механические проблемы
Инструменты для вибрации и центровки – лучшая технология для диагностики механических неисправностей вращающихся машин. Они могут проверить правильность центровки валов, дисбалансы, люфт, перекос и подшипники.
Владельцы, операторы и менеджеры предприятий могут получить выгоду как от интегрированных данных, так и от управления техническим обслуживанием в единой системе. Группы технического обслуживания могут рентабельно внедрить эту технологическую платформу для легкого удовлетворения своих потребностей, используя свой существующий персонал и масштабируясь по мере необходимости, без дорогостоящей модернизации и крупных инвестиций в ИТ-инфраструктуру.Использование этих инструментов предлагает предприятиям максимальную гибкость и мощность для управления исправностью обмоток электродвигателей, чтобы поддерживать все активы организации в рабочем состоянии без простоев.
Катушка якоря– обзор
Бесщеточные приводы двигателей
Эти двигатели пытаются электронным образом копировать действие щеток и коммутатора на постоянном токе. машина. Такое расположение гарантирует, что токи якоря-катушки меняются (коммутируются), когда катушки вращаются под влиянием одной полярности поля на противоположную полярность.Таким образом, общая сила и крутящий момент сохраняют одинаковое направление. Коммутатор и щетки в постоянном токе. машина действует как датчик положения вала. Якорь и мДС поля имеют фиксированное угловое смещение δ , иногда называемое углом крутящего момента (φ fa ), что схематично показано на рисунке 7.25a, где предполагается, что якорь намотан таким образом, что его общая мДС. идет в том же направлении, что и ток в щетке.
Рисунок 7.25. Бесщеточный d.c. двигатель, (а) Нормальный постоянный ток машина; (б) якорь на статоре; (c) схема управления главной цепью; (d) крутящий момент.
Для полностью бесщеточной машины, для которой поле должно быть постоянным магнитом, катушки якоря намотаны на неподвижный (внешний) элемент (рисунок 7.25b) и соединены через полупроводниковые переключатели, которые активируются из положения вала ( Рисунок 7.25c), так что их токи аналогичным образом меняются на противоположные, чтобы соответствовать полярности полюса вращающегося поля. Таким образом, частота переключения автоматически синхронизируется со скоростью вращения вала, как при обычном d.c. мотор. При δ = 90 ° крутящий момент пропорционален F a × F f и, при любом другом угле, предполагая синусоидальную m.m.f. распределений крутящий момент пропорционален F a F f sin δ . При движении ротора δ изменяется от 0 ° до 180 °; затем питание переключается, чтобы снова вернуть δ к нулю, и цикл повторяется. Таким образом, крутящий момент будет пульсировать, как однофазная выпрямленная синусоида (рисунок 7.25г). Это устройство эквивалентно постоянному току. машина только с двумя сегментами коммутатора и имеет нулевое минимальное значение крутящего момента. Обычно имеется не менее трех выводов от трехфазной обмотки, которые в свою очередь питаются от трехфазного мостового инвертора. Это срабатывает под управлением детектора положения, так что его выходная частота автоматически регулируется скоростью вала. Пульсации крутящего момента теперь будут похожи на форму выходного сигнала трехфазного мостового выпрямителя; поскольку нулевой крутящий момент отсутствует, пусковой крутящий момент доступен всегда.Профилирование поверхности полюса магнита дополнительно улучшает плавность крутящего момента в течение полного цикла. Моменты переключения можно легко изменить, чтобы получить эффекты, подобные смещению оси кисти, которое иногда в умеренной степени используется на обычном постоянном токе. машины. См. Пример 3.1. Характеристики скорости / нагрузки бесщеточной машины аналогичны характеристикам постоянного тока. машина с фиксированным возбуждением, то есть скорость немного падает с увеличением крутящего момента.
Бесщеточный постоянный ток приводы обычно используются для приложений с позиционным управлением в области промышленного управления.Поскольку продолжительность цикла зависит от движения ротора, ШИМ обычно не применяется к этим приводам. Поток ротора создается постоянными магнитами на роторе, обеспечивая трапециевидную МПС. Вариант с фасонными магнитами для создания синусоидальной МПД. известен как «бесщеточный переменный ток». Бесщеточная машина обычно питается от трехфазного инвертора, и регенерация снова становится простой, если предоставляется подходящая схема силового электронного преобразователя. Несмотря на то, что значительные исследовательские усилия были затрачены на повышение скорости отклика или устранение необходимости в дорогостоящих датчиках на бесщеточных d.c. В большинстве промышленных контроллеров используются простые датчики вала на эффекте Холла и фиксированные углы проводимости с переменным постоянным током. напряжение связи. Коммерческие единицы часто включают в себя контроллеры PI или PID (стр. 197).
Электродвигатели: что это такое и как они работают?
Электродвигатели используются постоянно для питания устройств, которые мы используем каждый день. Будь то двигатель вентилятора, охлаждающий вас в жаркий день, двигатель воздуходувки для листьев или электромобиль, без электродвигателей, мир был бы совсем другим.
Что такое электродвигатель?
Электродвигатель – это машина, которая может преобразовывать электрическую энергию в механическую (в частности, кинетическую энергию или энергию движения). Обычно это достигается за счет использования взаимосвязи между электричеством и магнетизмом.
Электродвигатели могут питаться от переменного тока, например, от сетевой розетки, или постоянного тока, например от аккумулятора.
Как работает электродвигатель?
Основной принцип, лежащий в основе электродвигателя, заключается в том, что катушка с проволокой должна свободно вращаться в присутствии внешнего магнитного поля.
Когда ток проходит через катушку с проволокой, взаимодействие между током и полем создает крутящий момент, заставляющий катушку вращаться. Это вращение можно использовать, например, для вращения шин игрушечной машины, или оно может приводить в движение коленчатый вал и преобразовывать вращательное движение в поступательное.
Как сделать свой собственный электродвигатель
Иногда лучший способ понять, как работает двигатель, – это построить его самостоятельно. Вы можете построить простой двигатель постоянного тока из обычных предметов домашнего обихода.
Посылая ток через провод тщательно продуманной формы в присутствии магнитного поля, мы можем создать часть нашей цепи, которая будет вращаться, позволяя нам преобразовывать электрическую энергию в механическую.
Сделайте катушку из провода, несколько раз обернув обмотку вокруг батареи 1,5 В с элементом “D” (батарея служит формой; снимите катушку, когда закончите намотку). Оставьте примерно 2-3 см торча с обоих концов. Убедитесь, что все витки намотаны в одном направлении.
Катушка должна быть хорошо сбалансирована на этих концах, чтобы она могла легко поворачиваться при установке в подставку, предусмотренную скрепками. Вы должны удерживать катушку вместе, скручивая последнюю петлю вокруг катушек, чтобы намотать катушки вместе.
Когда катушка находится в показанном положении, с одного из концов провода, который будет контактировать со скрепками, изоляция должна быть удалена только с нижней стороны. Другой конец должен быть полностью обнажен в месте контакта со скрепкой.Таким образом, примерно половину времени через катушку будет проходить ток.
Согните две скрепки так, чтобы они удерживали катушку, как показано, и закрепили их на месте.
Поместите постоянный магнит под катушку.
Подключите источник питания, например батарею D, которую вы использовали в качестве формы, к скрепкам.
Попробуйте запустить двигатель, слегка покрутив катушку. Попробуйте, настройте, попробуйте, настройте, попробуйте и снова настройтесь, пока не добьетесь успеха!
Как это работает?
Если катушка ориентирована, как показано на изображении, ток проходит через катушку по часовой стрелке, а магнитное поле направлено вверх, тогда наверху катушки будет ощущаться сила, указывающая наружу (относительно экрана компьютера, на котором вы это смотрите. ), и нижняя часть катушки почувствует направленную внутрь силу.Это заставит катушку вращаться.
Когда ваша катушка повернется на 180 градусов, ток будет течь против часовой стрелки. Однако, поскольку вы сняли половину провода, ток не будет течь, пока катушка перевернута. Это сделано для того, чтобы у нас не возникла сила в противоположном направлении, заставляющая катушку реверсировать, а не продолжать.
При условии, что первоначальный толчок из-за поля достаточно сильный, катушка перевернется на 180 градусов, сделав полный оборот, к концу которого ток течет таким образом, что сила заставляет ее сделать еще один поворот, как и раньше. .Если все достаточно хорошо сбалансировано, мотор должен вращаться довольно быстро и долго.
Запчасти для коммерческих двигателей
К компонентам промышленного двигателя относятся следующие:
Якорь – это силовая часть двигателя. Он может быть расположен на роторе (вращающаяся часть) или на статоре (неподвижная часть). Якорь состоит из катушек проволоки, которые взаимодействуют с магнитным полем при прохождении тока.В нашем самодельном двигателе катушка была якорем и ротором, а скрепки – статором.
Щетки позволяют передавать ток на ротор при его вращении. В нашем самодельном моторе точка контакта скрепок и медного провода служила той же цели.
Коммутатор служит для периодического изменения направления тока. Это необходимо для двигателя постоянного тока или двигателя постоянного тока, но обычно не требуется для двигателя переменного тока или двигателя переменного тока, потому что ток уже меняет направление.Мы добились включения / выключения тока в нашем двигателе, оставив одну сторону контактного провода изолированной.
Магнит поля или Катушки возбуждения (электромагниты) создают необходимое магнитное поле.
Ось представляет собой стержнеобразную деталь, выровненную с осью вращения ротора, так что она вращается вместе с ротором. Горизонтальные концы нашего самодельного мотора были по сути осью.
Шестерня – это небольшая шестерня, которая может использоваться для передачи движения двигателя другому объекту или части машины.
Типы электродвигателей
Существует множество различных типов электродвигателей. Хотя сначала они подразделяются на двигатели переменного и постоянного тока, возможны и многие другие варианты. Будь то тяжелые, легкие, сельскохозяйственные или общие, здесь перечислены лишь некоторые из множества типов.
Однофазный двигатель работает от одного источника переменного тока.
Трехфазный двигатель – это двигатель, который приводится в действие тремя переменными токами одинаковой частоты, не совпадающими по фазе друг с другом.
Синхронный двигатель – это двигатель, период вращения которого кратен частоте переменного тока.
В асинхронном асинхронном двигателе или электрический ток в роторе создается за счет электромагнитной индукции из магнитного поля обмотки статора.
Шаговый двигатель – это бесщеточный двигатель постоянного тока, который прерывает полный оборот на равные ступени. Мотор может двигаться и удерживаться на любом из шагов.
Электрогенераторы
Электрогенераторы являются реверсом электродвигателей; они берут механическую энергию и преобразуют ее в электрическую. Это можно сделать разными способами.
Например, энергия ветра может использоваться для вращения лопастей вентилятора ветрогенератора, которые вращают ротор внутри генератора, и возникающая в результате электромагнитная индукция вызывает протекание тока. Подобным образом работают гидроэлектростанции: падающая вода вращает лопасти турбины.
Электродвигатели: неисправности электродвигателей
НЕИСПРАВНОСТИ в электродвигателях | |
Источник информации:
Руководство по установке и обслуживанию
Большая часть неисправностей, влияющих на нормальную работу электропривода. двигателей можно избежать с помощью технического обслуживания и мер предосторожности профилактического характера.
Широкая вентиляция, чистота и тщательный уход – главные факторы.Еще один важный Фактором является незамедлительное внимание к любой неисправности, о чем свидетельствует вибрация, стук вала, снижение сопротивления изоляции, дым или огонь, искрение или необычный износ контактных колец или щеток, резкие перепады температур подшипников.
При возникновении отказов электрического или механического характера первым делом необходимо принято это остановить двигатель и последующий осмотр всех механических и электрических частей установки.
В случае пожара необходимо отключить установку от электросети, которая обычно выполняется выключением соответствующих переключателей.
В случае возгорания в самом двигателе необходимо принять меры для его сдерживания и удушения. закрытие вентиляционных отверстий.
Для тушения пожара следует использовать сухие химические вещества или огнетушители с углекислым газом, а не воду.
1 – ОТКАЗЫ СТАНДАРТНЫХ ТРЕХФАЗНЫХ ДВИГАТЕЛЕЙ
Вследствие широкого использования в промышленности асинхронных трехфазных двигателей, которые чаще ремонтируются в цехах завода, далее следует сводка возможных неисправностей и их вероятные причины, обнаружение и способы устранения.
Двигатели обычно проектируются с изоляцией класса B или F и для температур окружающей среды до 40 ° С.
Большинство дефектов обмотки возникает при превышении температурных пределов из-за перегрузки по току. по всей обмотке или даже только по ее частям. Эти дефекты обозначены потемнение или обугливание изоляции провода.
1.1 – КОРОТКОЕ ЗАМЫКАНИЕ МЕЖДУ ОБОРОТАМИ
Короткое замыкание между витками может быть следствием двух совпадающих изоляции дефекты, или результат дефектов, возникших одновременно на двух соседних проводах.
Поскольку провода проверяются наугад, даже самые качественные провода могут иметь слабые места. Слабые места могут В некоторых случаях допускайте скачок напряжения до 30% во время испытания на короткое замыкание между витками, и позже выходят из строя из-за влажности, пыли или вибрации.
В зависимости от интенсивности короткого замыкания становится слышен магнитный гул.
В некоторых случаях асимметрия трехфазного тока может быть настолько незначительной, что защита двигателя устройство не реагирует. Короткое замыкание между витками и фазами на массу из-за изоляции выход из строя случается редко, и даже в этом случае он почти всегда возникает на ранних этапах работы.
1.2 – ОТКАЗ ОБМОТКА
a) Одна сгоревшая фаза обмотки
Эта неисправность возникает, когда двигатель работает по схеме треугольника и ток пропадает в одном основном проводе.
В оставшейся обмотке ток возрастает от 2 до 2,5 раз с одновременное заметное падение скорости, если двигатель остановится, ток увеличится с 3,5 до В 4 раза больше номинального значения.
В большинстве случаев этот дефект связан с отсутствием защитного выключателя или иначе переключатель установлен слишком высоко.
b) Две перегоревшие фазы обмотки
Этот отказ возникает, когда пропадает ток в одном основном проводе и обмотка двигателя со звездой. Одна из фаз обмотки остается обесточенной, в то время как другие поглощают полную напряжение и несут чрезмерный ток. Скольжение почти удваивается.
c) Три фазы перегоревшей обмотки
Возможная причина 1: Двигатель защищен только предохранителями; перегрузка мотор будет причиной неисправности.Следовательно, прогрессирующее обугливание проволоки и изоляция приводит к короткому замыканию между витками или короткому замыканию на раму.
Защитный выключатель, расположенный перед двигателем, легко решит эту проблему.
Возможная причина 2: Двигатель неправильно подключен.
Например: Двигатель с обмотками на 220 / 38V подключается по схеме звезда-треугольник. переключиться на 38OV. Потребляемый ток будет настолько высоким, что обмотка перегорит через несколько секунд. секунд, если предохранители или неправильно установленный защитный выключатель не срабатывают быстро.
Возможная причина 3: Переключатель звезда-треугольник не коммутируется, и двигатель продолжает работать в течение некоторого времени, подключенного к звезде, в условиях перегрузки.
Поскольку он развивает только 1/3 своего крутящего момента, двигатель не может достичь номинальной скорости. Повышенное скольжение приводит к более высоким омическим потерям из-за эффекта Джоуля. Как ток статора, согласованный с нагрузкой, не может превышать номинальное значение для соединения треугольником, защитный выключатель сработает. не реагировать.
Из-за повышенных потерь в обмотке и роторе двигатель перегреется и обмотка Выгореть.
Возможная причина 4: Отказы по этой причине возникают из-за тепловой перегрузки, должный к слишком большому количеству запусков при прерывистой работе или к слишком долгому циклу запуска.
Безупречное функционирование двигателя, работающего в этих условиях, обеспечивается только тогда, когда соблюдаются следующие значения:
а) количество пусков в час;
б) пуск с грузом или без груза;
в) механический тормоз или инверсия тока;
г) ускорение вращающихся масс, связанных с валом двигателя;
e) момент нагрузки vs.скорость при разгоне и торможении.
Постоянное усилие, прилагаемое ротором во время прерывистого пуска, приводит к более тяжелому потери, провоцирующие перегрев.
При определенных обстоятельствах существует вероятность повреждения обмотки статора. с двигателем на холостом ходу в результате нагрева двигателя. В таком случае двигатель с контактным кольцом рекомендуется, так как большая часть тепла (из-за потерь в роторе) рассеивается в реостат.
1.3 – НЕИСПРАВНОСТИ РОТОРА
Если двигатель, работающий в условиях нагрузки, издает шум различной интенсивности и уменьшение частоты при увеличении нагрузки, причина, в большинстве случаев, будет несимметричная обмотка ротора.
В двигателях с короткозамкнутым ротором причиной почти всегда будет поломка одного или нескольких стержней ротора; одновременно могут регистрироваться периодические колебания тока статора. Как правило, этот дефект появляется только в литых или литых алюминиевых клетках.Сбои из-за точечного нагрева в том или ином стержней в стопке ротора идентифицируются синим цветом в затронутых точках.
При выходе из строя различных смежных стержней могут возникать вибрации и вздрагивание, как если бы из-за дисбаланса и часто интерпретируются как таковые. Когда пакет ротора приобретает синий цвет или фиолетовая окраска, это признак перегрузки.
Это может быть вызвано слишком большим скольжением, слишком большим количеством пусков или слишком продолжительными циклами пуска. Этот Выход из строя также может возникнуть из-за недостаточного сетевого напряжения.
1.4 – НЕИСПРАВНОСТИ КОЛЬЦА РОТОРА
Обрыв одной фазы обмотки ротора обнаруживается сильным вибрационным шумом. который меняется в зависимости от скольжения и, кроме того, более сильного периодического тока статора колебания.
Предполагая, что два контактных кольца были покрыты пятнами из-за искрения щеток, а третье остается невредимым, причина чаще всего может возникать из-за разрушения сварного шва, вызванного перегрузкой осуществляется за счет связи между витками обмотки ротора.
Возможно, но редко, что разрыв мог произойти в соединении между обмотка и контактное кольцо. Однако рекомендуется сначала проверить, есть ли обрыв в реостат подключения стартера, или даже в самой детали.
1.5 – КОРОТКОЕ ЗАМЫКАНИЕ МЕЖДУ ОБОРОТАМИ В ДВИГАТЕЛЯХ С КОЛЬЦЕВЫМ КОЛЬЦОМ
Эта неисправность возникает только в очень редких случаях. В зависимости от
величина короткого замыкания запуск может быть резким, даже если реостат находится на
первое нажатие на его исходное положение.
В этом случае через кольца не проходят сильные пусковые токи, и поэтому на них не будет следов ожога.
наблюдал на них.
1.6 – НЕИСПРАВНОСТИ ПОДШИПНИКА
Повреждение подшипника вызвано перегрузкой из-за чрезмерно натянутого ремня или осевые удары и напряжения. Недооценка расстояния между ведущим шкивом и ведомым шкив – обычное дело.
Таким образом, площадь контакта ремня с приводным шкивом становится недопустимо малой, и поэтому ремень натяжения недостаточно для передачи крутящего момента.
Несмотря на это, обычно увеличивают натяжение ремня, чтобы добиться достаточного привода.
По общему признанию, это возможно с новейшими типами ремней, армированными синтетическими материалами.
Однако в этой практике не учитывается нагрузка на подшипник, и в результате подшипник выходит из строя. в короткие сроки. Тем не менее существует вероятность того, что вал будет подвергаться недопустимо высоким нагрузки, когда двигатель оснащен слишком широким шкивом.
1.7 – ИЗЛОМЫ ВАЛА
Хотя подшипники традиционно составляют более слабую часть, а валы спроектирован с широким диапазоном безопасности, вполне вероятно, что вал может разрушение из-за усталости из-за напряжения изгиба, вызванного чрезмерным натяжением ремня.
В большинстве случаев трещины возникают сразу за подшипником со стороны привода.
Вследствие переменного напряжения изгиба, вызванного вращающимся валом, трещины перемещаются внутрь с внешней стороны вала до точки разрыва, когда сопротивление оставшегося поперечного сечения вала больше не хватает.Избегайте дополнительного сверления вала (отверстия для крепежных винтов), поскольку такие операции имеют тенденцию вызывать концентрацию напряжений.
1.8 – ПРИВОДЫ КЛИНОВЫЕ НЕБАЛАНСИРОВАННЫЕ
Замена только одного или другого параллельного ремня привода возможна. часто причина переломов вала, а также злоупотребление служебным положением.
Любые использованные и, следовательно, растянутые ремни, оставшиеся на приводе, особенно те, которые находятся ближе всего к двигателя, а новые и нерастянутые ремни размещаются на одном приводе, поворачивая его дальше от подшипник может увеличивать нагрузку на вал.
1.9 – ПОВРЕЖДЕНИЯ ИЗ-ЗА НЕПРАВИЛЬНО УСТАНОВЛЕННЫХ ДЕТАЛЕЙ ТРАНСМИССИИ ИЛИ НЕПРАВИЛЬНОГО ДВИГАТЕЛЯ ВЫРАВНИВАНИЕ
Повреждение подшипника и излом валов часто возникают из-за неправильной установки шкивы, муфты или шестерни. Эти детали «стучат» при вращении. Дефект признан царапины, которые появляются на валу, или возможный масштаб, например, отслаивание конца вала.
Шпоночные пазы с краями, изъеденными незакрепленными шпонками, также могут привести к отказы валов.
Плохо выровненные муфты вызывают удары, радиальные и осевые сотрясения вала и подшипников.
В течение короткого времени эти неправильные действия приводят к износу подшипников и увеличение кронштейна крышки подшипника, расположенного со стороны привода.
Поломка вала может произойти и в более серьезных случаях.
Самый простой способ изменить направление вращения электродвигателя
Большая часть этого веб-сайта посвящена активным полупроводникам и электронике, управляющим двигателями постоянного тока. Например, у многих роботов есть микроконтроллеры, которые определяют направление вращения двигателя через транзисторный H-мост.Однако иногда вам нужно очень простое решение, в котором человек может напрямую управлять двигателем одним щелчком переключателя. Это легко сделать.
Список деталей:
- Клейкая лента или клейкая бумага для заметок.
Испытательные детали
Первое, что вам нужно проверить, это аккумулятор и мотор. Это устранит любые проблемы с ними, прежде чем вы усложняете схему одного или нескольких переключателей.Эти тесты проще всего выполнить с зажимами из крокодиловой кожи, если они у вас есть.
Электросхема прямого и обратного хода двигателя и аккумуляторной батареи. Показан красный провод, потому что белый провод не отображается на белом фоне.
- Переверните провода от аккумулятора к двигателю, чтобы убедиться, что двигатель вращается в другом направлении (белый провод от положительного конца аккумулятора к отрицательному полюсу двигателя, черный провод от отрицательного конца аккумулятора. к положительной клемме + двигателя).
Если мотор не вращается, проверьте соединения. Также может быть, что напряжение батареи слишком низкое или батарея разряжена. Если двигатель вращается слишком быстро, замените батарею на более низкое напряжение или приобретите двигатель с редуктором.
Прежде чем продолжить, у вас должны быть мотор и аккумулятор, которые прошли этапы 2 и 3 теста.
Подключение центрального выключателя DPDT
Очевидно, вам не захочется каждый раз перетягивать мотор, чтобы выключить его или изменить направление.Мы позволим переключателю сделать это. Внутри переключателя есть металлические полоски, которые либо соединяют провода, либо отключают их, так как рычаг переворачивается вперед и назад.
Электропроводка и тумблер.
Вот назначение проводов:
- Желтый: положительный полюс двигателя.
- Синий: отрицательный полюс двигателя.
- Белый: положительный полюс аккумулятора.
- Черный: отрицательный полюс аккумуляторной батареи.
Припаяйте белые (плюсовые) провода к переключателю DPDT.
1. Подключите белый провод (положительное питание) к переключателю DPDT, как показано выше. Вам понадобится один длинный провод, идущий от батареи к первой клемме переключателя. И вам понадобится меньший кусок провода, идущий от первой клеммы переключателя к противоположной клемме, как показано.
Припаяйте черные (отрицательные) провода к переключателю DPDT.
2.Подключите черный провод (отрицательное напряжение) к переключателю DPDT, как показано выше. Вам понадобится один длинный провод, идущий от аккумулятора к нижней клемме переключателя. И вам понадобится меньший кусок провода, идущий от нижней клеммы переключателя к противоположной клемме, как показано.
Припаяйте желтый и синий провода двигателя к переключателю DPDT.
3. Подключите желтый и синий провода от двигателя к центральным клеммам переключателя DPDT, как показано выше.
4. Подсоедините желтый и синий провода к клеммам двигателя.
5. Перед подключением аккумулятора убедитесь, что переключатель находится в центральном (выключенном) положении.
6. Подключите белый и черный провода к аккумулятору.
Печатная плата вместо проводов
Электропроводка может быть немного неудобной. Вместо этого вы можете использовать небольшую печатную плату (особенно если вы собираетесь подключить более одного переключателя).
Плата переключателя двигателя DPDT
Управление двунаправленным переключателем двигателя
Давайте рассмотрим, что происходит, когда вы нажимаете переключатель вверх, в центр и вниз …
Отсутствие соединений в переключателе DPDT, приводящее к выключенному двигателю.
Когда рычаг переключателя находится в среднем положении, двигатель выключен, потому что металл внутри переключателя не соединяет провода от средних клемм (двигателя) с какими-либо внешними клеммами (источник питания).Это то же самое, как если бы вы просто отключили провода от аккумулятора. Ничего не случится. Электроэнергия не используется.
Соединения в переключателе DPDT, приводящие в движение двигатель.
Когда рычаг переключателя находится в верхнем положении, двигатель вращается вперед. Если ваш двигатель вращается в противоположном направлении, чем вы ожидали или хотели, просто переориентируйте переключатель в руке так, чтобы рычаг был обращен вниз, а затем переведите рычаг в верхнее положение.В качестве альтернативы вы можете поменять местами провода на или клеммы аккумулятора, или клеммы двигателя.
Внутри переключателя рычаг имеет металлические полосы, так что провода двигателя на средней клемме электрически соединяются с одной парой внешних клемм, ведущих к батарее. Термин «двойной полюс» относится к тому факту, что этот переключатель имеет пару выводов, которые он подключает или отключает одновременно. Если нам нужно было подключить или отключить только один провод, мы могли бы использовать однополюсный (SP) переключатель.
Подключения в переключателе DPDT, приводящие к вращению двигателя в обратном направлении.
Когда рычаг переключателя находится в нижнем положении, двигатель вращается назад.
Внутри переключателя рычаг имеет металлические полосы, так что провода двигателя на средней клемме электрически соединены с другой парой внешних клемм, ведущих к батарее. Обратите внимание, что черный и белый провода аккумулятора находятся на противоположных сторонах на верхней и нижней клеммах переключателя.Вот почему мотор вращается в обратном направлении.
Термин «двойной бросок» относится к тому факту, что этот переключатель можно бросить вверх и бросить вниз (два разных броска). Если бы нам нужно было только, чтобы двигатель двигался вперед или выключался, мы могли бы использовать одинарный переключатель (ST).
Устранение неисправностей
Если ваш двигатель не работает должным образом, дважды проверьте, что провода идут к правильным клеммам переключателя.Также убедитесь, что проводка не ослаблена и не сломана. Используйте увеличительное стекло, чтобы убедиться, что даже крошечная жила провода случайно не коснется другого провода или клеммы.
Альтернативное управление двигателем с автоматическим ограничителем хода
Полезно иметь возможность напрямую управлять двигателем. Но иногда вы не обращаете внимания, и элемент, подключенный к двигателю, врезается в преграду или иным образом выходит за пределы своего максимального положения.
Было бы неплохо добавить пару дополнительных переключателей для автоматической остановки двигателя, когда он зашел слишком далеко, но по-прежнему позволять оператору вернуть двигатель в разрешенное положение.
Схема подключения двигателя, подключенного к DPDT, плюс два переключателя мгновенного действия для управления пользователем с помощью концевых упоров.
Схема подключения выше аналогична показанной ранее. Были вставлены два дополнительных переключателя. Один переключатель подключает (или отключает) белый провод на нижней клемме. Другой переключатель подключает (или отключает) черный провод на верхней клемме.
Переключатели мгновенного действия нашли хорошее применение в моем роботе Flip-Flop.Если вы не знакомы с переключателями этих типов, взгляните на изображения и посмотрите видео.
Идея состоит в том, что каждый переключатель мгновенного действия подключен таким образом, чтобы соответствующий провод был нормально подключен (NC), как это было на более ранних схемах. Это позволяет переключателю DPDT пользователя работать в обычном режиме.
Однако, когда что-то нажимает на переключатель мгновенного действия, он отключает провод, отключая питание только в этом направлении.Если пользователь поворачивает рычаг в противоположном направлении, другой переключатель мгновенного действия не прижимается, и, таким образом, он позволяет двигателю реверсировать.
Если вы установили моторизованное устройство на линейную (прямую) дорожку и поместили каждый переключатель мгновенного действия на противоположных концах дорожки, вы можете повернуть переключатель в одном направлении, и устройство автоматически остановится, когда достигнет конца трека. Затем вы можете повернуть переключатель в противоположном направлении, и устройство переместится на другой конец дорожки, прежде чем остановиться.
Точно так же вы можете добавить к диску штифт или рычаг, который будет давить на переключатель мгновенного действия, когда вал двигателя вращается на желаемый угол.
Куда идти дальше?
В этой статье показано, как изменить направление на небольшом двигателе от источника потребительской батареи с помощью переключателя центрального положения DPDT. Есть много вариантов использования и вариаций такой схемы.
Можно использовать более мощные двигатели и более мощные источники энергии.Самым большим ограничением будет поиск физического переключателя, способного выдерживать достаточный ток и напряжение. Вы должны быть уверены, что производитель оценивает коммутатор как минимум на максимальную мощность, которую вы собираетесь использовать.
Фактически, лучше всего было бы подключить переключатель с низким номиналом и слабым источником питания к реле с более мощным источником питания. Реле – это переключатель с магнитным приводом, который действует как прокси, повторяя действия пользователя с переключателем с низким энергопотреблением.
Со временем выключатель, подключенный к большому двигателю или источнику питания, перегорит из-за электрической дуги при замыкании или разрыве электрических соединений. Еще одна проблема с большими двигателями (особенно когда они подключены к оборудованию) – это внезапный запуск и остановка. Импульс может быть убийцей. Управление скоростью или методы цифровой широтно-импульсной модуляции позволяют плавно увеличивать или уменьшать обороты мощных двигателей.
В целом, самая серьезная проблема с большими двигателями или значительными источниками питания (такими как розетки переменного тока) – это безопасность.Вот почему эти вещи следует оставить на усмотрение профессионального оборудования с надлежащими корпусами, резервными датчиками пределов и независимыми сертифицированными испытаниями.
При этом этот переключатель DPDT должен комфортно работать с небольшими двигателями постоянного тока и источниками батарей, такими как модели, игрушечные поезда и роботы-любители.