Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Асинхронный электродвигатель: устройство и принцип работы

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов – обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.


Трехфазный асинхронный электродвигатель – цена 850 грн в Украине

Электродвигатель асинхронный трехфазный представляет собой устройство, используемое для питания от 3-х фазной сети переменного тока. Конструктивное исполнение стандартное – статор и ротор. Первый элемент представляет собой неподвижную часть, а второй – подвижную. Между ротором и статором присутствует незначительное расстояние, именуемое воздушным зазором (примерно 0,5–2 мм).

Устройство широко используется в технике и промышленности. Чаще всего под понятием «трехфазный асинхронный двигатель» подразумевается трёхфазный асинхронный электродвигатель. Эта разновидность устройств отличается от синхронных тем, что здесь вал вращается немного медленнее скорости поля статора.

Электродвигатель асинхронный трехфазный работает на основе способности 3х-фазной обмотки при её подключении к сети образовывать вращающееся магнитное поле.  Именно оно является основной движущейся силой в двигателе. Под действием магнитного поля в роторе появляются токи, которое создают поле, взаимодействующее в дальнейшем с полем статора. Образовавшийся пусковой момент стремится повернуть вал по направлению вращения магнитного поля статора. Когда он достигает значения тормозного момента ротора, а потом превышает его, вал приводится в действие. При этом процессе создаётся скольжение. Оно показывает то, насколько частота магнитного поля статора больше частоты вращения ротора (в %).

Подключение к однофазной сети

Трёхфазный асинхронный электродвигатель может быть подключён к 1-фазной сети. Это достигается при помощи фазосдвигающих элементов. При всём этом трёхфазное устройство будет функционировать только в режиме однофазного электродвигателя или конденсаторного с постоянной работой конденсатора.

При 1-фазном запуске одна обмотка принимает на себя ток через ёмкость или индуктивность, сдвигающую фазу напряжения вперёд или назад на 90 градусов. После подключения электродвигателя к сети и начала вращения ротора, нельзя отключать рабочий конденсатор. Это действие равносильно обрыву одной из фаз при работе 3-х фазного электродвигателя. Потому даже при небольшом увеличении тормозного момента двигатель остановится и сгорит.

Иногда при работе с однофазной сетью получается выполнить ручной запуск путём поворота вала. После этого электродвигатель асинхронный трехфазный может функционировать самостоятельно.

В целом, трёхфазные эл двигатели с короткозамкнутым ротором лучше использовать в соответствующей сети. Для однофазной больше подойдёт асинхронный трехфазный двигатель.

Большой выбор устройств

В нашем интернет-магазине представлены различные трёхфазные, однофазные асинхронные двигатели и запчасти к ним. Вы можете выбрать оптимальную мощность, монтажное исполнение, количество оборотов устройства и купить товар в пару кликов. Цена электромоторов зависит от их технических характеристик. Доставка актуальна по всей Украине.

Асинхронный двигатель в высокодинамичном режиме работы

Асинхронный двигатель на сегодняшний день является наиболее используемым в промышленности, вследствие своей простоты, дешевизны и удобства в эксплуатации. При использовании современных микропроцессорных средств управления и преобразователей частоты возможно их применение в тех отраслях производства, где ранее использовались кривошипно-шатунные механизмы, а также другие сложные механические узлы вращательного и поступательного движения. К таким задачам относится поперечное колебание проволоки в процессе наплавки при сварке. Режим работы двигателя является повторно-кратковременным, причем рабочий цикл не превышает одной секунды.

При использовании преобразователей частоты LENZE 8200 Vector в режиме векторного управления эта задача успешно решается с применением асинхронного двигателя, что было подтверждено проведенным экспериментом.

Тип используемого преобразователя: E82EV251K2C. Мощность преобразователя 250Вт.

Тип асинхронного двигателя: MS7114. Мощность двигателя 250Вт.

Задание направления вращения поступало на преобразователь частоты в виде логического сигнала с контроллера.

Тип используемого контроллера: VIPA112-4BH02

Для эксперимента была реализована схема:

При замыкании контакта К2 подается разрешение на работу преобразователя частоты.

При замыкании контакта К1 на аналоговый вход 1U подается максимальный сигнал задания, выставленный в параметре “С11” — максимальная выходная частота. Во время проведения эксперимента это значение было выставлено равным 70Гц.

При подаче логической единицы на клемму Е4 осуществляется реверс преобразователя при установленном параметре “С0007” равным нулю.

Время ускорения и время замедления в параметрах “С0012“, “С0013” выставлено равным нулю. При этом контроль тока осуществляется за счет правильной настройки параметра “

С0022” в соответствии с используемым двигателем.

При этом на экране преобразователя частоты ток двигателя не превышал 50% от номинального для преобразователя. Следует отметить, вал двигателя был отключен от нагрузки, то есть работал на холостом ходу. При этом ток двигателя в статическом режиме не превышал 10% номинального значения для двигателя.

Очевидно, что при увеличении нагрузки на валу двигателя, возрастет как статическая, так и динамическая составляющая тока нагрузки, то есть увеличение нагрузки на двигателе возможно в незначительной степени. Тем не менее, проведенный эксперимент доказал возможность работы асинхронного двигателя совместно с преобразователем частоты в высокодинамичном режиме.

Полезные ссылки

устройство, принцип работы, виды, способы пуска

Способы пуска и схемы подключения

Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

  • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
  • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
  • понижение напряжения;
  • плавный пуск;
  •  изменение частоты питающего напряжения.

Однофазного асинхронного двигателя.

Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

  • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.
  • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
  • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.

Трехфазного асинхронного двигателя.

Трехфазные асинхронные агрегаты могут подключаться такими способами:

  • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
  • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
  • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

Рис. 9: прямая схема без возможности реверсирования

Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

Рисунок 10: схема прямого включения с реверсом

Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

Асинхронные двигатели популярно / Статьи и обзоры / Элек.ру

В этой научно-популярной обзорной статье рассмотрим некоторые вопросы, которые позволят читателю расширить и закрепить свои знания о мире двигателей.

Экспресс-знакомство

В настоящее время на практике в подавляющем большинстве случаев применяют асинхронные электродвигатели с короткозамкнутым ротором. Они имеют сравнительно простую конструкцию, и относительно недороги.

Для работы асинхронного двигателя нужно обязательно трехфазное напряжение, которое, благодаря обмоткам статора, создает вращающееся магнитное поле внутри двигателя. Это поле вращает ротор двигателя, который, в свою очередь, передает вращение на нагрузку. Например, редуктор или лопасти вентилятора.

Изменяя конфигурацию обмоток статора (количество пар полюсов), можно менять основную характеристику асинхронного двигателя — частоту оборотов. Мощность на валу двигателя зависит от мощности, получаемой электродвигателем от сети.

Другие виды

Другие двигатели, которые в настоящее время также находят применение — это электродвигатели постоянного тока. Они имеют щетки (рисунок 1), которые подвержены износу и искрению. Также, необходима обмотка подмагничивания (возбуждения), на которую подается постоянное напряжение. Несмотря на эти недостатки, электродвигатели постоянного тока находят применение там, где нужно быстрое изменение скорости вращения и контроль момента, а также при мощностях более 100 кВт.

Рисунок 1. Электродвигатель постоянного тока.

В быту также применяют коллекторные (щеточные) электродвигатели переменного тока, которые имеют низкую надежность по сравнению с асинхронными.

Другие типы двигателей — серводвигатели и шаговые двигатели — применяют сравнительно редко в случаях, когда необходимо сверхточное позиционирование нагрузки на валу. Например, в координатных станках.

В однофазной сети

Мы уже говорили выше, что для работы асинхронного двигателя нужно вращающееся магнитное поле, которое обеспечивается трехфазным напряжением.

Однако, часто есть необходимость питать такой двигатель от бытовой однофазной сети 220 В. В случае работы асинхронного двигателя в однофазной сети применяют фазосдвигающие и пусковые конденсаторы. При этом получают подобие трехфазной питающей сети. Номинальную мощность на валу получить не получится, приходится рассчитывать на 70–80% от номинала.

Это происходит из-за того, что не удается обеспечить отсутствие перекоса по фазам при изменении нагрузки.

Способы управления

Управление электродвигателем подразумевает возможность изменения его скорости и мощности (момента). Так, если на асинхронный двигатель подать напряжение нужной величины и частоты, он будет вращаться с номинальной частотой, и сможет обеспечить мощность на валу не более номинальной. Если же нужно понизить или повысить скорость электродвигателя, в основном применяют преобразователи частоты (ПЧ) — рисунок 2. Благодаря этому для двигателя можно обеспечить нужный режим разгона, торможения, а также управлять частотой работы оперативно, по желанию оператора оборудования.

Рисунок 2. Преобразователь частоты Schneider Electric.

Если нужно обеспечить требуемый разгон и торможение без изменения рабочей частоты, то применяют устройство плавного пуск (УПП). Если нужно управлять только разгоном двигателя для минимизации пусковых токов, то применяют схему включения «звезда-треугольник».

Для подачи питания на двигатель без ПЧ и УПП также широко применяются контакторы, которые позволяют дистанционно управлять пуском, остановом и реверсом.

Управление запуском

Запуск может происходить в простейшем случае от кнопки «Пуск». Но за этой кнопкой может скрываться, например, контроллер, который действует по сложной программе и выдает сигнал на запуск преобразователя частоты. Также кнопка запуска может быть непосредственно подключена ко входу управления ПЧ или УПП.

В классическом варианте, когда двигатель запускается через контактор, кнопка «Пуск» подает питание на катушку контактора, контактор включается, и своим дополнительным (блокировочным) контактом становится на самоподхват.

Остановка производится кнопкой «Стоп», которая обычно имеет нормально замкнутые контакты.

Направление вращения

Реверс двигателя — важная функция в его управлении. Осуществляется реверс очень простым способом — нужно поменять местами любые две питающие фазы.

Реализуется это в контакторной схеме путем использования двух контакторов, каждый из которых имеет свой порядок фаз. Контакторы имеют обязательно механическую и электрическую блокировки, чтобы избежать возможности одновременного включения.

Вращение может быть прямым и обратным. Прямое вращение распознать очень просто. Стоит посмотреть двигателю «в зад», и, если вал крутится по часовой стрелке — это прямое вращение.

Как определить мощность

Иногда нужно на практике узнать, какой двигатель перед нами. Проще всего определить номинальную мощность электродвигателя по его шильдику (рисунок 3). На нем указана механическая мощность (мощность на валу), которая всегда меньше потребляемой мощности за счет КПД двигателя (потерь на трение и нагрев). Однако, если шильдик на корпусе двигателя отсутствует, то можно ориентировочно определить мощность по его габаритам. При одинаковой мощности при большем диаметре вала мощность навалу будет больше, а частота оборотов — меньше.

Рисунок 3. Шильда механической мощности двигателя.

Также, определить мощность можно по нагрузке, а также по уставкам защитных устройств, через которые питается двигатель (мотор-автомат, тепловое реле).

Другой способ — нужно включить двигатель на номинальную мощность, обеспечив нужную нагрузку на валу. После этого, померить токоизмерительными клещами ток двигателя, который должен быть по всем обмоткам одинаков. На основании измеренного тока можно оценить мощность двигателя. Приблизительно оценить мощность асинхронного двигателя, при подключении его по схеме «звезда» можно, разделив его номинальный измеренный ток на 2.

Регулировка оборотов

Управление скоростью вращения двигателем может быть в трех режимах работы — при разгоне, в рабочем режиме, и при торможении.

Наиболее универсальным способом управления оборотами двигателя во всех перечисленных режимах является применение преобразователя частоты. Настройками можно добиться любой частоты вращения в пределах технической возможности. При этом можно управлять и другими параметрами электродвигателя, а также следить за его состоянием во время работы. Частоту можно менять и плавно, и ступенчато. Возможно управление от дистанционного пульта или с контроллера по цифровому каналу связи.

Управление оборотами двигателя только в режиме разгона и торможения возможно при использовании УПП — рисунок 4. Это устройство позволяет значительно снизить пусковой ток за счет плавного разгона с медленным увеличением оборотов.

Рисунок 4. Устройство управление оборотами двигателя ABB.

Торможение

В некоторых устройствах, например, лифтах, крайне необходимо при остановке двигателя зафиксировать его вал в неподвижном состоянии. Для этого применяют электромагнитный механический тормоз, который закреплен в задней части двигателя и входит в его конструкцию.

Управление тормозом происходит от ПЧ или схемы на контакторах. Важно, чтобы это происходило синхронно с остановом двигателя.

Рисунок 5. Электродвигатель с тормозом с креплением через фланец.

На рисунке 5 показан электродвигатель с тормозом с креплением через фланец. Также применяют электрическое торможение постоянным током. Для этого через ПЧ или диодный выпрямитель подают на обмотки двигателя постоянное (однополярное) напряжение в 3–4 раз меньше номинального рабочего.

Неисправности

Большинство неисправностей электродвигателей проявляется их нагревом.

Причины неисправностей могут быть следующие:

  • износ подшипников и повышенное механическое трение;
  • увеличение нагрузки на валу;
  • перекос напряжения питания;
  • пропадание фазы;
  • замыкание в обмотке из-за ухудшения изоляции;
  • проблема с обдувом (охлаждением).

Неисправности электродвигателей можно разделить на два вида: электрические и механические.

К электрическим можно отнести неисправности, связанные с обмоткой:

  • межвитковое замыкание;
  • замыкание обмотки на корпус;
  • обрыв обмотки.

Для устранения этих неисправностей требуется перемотка двигателя.

Механические неисправности:

  • износ и трение в подшипниках;
  • проворачивание ротора на валу;
  • повреждение корпуса двигателя;
  • проворачивание или повреждение крыльчатки обдува.

Замена подшипников должна производиться регулярно, учитывая их износ и срок службы. Повреждение крыльчатки устраняется путем ее замены. Остальные неисправности устранению практически не подлежат, и в таких случаях двигатель подлежит замене.

Защита

Как было сказано выше, основной причиной неисправностей двигателя является его перегрев. Сам перегрев, как правило, является следствием каких-либо аномальных электрических или механических режимов работы.

Следовательно, предотвратив перегрев, можно отключить и сохранить двигатель в исправном состоянии. Для этого используются три основных способа:

Электронный контроль тока — этот способ используется в электронных устройствах пуска двигателей — ПЧ и УПП. С помощью встроенного трансформатора тока происходит его измерение, а встроенный контроллер принимает решение об остановке двигателя.

Тепловой контроль тока. Для этого применяются устройства тепловой защиты — тепловые реле или защитные мотор-автоматы. В них имеется возможность выставить точно токовую уставку, при которой реле или автомат отключат питание двигателя.

Непосредственный контроль температуры корпуса и обмоток реализуется за счет терморезистора или термоконтакта, встроенного внутрь корпуса двигателя. Недостаток этого способа — большая инерционность, и его обычно применяют как дополнительный способ защиты.

Александр Ярошенко, автор блога SamElectric.ru

Асинхронные электродвигатели. Виды и устройство. Работа

Асинхронные электродвигатели были изобретены в 1889 году. В настоящее время выпускается большой спектр электрических двигателей. Из них наибольшую популярность приобрел электродвигатель асинхронного типа, трехфазный. Половина всей электроэнергии в мире расходуется такими электродвигателями. Они нашли широкое использование во многих отраслях промышленности, в быту, электроинструменте, так как имеет невысокую стоимость, повышенную надежность, простое обслуживание и эксплуатацию.

Область использования таких электромашин становиться все шире, так как их конструкция совершенствуется. В переводе с английского такой электродвигатель называют индукционным. И это легко объяснить, так как это вид моторов, в котором явление индукции применяется для создания полюсов, другими словами, применяются наводки для образования движущей силы. Особенностью асинхронных двигателей является отличие частоты поля от скорости вращения вала. В других типах двигателей используются постоянные магниты, обмотки и т.д.

Устройство

Асинхронные электродвигатели состоят из:

  • Ротора.
  • Статора.

 

Статор, состоит из основных частей:
  • Корпус. Служит для образования соединений деталей мотора. При малом размере мотора корпус цельнолитой. Материал изготовления – чугун. Могут использоваться сплавы алюминия, либо сталь. Часто в небольших двигателях функцию сердечника выполняет корпус. В больших моторах со значительной мощностью корпус имеет сварную конструкцию.
  • Сердечник. Эта деталь запрессована в корпус, и предназначена для повышения магнитной индукции, изготовлена из электротехнической стали в виде пластин. Для уменьшения потерь, возникающих при вихревых токах, сердечник покрывается лаком.
  • Обмотка. Она расположена в пазах сердечника. Для ее намотки применяется медная проволока, секциями, соединенными между собой по определенной схеме. Витки образуют 3 катушки, которые по сути дела играют роль обмотки статора. Эта обмотка первичная, непосредственно к ней подключается питание.
Ротор:
  • Ротор – элемент двигателя, находящийся во вращении, предназначен для трансформации магнитного поля в энергию движения, состоит из частей:
  • Вал. Подшипники вала находятся на его хвостовиках. При сборке двигателя подшипники запрессовываются, фиксируются болтами к крышкам корпуса.
  • Сердечник. Его сборку производят на валу двигателя. Он состоит из металлических пластин электротехнической стали, которая обладает свойством малого сопротивления магнитному полю. Форма сердечника в виде цилиндра используется для укладки катушки якоря, которая называется вторичной. Она получает энергию от магнитного поля, появляющегося вокруг обмоток статора при подаче питания.
Классификация по типу ротора
  • С короткозамкнутым ротором.


Такой тип двигателя оснащен обмоткой в виде алюминиевых стержней, расположенных в пазах сердечника. На торце ротора они замыкаются между собой кольцами.

  • С ротором, оснащенным контактными кольцами.


Оба типа моторов имеют схожую конструкцию статора. Разница состоит лишь в конструкции якоря.

Классификация по числу фаз

Асинхронные электродвигатели трехфазные являются основными типами моторов. Они оснащены 3-мя обмотками на статоре, смещены на 120 градусов, соединены между собой треугольником, либо звездой, получают питание от трех фаз переменного тока.

Асинхронные электродвигатели небольшой мощности чаще всего изготавливаются двухфазными. Они отличаются от 3-фазных моторов оснащением 2-мя обмотками на статоре, которые смещены между собой на угол 90 градусов.

В случае равенства токов по модулю, и их сдвигу по фазе на 90 градусов, действие мотора не будет иметь отличия от 3-фазного двигателя. Но такие типы двигателей чаще подключаются от однофазной сети, а искусственный сдвиг на 90 градусов образуется за счет конденсаторов.

Асинхронные электродвигатели однофазные оснащаются единственной обмоткой на статоре. Они практически не могут работать. Когда вал электродвигателя неподвижен, то при подаче питания образуется только импульсное магнитное поле, а момент вращения равен нулю. Но если ротор у такого электродвигателя принудительно раскрутить, то он сможет функционировать и приводить в действие какой-либо привод механизма.

В таком случае пульсирующее поле складывается из 2-х симметричных полей: прямого и обратного. Они образуют разные моменты: один двигательный, другой тормозной. Но двигательный момент получается больше тормозного, возникающего вследствие токов ротора высокой частоты.

В связи с этим 1-фазные моторы оснащаются второй обмоткой, применяющейся в качестве пусковой. В ее цепи для сдвига фаз подключают конденсаторы. Их емкость имеет значительную величину, и может достигать нескольких десятков мкФ при маломощном моторе, меньше 1000 ватт.

В управляющих системах применяют 2-фазные асинхронные электродвигатели, получившие название исполнительных. Они оснащены двумя обмотками статора, которые имеют сдвиг фаз на 90 градусов. Одна обмотка (возбуждения) питается от сети 50 герц, а вторая применяется в качестве управляющей.

Чтобы образовалось магнитное поле с вращающим моментом, ток в управляющей обмотке должен иметь сдвиг 90 градусов. Для регулировки скорости мотора изменяют значение тока в этой обмотке, либо меняют угол фазы. Реверсивное движение обеспечивается сменой фазы в обмотке управления на 180 градусов, с помощью переключения обмотки.

2-фазные асинхронные электродвигатели производятся в разных исполнениях:
  • Короткозамкнутым ротором.
  • Полым магнитным ротором.
  • Полым немагнитным ротором.
Линейные моторы

Чтобы преобразовать движение вращения в поступательное движение, необходимо применение определенных механизмов. Поэтому при необходимости двигатель конструктивно выполняют таким образом, что его ротор сделан в виде бегунка с линейными движениями.

В таком случае двигатель получается развернутым. Обмотка статора такого мотора сделана, как и у обычного двигателя, но она должна быть уложена на всей длине перемещения бегунка (ротора) в пазы. Такой ротор в виде бегунка чаще бывает короткозамкнутым. К нему присоединен привод механизма. На краях статора располагают ограничители, которые не дают ротору выходить за определенные пределы.

Принцип действия

Якорь электродвигателя приводится в действие с помощью эффекта магнитного поля, возникающего в катушках статора. Для лучшего понимания принципа работы мотора, нужно освежить в памяти закон самоиндукции. Он говорит, что вокруг подключенного к питанию проводника образуется магнитное поле. Его величина прямо зависит от индуктивности проводника и потока частиц.

Также, магнитное поле образует силу, направленную в определенную сторону, которая вращает ротор мотора. Чтобы двигатель работал с достаточной эффективностью, нужно получить значительный магнитный поток. Его можно создать особой установкой первичной обмотки.

Источник напряжения выдает переменное напряжение, значит, вокруг статора магнитное поле будет с такими же свойствами, и прямо зависит от изменения тока сети. Фазы смещены между собой на 120 градусов.

Процессы в обмотке статора

Все фазы сети подключаются к катушкам статора, каждая фаза к определенной катушке. Поэтому магнитное поле будет иметь смещение на 120 градусов. Питание поступает в виде переменного напряжения, значит, вокруг катушек возникнет переменное магнитное поле.

Схема двигателя выполняется так, чтобы магнитное поле вокруг катушек постепенно менялось и переходило от одной катушки к другой. Так образуется магнитное поле с эффектом вращения. Можно определить частоту вращения, которая будет измеряться в числе оборотов вала мотора. Она вычисляется по формуле:

n = 60*f / p, где f – частота тока в сети, р – количество пар полюсов статора.

Работа ротора

Процессы во вторичной обмотке ротора, и особенность конструкции, которую имеют асинхронные электродвигатели с короткозамкнутым ротором.

К обмотке якоря напряжение не подается. Оно возникает из-за индукционной связи с первичной обмоткой. Из-за этого и происходит действие, обратное действию в статоре. Оно соответствует закону: при пересечении проводника магнитным потоком, в нем образуется электрический ток. Магнитное поле возникает вокруг первичной обмотки от того, что к ней подключается трехфазное питание.

Совместная работа ротора и статора

Мы имеем асинхронный мотор с ротором, в котором протекает электрический ток по его обмотке. Этот ток станет причиной появления магнитного поля возле обмотки якоря. Но полярность потока не будет совпадать с потоком статора. А значит, и сила, которая создается им, будет противодействовать силе магнитного поля первичной обмотки, что заставит двигаться ротор, потому что на нем выполнена вторичная обмотка, а вал закреплен на подшипниках в корпусе мотора.

Разберемся в ситуации, когда взаимодействуют силы магнитных полей ротора и статора, по истечении времени. Известно, что магнитное поле первичной катушки вращается с определенной частотой. Образованная им сила будет передвигаться с такой же скоростью. Это приводит в действие асинхронный двигатель, его ротор будет вращаться вокруг своей оси.

Подключение двигателя к питанию

Для запуска электродвигателя его нужно подключить к напряжению 3-фазного тока. Выполнить такое подключение возможно двумя методами: звездой и треугольником.

Схема звездой

Здесь изображен способ соединения треугольником.

Схемы собираются в клеммной коробке, расположенной на корпусе двигателя.

Чтобы запустить электродвигатель в обратном направлении вращения, необходимо только изменить местами две любые фазы путем перебрасывания двух проводов в коробке двигателя.

Похожие темы:

Асинхронный электродвигатель. Устройство и принцип действия. – www.motors33.ru

Асинхронный электродвигатель имеет две основные части – статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).
В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты по устройству и удобны в эксплуатации.
Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

Рис. 1. Различные виды обмотки статора асинхронных электродвигателей

На рис. 1, а) показана обмотка статора асинхронного электродвигателя. У этой обмотки каждая катушка состоит из двух проводников. Обмотка, состоящая из трех катушек, создает магнитное поле с двумя полюсами. За один период трехфазного тока магнитное поле сделает один оборот. При частоте 50 Гц это будет соответствовать 50 об/сек, или 3000 об/мин.
На рис. 1, б) показана обмотка, у которой каждая сторона катушки состоит из двух проводников.
Скорость вращения магнитного поля четырехполюсного статора вдвое меньше скорости вращения поля двухполюсного статора, т. е. 1500 об/мин (при 50 Гц). Обмотка четырехполюсного статора с одним проводником на полюс и фазу показана на рис. 1, в), а с двумя проводниками на полюс и фазу – на рис. 1, г). Магнитное поле шестиполюсного статора имеет втрое меньшую скорость, чем двухполюсного, т. е. 1000 об/мин (при 50 Гц). Обмотка шестиполюсного статора с одним проводником на полюс и фазу представлена на рис. 1, д). Число всех пазов на статоре равно утроенному произведению числа полюсов статора на число пазов, приходящееся на полюс и фазу.

Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности. Рассмотрим его устройство. На неподвижной части двигателя – статоре 1 – размещается трехфазная обмотка 2 (рис. 2), питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

Рис. 2. Асинхронный электродвигатель с короткозамкнутым ротором
Собранный сердечник статора укрепляют в чугунном корпусе 3 двигателя. Вращающуюся часть двигателя – ротор 4 – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам

Рис. 3. Короткозамкнутый ротор
а — ротор с короткозамкнутой обмоткой, б — «беличье колесо»,
в — короткозамкнутый ротор, залитый алюминием;
1 — сердечник ротора, 2 — замыкающие кольца, 3 — медные стержни,
4 — вентиляционные лопатки
Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал 6 вращается в подшипниках, закрепленных в подшипниковых щитах 7 и 8. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.
Устройство статора асинхронного двигателя с фазным ротором и его обмотка не отличаются от устройства статора двигателя с короткозамкнутым ротором. Различие между этими электродвигателями заключается в устройстве ротора.

Рис. 4. Разрез асинхронного двигателя с фазным ротором
1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца
Фазный ротор имеет три фазные обмотки, соединенные между собой звездой (реже треугольником). Концы фазных обмоток ротора присоединяют к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора, вследствие чего этот двигатель получил также название двигателя с контактными кольцами. Три кольца жестко насажены на вал ротора (через изоляционные прокладки). На кольца накладываются щетки, которые размещены в щеткодержателях, укрепленных на одной из подшипниковых крышек.
Щетки, скользящие по поверхности колец ротора, все время имеют с ними хороший электрический контакт и соединены, таким образом, с обмотками ротора. Щетки соединены с трехфазным реостатом.

Источник: Кузнецов М. И. Основы электротехники. Учебное пособие.
Изд. 10-е, перераб. «Высшая школа», 1970.

В чем разница между асинхронными и синхронными двигателями?

Загрузить статью в формате .PDF

Растущее значение энергоэффективности побудило производителей электродвигателей продвигать различные схемы, улучшающие характеристики электродвигателей. К сожалению, терминология, связанная с моторными технологиями, может сбивать с толку, отчасти потому, что несколько терминов иногда могут использоваться взаимозаменяемо для обозначения одной и той же базовой конфигурации двигателя. Среди классических примеров этого явления – асинхронные двигатели и асинхронные двигатели.

Все асинхронные двигатели являются асинхронными двигателями. Асинхронный характер работы асинхронного двигателя происходит из-за скольжения между скоростью вращения поля статора и несколько меньшей скоростью ротора. Более конкретное объяснение того, как возникает это проскальзывание, касается деталей внутреннего устройства двигателя.

Большинство современных асинхронных двигателей содержат вращающийся элемент (ротор), известный как беличья клетка. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе.Твердый сердечник ротора состоит из пакетов пластин электротехнической стали. В роторе меньше пазов, чем в статоре. Количество пазов ротора также должно быть нецелым кратным пазам статора, чтобы предотвратить магнитную блокировку зубцов ротора и статора при запуске двигателя.

Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора. Смысл этой конфигурации с фазным ротором состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель сначала начинает вращаться.Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо. Как только ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.

Неподвижная часть обмоток двигателя называется якорем или статором. Обмотки статора подключаются к источнику переменного тока. Подача напряжения на статор вызывает прохождение тока в обмотках статора.Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

Северный полюс статора индуцирует южный полюс ротора. Но полюс статора вращается при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила создается, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот.Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора. Поле ротора всегда на некоторую величину отстает от поля статора, поэтому он вращается со скоростью, несколько меньшей, чем у статора. Разница между ними называется скольжением.

Размер скольжения может быть разным. Это зависит, главным образом, от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора.

Несколько простых уравнений проясняют основные взаимосвязи.

Когда на статор изначально подается переменный ток, ротор неподвижен. Напряжение, индуцируемое в роторе, имеет ту же частоту, что и на статоре. Когда ротор начинает вращаться, частота индуцированного в нем напряжения f r падает. Если f – частота напряжения статора, то скольжение, s, связывает эти два через f r = s f .Здесь s выражается в виде десятичной дроби.

Когда ротор неподвижен, ротор и статор фактически образуют трансформатор. Таким образом, напряжение E , индуцированное в роторе, определяется уравнением трансформатора

E = 4,44 f N м

, где Н, = количество проводников под одним полюсом статора (обычно небольшое для двигателя с короткозамкнутым ротором) и № м = максимальный магнитный поток по Веберсу.Таким образом, напряжение E r , индуцируемое при вращении ротора, зависит от скольжения:

E r = 4,44 s f N Ñ „ m = s E

Описание синхронных двигателей

Синхронный двигатель имеет особую конструкцию ротора, которая позволяет ему вращаться с одинаковой скоростью, то есть синхронно, с полем статора. Одним из примеров синхронного двигателя является шаговый двигатель, широко используемый в приложениях, связанных с управлением положением.Однако недавние достижения в схемах управления мощностью привели к появлению конструкций синхронных двигателей, оптимизированных для использования в таких ситуациях с более высокой мощностью, как вентиляторы, нагнетатели и ведущие мосты внедорожных транспортных средств.

Существует два основных типа синхронных двигателей:

• Самовозбуждение – использует принципы, аналогичные принципам асинхронных двигателей, и

• С прямым возбуждением – обычно с постоянными магнитами, но не всегда

Самовозбуждающийся синхронный двигатель, также называемый реактивным электродвигателем, содержит ротор, отлитый из стали, который имеет выемки или зубцы, называемые выступающими полюсами.Это выемки, которые позволяют ротору блокироваться и работать с той же скоростью, что и вращающееся магнитное поле.

Чтобы переместить ротор из одного положения в другое, схема должна последовательно переключать питание на последовательные обмотки / фазы статора аналогично тому, как это происходит в шаговом двигателе. Синхронный двигатель с прямым возбуждением можно называть разными именами. Обычные названия включают ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом.В этой конструкции используется ротор, содержащий постоянные магниты. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

Постоянные магниты являются основными полюсами этой конструкции и предотвращают скольжение. Микропроцессор управляет последовательным переключением питания на обмотки статора в нужное время с помощью твердотельных переключателей, сводя к минимуму пульсации крутящего момента. Принцип действия всех этих типов синхронных двигателей в основном одинаков.Электроэнергия подается на катушки, намотанные на зубья статора, которые заставляют значительный магнитный поток пересекать воздушный зазор между ротором и статором. Поток течет перпендикулярно воздушному зазору. Если явный полюс ротора идеально совмещен с зубом статора, крутящий момент не создается. Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере, часть потока пересекает зазор под углом, не перпендикулярным поверхностям зуба. Результатом является крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

Еще один тип синхронного двигателя называется реактивным электродвигателем с переключаемым сопротивлением (SR).

Его ротор состоит из многослойных стальных пластин с рядом зубцов. Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них щелей. Таким образом, ротор не требует обмоток, редкоземельных материалов или магнитов.

В отличие от асинхронных двигателей, здесь нет стержней ротора, и, следовательно, в роторе отсутствует ток, создающий крутящий момент. Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, содержащих роторы, несущие проводники.Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора. Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен тому, как скорость регулируется током якоря в традиционном щеточном двигателе постоянного тока.

Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения скорости вращения двигателя.

Разница между синхронным двигателем и асинхронным двигателем

Двигатели переменного тока можно разделить на две основные категории – (i) синхронный двигатель и (ii) асинхронный двигатель . Асинхронный двигатель обычно называют асинхронным двигателем. Оба типа сильно отличаются друг от друга. Основные различия между синхронным двигателем и асинхронным двигателем обсуждаются ниже.
Конструктивная разница
  • Синхронный двигатель : Статор имеет осевые пазы, которые состоят из обмотки статора, намотанной на определенное количество полюсов.Обычно используется ротор с явнополюсным ротором, на котором установлена ​​обмотка ротора. Обмотка ротора запитана постоянным током с помощью контактных колец. Также можно использовать ротор с постоянными магнитами.
    Синхронный двигатель
  • Асинхронный двигатель : Обмотка статора аналогична обмотке синхронного двигателя. Он накручивается на определенное количество полюсов. Можно использовать ротор с короткозамкнутым ротором или ротор с обмоткой.В роторе с короткозамкнутым ротором стержни ротора постоянно замкнуты накоротко с концевыми кольцами. В роторе с намоткой обмотки также постоянно закорочены, поэтому контактные кольца не требуются.
    Асинхронный двигатель
Разница в рабочих
  • Синхронный двигатель : Полюса статора вращаются с синхронной скоростью (Нс) при питании от трехфазного источника питания. Ротор питается от источника постоянного тока.Во время пуска ротор необходимо вращать со скоростью, близкой к синхронной. В этом случае полюса ротора магнитно соединяются с вращающимися полюсами статора, и, таким образом, ротор начинает вращаться с синхронной скоростью.
    • Синхронный двигатель всегда работает со скоростью, равной его синхронной скорости.
      т.е. фактическая скорость = синхронная скорость
      или N = Ns = 120f / P
    • Подробнее о работе синхронного двигателя здесь.
  • Асинхронный двигатель : Когда на статор подается двух- или трехфазный источник переменного тока, создается вращающееся магнитное поле (RMF).Относительная скорость между вращающимся магнитным полем статора и ротором вызовет индуцированный ток в проводниках ротора. Ток ротора вызывает поток ротора. Согласно закону Ленца, направление этого индуцированного тока таково, что он будет иметь тенденцию противодействовать причине его образования, то есть относительной скорости между RMF статора и ротором. Таким образом, ротор будет пытаться догнать RMF и снизить относительную скорость.
Прочие отличия
  • Синхронным двигателям требуется дополнительный источник постоянного тока для питания обмотки ротора.Асинхронные двигатели не требуют дополнительного источника питания.
  • Контактные кольца и щетки необходимы в синхронных двигателях, но не в асинхронных двигателях (за исключением асинхронного двигателя с обмоткой, в котором двигатели с контактным кольцом используются для добавления внешнего сопротивления обмотке ротора).
  • Синхронным двигателям требуется дополнительный пусковой механизм для первоначального вращения ротора, близкого к синхронной скорости. В асинхронных двигателях пусковой механизм не требуется.
  • Коэффициент мощности синхронного двигателя может быть отрегулирован на отстающий, единичный или опережающий, изменяя возбуждение, тогда как асинхронный двигатель всегда работает с отстающим коэффициентом мощности.
  • Синхронные двигатели обычно более эффективны, чем асинхронные.
  • Синхронные двигатели дороже.
Асинхронный двигатель

: как он работает? (Основы и типы)

Что такое асинхронный двигатель?

Асинхронный двигатель (также известный как асинхронный двигатель ) – широко используемый электродвигатель переменного тока. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора.Ротор асинхронного двигателя может быть ротором с короткозамкнутым ротором или ротором с намоткой.

Асинхронные двигатели называют «асинхронными двигателями», потому что они работают со скоростью, меньшей, чем их синхронная скорость. Итак, первое, что нужно понять – что такое синхронная скорость? Типичный асинхронный двигатель

Синхронная скорость

Синхронная скорость – это скорость вращения магнитного поля во вращающейся машине, и она зависит от частоты и числа полюсов двигателя. машина.Асинхронный двигатель всегда работает со скоростью меньше, чем его синхронная скорость.

Вращающееся магнитное поле, создаваемое в статоре, создает магнитный поток в роторе, тем самым вызывая вращение ротора. Из-за запаздывания между магнитным потоком в роторе и магнитным потоком в статоре ротор никогда не достигнет своей скорости вращения магнитного поля (т. Е. Синхронной скорости).

Существует два основных типа асинхронных двигателей . Типы асинхронных двигателей зависят от входного источника питания.Есть однофазные асинхронные двигатели и трехфазные асинхронные двигатели. Однофазные асинхронные двигатели не являются самозапускающимися двигателями, а трехфазные асинхронные двигатели – это самозапускающиеся двигатели.

Принцип работы асинхронного двигателя

Нам нужно дать двойное возбуждение, чтобы двигатель постоянного тока вращался. В двигателе постоянного тока мы подаем одно питание на статор, а другое – на ротор через щеточное устройство. Но в асинхронном двигателе мы даем только один источник питания, поэтому интересно узнать, как работает асинхронный двигатель.

Это просто, из самого названия мы можем понять, что здесь задействован процесс индукции. Когда мы подаем питание на обмотку статора, в статоре создается магнитный поток из-за протекания тока в катушке. Обмотка ротора устроена так, что каждая катушка замыкается накоротко.

Поток от статора разрезает короткозамкнутую катушку в роторе. Поскольку катушки ротора закорочены, согласно закону электромагнитной индукции Фарадея, ток начнет течь через катушку ротора.Когда ток через катушки ротора течет, в роторе генерируется другой поток.

Теперь есть два потока, один поток статора, а другой поток ротора. Поток ротора будет отставать от потока статора. Из-за этого ротор будет ощущать крутящий момент, который заставит ротор вращаться в направлении вращающегося магнитного поля. Это принцип работы как однофазных, так и трехфазных асинхронных двигателей.

Типы асинхронных двигателей

Типы асинхронных двигателей можно классифицировать в зависимости от того, являются ли они однофазными или трехфазными асинхронными двигателями.

Однофазный асинхронный двигатель

Типы однофазных асинхронных двигателей включают:

  1. Асинхронный двигатель с разделенной фазой
  2. Асинхронный двигатель с конденсаторным запуском
  3. Асинхронный двигатель с конденсаторным запуском и конденсаторным запуском
  4. Трехфазный асинхронный двигатель с экранированными полюсами

Асинхронный двигатель

Типы трехфазных асинхронных двигателей включают:

  1. Асинхронный двигатель с короткозамкнутым ротором
  2. Асинхронный двигатель с контактным кольцом

Мы уже упоминали выше, что однофазный асинхронный двигатель не является самозапускаемым двигателем, и что трехфазный асинхронный двигатель самозапускается.Итак, , что такое самозапускающийся двигатель?

Когда двигатель запускается автоматически без приложения какой-либо внешней силы к машине, тогда двигатель называется «самозапуском». Например, мы видим, что когда мы включаем выключатель, вентилятор начинает вращаться автоматически, так что это самозапускающийся механизм.

Следует отметить, что вентилятор, используемый в бытовой технике, представляет собой однофазный асинхронный двигатель, который по своей природе не запускается автоматически. Как? Возникает вопрос, как это работает? Обсудим это сейчас.

Почему трехфазный асинхронный двигатель самозапускается?

В трехфазной системе есть три однофазные линии с разностью фаз 120 °. Таким образом, вращающееся магнитное поле имеет ту же разность фаз, которая заставляет ротор двигаться.

Если мы рассмотрим три фазы a, b и c, когда фаза a намагничивается, ротор будет двигаться к фазе a обмотки a, в следующий момент фаза b намагнитится и притянет к себе ротор, а затем фаза c . Таким образом, ротор продолжит вращаться.

Принцип работы трехфазного асинхронного двигателя – видео

Почему однофазный асинхронный двигатель не запускается автоматически?

У него только одна фаза, но она заставляет ротор вращаться, так что это довольно интересно. Перед этим нам нужно знать, почему однофазный асинхронный двигатель не является самозапускающимся двигателем и как решить эту проблему. Мы знаем, что источник переменного тока представляет собой синусоидальную волну и создает пульсирующее магнитное поле в равномерно распределенной обмотке статора.

Так как мы можем принять пульсирующее магнитное поле как два противоположно вращающихся магнитных поля, при пуске не будет результирующего крутящего момента, и, следовательно, двигатель не работает. Если после подачи питания ротор вращается в любом направлении под действием внешней силы, то двигатель начнет работать. Эту проблему можно решить, разделив обмотку статора на две обмотки – одна основная обмотка, а другая вспомогательная.

Один конденсатор подключаем последовательно со вспомогательной обмоткой.Конденсатор будет создавать разность фаз, когда ток течет через обе катушки. Когда есть разность фаз, ротор генерирует пусковой крутящий момент, и он начинает вращаться.

Практически мы видим, что вентилятор не вращается, когда конденсатор отсоединяется от двигателя, но если мы вращаем рукой, он начинает вращаться. Вот почему мы используем конденсатор в однофазном асинхронном двигателе.

Из-за различных преимуществ асинхронного двигателя существует широкий спектр применения асинхронного двигателя.Одно из их самых больших преимуществ – их высокий КПД, который может доходить до 97%. Основным недостатком асинхронного двигателя является то, что скорость двигателя зависит от приложенной нагрузки.

Направление вращения асинхронного двигателя можно легко изменить, изменив последовательность фаз трехфазного источника питания, то есть, если RYB находится в прямом направлении, RBY заставит двигатель вращаться в обратном направлении. Это в случае трехфазного двигателя, но в однофазном двигателе направление можно изменить, поменяв местами выводы конденсатора в обмотке.

Асинхронный двигатель | Асинхронный двигатель

Самый распространенный двигатель в мире – асинхронный или асинхронный двигатель. Это двигатель, который может работать без электрического подключения к ротору. В этом посте будет обсуждаться асинхронный двигатель (асинхронные двигатели), его типы, то есть однофазный, трехфазный, беличий корпус, контактное кольцо и т. Д., Особенности, принцип работы, применение, преимущества и недостатки.

Что такое асинхронный двигатель (асинхронный двигатель)

Асинхронный двигатель или асинхронный двигатель – это самый простой и распространенный тип электродвигателя, который имеет только обмотку Armortisseur , что означает вспомогательную обмотку только на якоре.В асинхронном двигателе (или асинхронном двигателе) статорная часть двигателя передает электромагнитное поле своей обмоткой на роторную часть двигателя. Это генерирует электрический ток в роторе. Электрический ток создает крутящий момент, который приводит в движение.

Рис.1 – Введение в асинхронный двигатель (асинхронный двигатель)

Он упоминается как «Асинхронный двигатель », поскольку он всегда будет работать со скоростью, меньшей, чем его синхронная скорость.Синхронная скорость определяется как скорость магнитного поля вращающейся машины, которая снова определяется количеством полюсов и частотой в машине.

Поскольку в этом типе двигателя ротор получает поток и вращение за счет магнитного поля в статоре, между токами в статоре и роторе есть задержка. Из-за этого ротор никогда не достигает своей синхронной скорости. Отсюда термин «асинхронный двигатель». На рис. 2 показаны части асинхронного двигателя.

Фиг.2 – Детали асинхронного двигателя (асинхронный двигатель)

Конструкция асинхронного двигателя (асинхронного двигателя)

Он состоит в основном из двух частей, а именно:

Статор

Это стационарная часть электродвигателя. Эта часть обеспечивает электромагнитное поле, необходимое для вращения вращающейся части двигателя. Он состоит из ряда штамповок с прорезями для трехфазной обмотки. Каждая обмотка отделена от другой обмотки на 120 градусов.

Ротор

Это вращающаяся часть двигателя. Более распространенный тип ротора в асинхронных двигателях (или асинхронных двигателях) – это ротор с короткозамкнутым ротором. Ротор имеет форму якоря с сердечником цилиндрической формы. Вокруг сердечника есть параллельные прорези, через которые проходит ток. Сердечник имеет стержень из алюминия, меди или сплава.

Рис.3 – Базовый ротор и статор

Типы асинхронных двигателей (асинхронные двигатели)

Он подразделяется на два типа:

  • Однофазный асинхронный двигатель
  • Трехфазный асинхронный двигатель

Однофазный асинхронный двигатель

Однофазный асинхронный двигатель

не является двигателем с автоматическим запуском.Здесь двигатель подключен к однофазному источнику питания, который передает переменный ток к основной обмотке. Поскольку источник переменного тока представляет собой синусоидальную волну, он создает пульсирующее магнитное поле в обмотке статора.

Пульсирующие магнитные поля – это два магнитных поля, вращающихся в противоположных направлениях; следовательно, крутящий момент не создается. Таким образом, после подачи тока ротор должен быть перемещен в любом направлении извне, чтобы двигатель заработал. Однофазный индуктор отсюда; могут иметь разные разновидности в зависимости от устройства, которое используется для запуска двигателя:

  • Двигатель с расщепленной фазой
  • Двигатель с экранированными полюсами
  • Конденсаторный пусковой двигатель
  • Конденсаторный пусковой двигатель и конденсаторный двигатель

Фиг.4 – Принципиальная схема (а) однофазного (б) трехфазного асинхронного двигателя

Трехфазный асинхронный двигатель (асинхронный двигатель)

Это двигатели, для запуска которых не требуется никаких внешних устройств, таких как конденсатор, центробежный переключатель или пусковая обмотка. Принцип работы этого двигателя основан на использовании трех однофазных фаз, разность фаз между которыми составляет 120 градусов. Таким образом, магнитное поле, вызывающее вращение, будет иметь одинаковую разность фаз между ними, это заставит ротор двигаться без какого-либо внешнего крутящего момента.

Для дальнейшего упрощения предположим, что это три фазы: phase1, phase2 и phase3. Итак, первая фаза 1 намагничивается, и ротор начинает двигаться в этом направлении, вскоре после этого будет возбуждена фаза 2, и тогда ротор будет притягиваться к фазе 2, а затем, наконец, к фазе 3. Таким образом, ротор продолжит вращаться.

Далее они подразделяются на категории в зависимости от типа используемого ротора:

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором
Асинхронный двигатель с короткозамкнутым ротором

Ротор этого типа имеет форму беличьей клетки, отсюда и название.Ротор изготовлен из стали с очень токопроводящими металлами, такими как алюминий и медь на поверхности. Скорость асинхронного двигателя этого типа очень легко изменить, просто изменив форму стержней в роторе.

Рис.5 – Асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором

Он также известен как асинхронный двигатель с фазовой обмоткой. Здесь ротор подключается к внешнему сопротивлению через контактные кольца.Скорость ротора регулируется путем регулировки внешнего сопротивления. Поскольку у этого двигателя больше обмоток, чем у асинхронного двигателя с короткозамкнутым ротором, его также называют асинхронным двигателем с фазным ротором.

Рис.6 – Асинхронный двигатель с контактным кольцом

Характеристики асинхронного двигателя (асинхронного двигателя)

Ниже приведены характеристики двух различных типов асинхронных двигателей.

Характеристики однофазного асинхронного двигателя
  • Здесь мы выделим некоторые характеристики, которые применимы только к однофазным асинхронным двигателям:
  • Однофазные асинхронные двигатели не запускаются автоматически и используют однофазное питание для вращения.
  • Чтобы изменить направление вращения в однофазных двигателях, лучше всего остановить двигатель и изменить его, иначе существует вероятность повреждения двигателя из-за момента инерции, который действует против направления, в котором необходимо изменить вращение. .
  • Для запуска двигателя вам потребуется конденсатор и / или центробежный переключатель.
  • У этих двигателей низкий пусковой крутящий момент.
  • Они в основном используются дома или в бытовых приборах из-за низкого коэффициента мощности и эффективности.

Характеристики трехфазного асинхронного двигателя

Ниже перечислены некоторые особенности трехфазного асинхронного двигателя, которые отличают его от однофазного двигателя:

  • Это автономные двигатели, не требующие специальных пускателей.
  • Имеются три однофазных линии с разностью фаз 120 градусов.
  • Он имеет более простое подключение и более надежен, чем однофазные асинхронные двигатели.
  • Пусковой крутящий момент у этих двигателей выше, чем у однофазных двигателей.
  • Они в основном используются на заводах и в промышленности из-за высокого коэффициента мощности и эффективности.

Как работает асинхронный двигатель (асинхронный двигатель) Работа

Явление, которое заставляет асинхронные двигатели работать, весьма интересно. Двигатели постоянного тока нуждаются в двойном возбуждении для вращения, одно для статора, а другое для ротора.Но в этих двигателях мы должны отдавать это только статору, что делает это уникальным. Как следует из названия, принцип работы этого двигателя основан на индукции. Давайте сделаем ряд шагов, которые происходят при вращении этого двигателя:

  • На обмотки статора подается питание, протекает ток и создается магнитный поток.
  • Обмотка в роторе устроена таким образом, что каждая катушка закорачивается.
  • Короткозамкнутая обмотка ротора обрезается магнитным потоком статора.

Рис.7 – Работа асинхронного двигателя

Согласно законам электромагнитной индукции Фарадея, магнитное поле взаимодействует с электрической цепью, создавая ЭДС (электродвижущую силу). Итак, в соответствии с этим законом в катушках ротора начинает течь ток.

  • Ток в роторе генерирует другой поток.
  • Теперь есть два потока: один в статоре, а другой в роторе.
  • Поток ротора запаздывает по отношению к потоку статора, что создает крутящий момент в роторе в направлении магнитного поля.

Применение асинхронных двигателей

В числе приложений:

  • Они широко используются в миксерах, игрушках, вентиляторах и т. Д.
  • Они также используются в насосах и компрессорах.
  • Малые асинхронные двигатели используются в электробритвах.
  • Они используются в буровых станках, лифтах, кранах и дробилках.
  • Они подходят для приводов текстильных фабрик и маслоэкстракционных заводов.

Преимущества асинхронного двигателя

Ниже приведены некоторые преимущества асинхронных двигателей:

  • Высокоэффективный и простой в конструкции.
  • Очень прочный и может работать в любых условиях.
  • Низкие эксплуатационные расходы, поскольку в них не так много деталей, как коммутаторы или щетки.
  • Они могут развивать очень высокую скорость, не беспокоясь о том, что они износятся, поскольку у них нет щеток.
  • Они просты в эксплуатации, поскольку к ротору не подключены электрические разъемы.
  • Поскольку у них нет щеток, искры не боятся, поэтому их можно использовать в загрязненных или взрывоопасных средах.
  • Скорость от малой нагрузки до номинальной изменяется меньше.

Недостатки асинхронного двигателя

Асинхронные двигатели имеют простую конструкцию, которая может иметь несколько недостатков, как указано ниже:

  • Трудно контролировать скорость асинхронного двигателя, поэтому его нельзя использовать в местах, где требуется точный контроль скорости.
  • Падение КПД при малых нагрузках.
  • Они имеют высокие входные импульсные токи, что дает низкое напряжение при пуске двигателя.

См. Также: Видео на YouTube об асинхронных двигателях

  Также читают:
Маховик как накопитель энергии, расчеты и требования к ротору
Повышающий трансформатор - работа, конструкция, применение и преимущества
Синхронный двигатель - конструкция, принцип, типы, характеристики
Что такое клещи (клещи-тестеры) - типы, принцип работы и порядок эксплуатации  

Лакшми – B.E (Электроника и связь) и имеет опыт работы в RelQ Software в качестве инженера-испытателя и HP в качестве руководителя службы технической поддержки. Она является автором, редактором и партнером Electricalfundablog.

Асинхронные двигатели переменного тока

| Как работают электродвигатели переменного тока Асинхронные электродвигатели переменного тока

| Как работают двигатели переменного тока – объясните это

Реклама

Криса Вудфорда. Последнее изменение: 21 апреля 2020 г.

Вы знаете, как работают электродвигатели? Ответ, наверное, да и нет! Хотя многие из нас узнали, как базовые моторные работы, из простых научных книг и веб-страниц, таких как эта, многие из двигатели, которые мы используем каждый день – от заводских машин до электропоезда – вообще-то так не работают.Какие книги рассказывают нам о простых двигателях постоянного тока (DC), которые имеют петля из проволоки, вращающаяся между полюсами постоянного магнита; в реальной жизни, в большинстве двигателей большой мощности используется переменный ток (AC) и работают совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле. Давайте посмотрим внимательнее!

Фотография: Обычный асинхронный двигатель переменного тока со снятыми корпусом и ротором, демонстрирующий медные обмотки катушек, составляющих статор (статическая, неподвижная часть двигателя).Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (подвижную часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено Министерством энергетики США / NREL.

Как работает обычный двигатель постоянного тока?

Иллюстрации: Электродвигатель постоянного тока основан на проволочной петле, вращающейся внутри фиксированного магнитного поля, создаваемого постоянным магнитом. Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют направление электрического тока каждый раз, когда провод перекручивается, что позволяет ему вращаться в одном и том же направлении.

Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки, согнутый в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током сидит в магнитном поле.) Когда вы подключаете такой провод к батарее, через него течет постоянный ток (DC), создавая вокруг него временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, в результате чего провод перевернуть.Обычно провод останавливался в этой точке, а затем снова переворачивался, но если мы воспользуемся хитроумным вращающимся соединением называется коммутатором, мы можем сделать обратный ток каждый раз, когда проволока переворачивается, а это значит, что проволока будет продолжать вращаться в в том же направлении, пока течет ток. Это суть простого электродвигателя постоянного тока, задуманного в 1820-е годы Майкла Фарадея и превратился в практическое изобретение о десять лет спустя Уильям Стерджен. (Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

Прежде чем мы перейдем к двигателям переменного тока, давайте быстро резюмируйте, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю статическую часть двигатель (статор), а катушка с проводом, несущая электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который представляет собой постоянного магнита, пока вы подаете электроэнергию на катушку, которая составляет ротор. Взаимодействие между постоянными магнитами поле статора и временное магнитное поле, создаваемое ротором, равно что заставляет мотор крутиться.

Как работает двигатель переменного тока?

В отличие от игрушек и фонариков, большинство домов, офисов, фабрики и другие здания не питаются от маленьких батареек: на них подается не постоянный ток, а переменный ток (AC), который меняет направление примерно 50 раз в секунду. (с частотой 50 Гц). Если вы хотите запустить двигатель от домашней электросети переменного тока, вместо батареи постоянного тока нужна другая конструкция двигателя.

В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляя статор), которые предназначены для создания вращающегося магнитного поля.Внутри статора находится цельная металлическая ось, проволочная петля, катушка, беличья клетка из металлических стержней и межсоединений (например, вращающиеся клетки, которым иногда удается развлечь мышей), или другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию во внутренний ротор, в двигателе переменного тока вы посылаете мощность на внешние катушки, которые составляют статор. Катушки запитываются попарно, последовательно, создает магнитное поле, вращающееся вокруг двигателя.

Фото: Статор создает магнитное поле с помощью туго намотанных катушек из медной проволоки, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим электродвигателем. Иногда легче заменить обмотки двигателя новым проводом – это умелая работа, называемая перемоткой, что и происходит здесь. Фото Сета Скарлетта любезно предоставлено ВМС США.

Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри магнитное поле, является электрическим проводником.Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (точнее, закону Фарадея), магнитное поле создает (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него по петле. Если проводник представляет собой просто цельный кусок металла, вместо этого вокруг него циркулируют вихревые токи. В любом случае индуцированный ток производит собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что его вызывает – вращающееся магнитное поле – также вращаясь.(Вы можете думать о роторе отчаянно пытается «догнать» вращающееся магнитное поле, пытаясь устранить разница в движении между ними.) Электромагнитная индукция – это ключ к тому, почему такой двигатель вращается, и поэтому он называется асинхронным.

Как работает асинхронный двигатель переменного тока?

Вот небольшая анимация, чтобы подвести итог и, надеюсь, прояснить все:

  1. Две пары катушек электромагнита, показанные здесь красным и синим цветом, по очереди запитываются источником переменного тока (не показан, но поступают к выводам справа).Две красные катушки соединены последовательно и запитаны вместе, а две синие катушки катушки подключаются таким же образом. Поскольку это переменный ток, ток в каждой катушке не включается и не выключается резко (как предполагает эта анимация), а плавно повышается и падает в форме синусоидальной волны: когда красные катушки наиболее активны, синие катушки полностью неактивны, и наоборот. Другими словами, их токи не совпадают (не совпадают по фазе на 90 °).
  2. Когда катушки находятся под напряжением, магнитное поле, которое они создают между ними, индуцирует электрический ток в роторе.Этот ток создает собственное магнитное поле, которое пытается противодействовать тому, что его вызвало (магнитное поле от внешних катушек). Взаимодействие между двумя полями заставляет ротор вращаться.
  3. Когда магнитное поле чередуется между красной и синей катушками, оно эффективно вращается вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (теоретически) почти с одинаковой скоростью.

Асинхронные двигатели на практике

Что контролирует скорость двигателя переменного тока?

В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером так называемого асинхронного двигателя переменного тока.Теоретическая скорость ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля. На практике нагрузка на двигатель (независимо от того, чем он управляет) также играет роль, замедляя ротор. Чем больше нагрузка, тем больше «пробуксовка» между скоростью вращающегося магнитного поля и фактической скоростью ротора. Чтобы контролировать скорость двигателя переменного тока (чтобы он работал быстрее или медленнее), вы должны увеличивать или уменьшать частоту источника переменного тока, используя так называемый частотно-регулируемый привод.Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, питаемой от асинхронного двигателя переменного тока, вы на самом деле управляете схемой, которая изменяет частоту тока, приводящего в движение двигатель, вверх или вниз.

Что такое «фаза» двигателя переменного тока?

Нам не обязательно приводить в движение ротор с четырьмя катушками (двумя противоположными парами), как показано здесь. Можно построить асинхронные двигатели с любым другим расположением катушек. Чем больше у вас катушек, тем плавнее будет работать мотор.Количество отдельных электрических токов, возбуждающих питание катушек независимо, не в шаге, известно как фаза двигателя, поэтому конструкция, показанная выше, представляет собой двухфазный двигатель (с двумя токами, питающими четыре катушки, которые работают не в шаге в двух парах. ). В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно расположенных катушек (три пары) или даже 12 катушек (три набора по четыре катушки) с одной, двумя или четырьмя катушками. включается и выключается одновременно тремя отдельными противофазными токами.

Анимация: трехфазный двигатель, питаемый тремя токами (обозначенными красным, зеленым и синие пары катушек), сдвиг по фазе на 120 °.

Преимущества и недостатки асинхронных двигателей

Преимущества

Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ двигатели, напротив, имеют коллектор и угольные щетки, которые изнашиваются. выходят и нуждаются в замене время от времени.Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Иллюстрации: Электродвигатели чрезвычайно эффективны, обычно преобразовывая около 85 процентов поступающей электроэнергии в полезную исходящую механическую работу. Даже в этом случае довольно много энергии теряется в виде тепла внутри обмоток, поэтому двигатели могут сильно нагреваться. Большинство двигателей переменного тока промышленной мощности имеют встроенные системы охлаждения.Внутри корпуса находится вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который приводит в движение любую машину, к которой прикреплен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса, минуя ребра вентиляции. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), причина в том, что они охлаждают двигатель.

Недостатки

Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, приводящего его в действие, он вращается со скоростью постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного легче контролировать, просто повышая или понижая напряжение питания.Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за их катушечной обмотки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника постоянного тока (например, солнечных батарей) без использования инвертора (устройства, которое преобразует постоянный ток в переменный). Это потому, что им нужно изменяющееся магнитное поле, чтобы вращать ротор.

Кто изобрел асинхронный двигатель?

Изображение: оригинальный дизайн Николы Теслы для асинхронного двигателя переменного тока. Он работает точно так же, как и на анимации выше, с двумя синими и двумя красными катушками, поочередно запитываемыми от генератора справа.Это произведение взято из оригинального патента Tesla, депонированного в Бюро патентов и товарных знаков США, с которым вы можете ознакомиться в приведенных ниже ссылках.

Никола Тесла (1856–1943) был физиком. и плодовитый изобретатель, чей огромный вклад в науку и технику никогда не были полностью признаны. После того, как он приехал в Соединенные Штаты в возрасте 28 лет, он начал работал на известного пионера электротехники Томаса Эдисона. Но двое мужчин поссорились катастрофически и вскоре стали непримиримыми соперниками.Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал обратное. Со своим партнером Джорджем Westinghouse, Тесла отстаивал AC, в то время как Эдисон был полон решимости управлять миром на DC и придумал всевозможные рекламные трюки, чтобы доказать, что кондиционер слишком опасен для широкого использования (изобретение электрического стула, чтобы доказать, что переменный ток может быть смертельным, и даже ударил током слона Топси с помощью переменного тока, чтобы показать, насколько это было смертельно опасно и жестоко). Битва между этими двумя очень разные взгляды на электроэнергию иногда называют Войной течений.

Несмотря на лучшие (или худшие) усилия Эдисона, Tesla победила, и теперь электричество переменного тока питает большую часть мира. Во многом именно поэтому многие электродвигатели, которые приводить в действие бытовую технику в наших домах, фабриках и офисах переменного тока асинхронные двигатели, работающие от вращающихся магнитных полей, которые Никола Тесла сконструировал в 1880-х годах (его патент, проиллюстрированный здесь, был выдан в мае 1888 года). Итальянский физик по имени Галилео Феррарис независимо друг от друга придумал ту же идею примерно в то же время, но история обошлась с ним еще более жестоко, чем Тесла и его имя теперь почти забыты.

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
Для младших читателей
  • Электричество для молодых людей: забавные и легкие проекты «Сделай сам» Марка де Винка. Maker Media / O’Reilly, 2017. Отличное практическое введение в электричество, включая несколько занятий, связанных с созданием электродвигателей с нуля.Возраст 9–12.
  • Эксперименты с электродвигателем Эда Соби. Enslow, 2011. Это отличное общее введение в электродвигатели с большим количеством более широкого научного и технологического контекста. Однако по очевидным практическим соображениям и соображениям безопасности он ориентирован только на проекты с двигателями постоянного тока и лучше всего подходит для детей в возрасте от 11 до 14 лет.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004. Одна из моих книг, рассказывающих об усилиях человека по использованию энергии с древних времен до наших дней.Возраст 10+.
  • Никола Тесла: разработчик электроэнергии Крисом Вудфордом в «Изобретатели и изобретения», том 5. Нью-Йорк: Маршалл Кавендиш, 2008. Краткая биография Теслы, которую я написал несколько лет назад. На момент написания все это было доступно в Интернете по этой ссылке в Google Книгах. Возраст 9–12.

Патенты

Патенты

предлагают более глубокие технические детали и собственные идеи изобретателя о своей работе. Вот очень небольшая подборка многих патентов США, касающихся асинхронных двигателей.

  • Патент США 381 968: Электромагнитный двигатель Николы Тесла, 1 мая 1888 г. Оригинальный патент на асинхронный двигатель переменного тока.
  • Патент США 2,959,721: Многофазные асинхронные двигатели, Томас Х. Бартон и др., Lancashire Dynamo & Crypto Ltd, 8 ноября 1960 г. Асинхронный двигатель с улучшенным контролем скорости.
  • Патент США 4311932: Жидкостное охлаждение для асинхронных двигателей, Рэймонд Н. Олсон, Sundstrand Corporation, 19 января 1982 г. Эффективный метод жидкостного охлаждения двигателя без чрезмерного сопротивления жидкости вращающимся компонентам.
  • Патент США 5,751,082: Асинхронный двигатель с высоким пусковым моментом. Автор: Umesh C. Gupta, Vickers, Inc., 12 мая 1998 г. Современный двигатель с высоким начальным крутящим моментом.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2012/2020) Асинхронные двигатели. Получено с https://www.explainthatstuff.com/induction-motors.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Модель динамики трехфазной асинхронной машины, также известна как индукционная машина

Номинальная мощность, напряжение (линейно-линейное), и частота

Номинальная полная мощность Pn (ВА), среднеквадратичное линейное напряжение Vn (В) и частота fn (Гц). По умолчанию: [3730 460 60] для единицы о.е. и [1.845e + 04 400 50] для единиц СИ.

Сопротивление и индуктивность статора

Сопротивление статора Rs (Ом или pu) и индуктивность рассеяния Lls (H или pu).По умолчанию [0,01965 0,0397] для единицы о.е. и [0,5968 0,0003495] для единиц СИ.

Сопротивление и индуктивность ротора

Сопротивление ротора Rr ‘(Ом или pu) и индуктивность рассеяния Llr ‘(H или pu) оба относятся к статору. Этот параметр виден только когда параметр Тип ротора на вкладке Конфигурация установлен на Обмотка или Беличья клетка . По умолчанию [0,01909 0.0397] для блоков PU и [0,6258 0,005473] для единиц СИ.

Сопротивление и индуктивность клетки 1

Сопротивление ротора Rr1 ‘(Ом или pu) и индуктивность рассеяния Llr1 ‘(H или pu), оба относятся к статору. Этот параметр виден только когда параметр Тип ротора на вкладке Конфигурация установлен на Двойная беличья клетка . Дефолт составляет [0,01909 0,0397] для единиц о.е. и [0,4155 0.002066] для единиц СИ.

Сопротивление и индуктивность клетки 2

Сопротивление ротора Rr2 ‘(Ом или pu) и индуктивность рассеяния Llr2 ‘(H или pu), оба относятся к статору. Этот параметр виден только когда параметр Тип ротора на вкладке Конфигурация установлен на Двойная беличья клетка . Дефолт составляет [0,01909 0,0397] для единиц о.е. и [0,4168 0,0003495] для единиц СИ.

Взаимная индуктивность

Намагничивающая индуктивность Lm (H или pu).По умолчанию 1,354 для единицы о.е. и 0,0354 для единиц СИ.

Константа инерции, коэффициент трения и пары полюсов

Для диалогового окна единиц СИ : комбинированный коэффициент инерции машины и нагрузки J (кг.м 2 ), комбинированный коэффициент вязкого трения F (Н.м.с) и пары полюсов p. Момент трения Tf пропорционален скорости вращения ротора ω (Tf = F.w). По умолчанию [0,05 0,005879 2] .

Для диалогового окна единиц о.у. : постоянная инерции H (s), комбинированный коэффициент вязкого трения F (pu), а пары полюсов p.По умолчанию [0,09526 0,05479 2] .

Начальные условия

Задает начальное скольжение s, электрический угол Θe (градусы), величина тока статора (A или pu) и фазовые углы (градусы):

 [скольжение, th, i  как , i  bs , i  cs , фаза  как , фаза  bs , фаза  cs ] 

Если параметр Тип ротора установлен на Обмотка , вы также можете указать необязательные начальные значения для тока ротора величина (A или pu) и фазовые углы (градусы):

 [скольжение, th, i  as , i  bs , i  cs , фаза  как , фаза  bs , фаза  cs  , i  ar , i  br , i  cr , фаза  ar , фаза  br , фаза  cr ]
 

Когда параметр Тип ротора установлен на Беличья клетка , начальные условия могут быть вычислены с помощью инструмента Load Flow или Инструмент инициализации станка в блоке Powergui.

По умолчанию [1,0 0,0,0 0,0,0] для о.у. единиц и [0 0 0 0 0 0 0 0] для единиц СИ.

Имитация насыщения

Определяет наличие магнитного насыщения ротора и статора. железо смоделировано или нет. По умолчанию очищено.

[i; v] (pu)

Задает параметры кривой насыщения без нагрузки. Магнитный насыщение железа статора и ротора (насыщение взаимного поток) моделируется кусочно-линейной зависимостью, определяющей точки кривой насыщения без нагрузки.Первая строка этой матрицы содержит значения токов статора. Вторая строка содержит значения соответствующих клеммы напряжения (напряжения статора). Первая точка (первый столбец матрицы) должно отличаться от [0,0]. Эта точка соответствует до точки, где начинается эффект насыщения. По умолчанию: [0.212,0.4201,0.8125,1.0979,1.4799,2.2457,3.2586,4.5763,6.4763 ; 0,5,0,7,0,9,1,1,1,1,2, 1,3,1,4,1,5] для единиц pu и [14.03593122, 27.81365428, 53.79336849, 72.688

  • , 97.98006896, 148.6815601, 215.7428561, 302.9841135, 428.7778367; 230, 322, 414, 460, 506, 552, 598, 644, 690] для единиц СИ ..

    Вы должны выбрать Simulate saturation check коробка для имитации насыщенности. Если вы не выбрали Simulate флажок насыщения , связь между статором ток и напряжение статора линейны.

    Щелкните График , чтобы просмотреть указанное значение холостого хода кривая насыщения.

  • Асинхронные двигатели – Руководство по электрическому монтажу

    Асинхронный (т.е. индукционный) двигатель прочен и надежен и очень широко используется. 95% двигателей, установленных по всему миру, являются асинхронными. Следовательно, защита этих двигателей имеет большое значение во многих приложениях.

    Введение

    Асинхронные двигатели используются в самых разных областях. Вот несколько примеров машин с приводом:

    • кондиционеры воздуха,
    • чиллеры,
    • лифта,
    • вентиляторы и нагнетатели,
    • пожарный насос,
    • центробежные насосы,
    • компрессоры,
    • дробилки,
    • конвейеры,
    • подъемников и кранов,

    Последствия отказа двигателя из-за неправильной защиты или невозможности работы схемы управления могут включать следующее:

    • Для лиц:
      • Удушье из-за блокировки вентиляции двигателя
      • Удар током из-за нарушения изоляции двигателя
      • Авария из-за того, что двигатель не остановился из-за отказа цепи управления
    • Для ведомой машины и процесса:,
      • Муфты валов, оси, приводные ремни,… повреждены из-за остановки ротора
      • Пострадавшая продукция
      • Отложенное производство
    • Для самого мотора:
      • Обмотки двигателя перегорели из-за остановки ротора
      • Стоимость ремонта
      • Стоимость замены

    Таким образом, безопасность людей и товаров, а также уровни надежности и доступности во многом зависят от выбора средств защиты.

    С экономической точки зрения необходимо учитывать общую стоимость отказа. Эта стоимость увеличивается с увеличением размера двигателя и трудностями доступа и замены. Потери производства – еще один, очевидно, важный фактор.
    Специфические характеристики двигателя влияют на цепи питания, необходимые для удовлетворительной работы.

    Цепь питания двигателя имеет определенные ограничения, которые обычно не встречаются в других (общих) схемах распределения.Это связано с особыми характеристиками двигателей, напрямую подключенных к линии, таких как:

    • Высокий пусковой ток (см. Рис. N74), который в основном является реактивным и поэтому может быть причиной значительного падения напряжения
    • Количество и частота пусковых операций в целом высокие
    • Высокий пусковой ток означает, что устройства защиты двигателя от перегрузки должны иметь рабочие характеристики, предотвращающие срабатывание во время периода пуска.

    Рис. N74 – Характеристики прямого пускового тока асинхронного двигателя

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *