Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Arduino: Компоненты/Макетная плата (Breadboard)

Статья проплачена кошками – всемирно известными производителями котят.

Если статья вам понравилась, то можете поддержать проект.

Модуль питания

Макетная плата

Макетная плата Breadboard позволяет обойтись без пайки и собрать схему для испытаний.

Само слово означает деревянную подставку, на которой режут хлеб. Много лет назад любители электроники собирали схемы “на коленке” и использовали подставки для нарезки хлеба. Позже это слово закрепилось.

Теперь breadboard– это беспаечная монтажная плата для разработки прототипов или временных электросхем без использования паяльника.

Внутри макетной платы проложены проводочки хитрым образом, что позволяет вам собирать довольно сложные конструкции.

На моей доске доступно 830 контактов. Четыре рельсы по бокам предназначены для подключения питания и земли. Между ними — 126 групп соединённых между собой контактов, расположенными на расстоянии 2,54 мм. Схематично доску можно представить так:

Когда вы подключаете проводник к одному из отверстий в отдельном ряде, этот контакт будет одновременно подключён и к остальным контактам в отдельном ряде.

На макетных платах принят стандарт использовать пять отверстий на одной рельсе, и вы можете подключить до пяти компонентов включительно к отдельной рельсе и они будут связаны между собой.

По центру монтажной платы есть отдельная рельса без пинов (канавка), которая изолирует пластины друг от друга, разделяя каждый ряд на два независимых отдела. Благодаря этому можно устанавливать компоненты, не замыкая контакты (см. рисунок со светодиодом ниже). Помимо изоляции, эта рельса позволяет использовать микросхемы форм-фактора Dual in-line Package (DIP). У DIP-микросхем контакты расположены по двум сторонам и отлично садятся на две рельсы по центру платы. В этом случае изоляция контактов – отличный вариант, который позволяет сделать разводку каждого контакта микросхемы на отдельную рельсу с пятью контактами.

Способы подключения компонентов

Можно установить светодиод на изолированных параллельных рельсах. При таком подключении не будет замыкания контактов.

Параллельное подключение резисторов.

Последовательное подключение резисторов.

Макетные платы бывают самых разным размеров, от миниатюрных до гигантских. Есть несколько стандартных моделей: BB-301, Full, Full+, Half, Half+, Mini, Tiny.

Не обязательно ограничиваться одной платой. На многих монтажных платах предусмотрены специальные пазы и выступы по бокам, с их помощью можно соединить несколько плат.

Обычно платы с другой стороны имеют двусторонний скотч. А у большой платы боковые рельсы питания отстёгиваются.

Купить набор мини-плат на АлиЭкспресс

Купить стандартную плату (дополнительно можно добавить к заказу модули питания, смотри описание ниже).

Также платы входят в состав готовых наборов.

Модуль питания

К макетной плате выпускается интересная насадка – модуль питания. Существует несколько разновидностей, но в целом они похожи. Модуль вставляется с краю макетной платы и обеспечивает схему питанием. Это может пригодиться для схем без участия Arduino.

Модуль представляет собой стабилизатор постоянного напряжения. Питание на сам модуль подаётся через штекер, как и Arduino.

Для подачи электропитания имеется нажимной тумблер.

Следите за правильностью подключения (полярности) с нужной стороны платы. На выступах платы модуля возле контактных площадок штырей нанесена маркировка + –. Знак + должен соответствовать красной полосе платы, а – синей. Имеет два выхода для формирования двух фиксированных напряжений на верхнюю и нижнюю пары шин питания макетной платы.

Благодаря перемычкам, находящимся возле выступов платы, можно задать напряжение, подаваемое на каждую пару проводников питания (5 или 3.3 В). Установка перемычки на два средних проводника отключает питание в коммутируемых линиях, в этом случае сигнальный светодиод не будет светиться.

Ближе к середине платы стабилизатора расположена вилка из восьми контактов. Устанавливать на неё перемычки нельзя. Вилка обеспечивает подключение жгута проводов питания устройств, расположенных вне макетной платы.

На плате также размещён USB-порт типа А. Обратите внимание, что этот USB-порт работает только на выход. С его помощью можно обеспечить питание дополнительного прибора.

Купить на AliExpress

Небольшое видео о применении модуля на плате (англ.).

Реклама

Как использовать breadboard?||Arduino-diy.com

Breadboard (макетная (монтажная) беспаечная плата) – один из основных инструментов как для познающих основы схемотехники, так и для профессионалов.

В этой статье вы познакомитесь с тем, где и как использовать breadboard и какие они бывают. После ознакомления с приведенными основами, вы сможете собрать свою электросхему с использовнием макетной беспаечной платы.

Исторический экскурс

В начале 1960 создание прототипов микросхем выглядело примерно так:

На платформе устанавливались металлические стойки, на которые наматывались проводники. Процесс прототипирования был достаточно длительным и сложным. Но человечество не стоит на месте и был придуман более элегантный подход: Беспечные монтажные платы – breadboards!

Откуда появилось название – breadboard?

Если знать, что bread переводится как хлеб, а board – доска, то одна из ассоциаций, которая может возникнуть при упоминании слова breadboard – это деревянная подставка, на которой нарезают хлеб (как на рисунке ниже). В принципе, вы недалеки от истины.

Так откуда появилось это название – breadboard? Много лет назад, когда электронные компоненты были большими и неуклюжими, многие “самодельщики” в своих “гаражах” собирали схемы с использованием подставок для нарезки хлеба (пример показан на рисунке ниже).

Постепенно электронные компоненты становились меньше и получилось свести прототипирование к использованию более ли менее стандартных проводников, коннекторов и микросхем. Подход несколько изменился , но название перекочевало.

Зачем использовать breadboard?

Breadboard – это беспаечная монтажная плата. Это отличная платформа для разработки прототипов или временных электросхем, с использованием которой вам не понадобится паяльник и все связанные с этим проблемы и затраты времени на распайку.

Прототипирование (prototyping) – это процесс разработки и тестирования модели вашего будущего устройства. Если вы не знаете как будет себя вести ваше устройство при определенных заданных условиях, лучше сначала создать прототип и проверить его работоспособность.

Беспаечные монтажные платы используют как для создания простеньких электросхем, так и для сложных прототипов.

Еще одна сфера применения breadbord’ов – проверка новых деталей и компонентов – например, микросхем (ICs).

Как уже упоминалось выше, созданная вами электросхема вполне может меняться и в этом основное преимущество использования беспаечных монтажных плат. Например, в любой момент вы можете включить в схему дополнительный светодиод, который будет реагировать на те или иные условия в вашей цепи. На рисунке ниже показан пример электросхемы для проверки работоспособности чипа Atmega, который используется в платах Arduino Uno.

“Анатомия беспаечных монтажных плат”

Лучший способ объяснить как именно работает breadboard – выяснить как плата выглядит изнутри. Рассмотрим на примере миниатюрной платы.

Рельсы для подключения оборудования

На рисунке ниже показан breadboard, на котором снято основание на нижней части. Как вы видите, на плате установлены ряды металлических пластин.

Каждая металлическая пластина имеет вид, приведенный на рисунке ниже. То есть, это не просто пластина, а пластина с клипсами, которые прячутся в пластиковой части монтажной платы. Именно в эти клипсы вы подключаете ваши провода.

То есть, как только вы подключили проводник к одному из отверстий в отдельном ряде, этот контакт будет одновременно подключен и к остальным контактам в отдельном ряде.

Обратите внимание, что на одной рельсе пять клипс. Это общепринятый стандарт. Большинство беспаечных монтажных плат реализуются именно таким образом. То есть, вы можете подключить до пяти компонентов включительно к отдельной рельсе на breadboard’е и они будут связаны между собой. Но ведь на плате десять отверстий в ряде!? Почему мы ограничены пятью контактами? Вы, наверное, обратили внимание, что по центру монтажной платы есть отдельная рельса без пинов? Эта рельса изолирует пластины друг от друга. Зачем это делается, мы разберем немного позже. Сейчас важно запомнить, что рельсы изолированы друг от друга и мы ограничены пятью связанными контактами, а не десятью.

На рисунке ниже показан светодиод, установленный на беспаечную монтажную плату. Обратите внимание, что две ноги светодиода установлены на изолированных параллельных рельсах. В результате не будет замыкания контактов.

Рельсы для источника питания

Давайте теперь рассмотрим breadboard больших размеров. На таких платах, как правило, предусматривают две вертикально расположенные рельсы. Так называемые рельсы для питания.

Эти рельсы аналогичны по исполнению с горизонтальными, но при этом соединены друг с другом по всей длине. При разработке проекта вам часто необходимо питание для многих компонентов. Именно эти рельсы используются для питания. Обычно их отмечают ‘+’ и ‘-‘ и двумя разными цветами – красным и голубым. Как правило, рельсы соединяют между собой, чтобы получить одинаковое питание по обоим сторонам макетки (смотрите на рисунке ниже). Кстати, нет необходимости подключать плюс именно к рельсе с обозначением ‘+’, это исключительно подсказка, которая поможет вам структурировать ваш проект.

Центральная рельса без контактов (для DIP-микросхем)

Центральная рельса без контактов изолирует две стороны беспаечной монтажной платы. Помимо изоляции, эта рельса выполняет вторую важную функцию. Большинство микросхем (ICs), изготавливаются в стандартных размерах. Для того, чтобы они занимали минимум места на монтажной плате, используется специальный форм-фактор под названием Dual in-line Package, или сокращенно – DIP.

У DIP-микросхем контакты расположены по двум сторонам и отлично садятся на две рельсы по центру breadboard’а. Именно в этом случае изоляция контактов – отличный вариант, который позволяет сделать разводку каждого контакта микросхемы на отдельную рельсу с пятью контактами.

На рисунке ниже показана установка двух DIP микросхем. Сверху – LM358, ниже – микроконтроллер ATMega328, который используется во многих платах Arduino.

Строки и столбцы (горизонтальные и вертикальные рельсы)

Наверняка вы обращали внимание, что на беспаечных монтажных платах нанесены числа и буквы возле строк (горизонтальных рельс) и столбцов (вертикальных рельс). Эти обозначения нанесены исключительно для удобства. Прототипы ваших устройств очень быстро обрастают дополнительными компонентами, а одна ошибка в подключении приводит к неработоспособности электрической схемы или даже к выходу из строя отдельных компонентов. Гораздо проще подключить контакт к рельсе, которая отмечена цифрой и буквой, чем отсчитывать контакты “на глаз”.

Кроме того, во многих инструкциях номера рельс тоже указываются, что значительно облегчает сборку вашей схемы. Но не забывайте, что даже если вы используете инструкцию, номера контактов на макетке не обязаны совпадать!

Колки на макетках

Некоторые монтажные платы изготавливаются на отдельной подставке, на которой установлены специальные колки. Эти колки используются для подключения источника питания к вашему breadboard ‘у. Более детально подобные макетки рассмотрены ниже.

Другие фичи

Когда вы разрабатываете электрическую схему, не обязательно ограничиваться одним breadboard ‘ом. На многих монтажных платах предусмотрены специальные пазы и выступы по бокам. С помощью этих слотов, вы можете соединить несколько макеток и сформировать необходимое для вас рабочее пространство. На рисунке ниже показаны четыре мини breadboard ‘а, соединенных вместе.

На некоторых монтажных беспаечных платах предусмотрена самоклеющаяся основа на задней части. Очень полезная фича, если вы хотите надежно установить макетку на какой-то поверхности.

На некоторых больших макетках вертикальные рельсы, на которые подается питание, состоят из двух изолированных друг от друга частей. Очень удобно, если в вашем проекте надо два разных источника питания: например, 3.3 В и 5 В. Но надо быть предельно осторожным и перед использованием breadboard ‘а подключить один источник питания и проверить напряжение на двух концах вертикальной рельсы с помощью мультиметра.

Подаем питание на breadboard

Подавать питание на breadboard можно по разному.

Запитатываем от другого источника питания

Если вы работаете с Arduino, вы можете соединить пины 5 В (3.3 В) и Gnd с двумя разными рельсами макетки. На рисунке ниже показано подключение контакта Gnd с Arduino к рельсе мини макетной монтажной платы.

Как правило, Arduino запитывается от USB порта на компьютере или от внешнего источника питания, которые мы можем предать на рельсу макетки.

Монтажные беспаечные платы с колками

Выше уже упоминалось, что на некоторых монтажных платах устанавливают колки для подключения внешнего источника питания.

Для начала работы, необходимо подключить колки к рельсам на breadboard ‘е с помощью проводников. Колки не связаны ни с одной рельсой, что дает вам пространство для маневра: на какую именно рельсу подавать питание и землю.

Для подключения провода к колку, открутите пластиковый колпачок и поместите конец провода в отверстие (смотрите на фото ниже). После этого, закрутите колпачок обратно.

Как правило, вам будут необходимы два колка: для питания и для земли. Третий колок можно использовать, если вам понадобится альтернативный источник питания.

Колки соединены с рельсами, но это не конец. Теперь надо подключить внешний источник питания. Вариантов несколько.

Можно использовать специальные джеки, как это показано на фото ниже.

Можно использовать “крокодилов” и даже обычные проводники. Зависит исключительно от ваших предпочтений и деталей, которые есть у вас в наличии.

Один из достаточно универсальных вариантов – распаять контакты на джеке под ваш источник питания и подключить провода к колкам, как это показано ниже.

Можно использовать и специальные модули-стабилизаторы питания, которые выпускаются под беспаечные монтажные платы. Некоторые модули дают возможность запитывать макетку от USB порта, некоторые изготавливаются со стандартными джеками под блоки питания. На большинстве подобных модулей стабилизаторов питания предусмотрена регулировка напряжения. Например, можно выбрать напряжение, которое пойдет на рельсу: 3.3 В или 5 В. Один из вариантов подобных модулей регуляторов/стабилизаторов напряжения показан на рисунке ниже.

Простая электросхема с использованием беспаечной монтажной платы

Основы работы с беспаечной монтажной платой мы рассмотрели. Давайте рассмотрим пример простой электрической цепи, в которой будем использовать breadboard.

Ниже приведен список узлов, которые понадобятся для нашей цепи. Если у вас нет именно этих деталей, можете заменить их на аналогичные. Не забывайте: одну и ту же электрическую цепь можно собрать, используя разные компоненты.

  • Breadboard
  • Регулятор/стабилизатор напряжения
  • Блок питания
  • Светодиоды
  • Резисторы на 330 Ом 1/6 Вт
  • Коннекторы
  • Тактовые кнопки (квадрат 12 мм)

Собираем электрическую цепь

Фотография собранной электрической цепи с использованием беспаечной монтажной платы приведена ниже.

В проекте используются две кнопки, резисторы и светодиоды. Обратите внимание, что две аналогичные цепи собраны по разному.

Красная плата слева – стабилизатор напряжения, который обеспечивает питание 5 В на рельсах макетки.

Схема собирается следующим образом:

  • К позитивной ноге (аноду) светодиода подключается питание 5 В от соответствующей рельсы breadboard ‘а.
  • Отрицательная нога (катод) светодиода, подключена к резистору 330 Ом.
  • Резистор подключен к тактовой кнопке.
  • Когда кнопка нажата, цепь замыкается с землей и светодиод зажигается.

Электрическая схема проекта

При прототипировании важно разбираться в электрических схемах. Давайте кратко рассмотрим электрическую схему нашей небольшой электрической цепи.

Электрическая схема – это схематическое изображение, в котором используются универсальные обозначения для отдельных электрических компонентов и отображается последовательность их подключения.

Подобные элекрические схемы можно получить, используя программу Fritzing.

. К слову, рекомендуем уделить этой программе отдельное внимание. Особенно если вы хотите поделиться своими проектами с другими людьми.

Электрическая схема нашего проекта показана на рисунке ниже. Питание 5 В изображено стрелкой в верхней части схемы. 5 В подключается к светодиоду (треугольник и горизонтальная линия со стрелками). После этого светодиод подключается к резистору (R1). После этого установлена кнопка (S1), которая замыкает цепь. И в конце цепи – земля (Gnd – горизонтальная линия снизу).

Наверняка возникает вопрос: а зачем нам электрические схемы, если можно просто создать принципиальную схему подключения с использованием того же Fritzing? Например, как на подобном рисунке:

Как уже упоминалось выше, собрать одну и ту же схему можно по-разному, а вот электрическая принципиальная схема останется одинаковой. То есть, практическая имплементация может отличаться, что дает вам пространство для фантазии и более общее понимание процессов, которые происходят в вашем проекте.

Arduino Uno Rev3 — Официальный магазин Arduino

Код: A000066 / Штрих-код: 7630049200050

24,00 €

| /

Плата Arduino UNO — лучшая плата для начала работы с электроникой и программированием. Если это ваш первый опыт работы с платформой, UNO — самая надежная доска, с которой вы можете начать играть. UNO — самая используемая и задокументированная плата из всего семейства Arduino.

##цена##

Расширьте свои возможности, добавьте в корзину: €0,00

Обзор

Arduino Uno — это плата микроконтроллера на основе ATmega328P (техническое описание). Он имеет 14 цифровых входных/выходных контактов (из которых 6 могут использоваться как выходы ШИМ), 6 аналоговых входов, керамический резонатор 16 МГц (CSTCE16M0V53-R0), соединение USB, разъем питания, разъем ICSP и кнопку сброса. . Он содержит все необходимое для поддержки микроконтроллера; просто подключите его к компьютеру с помощью USB-кабеля или подключите к нему адаптер переменного тока или аккумулятор, чтобы начать работу. Вы можете возиться с Uno, не слишком беспокоясь о том, что сделаете что-то не так. чип на несколько долларов и начать заново.

«Uno» означает «единица» на итальянском языке и был выбран в ознаменование выпуска программного обеспечения Arduino (IDE) 1.0. Плата Uno и версия 1.0 программного обеспечения Arduino (IDE) были эталонными версиями Arduino, которые теперь эволюционировали до более новых выпусков. Плата Uno является первой в серии плат USB Arduino и эталонной моделью для платформы Arduino; обширный список текущих, прошлых или устаревших плат см. в указателе плат Arduino.

Сопутствующие платы

Если вас интересуют платы со схожим функционалом, на Arduino вы можете найти:

  • Arduino Uno Rev3 SMD
  • Arduino Uno Wi-Fi Rev2

Начало работы

Страница «Начало работы с Arduino Uno» содержит всю информацию, необходимую для настройки платы, использования программного обеспечения Arduino (IDE) и начала работы с программированием и электроникой.

В разделе «Учебники» вы можете найти примеры из библиотек и встроенных скетчей, а также другую полезную информацию, которая поможет расширить ваши знания об аппаратном и программном обеспечении Arduino.

Найдите вдохновение для своих проектов Uno на нашей учебной платформе Project Hub.

Нужна помощь?

Посетите форум Arduino, чтобы задать вопросы о языке Arduino или о том, как создавать собственные проекты с помощью Arduino. Если вам нужна помощь с вашей платой, пожалуйста, свяжитесь с официальной службой поддержки пользователей Arduino, как описано на странице «Контакты».

Гарантия

Здесь вы можете найти информацию о гарантии на вашу плату.


Технические характеристики

Микроконтроллер ATmega328P
Рабочее напряжение
Входное напряжение (рекомендуется) 7-12 В
Входное напряжение (предел) 6-20 В
Контакты цифрового ввода/вывода 14 (из них 6 обеспечивают ШИМ-выход)
Контакты цифрового ввода-вывода ШИМ 6
Контакты аналогового входа 6
Ток постоянного тока на контакт ввода/вывода 20 мА
Постоянный ток для контакта 3,3 В 50 мА
Флэш-память 32 КБ (ATmega328P), из которых 0,5 КБ используются загрузчиком
ОЗУ
2 КБ (ATmega328P)
ЭСППЗУ 1 КБ (ATmega328P)
Тактовая частота 16 МГц
ВСТРОЕННЫЙ СВЕТОДИОД 13
Длина 68,6 мм
Ширина 53,4 мм
Вес 25 г

Соответствие

Для данной платы предоставлены следующие декларации соответствия:

RCM

UKCA

REACH

Для получения дополнительной информации о наших сертификатах посетите страницу docs. arduino.cc/certifications. Вы можете собрать собственную плату, используя следующие файлы:

ФАЙЛЫ EAGLE В .ZIP СХЕМЫ В .PDF РАЗМЕР ПЛАТЫ В .DXFDATASHEET В .PDF

 

 

Схема выводов

3 Скачать полную схему выводов в формате PDF здесь .

Interactive Board Viewer

 

Узнать больше

  • ARDUINO DOCS Для получения полной технической документации, учебных пособий и многого другого, посетите Arduino Docs

Получите вдохновение

##заголовок## ##субтитры##

##текст##

читать далее

Часто задаваемые вопросы

Программирование

Arduino Uno можно запрограммировать с помощью (программного обеспечения Arduino (IDE)). Выберите «Arduino Uno» в меню «Инструменты» > «Плата» (в соответствии с микроконтроллером на вашей плате). Подробную информацию см. в справочнике и руководствах.

ATmega328 на Arduino Uno поставляется с предварительно запрограммированным загрузчиком, который позволяет загружать в него новый код без использования внешнего аппаратного программатора. Он обменивается данными с использованием исходного протокола STK500 (ссылка, заголовочные файлы C).

Вы также можете обойти загрузчик и запрограммировать микроконтроллер через заголовок ICSP (внутрисхемное последовательное программирование) с помощью Arduino ISP или аналогичного; подробности см. в этих инструкциях.

Исходный код прошивки ATmega16U2 (или 8U2 на платах rev1 и rev2) доступен в репозитории Arduino. В ATmega16U2/8U2 загружен загрузчик DFU, который можно активировать:

  • На платах Rev1: подсоедините перемычку на обратной стороне платы (рядом с картой Италии) и затем сбросьте 8U2.
  • На платах Rev2 или более поздних: имеется резистор, который замыкает линию HWB 8U2/16U2 на землю, что упрощает переход в режим DFU.

Затем вы можете использовать программное обеспечение Atmel FLIP (Windows) или программатор DFU (Mac OS X и Linux) для загрузки новой прошивки. Или вы можете использовать заголовок ISP с внешним программатором (перезаписав загрузчик DFU). Дополнительную информацию см. в этом руководстве, созданном пользователями.

Предупреждения

Плата Arduino Uno имеет сбрасываемый предохранитель, который защищает USB-порты вашего компьютера от короткого замыкания и перегрузки по току. Хотя большинство компьютеров обеспечивают собственную внутреннюю защиту, предохранитель обеспечивает дополнительный уровень защиты. Если на USB-порт подается более 500 мА, предохранитель автоматически разорвет соединение до тех пор, пока короткое замыкание или перегрузка не будут устранены.

Отличия от других плат

Uno отличается от всех предыдущих плат тем, что в ней не используется микросхема драйвера FTDI USB-to-serial. Вместо этого он оснащен Atmega16U2 (Atmega8U2 до версии R2), запрограммированным как преобразователь USB-последовательный порт.

Питание

Плата Arduino Uno может получать питание через соединение USB или от внешнего источника питания. Источник питания выбирается автоматически.

Внешнее (не USB) питание может поступать либо от адаптера переменного тока в постоянный (настенный), либо от аккумулятора. Адаптер можно подключить, вставив штекер 2,1 мм с центральным положительным контактом в разъем питания на плате. Выводы от аккумулятора можно вставить в контактные разъемы GND и Vin разъема POWER.

Плата может работать от внешнего источника питания от 6 до 20 вольт. Однако при подаче менее 7 В на контакт 5 В может подаваться менее пяти вольт, и плата может работать нестабильно. При использовании более 12 В регулятор напряжения может перегреться и повредить плату. Рекомендуемый диапазон от 7 до 12 вольт.

Контакты питания следующие:

  • Вин. Входное напряжение платы Arduino при использовании внешнего источника питания (в отличие от 5 вольт от USB-подключения или другого регулируемого источника питания). Вы можете подавать напряжение через этот контакт или, если подаете напряжение через разъем питания, получить к нему доступ через этот контакт.
  • 5V. Этот контакт выводит регулируемое напряжение 5V от регулятора на плате. Плата может питаться от разъема питания постоянного тока (7–12 В), разъема USB (5 В) или контакта VIN платы (7–12 В). Подача напряжения через контакты 5 В или 3,3 В обходит регулятор и может повредить вашу плату. Мы не советуем.
  • 3В3. Питание 3,3 В, генерируемое бортовым регулятором. Максимальный потребляемый ток составляет 50 мА.
  • Земля. Заземляющие штифты.
  • ИОРЕФ. Этот контакт на плате Arduino обеспечивает опорное напряжение, с которым работает микроконтроллер. Правильно сконфигурированный экран может считывать напряжение на контакте IOREF и выбирать соответствующий источник питания или включать преобразователи напряжения на выходах для работы с 5 В или 3,3 В.

Память

ATmega328 имеет 32 КБ (из которых 0,5 КБ занято загрузчиком). Он также имеет 2 КБ SRAM и 1 КБ EEPROM (который можно читать и записывать с помощью библиотеки EEPROM).

Ввод и вывод

См. сопоставление контактов Arduino и портов ATmega328P. Отображение для Atmega8, 168 и 328 идентично.

ОТОБРАЖЕНИЕ КОНТАКТОВ ATmega328P

Каждый из 14 цифровых контактов на Uno можно использовать как вход или выход с помощью функций pinMode(), digitalWrite() и digitalRead(). Они работают от 5 вольт. Каждый контакт может обеспечить или получить 20 мА в рекомендуемых рабочих условиях и имеет внутренний подтягивающий резистор (отключен по умолчанию) на 20-50 кОм. Максимум 40 мА — это значение, которое нельзя превышать ни на одном выводе ввода-вывода, чтобы избежать необратимого повреждения микроконтроллера.

Кроме того, некоторые контакты имеют специальные функции:

  • Серийный номер: 0 (RX) и 1 (TX). Используется для приема (RX) и передачи (TX) последовательных данных TTL. Эти контакты подключены к соответствующим контактам последовательного чипа ATmega8U2 USB-to-TTL.
  • Внешние прерывания: 2 и 3. Эти контакты могут быть настроены для запуска прерывания по низкому значению, нарастающему или падающему фронту или изменению значения. Подробности смотрите в описании функции attachInterrupt().
  • PWM: 3, 5, 6, 9, 10 и 11. Обеспечьте 8-битный вывод PWM с помощью функции AnalogWrite().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Эти контакты поддерживают связь SPI с использованием библиотеки SPI.
  • Светодиод
  • : 13. Имеется встроенный светодиод, управляемый цифровым выводом 13. Когда на выводе ВЫСОКОЕ значение, светодиод горит, когда на выводе НИЗКИЙ, он выключен.
  • TWI: контакт A4 или SDA и контакт A5 или SCL. Поддержка связи TWI с помощью библиотеки Wire.

Uno имеет 6 аналоговых входов, помеченных от A0 до A5, каждый из которых обеспечивает разрешение 10 бит (т. е. 1024 различных значения). По умолчанию они измеряют от земли до 5 вольт, хотя можно изменить верхнюю границу их диапазона с помощью вывода AREF и функции AnalogReference(). На плате есть еще пара контактов:

  • АРЕФ. Опорное напряжение для аналоговых входов. Используется с AnalogReference().
  • Сброс. Установите на этой линии НИЗКИЙ уровень, чтобы перезагрузить микроконтроллер. Обычно используется для добавления кнопки сброса к экранам, которые блокируют кнопку на плате.

Связь

Arduino Uno имеет ряд средств для связи с компьютером, другой платой Arduino или другими микроконтроллерами. ATmega328 обеспечивает последовательную связь UART TTL (5V), которая доступна на цифровых контактах 0 (RX) и 1 (TX). ATmega16U2 на плате направляет эту последовательную связь через USB и отображается как виртуальный COM-порт для программного обеспечения на компьютере. Прошивка 16U2 использует стандартные драйверы USB COM, и внешний драйвер не требуется. Однако в Windows требуется INF-файл. Программное обеспечение Arduino (IDE) включает в себя последовательный монитор, который позволяет отправлять простые текстовые данные на плату и с нее. Светодиоды RX и TX на плате будут мигать, когда данные передаются через микросхему USB-to-serial и USB-подключение к компьютеру (но не при последовательной связи на контактах 0 и 1).

Библиотека SoftwareSerial позволяет осуществлять последовательную связь на любом из цифровых контактов Uno.

ATmega328 также поддерживает связь I2C (TWI) и SPI. Программное обеспечение Arduino (IDE) включает библиотеку Wire для упрощения использования шины I2C; подробности см. в документации. Для связи SPI используйте библиотеку SPI.

Автоматический (программный) сброс

Вместо физического нажатия кнопки сброса перед загрузкой плата Arduino Uno сконструирована таким образом, что ее можно сбросить программным обеспечением, запущенным на подключенном компьютере. Одна из линий аппаратного управления потоком (DTR) ATmega8U2/16U2 подключена к линии сброса ATmega328 через конденсатор емкостью 100 нанофарад. Когда эта линия активна (низкий уровень), линия сброса падает на время, достаточное для сброса микросхемы. Программное обеспечение Arduino (IDE) использует эту возможность, чтобы вы могли загружать код, просто нажимая кнопку загрузки на панели инструментов интерфейса. Это означает, что загрузчик может иметь более короткий тайм-аут, так как снижение DTR может быть хорошо согласовано с началом загрузки.

Эта настройка имеет и другие последствия. Когда Uno подключен к компьютеру с Mac OS X или Linux, он сбрасывается каждый раз, когда к нему подключается программное обеспечение (через USB). Следующие полсекунды или около того загрузчик работает на Uno. Хотя он запрограммирован на игнорирование искаженных данных (то есть всего, кроме загрузки нового кода), он будет перехватывать первые несколько байтов данных, отправленных на плату после открытия соединения. Если скетч, работающий на плате, получает одноразовую конфигурацию или другие данные при первом запуске, убедитесь, что программное обеспечение, с которым он взаимодействует, ждет секунду после открытия соединения и перед отправкой этих данных.

Плата Uno содержит трассировку, которую можно обрезать, чтобы отключить автоматический сброс. Площадки с обеих сторон дорожки можно спаять вместе, чтобы снова включить ее. Он помечен как «RESET-EN». Вы также можете отключить автосброс, подключив резистор 110 Ом от 5В к линии сброса; подробности см. в этой ветке форума.

Ревизии

Ревизия 3 платы имеет следующие новые функции:

  • 1.0 распиновка: добавлены контакты SDA и SCL рядом с контактом AREF и два других новых контакта, расположенных рядом с контактом RESET, IOREF, которые позволяют экраны для адаптации к напряжению, подаваемому с платы. В будущем шилды будут совместимы как с платой, использующей AVR, работающей от 5 В, так и с платой Arduino Due, работающей от 3,3 В. Второй — неподключенный контакт, зарезервированный для будущих целей.
  • Более сильная цепь СБРОСА.
  • Atmega 16U2 заменяет 8U2.

ОШИБКА – 404 – НЕ НАЙДЕНА

  • Главная
  • Нет ложки стр.

Наши серверные гномы не смогли найти страницу, которую вы ищете.

Похоже, вы неправильно набрали URL-адрес в адресной строке или перешли по старой закладке.

Возможно, некоторые из них могут вас заинтересовать?

Припой – катушка 1/4 фунта (0,032 дюйма), специальная смесь

Нет в наличии ТОЛ-10243

26,95 $

6

Избранное Любимый 18

Список желаний

Передатчик радиочастотной связи – 315 МГц

В наличии WRL-10535

2

Избранное Любимый 14

Список желаний

Светодиод – алюминиевая печатная плата 3 Вт (5 шт.

, теплый белый)

В наличии COM-13104

7

Избранное Любимый 22

Список желаний

Серийный номер SparkFun XBee Explorer

В наличии WRL-13225

21,50 $

3

Избранное Любимый 5

Список желаний

Две новые платы с STM32

13 мая 2021 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *