Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Неполярный конденсатор из двух полярных или как сделать пусковой конденсатор | Электронные схемы

неполярный конденсатор из двух неполярных

Из двух полярных электролитических конденсаторов большой емкости можно сделать один неполярный конденсатор.

В сети есть несколько схем,испытал две популярные схемы.Для проверки взял три электролитических конденсатора емкостью по 470 мкФ и на напряжение 10 В.Источником переменного тока является трансформатор напряжением 6.3В действующего или около 10 В амплитудного значения напряжения.

Для начала испытал один электролитический конденсатор на переменном токе.Подключил к выводам конденсатора источник тока и через пять секунд конденсатор взорвался, испустив при этом электролит в виде пара через предохранительный клапан.Полярный конденсатор нельзя подключать к переменному току.Далее собрал неполярный конденсатор по схеме с двумя диодами.Конденсаторы чуть теплые,амплитуда напряжения на каждом из них около 5 В при подключении к выводам 10 В,то есть напряжение делится наполовину.

неполярный конденсатор из двух полярных электролитических

Емкость такого конденсатора равняется емкости одного конденсатора из двух.Каждый полярный конденсатор по 470 мкФ,а общая емкость неполярного конденсатора 225 мкФ.

неполярный конденсатор для запуска трехфазного электродвигателя

Потом сделал неполярный конденсатор без диодов.Два полярных конденсатора подключаются минус к минусу.Все осциллограммы и характеристики почти соответствуют конденсатору,который был сделан с диодами.Выходит так,что две разные схемы идентичны,но диоды должны защищать конденсаторы,возможно схема с диодами будет лучше работать.Надо еще учитывать,что напряжение на полярном конденсаторе указано для постоянного тока,при работе на переменном токе и при работе с пульсациями рабочее напряжение конденсатора выбирают больше уровня пульсации.

подключение конденсаторов последовательно

Конденсатор электролитический неполярный 100 мкФ 16V 85°C d8 h21.

5 (10шт) Описание товара Конденсатор электролитический неполярный 100 мкФ 16V 85°C d8 h21.5 (10шт)

Конденсатор электролитический неполярный 100µF 16V 85°C d8 h21.5 обладает емкостью – 100µF, что позволяет его разместить на печатной плате при максимальном уровне напряжения до 16 Вольт и при этом положительно отличается возможностью подключения без учета полярности.

Технические характеристики 100µF 16V 85°C d8 h21.5
  • Емкость: 100µF
  • Максимальное напряжение: 16V
  • Допустимая температура: до 85°C
  • Размеры:
    • диаметр: d8
    • длина: h21.5
  • Материал диэлектрика: фольга;
  • Количество слоев диэлектрика: 2;
  • Допускает подключение без учета полярности: да;
  • Форма корпуса: цилиндрическая.
Отличительные особенности и преимущества Конденсатора электролитического неполярного 100µF 16V 85°C d8 h21.5

Рассматриваемый электролитический неполярный конденсатор в форме небольшого цилиндра органично впишется даже в ограниченное пространство на печатной плате.

Как и большинство электролитических конденсаторов (кроме аксиальных), конденсатор электролитический неполярный 100µF 16V 85°C устанавливается в вертикальном положении, поэтому при проектировании корпуса для печатной платы, учитывайте его высоту (с небольшим запасом).

Неполярный электролитический конденсатор используется в цепях постоянного и пульсирующего тока. Может устанавливаться на выходе диодного выпрямителя в блоке питания для эффективной фильтрации переменной составляющей.

Преимуществом неполярного конденсатора является возможность соединить довольно большую емкость электролитического конденсатора с возможностью не обращать внимание на полярность при пайке конденсатора.

Но ценой этого являются несколько большие размеры неполярного электролитического конденсатора.

Кроме того, неполярные конденсаторы выпускаются с меньшим диапазоном емкостей, чем полярные электролитические конденсаторы.

Недостатки и причины выхода из строя электролитического неполярного конденсатора

Преимущество неполярного электролитического конденсатора в нечувствительности к полярности включения оборачивается увеличенными размерами.

Фактически в одном корпусе неполярного конденсатора находится два электролитических полярных конденсатора.

Яркий пример этого – сравнить два конденсатора (полярный и неполярный) одинаковой емкости и на одно и то же рабочее напряжение.

У неполярного конденсатора диаметр корпуса в среднем больше в 1,3 раза, а длина ориентировочно – в 1,5 раза.

Если на печатной плате критически мало места, возможно есть смысл устанавливать полярный конденсатор, как более компактный, при соблюдении полярности.

Как и для всех электролитических конденсаторов, неполярные конденсаторы традиционно подвержены эффекту высыхания электролита.

Дополнительно негативно на срок службы неполярного конденсатора влияет:

  • работа при предельных режимах напряжения и температуры;
  • повреждения корпуса.

Однозначно проверить емкость неполярного конденсатора можно мультиметром с функцией измерения емкости.

Чем заменить электролитический неполярный конденсатор при наличии двух полярных

Конденсатор электролитический неполярный 100µF 16V 85°C можно заменить двумя полярными электролитическими конденсаторами, включив их встречно-последовательно.

При этом емкость каждого из конденсаторов должна быть приблизительно в два раза больше емкости заменяемого, а рабочее напряжение не ниже исходного.

Купить электролитический неполярный конденсатор 100µF 16V 85°C Вы можете в Киеве, в Интернет-магазине Electronoff.

Автор на +google

Как правильно заменить конденсатор – ООО «УК Энерготехсервис»

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

  • Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.
  • В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса).

На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж:

16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма.

Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали.

Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить.

А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить.

А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие.

В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

 Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть.

Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов.

Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) моральную и материальную поддержку.

Замена конденсаторов на материнской плате: основы пайки — Александр Павлов

Реклама

Ремонт и настройка компьютера Вызов на дом. Решаем любую задачу. Профессиональная настройка. Бесплатная диагностика и консультация.

Всех приветствую! Сегодня я покажу вам основы замены конденсаторов на материнской плате. Будет производиться замена вышедшего из строя конденсатора.

Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.

Итак, для пайки нам понадобятся следующие инструменты:

  • ремонтируемая деталь (например, материнка),
  • пальник или термофен,
  • припой,
  • флюс,
  • оплётка,
  • плоскогубцы,
  • конденсатор,
  • обезжириватель,
  • кисточка.

Полный набор

Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.

Как подобрать нужный конденсатор

На каждом конденсаторе имеется маркировка. Там указано 4 параметра:

  • напряжение в вольтах,
  • емкость в микрофарадах,
  • рабочая температура,
  • маркировка полярности.

Что касается маркировки полярностей на конденсаторе, то минус отмечается серой или золотой полосой. На ремонтируемой детали (в моем случае это материнская плата) полярность обозначается в виде двухцветного круга, рассеченного пополам.

Закрашенная часть круга — это минус. Конденсатор ставится на плату минус к минусу, плюс к плюсу.

Единственное исключение – это платы фирмы Asus. У них маркировка полярности сделана наоборот, т.е. закрашенный полукруг у них — это плюс.
Именно на материнской плате Asus мы сегодня и будем проводить замену конденсаторов.

Нам нужно определить, какие конденсаторы вздулись или полопались. Мне пришлось ломать «кондер» для демонстрации ???? Истинно вздутые конденсаторы выглядят немного иначе, но, надеюсь, что суть вам ясна.

Также мы должны найти этот конденсатор на обратной стороне платы.

Итак, мы с вами определили конденсатор под замену с обеих сторон материнки. Теперь можно приступать к пайке.

Отпаиваем старый конденсатор

Не забываем о технике безопасности и подкладываем под плату силиконовый коврик.

На ножки целевого конденсатора наносим флюс для того, чтобы пайка получилась качественной.

Для того что бы выпаять старый конденсатор было проще, желательно нагреть место пайки термофеном. Выставляем температуру на 300-320 градусов на паяльной станции.

И прогреваем место пайки на расстоянии 4-5 см.

Далее подготавливаем паяльник – для этого смачиваем жало флюсом и накладываем припой, делая каплю «жидкой пайки» на конце жала.

Должно получиться вот так.

Это нужно для того, чтобы старый (заводской) припой смешался с новым. Это упростит пайку.
Не забываем выставить температуру 300-320 градусов. Это температура плавления припоя.

  • На заготовленные ножки конденсатора прикладываем паяльник так, чтобы капля полностью покрыла ножку.

Стараемся вытащить конденсатор с другой стороны. Ни в коем случае не тянем его руками, так как можно сильно обжечься.

Можно поставить материнку вот так

После того, как вы выпаяли старый конденсатор, нужно убрать припой из отверстий на плате.
Это можно сделать оловоотсосом или же оплёткой. По мне так проще второй вариант.

Положите оплетку поверх отверстий и ведите жалом, пока не увидите, что медные усики забрали весь припой на себя.
Для большей эффективности сквозь оплётку проткните отверстия, но не прикладывайте чрезмерных усилий, так как можно повредить текстолит.

Ставим новый конденсатор

И вот финишная прямая.
Вставляем новый конденсатор в выпаянное нами отверстие.

Не забывайте про полярность на плате и конденсаторе (в особенности, что касается плат Asus).

  1. С обратной стороны у нас должно получиться вот так.

Наносим флюс по самый верх этих ножек и, проводя каплей «жидкой пайки» снизу вверх по ножке, запаиваем деталь. Припой сам сольётся по ножке и встанет на плату. Если конденсатор не шатается, значит, у вас всё получилось.

По окончании работ обязательно снимите остатки флюса обезжиривателем.
Дело в том, что оставленный флюс начнет разрушать текстолит на плате.

Ножки нужно будет обрезать, но прямо под корень их не рубите, так как конденсатор просто выпадет, и вся работа пойдет насмарку.

Вот и всё. Материнская плата снова работает, компьютер включается, а вы прокачали свой скил!
Финальный результат выглядит так.

Те самые ножки

Лицевая сторона. Все готово!

Всем пока! 

Проверка и замена пускового конденсатора

Для чего нужен пусковой конденсатор?

  • Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
  • Поэтому их ещё называют фазосдвигающими.
  • Место установки — между линией питания и пусковой обмоткой электродвигателя. 
  • Условное обозначение конденсаторов на схемах
  • Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

  1. Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
  2. Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
  3. Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

  •    
  • Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
  • К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
  • После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
  • Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+…Сп

  1. То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
  2. Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
  3. Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

  • Самые доступные конденсаторы такого типа CBB65.
  • Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
  • Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.
  • Клеммы для удобства соединения сдвоенные или счетверённые.

Замена электролитического конденсатора ⋆ diodov.net

При выполнении ремонта или модернизации электронного устройства часто требуется замена электролитического конденсатора вышедшего из строя.

Однако аналога со стопроцентным совпадением может не оказаться в наличие, но имеются другие накопители, имеющие некоторые отличия от оригинала.

В этой статье мы рассмотрим, на какие параметры следует ориентироваться, чтобы правильно выполнить замену электролитического конденсатора для любой случая, при этом не нарушить режим работы электронного устройства.

Электролитический конденсатор характеризуется тремя основными параметрами: ориентируясь на которые, достаточно просто правильно подобрать замену. К этим параметрам относятся допустимое напряжение, емкость и температура.

Однако, прежде чем перейти к рассмотрению указанных параметров, следует не забывать, что данный накопитель энергии является полярным, поэтому необходимо соблюдать полярность. Положительный вывод паяем к плюсу, а отрицательный – к минусу.

Чтобы не спутать выводы вдоль всего корпуса со стороны отрицательного вывода наносится знак минус «-», более подробно о маркировке написано здесь.

Замена электролитического конденсатора – основные правила

Чаще всего ремонт блока питания любого электронного устройства заключается в замене вздутого или высохшего электролитического конденсатора.

При такой неисправности достаточно выпаять вышедший из строя конденсатор и заменить его новым.

Однако довольно редко имеется в наличие аналогичный электролитический конденсатор, но во многих случаях его можно заменить другим, имеющим несколько отличительные параметры.

В первую очередь следует ориентироваться на напряжение. При отсутствии подходящего номинала подойдет конденсатор с большим напряжением. Например, если на корпусе оригинального конденсатора написано 35 В, то подойдет аналог с напряжением 50 В, 63 В, 100 В и т.д. – в сторону увеличения. Нельзя выполнять замену на аналог с более низким напряжением: 25 В, 16 В или 9 В. Иначе он взорвется.

Получить требуемое напряжение можно путем последовательного соединения нескольких накопителей, о чем более подробно с примерами расчетов рассказано здесь.

Следующий параметр – емкость. Как правило, в преобладающем большинстве случаев, электролитические конденсаторы, особенно большой емкости, применяются для сглаживания пульсаций выпрямленного напряжения: чем большая емкость, тем лучше сглаживаются пульсации. Поэтому, в случае отсутствия накопителя такой же емкости, его можно заменить аналогом большей емкости.

Если отсутствуют электролитические конденсаторы нужной емкости и достаточно места на печатной плате устройства, то вместо одного накопителя можно впаять несколько параллельно соединенных. При этом емкости их будут складываться, о чем подробно с примерами расчетов рассказано здесь.

Урок 2.3 — Конденсаторы

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора.

Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон.

Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину – ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

Электрическая ёмкость конденсатора – это главный его параметрЧем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F.

1 Фарад — очень большая ёмкость (земной шар имеет ёмкость менее 1Ф), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины — префиксы: µ (микро), n (нано) и p (пико):• 1 микроФарад — 10-6 (одна миллионная часть), т.е.

1000000µF = 1F• 1 наноФарад — 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF

• p (пико) — 10-12 (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад – это фамилия физика. Поэтому, как культурные люди, пишем прописную букву «Ф»: 10 пФ, 33 нФ, 470 мкФ.

Номинальное напряжение конденсатораРасстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен.

Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме.

То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В.

Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма.

Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12В, а современные конденсаторы чаще всего имеют номинальное напряжение 16В и выше. Но помнить о номинальном напряжении конденсатора очень важно.

Типы конденсаторовО разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).

  • Неполярные конденсаторыНеполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные…) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.
  • Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

Маркировка неполярных конденсаторовНа корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах (пФ), а третья – количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость:

10 пФ + (3 нуля) = 10000 пФ = 10 нФ = 0,01 мкФ.

Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

КодНоминалКодНоминалКодНоминал
1R01 пФ101100 пФ3323.3 нФ
2R22.2 пФ121120 пФ3623.6 нФ
3R33.3 пФ151150 пФ4724.7 нФ
4R74.7 пФ181180 пФ5625.6 нФ
5R15.1 пФ201200 пФ6826.8 нФ
5R65.6 пФ221220 пФ7527.5 нФ
6R86.8 пФ241240 пФ8228.2 нФ
7R57.5 пФ271270 пФ9129.1 нФ
8R28.2 пФ301300 пФ10310 нФ
10010 пФ331330 пФ15315 нФ
12012 пФ361360 пФ22322 нФ
15015 пФ391390 пФ33333 нФ
16016 пФ431430 пФ47347 нФ
18018 пФ471470 пФ68368 нФ
20020 пФ511510 пФ1040.1 мкФ
22022 пФ561560 пФ1540.15 мкФ
24024 пФ621620 пФ2240. 22 мкФ
27027 пФ681680 пФ3340.33 мкФ
30030 пФ751750 пФ4740.47 мкФ
33033 пФ821820 пФ6840.68 мкФ
36036 пФ911910 пФ1051 мкФ
39039 пФ1021 нФ1551.5 мкФ
43043 пФ1221.2 нФ2252.2 мкФ
47047 пФ1321.3 нФ4754.7 мкФ
51051 пФ1521.5 нФ10610 мкФ
56056 пФ1821.8 нФ
68068 пФ2022 нФ
75075 пФ2222.2 нФ
82082 пФ2722.7 нФ
91091 пФ3023 нФ

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции. Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.

Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

Полярные (электролитические) конденсаторыЕсть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки.

Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.

Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны.

На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате. Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу.

Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора (правильно установленный на плату конденсатор)

Скачать урок в формате PDF

Как правильно заменить конденсатор на материнской плате

Всем привет, сегодня я покажу на своем примере, как можно быстро и правильно произвести замену вздутых конденсаторов на материнской плате компьютера своими руками.

Сразу предупрежу, замена конденсаторов своими руками требует определенных знаний и умений пользоваться таким инструментом как паяльник. В моем случае это китайская паяльная станция Lukey 702.

Моя паяльная станция

Если опыта в пользовании паяльника нет, то сто раз подумайте, прежде чем браться за замену конденсаторов.

На материнской плате компьютера, как правило, конденсаторы начинают выходить из строя через 3-4 года пользования им. Но бывают и исключения, в т.ч. брак. В современных реалиях это нормальное явление, поэтому будем менять их на новые.

Признаки неисправности конденсаторов в материнской плате компьютера

  1. При включении компьютер сначала включается, потом выключается. После трех-четырех раз включения он включается нормально, и грузится операционная система. После этого он работает без проблем, но только стоит его выключить и включить на следующий день, проблема опять повторяется.

    Эти признаки говорят о том, что возможно у вас высохли и вздулись конденсаторы на плате.

  2. Компьютер просто не включается. Возможно причиной не включения могут быть также конденсаторы, как на материнской плате, так и в блоке питания.
  3. При включении или работе компьютера часто появляется синий экран с указанием ошибки.

    Это также может быть причиной вздутия и неисправностей конденсаторов на материнской плате. Как правило это первичные признаки, когда конденсаторы только начинают вздуваться.

Начнем с внешнего осмотра, откройте боковую крышку системного блока и внимательно осмотрите материнскую плату.

Как правило визуально можно понять, что конденсаторы на материнской плате вздулись и требуют замены.

Вздутые конденсаторы на материнской платеЕще один пример вздутых конденсаторов

Постарайтесь осмотреть материнскую плату очень внимательно, т.к. если человек неопытен в данном вопросе, он не всегда с первого раза может выявить неисправный конденсатор. Далее, нам необходимо найти новые конденсаторы на замену.

Обычно есть два варианта, либо взять со старой материнской платы, либо купить в любом магазине радиодеталей, они совсем не дорогие.

Алгоритм простой, выпаиваете старые конденсаторы, смотрите номинал и покупаете новые, лучше взять с собой старые, чтобы показать продавцу (главное, необходимо помнить, что по вольтажу можно брать больше, но не меньше). Например, стояли 6.3 вольт 1500 мкф, на замену можно поставить 16 вольт 1500 мкф.

Конденсатор 6.3 В 1500 мкф

Опять же, если у вас или у ваших друзей есть старая материнская плата, можете выпаять и с нее. Ну вот, у нас все готово для перепайки, начнем замену конденсаторов на материнской плате своими руками.

Повторюсь, на всякий пожарный, замена конденсаторов на материнской плате своими руками требует определенных умений работы с паяльником, если же вы готовы, приступаем.

При замене конденсаторов нам потребуется следующее:

  • Паяльник
  • Канифоль
  • Припой
  • Зубочистки
  • Бензин очищенный (для удаления канифоли с платы)

Примерный набор для пайки конденсаторов

После того как мы выпаяли старый конденсатор, нужно прочистить отверстия для впаивания нового, иначе старый припой просто не даст его нормально вставить. Будем использовать для этого зубочистку или скрепку.

Аккуратно вставляем ее в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой.

Еще раз повторюсь, делать это нужно очень аккуратно, так как материнская плата многослойная и можно повредить дорожки внутри платы.

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность.

Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это — минус), но лучше всего запомнить как был установлен старый.

Данное правило не относится к материнским платам ASUS, у них все наоборот. На самих конденсаторах также есть обозначения в виде полосы со знаком .

Полоса с минусом на конденсаторе

Конечная стадия нашего процесса, запаиваем конденсатор с обратной стороны платы. Затем обрезаем ножки конденсаторов.

Финальная стадия замены конденсаторов на материнской плате

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом наш ремонт завершен. Главное не бояться и аккуратно пробовать паять своими руками. Скажу вам по секрету, это очень увлекательный процесс.

Конденсаторы в БП?

Напряжение написанное на конденсаторе показывает по сути его запас прочности. Подадите более высокое — его пробьет. Вы просто увеличили «запас прочности» конденсаторам, и ничего более.

Если погуглите на тему блоков питания — ставить конденсаторы с запасом по напряжению рекомендуют практически все, единственное ограничение здесь — запас лучше делать разумным, т.к. конденсаторы бОльшего вольтажа, как правило, крупнее и дороже.

По поводу увеличения емкости — совет верен в отношении фильтров блоков питания, но не в остальных случаях (скажем, если вы значительно измените емкость конденсатора в кроссовере колонок, вы измените частоты среза и вероятно подпортите звук).

В традиционных трансформаторных блоках питания (с импульсными не знаком) конденсатор гасит пульсации, там с увеличением емкости увеличивается и подавление пульсаций, но при этом на старте значительно возрастает ток первичной зарядки конденсатора.

Сейчас вы подвергаете их определенному воздействию, которое немного выше номинальных показателей По идее, все должно работать и так, но я бы перестраховался Капитан, перелогиньтесь.

Китайцы в бп ставят 16В 1000мФ кондюки, потому что они дешевле, по сути если поставить на 25В 1000мФ ничего не случится, просто у конюков будет больше запас для пикового напряжения. К примеру стандартные 16В 1000мФ вздываются или взрываются иногда не только от пиковых напряжений, но и от температуры в бп. Я тоже ставлю вместо 16В кондюков 25В и бп живет еще дольше, чем до поломки.

Нравится 1 Комментировать

У каждой микросхемы есть определенный «запас прочности», иными словами- разность показателей, в пределах которых все составляющие схемы работают нормально (простой пример- лампочка «Ильича», расчитанная на 220-240В.).

Сейчас вы подвергаете их определенному воздействию, которое немного выше номинальных показателей (12.28 вместо 12 и 5.13 вместо 5, хотя разумеется, что блок питания не выдает ровно 5 и ровно 12в). Основная характеристика конденсатора- это емкость. В Вашем случае она не изменилась.

По идее, все должно работать и так, но я бы перестраховался и сходил в магазин радиодеталей…

На материнской плате можно ставить электролитические конденсаторы меньшей емкости. Проверено. Я ставил вместо 3300 mkf 1800/ А с напряжением осторожнее. Дело в том, что конденсатор на 25 вольт при разрядке дает 25 вольт.

Если заменить конденсатор на 6,3 в на конд. 25 в, то возможен выход из строя материнки при разряде конденсатора при выключении компьютера. Хороше, если есть защита типа стабилитрона, варикапа… А если нет…

Однозначно — выход из строя материнки.

Как выбрать конденсатор?

Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов (температурные характеристики, тип корпуса и так далее), которые делают тот или иной тип конденсаторов (электролитический, керамический и пр.) наиболее предпочтительным для вашего проекта.

В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника.

Например, результат поиска для DIP конденсаторов  c рабочим напряжением 450 В серии HP3 производства компании Hitachi с емкостью 56…680 мкФ приведен на Рис.1.

Рис. 1. Результат поискового запроса для  имеющихся на складе конденсаторов серии HP3 с рабочим напряжением 450 В от Hitachi  с емкостью в диапазоне  56…560 мкФ

Конденсаторы (Рис. 2) представляют собой двухвыводные компоненты, используемые для фильтрации, хранения энергии, подавления импульсов напряжения и других задач. В самом простом случае они состоят из двух параллельных пластин, разделенных изоляционным материалом, называемым диэлектриком.

Рис. 2. Конденсаторы различных типов

Конденсаторы хранят электрический заряд. Единицей емкости является Фарад (Ф). Это название было дано в честь Майкла Фарадея, который в свое время стал пионером в области практического использования конденсаторов.

Конденсаторы могут быть полярными и неполярными. К полярным относятся почти все электролитические и танталовые конденсаторы. Они должны подключаться с учетом полярности напряжения. Если перепутать выводы «-» и «+», то это приведет к короткому замыканию. К неполярным относятся керамические, слюдяные и пленочные конденсаторы. Они могут работать при любой полярности приложенного напряжения, что делает их подходящими для применения в цепях переменного тока.

Несмотря на широкое распространение конденсаторов, выбор конкретной модели бывает достаточно сложным. Вы можете знать емкость и рабочее напряжение, которые требуются в вашем проекте, но у конденсаторов есть и множество других характеристик, таких как полярность, температурный коэффициент, стабильность, последовательное эквивалентное сопротивление (ESR) и так далее. Это делает каждый конкретный тип конденсаторов пригодным для конкретного приложения. Ниже перечислены наиболее популярные типы конденсаторов с кратким описанием их достоинств и особенностей.

Типы конденсаторов

Существует несколько типов конденсаторов, которые отличаются электрическими характеристиками и стоимостью. Ниже приведено описание наиболее популярных типов конденсаторов: алюминиевых электролитических, керамических, танталовых, пленочных, слюдяных и полимерных (твердотельных). Кроме того, для каждого типа представлены наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.

Рис. 3. Алюминиевый электролитический конденсатор

Описание: алюминиевые электролитические конденсаторы (Рис. 3) являются полярными, поэтому их нельзя использовать в цепях переменного напряжения. Они могут иметь высокую номинальную емкость, но отклонение от номинала обычно составляет до 20%.

Приложения: алюминиевые электролитические конденсаторы оптимальны для приложений, которые не требуют высокой точности и работы с переменными напряжениями. Чаще всего они применяются в качестве развязывающих конденсаторов в источниках питания, то есть для уменьшения пульсаций напряжения. Они также широко используются в импульсных DC/DC-преобразователях напряжения.

Корпусное исполнение: как для монтажа в отверстия, так и для поверхностного монтажа.

Примеры:

Для монтажа в отверстия:

  • 25 В серия TKR производства Jamicon с диапазоном доступных емкостей 10…5000 мкФ.
  • 50 В серия ECA-1HM  от Panasonic с диапазоном доступных емкостей 4.7…3300 мкФ.
  • 450 В серия HP32 от Hitachi AIC с диапазоном доступных емкостей 56…1000 мкФ.

Для поверхностного монтажа:

  • 16 В серия EEE-FK от Panasonic с диапазоном доступных емкостей 10…4700 мкФ.
  • 50 В серия CA050 от Yageo с диапазоном доступных емкостей 0,22…220 мкФ.

Рис.4. Керамические конденсаторы

Описание: существует два основных типа керамических конденсаторов (Рис. 4): многослойные чип-конденсаторы (MLCC) и керамические дисковые. MLCC пользуются большой популярностью и широко применяются в электронных устройствах, поскольку обладают высокой стабильностью и малым уровнем потерь. Они отличаются низким последовательным сопротивлением (ESR) и минимальной погрешностью номинала по сравнению с электролитическими или танталовыми конденсаторами. Вместе с тем их максимальная емкость невелика и достигает всего нескольких десятков мкФ. Из-за высокой удельной емкости MLCC имеют очень малые габариты и отлично подходят для размещения на печатных платах.

Приложения: поскольку керамические конденсаторы являются неполярными, то их можно применять в цепях переменного тока. Они широко используются в качестве «универсальных» конденсаторов, например, для высокочастотной развязки, фильтрации, подстройки резонаторов и подавления электромагнитных помех. Как MLCC, так и керамические дисковые конденсаторы подразделяются на два класса:

Керамические конденсаторы I класса – точные (+/- 5%) и стабильные конденсаторы с минимальной зависимостью емкости от температуры. Конденсаторы NP0/C0G отличаются минимальным температурным коэффициентом 30 ppm/K. К сожалению, их максимальная емкость ограничена несколькими нанофарадами (нФ). Поскольку они очень стабильны и точны, то их чаще всего используют в системах с частотным регулированием, например, в резонансных схемах для радиочастотных приложений.

Керамические конденсаторы II класса менее точны, но обеспечивают более высокую удельную емкость (номинальные значения – до десятков мкФ) и, следовательно, подходят для фильтрации и развязки. Среди их недостатков можно отметить большой коэффициент напряжения. Например, даже при приложении напряжения, равного половине рабочего, обычно наблюдается снижение емкости на 50%.

  • X5R может работать в диапазоне – 55…85°C с изменением емкости +/- 15%;
  • X7R может работать в диапазоне – 55…125°C с изменением емкости +/- 15%;
  • Y5V – в диапазоне от – 30…+ 85°C с изменением емкости -20/ +80%.

Корпусные исполнения: наиболее распространены корпуса для поверхностного монтажа 0201, 0402, 0603, 0805, 1206 и 1812. Цифры обозначают габаритные размеры в дюймовой системе. Например, 0402 составляет 0,04х0,02″, 0603 – 0,06х0,03″ и так далее.

Примеры:

Тип NP0/C0G:

  • 0402 – серия CC0402JRNPO9 производства компании Yageo с диапазоном доступных емкостей 0,01…1 нФ;
  • 0603 – серия CC0603JRNPO9 от Yageo с диапазоном доступных емкостей 0,008…2,7 нФ.

Тип X7R:

  • 0402 – серия CC0402KRX7R9BB от Yageo с диапазоном доступных емкостей 0,1…10 нФ;
  • 0603 – серия CC0603KRX7R7BB от Yageo с диапазоном доступных емкостей 0,1…1 мкФ;
  • 1206 – серия GRM31 от Murata с диапазоном доступных емкостей 470 пф…22 мкФ;
  • 0805 – серия CL21 от Samsung с диапазоном доступных емкостей 150 пф…10 мкФ.

Для монтажа в отверстия:

Рис. 5. Танталовые конденсаторы

Описание: танталовые конденсаторы (Рис. 5) – это подтип электролитических конденсаторов с высоким уровнем поляризации. При их использовании необходимо проявлять осторожность, поскольку они имеют склонность к катастрофическим отказам даже при воздействии импульсов напряжения с амплитудой, лишь немного превышающей номинальное рабочее напряжение. Танталовые конденсаторы могут иметь высокую номинальную емкость и отличаются высокой временной стабильностью. Они меньше по размеру, чем алюминиевые электролитические конденсаторы той же емкости. Но алюминиевые электролиты могут выдерживать более высокие максимальные напряжения.

Приложения: из-за малого тока утечки, стабильности и высокой емкости танталовые конденсаторы часто используются в схемах выборки-хранения, в которых требуется обеспечивать минимальный ток утечки для продолжительного хранения заряда. Также, благодаря малым размерам и долговременной стабильности, они применяются для фильтрации по цепям питания.

Корпусные исполнения: танталовые конденсаторы выпускаются как для монтажа в отверстия, так и для поверхностного монтажа (SMD). Тем не менее, чаще всего используются именно SMD-компоненты. В дюймовой системе типоразмер А соответствует размеру 1206 (0,12х0,06″), типоразмер В соответствует размеру 1210, типоразмер C соответствует размеру 2312, типоразмер D – размеру 2917.

Примеры:

  • Типоразмер A: серия TAJA от AVX с диапазоном доступных емкостей 1…10 мкФ;
  • Типоразмер B: серия TAJB от AVX с диапазоном доступных емкостей 10…47 мкФ;
  • Типоразмер C: серия TAJC от AVX с диапазоном доступных емкостей 47…220 мкФ;
  • Типоразмер D: серия TAJD от AVX с диапазоном доступных емкостей 220…680 мкФ;
  • Типоразмер A-E: серия 293D компании Vishay с диапазоном доступных емкостей 0,1…1000 мкФ;
  • Типоразмер A-X: серии T491 компании Vishay с диапазоном доступных емкостей 0,1…1000 мкФ.

Рис. 6. Пленочные конденсаторы

Описание: пленочные конденсаторы (Рис. 6) являются неполярными, что позволяет использовать их в цепях переменного напряжения. Они отличаются малыми значениями эквивалентного сопротивления (ESR) и последовательной индуктивности (ESL).

Приложения: пленочные конденсаторы часто применяются в схемах с аналого-цифровыми преобразователями. Кроме того, они способны работать с высоким пиковым током и, таким образом, могут применяться в снабберных цепочках для фильтрации индуктивных выбросов напряжения в DC/DC-преобразователях.

Примеры:

Рис. 7. Слюдяной конденсатор

Описание: слюдяные конденсаторы (Рис. 7) являются неполярными, отличаются малой величиной потерь, высокой стабильностью и обладают отличными характеристиками на высоких частотах.

Приложения: эффективны при работе в составе радиочастотных схем. Они могут стоить несколько долларов за штуку, поэтому в маломощных приложениях чаще используют керамические конденсаторы. Однако слюдяные конденсаторы благодаря высокому напряжению пробоя остаются практически незаменимыми для таких приложений, как  радиопередатчики высокой мощности.

Примеры:

  • серия CD производства CDE с диапазоном доступных емкостей 0,001…47 нФ (монтаж в отверстия) рабочим напряжением до 500 В .

Рис. 8. Полимерные (твердотельные) конденсаторы

Описание: твердотельные конденсаторы являются полярными, так же как и другие электролитические конденсаторы, но имеют ряд преимуществ, например, меньшие потери благодаря низкому последовательному сопротивлению ESR и длительный срок службы. Для обычных алюминиевых электролитов существует риск высыхания электролита при низких температурах, но твердотельные конденсаторы благодаря применению твердого полимерного диэлектрика обладают высокой надежностью даже при очень низких температурах.

Приложения: используются вместо электролитов в высококачественных материнских платах и DC/DC-преобразователях.

Примеры:

Описание: конденсаторная сборка (capacitor array)  – это группа конденсаторов, конструктивно объединенных в одном корпусе, причем любой из конденсаторов может быть отдельно от остальных подключен к внешней цепи. Существует много различных типов сборок, которые отличаются количеством конденсаторов, типом диэлектрика, величиной отклонения емкости конденсатора от номинального значения, максимальным рабочим напряжением, типом корпуса и др.

Приложения: конденсаторные сборки широко применяются в мобильной и носимой аппаратуре, в материнских платах компьютеров и цифровых приставках, в радиочастотных модемах и усилителях, в автомобильных и медицинских приложениях и т.д.

Корпусные исполнения: конденсаторные сборки выпускаются как в DIP корпусах, так и в SMD исполнении. Наиболее популярные типоразмеры сборок для поверхностного монтажа 0508, 0612, 0805 представлены в нашем каталоге.

Примеры:

Подобрать необходимый конденсатор в каталоге Терраэлектроники можно двумя способами:

  1. использовать параметрический поиск в соответствующем разделе каталога, для чего необходимо зайти в раздел конденсаторов, выбрать соответствующий задаче тип конденсатора, а далее заполнить ряд фильтров с параметрами. Фрагмент скриншота поиска MLCC конденсатора с параметрами: номиналом 1 нФ, точностью 10 %, диэлектриком X7R, напряжением  250 В и корпусом 0805 представлен на Рис. 9.
  2. воспользоваться интеллектуальным поиском конденсатора по параметрам. Для этого достаточно скопировать строку из спецификации “Конденсатор 1 нФ, X7R, 10%, 250 В, 0805″ или ввести «1n X7R 10% 250V 0805» в строку поиска и получить тот же самый  список подходящих по указанным параметрам компонентов.

Рис. 9. Фрагмент скриншота сервиса поиска конденсатора

Заключение

В данном руководстве были рассмотрены некоторые наиболее популярные типы конденсаторов. Кроме них существуют суперконденсаторы, кремниевые конденсаторы, оксид-ниобиевые и подстрочные конденсаторы, которые обладают уникальными преимуществами по величине емкости, уровню надежности или возможности подстройки. Однако в большинстве электронных схем вы чаще всего увидите один из шести рассмотренных выше типов конденсаторов.

Журнал: https://blog.octopart.com/archives/2016/03/how-to-select-a-capacitor

пошагово, полярный и неполярный конденсатор

Конденсаторы встречаются в самой разной технике. Но они зачастую и приводят к неисправностям механизмов. Для того, чтобы своевременно определить неисправность и устранить её, необходимо понимать общие принципы проверки конденсатора мультиметром. Этот способ является наиболее простым.

Рассмотрим варианты применения недорогого и эффективного прибора, чтобы выявить элементы, вышедшие из строя. В статье подробно представлены различные виды конденсаторов, а также последовательность их проверки. Благодаря практическим советам вы без труда сможете обнаружить неисправность в любой схеме.

Для чего используют конденсатор?

Промышленная отрасль производит самые разнообразные конденсаторы, которые затем используются во многих областях. Они требуются в следующих отраслях:

  • автомобилестроении;
  • радиотехнике;
  • электронике;
  • электробытовой технике;
  • приборостроении.

Конденсаторы можно назвать «сосудами» для хранения энергии. Они отдают энергию при коротких сбоях в питании. Кроме вышеперечисленного, специальный вид данных компонентов отделяет нужные сигналы, определяет частоту устройств, которые формируют сигналы. Конденсатор имеет быстрый период зарядки-разрядки.

Справка! Данный электрический элемент (конденсатор) располагает в своём составе парой проводников — это токопроводящие обкладки. При пропускании постоянного тока цепью его запрещено включать, так как это будет равносильно разрыву цепи.

В электроцепи переменного тока обкладки конденсатора попеременно заряжаются с частотой проходящего тока. Это можно объяснить следующим: зажимы данного источника тока время от времени подвергаются смене напряжения. Далее в цепи появляется ток переменного характера.

Подобно катушке, а также резистору, конденсатор оказывает переменному току сопротивление. Следует учесть, для токов различных частот оно будет разным. Например, проявляя хорошую пропускную способность для токов высокочастотных, он будет оказывать изолирующие свойства для токов низкочастотных.

Сопротивление электрического компонента взаимосвязанно с частотой, а также ёмкостью тока.

Неполярные и полярные разновидности

Среди многообразия конденсаторов следует выделить два основных типа: полярные или электролитические, а также неполярные. В качестве диэлектрика в данных приборах используют — стекло, бумагу и воздух.

Специфика полярных конденсаторов

Само название наглядно говорит о том, что они имеют полярность, потому являются электролитическими. Потребуется верное и точное следование схеме, когда их будут подключать — «минус» к «минусу», а «плюс» к «плюсу». Если не соблюдать данное правило, то элемент не только утратит работоспособность, но вполне способен взорваться. Электролит встречается как в состоянии твёрдом, так и в жидком.

В качестве диэлектрика в устройствах применяется бумага, которая пропитана электролитом. Ёмкость варьируется в пределах от 0,1 тыс. и до 100 тыс. МкФ.

Справка! Полярные конденсаторы предназначены для выравнивания электрофильтрации поступающих сигналов. Метка «+» имеет большую длину. Пометка «-» обозначена на самом корпусе.

Когда происходит замыкание пластин, то осуществляется выделение тепла. Под его действием происходит испарение электролита, а затем следует взрыв.

Сверху у конденсаторов современного исполнения имеется крестик и незначительное вдавливание. Толщина вдавлиной части немного меньше, чем остальная поверхность. Если происходит взрыв, тогда верхний участок открывается, как роза. Поэтому при наблюдении за повреждённым элементом можно заметить вспучивание на корпусе.

Отличительные особенности неполярных конденсаторов

Плёночные неполярные части используют диэлектрик из керамики, а также из стекла. Если сравнивать с конденсаторами электролитическими, то у них самозаряд меньше. Это можно объяснить тем, что керамика имеет более высокое сопротивление, чем бумага.

Конденсаторы подразделяются на детали как специального назначения, так и общего. Они бывают следующими:

  1. Пусковыми. Используются для поддержания надёжной и качественной работы электродвигателей. Увеличивают в двигателе стартовый момент, например, это компрессор или насосная станция, осуществляющие запуск.
  2. Дозиметрическими. Предназначены для работы в цепях, в которых незначительный показатель токовых нагрузок. У них необъёмный самозаряд, но сопротивление изоляции повышенное. Большей частью это фторопластовые элементы.
  3. Импульсными. Используются для формирования повышенного скачка напряжения, а также его перевода на принимающую панель устройства.
  4. Высоковольтными. Применяются в высоковольтных приборах. Производятся в разнообразном исполнении. Встречаются масляные и керамические, плёночные и вакуумные. Они заметно отличаются от других деталей и имеют ограниченный доступ.
  5. Помехоподавляющими. Предназначены для смягчения в частотной вилке электромагнитного фона. Имеют незначительную собственную индуктивность, что даёт возможность повысить резонансную частоту, а также увеличить полосу сдерживаемых частот.

Если сравнивать в процентном отношении, то наиболее значительное число неисправных элементов приходится на случаи, когда наблюдается подача напряжения превосходящее стандартные показатели. Оплошности в проектировании вполне могут вызвать неисправности элементов.

Когда диэлектрик утрачивает свои характеристики и свойства, то могут возникнуть сбои и перепады в деятельности конденсатора. Например, при его растрескивании, вытекании или высыхании. Ёмкость может сразу измениться. Определить её значение возможно только благодаря измерительным устройствам.

Алгоритм диагностики мультиметром

Тестирование конденсаторов рекомендуется проводить после их изъятия из электроцепи. Таким образом достигаются более верные показатели.

Центральным показателем конденсаторов является способность пропускать только ток переменного характера. Постоянный же ток он способен пропускать лишь небольшой промежуток времени и исключительно в начале процесса. Сопротивление здесь напрямую зависит от ёмкости.

Как произвести тестирование полярного конденсатора

Для диагностики элемента мультиметром, потребуется обеспечить ёмкость, которая не будет превышать показатель равный 0,25 мкФ.

Алгоритм проверки неисправностей конденсатора при помощи мультиметра следующий:

  1. Потребуется взять электрический компонент за ножки и закоротить его каким-то предметом из металла, например, это может быть пинцет или отвёртка. Это надлежит сделать для разрядки элемента. Искры, которые появятся при этом, дадут знать, что разряд произошел.
  2. Затем надлежит установить переключатель мультиметра в режим замера данных сопротивления или на прозвонку.
  3. Далее следует прикоснуться щупами к выводам конденсатора, при этом следует учитывать их полярность, то есть к минусовой ножке подвести щуп чёрного цвета, а к плюсовой — красного. При этом происходит выработка постоянного тока, поэтому через определённый отрезок времени можно ожидать минимальное сопротивление электрического компонента.

В то время, когда щупы располагаются на вводах конденсатора, происходит его подзарядка. Продолжает повышаться сопротивление пока не достигнет максимального уровня.

Если при соединении со щупами прибор начинает пищать, а стрелка его склоняет к нулевой отметке, то это говорит о наличии короткого замыкания. Оно и вывело из строя работу конденсатора. При указании стрелки на единицу, можно предположить, что в конденсаторе произошёл внутренний обрыв. Подобные элементы можно признать испорченными и заменить. Если на приборе, спустя некоторое время, единица высвечивается, то деталь в порядке.

Важно сделать измерения таким образом, чтобы на их качество не повлияло неправильное поведение. Запрещается в продолжении диагностики прикасаться руками к щупам. Человеческое тело имеет небольшой показатель сопротивления, поэтому соответствующие данные утечки будут превышать его многократно.

Ток последует по пути наименьшего сопротивления и обойдёт конденсатор. Таким образом мультиметр представит ложный результат измерений. Можно разрядить электрический компонент благодаря лампе накаливания. В подобном случае процесс станет идти более плавным образом.

Разрядку необходимо производить в обязательном порядке, тем паче, если элемент является высоковольтным. Это делают из-за соблюдения норм безопасности, а также, чтобы сам прибор остался в рабочем состоянии. Его способно привести в негодность остаточное напряжение.

Неполярный конденсатор и его диагностика

Такого рода элементы проверить с помощью мультиметра ещё легче. Вначале на самом приборе проставляют предельный показатель измерения на мегаомы. Затем прикладывают щупы. Если данные на приборе будут менее 2 Мом, то это показатель неисправности конденсатора.

В период подзарядки элемента с помощью мультиметра можно продиагностировать его работоспособность, когда ёмкость колеблется от 0,5 мкФ. Если показатель меньше, то измерения будут незаметны на приборе. Когда требуется протестировать элемент менее 0,5 мкФ на мультиметре, то это можно сделать, если будет короткое замыкание между обкладками.

При исследовании неполярного конденсатора, у которого напряжение выше 400 В, то это возможно выполнить при зарядке его от источника, ограждённого от к.з. автоматическим выключателем. По порядку с конденсатором соединяют резистор, сопротивление его должно быть предусмотрено свыше 100 Ом. , что ограничит мощность первичного токового броска.

Возможно определить работоспособность конденсатора и другим способом, например, протестировав его на искру. Заряжают электрический компонент до рабочей ёмкости, а потом выводы закорачивают при помощи металлической отвёртки, у которой имеется изолированная ручка. По мощности разряда делают вывод о работоспособности компонента.

До зарядки, а также через время после неё, следует измерить на ножках детали показатели напряжения. Существенным является способность заряда продолжительное время сохраняться. Затем потребуется разрядка конденсатора с помощью резистора, благодаря которому он и производил зарядку.

Определение ёмкости конденсатора

Ёмкость — это основополагающая характеристика конденсатора. Её требуется измерять для определения того, что накапливает сам элемент, а также удовлетворительно ли удерживает заряд.

Для того, чтобы удостовериться в работоспособности компонента, надлежит измерить данный параметр и сравнить его обозначенным на самом корпусе. Перед проверкой любого конденсатора на эффективность и функциональность, требуется принять во внимание некоторую особенность данной процедуры.

Пытаясь произвести измерение при помощи щупов, возможно не добиться желаемых результатов. Доступным может стать только проверка общей работоспособности обследуемого конденсатора. Для чего выставляют режим прозвона, затем прикасаются к ножкам щупами.

Справочная информация! Когда последует писк, то надлежит поменять щупы местами, тогда звук повторится. Его будет слышно при показателях ёмкости в районе от 0,1 мкФ. Чем выше данное значение, тем продолжителльнее воспроизводится звук.

Если требуются точные результаты, то наилучшим выходом в подобной ситуации является применение модели, которая имеет особые контактные площадки, а также способность регулировки вилки, которая вычисляет емкость элемента.

Прибор следует переключить на номинальное значение, которое прописано на корпусе. Затем требуется вставить электрический компонент в посадочные «гнезда», произведя перед этим его разрядку при помощи металлического предмета.

На экране будут высвечиваться показатели ёмкости, приблизительно равные номинальным. Если этого не наблюдается, тогда надлежит сделать вывод, что конденсатор неисправен. Следует отследить, чтобы в мультиметре была новая и работоспособная батарейка. Это предоставит наиболее точные показания.

Определение напряжения при помощи мультиметра

Проверить исправную работу конденсатора возможно благодаря измерению напряжения, сравнив затем полученный результат с номиналом. Для выполнения диагностики, необходим источник питания, у которого напряжение должно быть немного меньше, чем у исследуемого элемента.

Например, если у конденсатора показатель в 25 В, то подойдёт 9-вольтный источник. Подсоединяют щупы к ножкам, предварительно обращая внимание на полярность, затем ждут немного времени — примерно несколько секунд. Случается, что время прошло, а просроченный компонент всё еще функционирует, хотя характеристики приведены иные. В подобном случае его требуется систематически контролировать.

Мультиметр следует настроить на режим определения напряжения и производят диагностику. При быстром появлении на дисплее значения равного номинальному, элемент полностью годен к использованию. В противоположном случае конденсатор надлежит поменять.

Проверка конденсаторов без выпаивания из платы

Можно обойтись без выпаивания из платы конденсаторов для их тестирования. Главное условие, чтобы сама плата была полностью обесточена. После обесточивания потребуется определённое время подождать, чтобы электрические компоненты разрядились.

Следует знать, что для получения 100% результата, невозможно будет обойтись без выпаивания элемента из платы. Детали, которые располагаются рядом, мешают достоверной проверке. Надлежит удостовериться лишь в отсутствии пробоя.

Для проверки исправного функционирования конденсатора, не выпаивая, необходимо к выводам элемента прикоснуться щупами для измерения сопротивления. Исходя из разновидности конденсатора, будет отличаться и диагностика самого параметра.

Советы по проверке электронных компонентов (конденсаторов)

У конденсаторных элементов имеется одно не очень приятное свойство. Дело в том, что при пайке, когда происходит воздействие на детали тепла, они часто не подлежат восстановлению. Однако качественно исследовать элемент возможно лишь, если выпаять его из схемы. В ином случае детали, которые находятся поблизости, станут его шунтировать. По данной причине необходимо учитывать определённые нюансы.

Когда продиагностированный конденсатор можно будет снова впаять в схему, потребуется ввести в работу ремонтируемый прибор. Это позволит отследить его работу. Если работоспособность благополучно возобновилась, устройство стало функционировать эффективнее, то протестированный компонент меняет на новый.

Важная информация! Для сокращения проверки, следует выпаивать не два, а лишь один из выводов. Требуется учитывать и понимать, что для подавляющего большинства электролитических элементов данный способ нельзя применять. Это связано со специфическими конструктивными особенностями самого корпуса.

Если схема сложная и включает в себя значительное количество конденсаторов, то дефекты вычисляют благодаря измерению напряжения на них. При несоответствии параметра требованиям, деталь, которая вызывает подозрение, надлежит убрать и произвести проверку.

При фиксировании в схеме сбоев, требуется перепроверить дату изготовления электронного компонента. Усыхание элемента происходит в течение пяти лет функционирования и составляет более 65%. Подобную деталь, даже если она в рабочем состоянии, надлежит заменить. В противоположном случае она станет ухудшать работу всей схемы.

Мультиметры современного поколения отличаются тем, что их наивысшим показателем для измерения является параметр ёмкости, который варьируется в районе 200 мкФ. При превышении данного показателя контрольный прибор способен выйти из рабочего состояния, даже если он и имеет предохранитель. В электротехнике нового поколения есть высокотехнологичные smd электроконденсаторы. Их отличие и преимущество состоит в очень небольших размерах.

Выпаять один вывод от подобного компонента очень непростая задача. Здесь наилучшим выходом будет поднять один из выводов уже после отпаивания, затем произвести изоляцию его от схемы, или вовсе отделить два вывода.

Итоги и практические рекомендации

Нет особого смысла покупать сложное и дорогостоящее оборудование для того, чтобы произвести тестирование конденсаторов. Вполне возможно применять с данной целью обычный мультиметр с подходящим диапазоном. Самое важное — это грамотно и правильно использовать его возможности.

Хотя мультиметр не является узкоспециализированным прибором и его возможности ограничены, для диагностических мероприятий и ремонта огромного количества популярных радиоэлектронных приборов, этого вполне хватит.

Дополняйте, пожалуйста, своим комментариями расположенный ниже блок, публикуйте фотографии и задавайте вопросы любой сложности по предложенной теме статьи. Расскажите о своём опыте, как вы проводили диагностику конденсаторов на эффективность и работоспособность. Делитесь рекомендациями и полезной информацией, которая может пригодится пользователям сайта.

Также вам может быть интересно как соединять провода между собой.

Как проверить конденсатор мультиметром

Приветствую всех друзья и читатели сайта «Электрик в доме». Думаю всем известно, что такое конденсатор. Если кто не видел данный элемент микросхем, то точно слушал о нем. Самой распространенной причиной неисправности в радиоэлектронике является повреждение именно этого элемента. Современная бытовая техника «начинена» электроникой и поломка такой крохотной детали приводит к потере функциональности всего механизма в целом.
Чтобы определить какой именно конденсатор в схеме вышел из строя их необходимо проверить на работоспособность. И желательно это делать с помощью электронный приборов, та как визуальный осмотр не дает заключения о неисправности.

Делать мы это будем с помощью недорогого и функционального прибора — мультиметра. В прошлой статье я писал о том, как с его помощью можно выполнить проверку сопротивления, а сегодня рассмотрим методику, как проверить конденсатор мультиметром.
Написать данную статью меня попросил один из подписчиков. Я как всегда постараюсь изложить материал доступным языком, но если останутся вопросы, не стесняйтесь задавать их в комментариях.
Проверка конденсатора мультиметром
Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.
Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.
Существует два вида конденсаторов:

  • 1) полярные;
  • 2) неполярные.
  • Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.
    Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.
    Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).
    Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.
    Как проверить конденсатор с помощью приборов
    Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.
    Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.
    Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.
    Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».
    При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.
    Проверяем конденсатор мультиметром в режиме омметра
    В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

    Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.
    Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

    Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

    Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.
    Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.
    Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

    В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.
    Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

    Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).
    Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

    На дисплее прибора наблюдаем как начинает изменятся сопротивление: 

    По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.
    Как проверить емкость конденсатора мультиметром

    Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.
    Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?
    Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

    Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (10000 пФ = 100 нФ = 0.1 мкФ).
    Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

    Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».

    Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3. 58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

    Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

    Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

    Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.
    Как проверить конденсатор тестером (стрелочным прибором)
    Друзья завалялся у меня в гараже измерительный прибор времен СССР — Ц4313. Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.

    Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.
    Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера. Если конденсатор исправный стрелка сначала отклонится, а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.

    Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.

    На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать комментарии. Также особая благодарность за РЕПОСТ в соц.сетях.
    Похожие материалы на сайте:

  • 1) Как работать с мультиметром
  • 2) Конусное сверло для электрика
  • 3) Прозвонка для проводов своими руками
  • Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т. п.). Так показания будут более точными.

    Как прозвонить конденсатор мультиметром: инструкция и методы проверки

    Что такое конденсатор?

    Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Этот прибор составляет большое количество различных электросхем. Принцип функционирования сводится к поэтапному накоплению электроэнергии с различным потенциалом между обкладками и последующим быстрым разрядом.


    Существует большое количество конденсаторов, которые отличаются между собой по габаритам и другим параметрам

    Выделяют два наиболее известных типа конденсаторов, которые устанавливаются в современных схемах:

    1. Полярные (электролитические). Такое название они получили потому, что при подключении в схему требуется задать определенную полярность: «плюс» к «плюсу», а «минус» к «минусу».
    2. Неполярные. К этой группе относятся любые другие варианты конденсаторов.

    Общепринятое обозначение этого элемента на схемах отчетливо показывает его принцип работы.


    Расположенные на расстоянии обкладки (пластинки) обладают свойством накопления зарядов

    Строение этого электронного компонента простое – он состоит из двух покрытых изоляционным слоем обкладок, которые проводят ток. С целью изоляции используют всевозможные материалы и компоненты, которые не проводят электричество: кислород, пластинки из керамики, специальную целлюлозу, фольгу.

    По внешнему виду такие элементы отличаются миниатюрным размером при внушительной емкости, поэтому в процессе работы с ними следует соблюдать технику безопасности.

    Принцип функционирования

    Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов. Это необходимо только в тех схемах, где происходит распределение составляющих тока (переменный ток). В то время как в схемах с постоянным током конденсатор не сможет накапливать энергию.

    Где применяется?

    Устанавливают конденсаторы различных видов в радиосхемы и бытовые приборы. Как правило, эти устройства имеют небольшую емкость, поэтому их неисправность не провоцирует тяжелых последствий.


    Конденсаторы имеются в электросхемах различных приборов

    Крупногабаритные конденсаторы составляют различные электрические двигатели, где являются элементами пуска. В данном случае они отличаются большим номиналом и такой же емкостью.

    Цены на различные виды конденсаторов

    Видео – Для чего нужен конденсатор?

    Полярные и неполярные разновидности

    Среди огромного количества конденсаторов, выделяют два основных типа: полярные (электролитические), неполярные. Как диэлектрик в этих устройствах применяют бумагу, стекло, воздух.

    Особенности полярных конденсаторов

    Название «полярные» говорит само за себя — они обладают полярностью и являются электролитическими. При включении их в схему, необходимо точное ее соблюдение — строго «+» к «+», а «-» к «-». Если проигнорировать это правило, работать элемент не только не будет, но может и взорваться. Электролит бывает жидким или твердым.

    Диэлектриком здесь служит пропитанная электролитом бумага. Емкость элементов колеблется в пределах от 0,1 до 100 тысяч мкФ.


    Предназначение полярных конденсаторов — фильтрация и выравнивание сигналов. Вывод «плюс» имеет несколько большую длину. Метка «минус» нанесена на корпус

    Когда происходит замыкание пластин, выходит тепло. Под его воздействием электролит испаряется, происходит взрыв.

    Современные конденсаторы сверху имеют небольшое вдавливание и крестик. Толщина вдавленного участка меньше, чем остальной поверхности крышки. При взрыве его верхняя часть раскрывается наподобие розочки. По этой причине можно наблюдать на торцах корпуса неисправного элемента вспучивание.

    Отличия неполярных конденсаторов

    Неполярные пленочные элементы имеют диэлектрик в виде стекла, керамики. По сравнению с конденсаторами электролитическими, у них меньший самозаряд (ток утечки). Объясняется это тем, что у керамики сопротивление выше, чем у бумаги.


    Соблюдение полярности при включении неполярного конденсатора в схему необязательно. Часто они бывают просто микроскопическими, и в некоторых проектах применяются в больших количествах

    Все конденсаторы делят на детали общего назначения и специального, которые бывают:

    1. Высоковольтными. Используют в высоковольтных приборах. Их выпускают в различных исполнениях. Существуют керамические, пленочные, масляные, вакуумные ВВ конденсаторы. От обычных деталей они значительно отличаются и доступ к ним ограничен.
    2. Пусковыми. Применяют в электродвигателях для обеспечения их надежной работы. Они повышают стартовый момент двигателя, например, насосной станции или компрессора при запуске.
    3. Импульсными. Предназначены для создания сильного скачка напряжения и его транзакции на принимающую панель прибора.
    4. Дозиметрическими. Созданы для функционирования в цепях, где уровень токовых нагрузок небольшой. У них очень малый саморазряд, высокое сопротивление изоляции. Чаще всего это элементы фторопластовые.
    5. Помехоподавляющими. Они смягчают электромагнитный фон в большой частотной вилке. Характеризуются незначительной собственной индуктивностью, что позволяет поднять резонансную частоту и расширить полосу сдерживаемых частот.

    В процентном соотношении самое большое число выходов деталей из рабочего строя приходится на случаи, когда подают напряжение, превышающее нормативное. Ошибки в проектировании также могут стать причиной неисправности.

    Если диэлектрик меняет свои свойства, при этом тоже возникает сбой в работе конденсатора. Это происходит, когда он вытекает, высыхает, растрескивается. Емкость при этом сразу меняется. Измерить ее можно только посредством измерительных приборов.

    Что делать в случае пробоя

    Самая распространенная проблема, которая возникает с конденсаторами – это появление пробоя на диэлектрике. Диэлектрики являются своеобразным слоем изоляционного материала с большим сопротивлением, расположенного между одним и вторым проводником, препятствующего протеканию тока между ними.

    У исправных элементов допускается небольшое просачивание тока сквозь изоляционное покрытие, именуемое как «ток утечки». Если в диэлектрике возникает пробой, то происходит резкое снижение сопротивления, и он становится обыкновенным проводником. Пробой может возникнуть в результате резкого перепада напряжения в электросети, от которой работает техника. Характерный признак пробоя: вздувшийся корпус устройства, потемневшая поверхность и черные пятна на нем. Перед тем, как проверить конденсаторы мультиметром на факт исправности, стоит осмотреть его визуальным методом, чтобы определить возможные внешние дефекты.

    Как прозвонить мультиметром неполярный конденсатор

    Чтобы проверить сопротивление диэлектрика с помощью мультиметра, необходимо перевести устройство в режим омметра. Для изготовления диэлектриков в неполярных моделях могут использоваться различные материалы и формы: стекло, керамика, бумага, воздушная прослойка. В результате этого можно достичь крайне высокого сопротивления, которое в исправных устройствах будет отображаться в виде бесконечной величины на мультиметре.   При наличии электрических пробоев, сопротивление будет находится на уровне нескольких десятков Ом.

    До того момента, как прозванивать конденсаторы мультиметром, на приборе нужно выбрать специальный режим, который предусматривает максимально возможное измерение уровня сопротивления.

    Для этого достаточно подвести к каждому выводу щуп тестера и посмотреть на дисплее прибора следующее:

    1. Если элемент исправен, то на экране отобразится единица, свидетельствующая о том, что сопротивление выше, нежели установленный максимум.
    2. Если же высвечивается определенный показатель, который ниже измерительного максимума, то это говорит про неисправность проверяемых устройств.

    При этом, не стоит забывать про технику безопасности, чтобы случайно не взяться за щуп устройства и вывод конденсатора, поскольку меньшее сопротивление электрического тока у тела спровоцирует прохождение тока через него.

    Как прозвонить полярный конденсатор тестером

    В сравнении с неполярным типом в полярном сопротивление у диэлектриков в разы ниже, в связи с этим максимальное значение сопротивления на мультиметре должно быть выставлено соответствующем диапазоне. У большинства устройств сопротивление составляет около 100 кОм, у более мощных до 1 мОм. Прежде чем, померить конденсатор мультиметром, нужно замкнуть вывод накопителя, таким образом, чтобы он полностью разрядился.

    Далее нужно установить соответствующие пределы измерений, и подключить щуп тестера к конденсатору, с учетом соблюдения полярности. У электролитических конденсаторов имеется достаточно большая емкость, в связи с чем в процессе их подключения сразу же начинается зарядка. На протяжении периода пока длится зарядка, значение сопротивления будет увеличиваться в прямой пропорции, что будет указываться на дисплее устройства.

    Конденсаторы считаются исправными, в том случае если показатель сопротивления превышает значение в 100 кОм.

    Как разрядить конденсатор

    Чтобы разрядить низковольтные конденсаторы необходимо лишь закоротить каждый вывод. Однако для высоковольтных и тех, которые имеют большую емкость, к выводу следует подключать 5-10-килоомные резисторы. Резисторы необходимы, чтобы препятствовать возникновению искр при замыкании.

    В процессе работы важно помнить про безопасность. Нельзя прикасаться к выводу на конденсаторе, поскольку это может спровоцировать замыкание через ваше тело.

    Выявление обрыва конденсаторов

    Неисправность в виде обрыва случается достаточно редко. Такое нарушение обусловлено механическими повреждениями на накопителе. После подобной поломки у устройства в полной мере теряется накопительная функция, его емкость становится равна нулю. Целостный элемент после повреждения оказывается в виде двух проводников, которые изолированы друг от друга. Выявить такие повреждения конструкции посредством омметра не представляется возможным.

    Своеобразные симптомы обрыва у полярного электролитического конденсатора проявляются в том, что в случае изменения сопротивления никакие изменения на экране прибора не проявляются. Что касается неполярных типов, стоит отметить что он имеет малую емкость и обладает высоким сопротивлением, поэтому проверить его также невозможно. Единственным правильным выходом является возможность измерения емкости.

    Проверка на короткое замыкание

    Есть три способа сделать это.

    Способ №1: определение КЗ в режиме прозвонки

    Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора. В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд). Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

    Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

    Если нет мультиметра (и даже старой советской “цешки” нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор. Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна.

    Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится). Если же светодиод горит постоянно, конденсатор 100% неисправен. Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость.

    Следовательно, проверку на обрыв можно не делать.

    Способ №3: проверка конденсатора лампочкой на 220В

    Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.). Все что нужно сделать – просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор.

    Проверка на отсутствие внутреннего обрыва

    Обрыв – распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник. Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

    Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса. Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.


    Таблица характеристик надежности конденсаторов.

    Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

    Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать. Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке.

    Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом – от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать. Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

    Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

    Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки. Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

    По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет. Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм – для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

    При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты. С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).

    Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

    Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли. Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

    Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор. Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)!

    Это очень маленькая емкость. Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости – от малюсеньких до самых больших, а также любого типа – полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д. Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

    Порядок проверки мультиметром

    Проверку конденсаторов лучше выполнять с изъятием их из электрической схемы. Так можно обеспечить более точные показатели.


    Простые детали, обладающие переменной или постоянной емкостью очень редко выходят со строя. Здесь можно только механически повредить токопроводящие пластины. Чаще всего поломке подвержены электролитические диэлектрические элементы

    Основным свойством всех конденсаторов является пропуск тока исключительно переменного характера. Постоянный ток конденсатор пропускает только в самом начале в течение очень короткого времени. Сопротивление его зависит от емкости.

    Как проверить полярный конденсатор?

    При проверке элемента мультиметром, нужно соблюсти условие: емкость должна быть больше 0,25 мкФ.

    Технология измерения конденсатора для выявления неисправностей мультиметром следующая:

    1. Берут конденсатор за ножки и закорачивают каким-нибудь металлическим предметом, пинцетом, например, или отверткой. Это действие необходимо для того, чтобы разрядить элемент. О том, что это произошло, засвидетельствует появление искры.
    2. Устанавливают переключатель мультиметра на прозвонку или замер показателей сопротивления.
    3. Касаются щупами до выводов конденсатора с учетом полярности — к плюсовой ножке подводят щуп красного цвета, к минусовой — черного. При этом вырабатывается постоянный ток, следовательно, через какой-то временной промежуток сопротивление конденсатора станет минимальным.

    Пока щупы находятся на вводах конденсатора, он заряжается, а его сопротивление продолжает расти до достижения максимума.


    Проверку лучше делать аналоговым мультиметром. В этом случае можно наблюдать за поведением стрелки, а не за мельканием цифр на цифровом приборе. Это намного удобней.

    Если при контакте со щупами мультиметр начнет пищать, а стрелка остановится на нулевой отметке, это указывает на короткое замыкание. Оно и стало причиной неисправности конденсатора. Если сразу же стрелка на циферблате показывает 1, значит, в конденсаторе случился внутренний обрыв.

    Такие конденсаторы считаются неисправными и подлежат замене. Если «1» высветится лишь через некоторое время — деталь исправна.

    Важно выполнять измерения так, чтобы неправильное поведение не отразилось на качестве измерений. Нельзя в процессе к щупам прикасаться руками. Тело человека обладает очень малым сопротивлением, а соответствующий показатель утечки превышает его во много раз.

    Ток пойдет по пути меньшего сопротивления в обход конденсатора. Следовательно, мультиметр покажет результат, к конденсатору не имеющий никакого отношения. Разрядить конденсатор можно и при помощи лампы накаливания. В этом случае процесс будет происходить более плавно.

    Такой момент, как разрядка конденсатора, является обязательным, особенно, если элемент высоковольтный. Делают это из соображений безопасности и для того, чтобы не вывести со строя мультиметр. Повредить его может остаточное напряжение на конденсаторе.

    Обследование неполярного конденсатора

    Конденсаторы неполярные проверить мультиметром еще проще. Сначала на приборе выставляют предел измерения на мегаомы. Далее прикасаются щупами. Если сопротивление будет меньше 2 Мом, то конденсатор, скорей всего, неисправен.


    При проверке неполярных конденсаторов полярность не соблюдают. Для наглядности лучше взять два конденсатора, один из которых исправный, а другой неисправный. Сравнив результаты, можно более точно сделать вывод о работоспособности детали

    Во время зарядки элемента от мультиметра возможно проверить его исправность, если  емкость начинается от 0,5 мкФ. Если этот параметр меньше, изменения на приборе незаметны. Если все же необходимо проверить элемент меньше 0,5 мкФ, то при помощи мультиметра это возможно сделать, но только на короткое замыкание между обкладками.

    Если необходимо обследовать неполярный конденсатор с напряжением свыше 400 В, это можно сделать при условии его зарядки от источника, защищенного от к.з. автоматического выключателя. Последовательно с конденсатором подсоединяют резистор, рассчитанный на сопротивление более 100 Ом. Такое решение ограничит первичный токовый бросок.

    Существует и такой метод определения работоспособности конденсатора, как проверка на искру. При этом его заряжают до рабочей величины емкости, затем закорачивают вывода металлической отверткой, имеющей изолированную ручку. О работоспособности судят по силе разряда.


    Проверяя элемент, предназначенный для функционирования в сети от 220 В, нельзя забывать о мерах безопасности. Емкость нужно разряжать посредством резистора 10 Ком

    Сразу после зарядки и через некоторое время замеряют напряжение на ножках детали. Важно, чтобы заряд сохранялся долго. После нужна разрядка конденсатора посредством резистора, через который он заряжался.

    Измерение емкости конденсатора

    Емкость — одна из ключевых характеристик конденсатора. Ее необходимо измерять для уверенности, что элемент накапливает, и хорошо удерживает заряд.

    Чтобы убедиться в работоспособности элемента, необходимо измерить этот параметр и сопоставить его с тем, который обозначен на корпусе. Перед тем как проверить любой конденсатор на работоспособность, нужно учесть некоторую специфику этой процедуры.

    Пытаясь выполнить измерение посредством щупов, можно не получить желаемых результатов. Единственное, что удастся сделать — определить, рабочий этот конденсатор или нет. Для этого выбирают режим прозвона и касаются щупами ножек.

    Услышав писк, меняют местами щупы, звук должен повториться. Слышно его при емкости 0,1 мкФ. Чем больше это значение, тем звук дольше.

    Если нужны точные результаты, лучший выход в этой ситуации — использование модели, имеющей специальные контактные площадки и возможность регулировки вилки для определения емкости элемента.


    Контактные площадки — это специальные разъемы, обозначенные буквосочетанием «-СХ+». Минус и плюс перед буквенными символами — это полярность подключения

    Прибор переключают на номинальное значение, указанное на корпусе конденсатора. Вставляют последний в посадочные «гнезда», предварительно разрядив его при помощи металлического предмета.

    На экране должна высветиться величина емкости, равная примерно номинальной. Когда этого не происходит, делают вывод о том, что элемент поврежден. Нужно проследить за тем, чтобы в приборе находилась новая батарейка. Это обеспечит более точные показания.

    Измерение напряжения мультиметром

    Узнать о работоспособности конденсатора можно и путем замера напряжения и сравнения полученного результата с номиналом. Чтобы выполнить проверку, потребуется источник питания. Напряжение у него должно быть несколько меньшим, чем у проверяемого элемента.

    Так, если у конденсатора 25 В, то достаточно 9-вольтового источника. Щупы подключают к ножкам, учитывая полярность, и выжидают некоторое время — буквально несколько секунд.


    Если на конденсатор имеется гарантия, она обозначает, что за какое-то время его параметры не выйдут за пределы, превышающие 20% от номинальных значений

    Бывает, время истекло, а просроченный элемент все еще работоспособный, хотя характеристики у него другие. В этом случае его необходимо постоянно контролировать.

    Мультиметр настраивают на режим измерения напряжения и выполняют проверку. Если почти сразу же на дисплее появится значение идентичное номиналу, элемент пригоден к дальнейшему использованию. В противном случае конденсатор придется заменить.

    Как проверить работоспособность конденсатора альтернативными методами

    Проверку конденсатора можно выполнить, не выпаивая его из рабочей платы. Просто параллельно сомнительному нужно подключить заведомо исправный. Если всё заработает, значит, сомнительный действительно неисправен, его нужно менять. Этим методом проверяется наличие обрыва. Метод можно применять в схемах с невысоким рабочим напряжением.

    Вместо светодиода можно взять обычную маломощную электролампу, а в качестве источника использовать розетку 220 В. Если всё в порядке, то лампа будет светиться вполнакала. При пробое она загорится полным светом, а при обрыве вообще не будет гореть.


    Схема для проверки конденсатора прозвонкой с лампочкой
    Проверка работоспособности конденсатора электролампой

    Схемы для проверки светодиодом и электролампой одинаковые, только в случае использования диода источником служит батарейка, а для электролампы – сеть 220 В.

    Можно проверить работоспособность конденсатора «на искру». Если при замыкании выводов искра яркая, с хорошим звуком, то элемент можно считать исправным.

    Возможные поломки

    Поломка радиосхемы или электрического двигателя свидетельствует о неисправности элементов. В то время, как неисправность самого конденсатора часто бывает вызвана следующими причинами:

    1. Замыканием двух обкладок. Происходит это в результате повышенного напряжения на выводах. Получается, что фрагмент цепи, который должен «разорваться» конденсатором, остается замкнутым.
    2. Нарушение целостности внутренней цепочки компонента. Произойти это может при сильном ударе или напряжении, из-за чего случится вибрация. Тем не менее, часто причиной является брак во время производства. Получается, что в радиосхеме отсутствует конденсатор, а имеется только разорванная цепочка.
    3. Утечка тока в недопустимых пределах. Происходит это из-за нарушения целостности изоляционного слоя пластинок. Это приводит к тому, что они не могут сохранять заряд.
    4. Резкое падение номинальной емкости. Причиной такой проблемы тоже является утечка тока или же брак во время производства. В итоге, радиосхема работает с перебоями или не функционирует совсем.

    Видео – Проверка неисправностей конденсаторов

    Электролитические компоненты еще отличаются другим недостатком – превышением  преобразования сопротивления. Получается, что во время работы в радиосхемах такие конденсаторы не улавливают импульсивные сигналы.

    Вывод

    Среди многих начинающих мастеров-радиолюбителей бытует мнение, что можно прозвонить конденсатор мультиметром не выпаивая его, но мало кто знает, что такие измерения имеют очень большую погрешность. Единственным наиболее правильным методом проверки элемента является визуальная оценка его состояния, на наличие потемнения, взбухания и других дефектов.

    Примечательно, что поломка такого характера зачастую происходит в стиральных машинах, телевизорах, микроволновых печах и других видах бытовой техники. В связи с этим, столкнувшись с подобной проблемой вы самостоятельно сможете прозвонить конденсаторы мультиметром, благодаря описанной выше инструкции.


    Источники

    • https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/
    • https://sovet-ingenera.com/elektrika/provodka/kak-proverit-kondensator-multimetrom.html
    • https://pro-instrymenti.ru/elektronika/kak-proverit-kondensator-multimetrom/
    • https://ElectroInfo.net/praktika/kak-proverit-kondensator-pri-pomoshhi-multimetra.html
    • https://homius.ru/kak-proverit-kondensator-multimetrom.html

    [свернуть]

    Можно ли заменить неполяризованный колпачок поляризованным? | Обзоры и обсуждение наушников

    Извините, я случайно набрал C5. На схеме это C2. Следовательно, подойдет ли поляризованный колпачок?


    Ну, опять же – это зависит от приложения. В этом случае C2 используется как аудиосигнал , входной конденсатор . Он предназначен для блокировки крошечных смещений напряжения, которые могут иметь место с портативными источниками. Во время разработки CMoy он предназначался для блокировки любого напряжения постоянного тока, которое могло быть на выходе портативного проигрывателя компакт-дисков.Те же рассуждения применимы сегодня к iPod и смартфонам. То, что может быть приемлемым смещением постоянного напряжения для пары наушников, наушников-вкладышей или наушников, будет усилено в 11 раз (усиление на стандартном CMoy), когда оно пройдет через цепь CMoy к наушникам, которые вы подключили к выходу. Итак, C2 блокирует любое постоянное напряжение, прежде чем оно усилится до чего-то опасного для ваших наушников.

    Фактически, большинство высококачественных усилителей для наушников аудиофильского качества не используют входные конденсаторы.Сегодня вы очень редко встретите даже портативный плеер, который имеет какое-либо смещение постоянного тока. Если сомневаетесь, всегда можно измерить. Итак, в итоге, вы можете вообще удалить заглавные буквы. Однако, поскольку вы ссылаетесь на веб-сайт Tangent, вы можете сначала прочитать это:
    http://tangentsoft.net/audio/input-cap.html. Несмотря на обсуждение Тангента на этой странице, вы можете заметить, что его ранее предлагавшийся высококачественный усилитель был PPA1 или PPA2, ни в одном из которых не использовались входные конденсаторы. Вы не увидите их на лучших конструкциях, сделанных своими руками, которые предназначены для использования с высококачественными источниками.

    Наконец, еще один фактор, который следует учитывать, – это качество звука, присущее конденсаторам. Каждый конденсатор, каким бы прозрачным он ни был, влияет на качество звука. Абсолютно худший из них – электролитический конденсатор (поляризованный). Даже когда они используются в сигнальном тракте, электролитические конденсаторы часто обходятся стороной с меньшими (неполяризованными) пленочными крышками. Идея состоит в том, что все, кроме нижних басов, проходят через колпачок пленки, что обеспечивает гораздо более высокое качество звука. Более низкие басовые частоты проходят через электролитический конденсатор, где более высокие искажения в басовых частотах не столь нежелательны. Вы также найдете их только на выходе схемы усилителя, но не на входе. Причина в том, что низкое качество электролитической крышки на входе перерастет во что-то еще худшее.

    Итак, вопрос в том, зачем вам применять электролит на входном каскаде, когда все внутренние искажения, существующие в электролитическом конденсаторе, будут усилены в 11 раз? Если вы не имеете в виду очень редкий случай использования колпачка из поляризованной пленки *, это очень плохая идея.

    * Auricap хочет, чтобы вы относились к их конденсаторам как к поляризованным, но на практике это не имеет большого значения и, вероятно, является маркетинговым трюком. Вы не взорвете колпачок, подключив его в обратном направлении. Фактически, в их новейших бейсболках XO эта «особенность» полностью отсутствует.

    Можно ли сделать неполярный электролитический конденсатор из двух обычных электролитических конденсаторов?

    Резюме:

    • Да «поляризованные» алюминиевые «мокрые электролитические» конденсаторы могут быть законно подключены «спина к спине» (т. Е. Последовательно с противоположной полярностью), образуя неполярный конденсатор.

    • C1 + C2 всегда равны по емкости и номинальному напряжению
      Ceffective = = C1 / 2 = C2 / 2

    • Veffective = скорость C1 и C2.

    • См. «Механизм» в конце, чтобы узнать, как это (вероятно) работает.


    При этом принято считать, что два конденсатора имеют одинаковую емкость.
    Полученный конденсатор с половиной емкости каждого отдельного конденсатора.
    , например, если два конденсатора по 10 мкФ соединить последовательно, результирующая емкость будет 5 мкФ.

    Я прихожу к выводу, что полученный конденсатор будет иметь такое же номинальное напряжение, как и отдельные конденсаторы. (Я могу ошибаться).

    Я видел, как этот метод использовался много раз на протяжении многих лет и, что более важно, видел метод, описанный в примечаниях по применению от ряда производителей конденсаторов. См. В конце одну из таких ссылок.

    Понимание того, как отдельные конденсаторы заряжаются правильно, требует либо веры в заявления производителей конденсаторов («действовать так, как если бы они были шунтированы диодами»), либо дополнительных сложностей, НО легче понять, как устройство работает после включения.
    Представьте себе две заглушки, расположенные вплотную друг к другу, с полностью заряженным Cl и полностью разряженным Cr.
    Если теперь через последовательную схему проходит ток, так что Cl затем разряжается до нулевого заряда, то обратная полярность Cr заставит его заряжаться до полного напряжения. Попытки подать дополнительный ток и дополнительно разрядить Cl, принимая неправильную полярность, приведут к тому, что Cr будет заряжаться выше его номинального напряжения. то есть это может быть предпринято, НО будет вне спецификации для обоих устройств.

    Учитывая вышеизложенное, можно ответить на конкретные вопросы:

    Какие есть причины для последовательного подключения конденсаторов?

    Может создать биполярный колпачок из двух полярных колпачков.
    OR может удвоить номинальное напряжение, если соблюдается баланс распределения напряжения. Иногда для достижения баланса используются параллельные резисторы.

    «оказывается, что то, что может выглядеть как два обычных электролита, на самом деле не является двумя обычными электролитиками».

    Это можно сделать с помощью обычных электролитов.

    “Нет, не делайте этого. Он также будет действовать как конденсатор, но как только вы пропустите несколько вольт, он выйдет из строя.«

    Работает нормально, если рейтинги не превышены.

    ‘Что-то вроде “БЮТ из двух диодов не сделаешь”‘

    Причина для сравнения указана, но не действительна. Каждый полуконденсатор подчиняется тем же правилам и требованиям, что и отдельный.

    «Это процесс, который не может выполнить мастер»

    Тинкерер может – вполне законно.

    Так является ли неполярный (NP) электролитический колпачок электрически идентичным двум электролитическим колпачкам в обратной последовательности или нет?

    Как бы то ни было, производители обычно вносят изменения в производство, так что есть две анодные фольги, НО результат тот же.

    Он не выдерживает таких же напряжений?

    Номинальное напряжение – это значение одиночного цоколя.

    Что происходит с конденсатором с обратным смещением, когда на комбинацию подается большое напряжение?

    При нормальной работе крышки с обратным смещением НЕТ. Каждая крышка обрабатывает полный цикл переменного тока в целом, фактически видя половину цикла. Смотрите мое объяснение выше.

    Существуют ли практические ограничения, кроме физического размера?

    Я не могу придумать очевидных ограничений.

    Имеет значение, какая полярность снаружи?

    Нет. Нарисуйте изображение того, что видит каждая крышка в изоляции без привязки к тому, что «находится за ее пределами. Теперь измените их порядок в цепи. То, что они видят, идентично.

    Я не вижу, в чем разница, но многие люди думают, что она есть.

    Вы правы. Функционально с точки зрения «черного ящика» они одинаковы.


    ПРИМЕР ПРОИЗВОДИТЕЛЯ:

    В этом документе Руководство по применению, Алюминиевые электролитические конденсаторы от Корнелла Дубильера, компетентного и уважаемого производителя конденсаторов, говорится (возраст 2.183 и 2.184)

    • Если два алюминиевых электролитических конденсатора одинакового номинала соединены последовательно, спина к спине с положительным клеммы или подключенные отрицательные клеммы, в результате одиночный конденсатор представляет собой неполярный конденсатор с половина емкости.

      Два конденсатора выпрямляют приложенного напряжения и действуют так, как если бы они были обойдены диодами.

      При подаче напряжения конденсатор правильной полярности получает полное напряжение.

      В неполярных алюминиевых электролитических конденсаторах и алюминиевых электролитических конденсаторах для запуска двигателей вторая анодная фольга заменяет катодную фольгу, чтобы в одном случае был неполярный конденсатор.

    Этот комментарий со страницы 2.183 имеет отношение к пониманию всего действия.

    • Хотя может показаться, что емкость между две фольги, на самом деле емкость находится между анодная фольга и электролит.

      Положительная пластина – это анодная фольга;

      диэлектрик изоляционный алюминий оксид на анодной фольге;

      настоящая отрицательная пластина – это проводящий жидкий электролит и катодная фольга просто подключается к электролиту.

      Эта конструкция обеспечивает колоссальную емкость. потому что травление фольги может увеличить площадь поверхности более чем в 100 раз, а толщина диэлектрика из оксида алюминия составляет менее микрометра. Таким образом, в результате конденсатор имеет очень большую площадь пластины, и пластины ужасно близко друг к другу.


    ДОБАВЛЕНО:

    Я интуитивно чувствую, как и Олин, что необходимо обеспечить средства для поддержания правильной полярности. На практике кажется, что конденсаторы хорошо справляются с «граничным условием» запуска.Корнелл Дабиллерс «действует как диод» требует лучшего понимания.


    МЕХАНИЗМ:

    Думаю, следующее описывает, как работает система.

    Как я описал выше, как только один конденсатор полностью заряжен на одном конце формы волны переменного тока, а другой полностью разряжен, система будет работать правильно, при этом заряд будет проходить на внешнюю «пластину» одной крышки напротив внутренней пластины этот колпачок к другому колпачку и “другой конец”.т.е. масса заряда передается между двумя конденсаторами и позволяет чистому заряду течь к и от двойной крышки. Пока проблем нет.

    Правильно смещенный конденсатор имеет очень низкую утечку.
    Конденсатор с обратным смещением имеет большую утечку и, возможно, намного больше.
    При запуске одна крышка смещается в обратном направлении на каждом полупериоде, и течет ток утечки.
    Поток заряда таков, чтобы привести конденсаторы к правильно сбалансированному состоянию.
    Это упоминаемое “действие диода” – не формальное выпрямление как таковое, а утечка при неправильном рабочем смещении.
    После нескольких циклов баланс будет достигнут. Чем “негерметичнее” крышка в обратном направлении, тем быстрее будет достигнут баланс.
    Этот саморегулирующийся механизм компенсирует любые недостатки или неравенства. Очень аккуратный.

    Различий между поляризованным и неполяризованным конденсатором


    Конденсатор – это электронное устройство, которое накапливает электрическую энергию через электрическое поле. Конденсаторы, очень широко применяемые в электронике. В этой статье я объясню простую, но важную тему о конденсаторах.Фактически, оба типа конденсаторов выполняют одну и ту же работу. Да это же :). Тогда почему есть два типа конденсаторов? Основная причина – физические ограничения. Наиболее важными факторами, влияющими на размер конденсатора, являются напряжение и емкость. Чем больше емкость, тем больше размер.

    Наиболее распространенным неполяризованным конденсатором является керамический конденсатор. Производители не производят керамические конденсаторы большой емкости. Потому что их размер тоже будет увеличиваться. Также конденсатор будет более нестабильным. Поляризованный конденсатор обеспечивает большую емкость при меньшем размере.Чаще всего используются поляризованные конденсаторы электролитического типа.

    Таким образом, основная разница заключается в изменении производственного процесса для увеличения мощности. Это вызывает поляризованный конденсатор. Использование поляризованного конденсатора необходимо для большей емкости.

    Неполяризованный конденсатор может работать на более высоких частотах, чем поляризованный конденсатор. Ток утечки в электролитическом конденсаторе выше, чем в керамическом конденсаторе. Также ESR (эквивалентное последовательное сопротивление) в электролитическом конденсаторе выше, чем в керамическом конденсаторе.2) * R (потрясающая формула :))


    Благодаря этой формуле неполяризованный конденсатор потребляет меньше энергии. Это означает, что керамический конденсатор имеет большую емкость пульсации тока.

    Взаимозаменяемы ли типы конденсаторов?

    Поляризованные конденсаторы необходимо подключать с соблюдением полярности. В противном случае конденсаторы взорвутся. Неполяризованный конденсатор можно подключать в обоих направлениях. Поляризованный конденсатор можно использовать только на постоянном токе. Неполяризованный конденсатор используется как в переменном, так и в постоянном токе. В конце концов, вы можете заменить поляризованный конденсатор неполяризованным.Но нельзя заменить неполяризованный конденсатор на поляризованный. Также вы должны быть осторожны с возможностью пульсации тока.

    Взорванный конденсатор

    Учебный курс Фрэнка

    Конденсаторы

    Конденсатор – это пассивный электронный компонент, который в основном состоит из двух параллельных металлических слоев, разделенных изолятор. Типы конденсаторов названы в честь этого диэлектрика. Мы используем конденсаторы с диэлектриками из керамика, слюда, полиэстер, тантал и др.
    Конденсаторы используются для блокировки или хранения напряжений и фильтрации сигналов.
    Конденсаторы всегда имеют два контакта. Некоторые биполярные, другие монополярные.
    Монополярные конденсаторы имеют два разных ведет, один положительный и один отрицательный.

    Конденсаторы разных форм и размеров.

    Монополярные конденсаторы обычно цилиндрические, а биполярные. имеют дисковую или прямоугольную форму.

    Единицы, значения и символы
    Буква формулы конденсаторов – С.
    Обозначения конденсаторов на принципиальных схемах показаны ниже. Специально для электролитических конденсаторов несколько существуют разные символы.

    Неполярный конденсатор (слева) и три монополярных конденсатора.

    Конденсатор характеризуется емкостью, которая измеряется в фарадах (Ф).
    На практике это Ф, нФ, пФ.

    1000 пФ = 1 нФ
    1000 нФ = 1 Ф

    Неполяризованные конденсаторы
    Конденсаторы этого типа не имеют положительной и отрицательной клемм и могут быть установлены в электронном виде двумя способами. доска.
    Обычные неполяризованные конденсаторы изготавливаются из керамики, слюды или полипропилена. Керамические конденсаторы маленькие, дешевые и используются для высокочастотных приложений.
    Основная характеристика неполяризованных конденсаторов заключается в том, что они блокируют постоянный ток и пропускают переменный ток. Они также могут хранить напряжения на короткое время.
    Конденсаторы в электронике в основном используются в приложениях переменного тока, таких как фильтры сигналов и схемы синхронизации.
    В отличие от диэлектрика в поляризованных конденсаторах, диэлектрик в неполяризованных конденсаторах представляет собой твердый материал. что делает устройство прочным и надежным.Отказы такого типа случаются редко.

    Различные неполярные конденсаторы. Маленькие диски представляют собой керамические конденсаторы.

    Помимо конденсаторов постоянной емкости, существуют также конденсаторы переменной емкости. Но в больничном оборудовании они есть необычно.
    Поляризованные конденсаторы
    Некоторые конденсаторы, такие как электролитические и танталовые, поляризованы. У них есть два разных вывода, плюс (+) и минус (-). Это означает, что они должны быть правильно подключены.Отведения всегда четко обозначены.
    Поляризованные конденсаторы – это в основном электролитические конденсаторы. Конструкция цилиндрическая с присоединительным выводом на оба конца (осевые) для горизонтального монтажа или только с одной стороны (радиальные) для стоячего монтажного положения.
    Для меньших напряжений и емкостей часто используются поляризованные конденсаторы из тантала. Они меньше и Выглядит иначе. Они имеют форму капли.

    Электролитические конденсаторы обладают очень высокой емкостью. Емкость электролитических конденсаторов всегда F.
    Электролитические конденсаторы всегда имеют маркировку с указанием максимального рабочего напряжения. Напряжение на выводах никогда не должен превышать это значение.

    В отличие от неполяризованных конденсаторов электролит представляет собой жидкость. На практике этот факт является источником многих проблем.


    Всегда упоминается поляризация. Часто отмечается отрицательный (-) вывод. Конденсаторы

    доступны для вертикального и горизонтального монтажа.
    Вертикальный (или стоячий) монтаж еще называют радиальным.
    Горизонтальный (или прокладочный) монтаж еще называют осевым.

    Стандартные значения
    Как и в случае резисторов, доступные номиналы конденсаторов стандартизированы в серии E. Самая распространенная серия is E-12:

    10 12 15 18 22 27 33 39 47 56 68 82

    Пример: доступные конденсаторы: 33 пФ, 220 нФ, 0,68 Ф

    Электролитические конденсаторы имеют более высокий допуск.Они доступны только в градации E-6 или даже E-3.

    Пример: 10 F, 220 F, 4.700 F

    Напряжение
    Вторая важная характеристика конденсатора – это испытательное напряжение. Это максимальное напряжение конденсатора. может быть использован. Особенно это касается электролитических конденсаторов.

    Биполярные конденсаторы для электронных целей (низкое напряжение) часто не показывают испытательного напряжения, потому что напряжения для электронных плат намного меньше испытательного напряжения конденсаторов.Только для сетевого применения (например, 230 В) необходимо учитывать контрольное напряжение.


    Конденсатор сетевой. Здесь очень важно испытательное напряжение (275 В переменного тока).
    Допуск
    Помимо емкости и испытательного напряжения, допустимое значение указано на корпусе прибора. конденсатор. Допуск обозначается одной буквой:

    Дж 5% K 10% M 20%

    Пример: конденсатор, на котором имеется следующий текст. корпус: 105 K 330 V
    имеет следующую спецификацию:
    1 F (объяснение в следующей главе), допуск 10%, максимум напряжение 330 В.

    Обычно допуск электролитических конденсаторов выше, чем допуск неполярных конденсаторов. Допуски электролитических конденсаторов не важны, поэтому они не упоминаются на конденсаторах. Обычно допускаются 20% и более.

    Чтение конденсатора
    Если вам повезет, на конденсаторе четко обозначены емкость и максимальное рабочее напряжение.

    47 означает 0,47 F или 470 нФ
    J означает допуск 5%
    63 – максимальное рабочее напряжение в В

    Часто чтение значений не очень четкое.Слишком много цифр и букв может сбить вас с толку. Всегда ищите числа из стандартных значений.

    Только цифра 10n наверху конденсатора указывает емкость: 10 нФ
    K означает допуск 10%, а 100, вероятно, означает испытательное напряжение.
    1829 или 93 или 30 не являются числами стандартных значений. Они могут означать все, но не ценность.

    Считывание значения часто бывает непростым, потому что блоки, специально предназначенные для биполярных конденсаторов, не работают. часто отсутствует.В принципе, тогда значение означает F.

    Значение 0,33 означает 0,33 Ф или 330 нФ

    Различаются только керамические (дисковые) конденсаторы. Поскольку их значение всегда очень мало, теперь это значение означает пФ.

    Керамический конденсатор без блока. 27 в данном случае означает 27 пФ.

    Чтобы сделать его более запутанным, иногда значение выражается в виде трехзначного цифрового кода, специально для керамических конденсаторы.Первые две цифры являются основанием значения, а третье число указывает множитель или проще говоря, количество нулей.

    Еще один керамический конденсатор без блока. Опять же, единица измерения должна быть пФ.
    47 выражает часть стоимости (серия E) а 3 – количество нулей значения.
    Этот конденсатор имеет емкость 47 000 пФ или 47 нФ.


    683 K означает
    68 (3x 0) = 68 -000- пФ или 68 нФ
    с допуском 10%

    Пример: 102 = 10 00 = 1000 пФ или 1 нФ
    224 = 22 0000 = 220 000 пФ или 220 нФ или 0.22 F
    471 = 47 0 = 470 пФ

    Упражнение: Каковы следующие характеристики конденсаторы имеются ввиду?
    (Чтобы увидеть ответ, просто пространство за значениями)

    104 K 50V 0,1 Ф, 10%, 50 В
    473 М 100 В 47 нФ, 20%, 100 В
    68 К 50 В 68pF, 10%, 50V

    Для электролитических конденсаторов четче. Значение всегда F, и это также всегда упоминается.
    Поляризация также всегда четко указана.


    Емкость и напряжение четко указаны на электролитических конденсаторах.

    1000 F
    25 В
    (-) контакт отсутствует

    Комбинации
    Подобно резисторам, несколько конденсаторов могут быть подключены параллельно или последовательно. Но в отличие от резисторов мощность последовательно уменьшается, а мощность параллельна больше.

    Конденсаторы последовательно.Емкость становится меньше, но испытательное напряжение увеличивается.

    Наиболее распространенная комбинация: конденсаторы, включенные параллельно. Емкость можно просто добавить. Емкость получает больше. Контрольное напряжение остается прежним.

    На практике иногда бывает полезна параллельная комбинация: необходимого вам конденсатора нет, кроме двух меньшая емкость. Емкости просто складываются.Испытательное напряжение каждого конденсатора должно быть таким же высоким (или выше), как оригинал.

    Пример: требуется конденсатор 1000 Ф / 25 В, но его нет в наличии. Но есть два конденсатора по
    470 Ф / 50В. Параллельно значение будет 940 F, что примерно на 6% на
    меньше оригинала. Поскольку допуски 20% обычно можно использовать эту комбинацию
    . Это решение даже лучше чем оригинал, из-за более высокого испытательного напряжения
    .

    Приложения
    Две основные характеристики конденсаторов – это хранение напряжений и фильтрация.
    DC-Applications: хранилище
    Хранение напряжения – типичное применение постоянного тока. В конденсаторе некоторое время сохраняется постоянное напряжение. Время Хранение зависит от емкости и может составлять миллисекунды или несколько секунд. Типичное применение – источники питания. где конденсаторы буферизируют напряжение постоянного тока, чтобы поддерживать его стабильность, и схемы таймера, где конденсаторы определяют переключение время.

    Для накопителей напряжения конденсатор заземлен (всегда вертикально). После при выключении постоянное напряжение медленно падает.

    Время хранения зависит от емкости. Чем больше емкость, тем дольше время. Для хранения или буферизации используются поляризованные электролитические конденсаторы большой емкости.

    После выключения светодиод медленно гаснет.Чем больше емкость, тем медленнее время.

    В источниках питания для буферизации и сглаживания напряжения используются электролиты с высокой емкостью. Конденсаторы очищают постоянное напряжение от колебаний и неровностей.

    Это часть источника питания пульсоксиметра.
    Устройство в центре представляет собой микросхему стабилизатора напряжения. Входное и выходное напряжение фильтруются конденсаторы.
    Применение переменного тока: фильтрация
    Конденсатор развязки – это конденсатор, используемый для отделения одной части электронного каскада от другой.То есть это важно, потому что разные (аналоговые) ступени работают от разных напряжений постоянного тока. Ступени должны быть разделены по постоянному току. Постоянный ток должен быть заблокирован, но сигнал переменного тока должен пройти. Конденсатор отфильтровывает переменную часть сигнала.
    На схемах развязывающие конденсаторы обычно рисуются горизонтально. Направление сигнала слева направо. (слева = вход, справа = выход).

    Конденсатор блокирует прохождение постоянного тока.
    Напряжение постоянного тока на одной стороне, поскольку на другой стороне конденсатора постоянное напряжение отсутствует.


    AC может проходить через конденсатор. Потери (сопротивление переменному току) зависят от емкости и частоты. AC-сигнала.

    В электронике сигналы переменного тока (звуки, биения сердца, видеоизображения …) очень часто должны быть усилены или преобразованы. Электронным ступеням нужна мощность питание (постоянный ток) для работы. Во время процесса сигнал переменного тока и напряжение постоянного тока накладываются друг на друга.Конденсаторы нужны для разделить каскады по постоянному току и подключить каскады по переменному току.

    Это небольшой предварительный усилитель.
    Микрофону необходимо определенное напряжение постоянного тока, а также транзистор. Напряжения постоянного тока должны быть развязаны, но микрофонный сигнал (AC) должен пройти. C1 выполняет эту работу. Также конденсатор C2 подводит выходной сигнал к следующий этап без постоянного напряжения. Ступени связаны по переменному току и изолированы по постоянному току.
    Тестирование
    Измеритель емкости – это электронное испытательное оборудование, используемое для измерения конденсаторов.Элитный цифровой мультиметр часто содержат функцию измерения емкости. Но на практике функция измерения емкости не работает. действительно необходимо, потому что дефекты на конденсаторах обычно видны.
    При измерении электролитических конденсаторов имейте в виду, что они имеют плохие допуски.
    Допуски 20% являются общими.

    Если у вас нет измерителя емкости, работу электролитических конденсаторов можно проверить, подключив и отключение напряжения и измерение накопленного напряжения с помощью вольтметра.В зависимости от емкости напряжение упадет более-менее быстро.
    С помощью какого-нибудь мультиметра вы можете включить диапазон Ω для зарядки конденсатора (используя внутреннюю батарею), а затем переключитесь на диапазон V, чтобы увидеть падение напряжения.

    Поиск и устранение неисправностей
    Большинство проблем с конденсаторами происходит из-за электролитических конденсаторов. Биполярные конденсаторы в электронике доски обычно служат вечно.

    Причины неисправности электролитических конденсаторов – утечки, нагрев и низкое качество изготовления.Очень часто самое дешевое качество используется с испытательными напряжениями, очень близкими к рабочему напряжению. Через некоторое время работы над ограничить конденсаторы становятся поврежденными. Электролитические конденсаторы могут протечь, треснуть или даже взорваться. В большинстве случаев дефект виден. Необычно то, что электролитические конденсаторы теряют емкость без каких-либо признаков повреждения.

    Эту потерю емкости часто трудно обнаружить. Ток не становится больше, предохранители не срабатывают и ничего не греется.Оборудование вроде как-то работает, но не корректно. Напряжения не буферизуются, сигналы – нет. могут появиться отфильтрованные и другие странные эффекты.

    Причина неисправности – электролит внутри конденсатора. Часто конденсатор не герметичен. и конденсатор протекает. Диэлектрическая жидкость также может испаряться при высокой температуре, может создавать давление. на корпусе конденсатора и заставляет конденсатор разбухать или даже взорваться.

    Утечка электролита также может вызвать коррозию печатной платы, на которой установлен конденсатор.Ищу коррозии, очистите плату и замените места пайки.


    Обычно видимые дефекты электролитических конденсаторов. Здесь тело лопается и диэлектрик выходит наружу.


    Для предотвращения взрыва электролитические конденсаторы имеют перфорацию для выхода газов или диэлектрика. жидкость при выходе из строя.

    При замене конденсатора имейте в виду следующее:

    Убедитесь, что полярность правильная.
    Электролитические конденсаторы сохраняют напряжение в течение длительного времени. Разрядите электролитические конденсаторы.
    , коротко закоротив два клеммных провода. Конденсаторы высокого напряжения следует укоротить на резистор
    Ом (например, 1 кОм). Проверьте напряжение с помощью мультиметра.
    Выбирайте конденсаторы с максимально высоким испытательным напряжением. или лучше выше оригинала.

    Цены
    Дефекты неполяризованных конденсаторов встречаются редко. Нет необходимости иметь их на складе. Но немного электролитического конденсаторы должны быть в наличии в каждой мастерской.
    Вот типичные цены на конденсаторы в Европе:
    Керамика 0,10 €
    МКС 630В 0,20 €
    Конденсатор SMD 0,30 €
    Тантал 10 F / 25V 0,30 €
    Электролитический 10 F / 40 В 0,20 €
    Электролитический 1000 F / 40 В 0.80 €
    Электролитический 4700 F / 63 В 4.00 €
    Источники и дополнительная информация
    Конденсаторы: http://en.wikipedia.org/wiki/Конденсаторы
    Типы: http://en.wikipedia.org/wiki/Types_of_capacitor
    Электролитические конденсаторы: http://en.wikipedia.org/wiki/Electrolytic_capacitor
    Приложения: http://en.wikipedia.org/wiki/Applications_of_capacitors
    Дефекты: http://en.wikipedia.org/wiki/Capacitor_plague

    Rap по замене электролитических конденсаторов

    Rap по замене электролитических конденсаторов

    Стратегии ремонта или замены старых электролитических конденсаторов

    ПРИМЕЧАНИЕ. ПОЖАЛУЙСТА: эта веб-страница предоставляет только информацию; ты несешь ответственность для уверенности в том, что ваш ремонт безопасен, и что все ремонтные работы проводятся с надлежащей безопасностью.Ламповое оборудование работает при высоком напряжении который может быть смертельным , и если вы не совсем уверены в своем возможность обеспечить вашу личную безопасность и безопасную работу вашего отремонтированное оборудование пожалуйста, возьмите усилитель, радио или тестовое оборудование квалифицированному технику.

    Что доступно для ремонта

    К сожалению, сегодня выбор высоковольтных электролитических конденсаторов является как меньше и отличается от прошлого, так что, скорее всего, вы не найдете точной замены для вашего оригинального электролитического оборудования.Для низковольтных приложений, например, катода байпасные конденсаторы, большинство винтажных типов имеют осевую конфигурацию, которая встречается реже сегодня, но все еще доступен. Более современная радиальная конфигурация также может быть использована, если их выводы достаточно длинные, и они не нарушают ваше представление об эстетике.

    Более проблематичны конденсаторы высоковольтных источников питания, обычно многосекционные. алюминиевые банки, установленные на верхней пластине шасси. Чтобы отремонтировать их, у вас, возможно, есть четыре опции:

    Рэп про электролитики

    Колпачки электролитического источника питания, вероятно, представляют собой худшее ответственность за старое аудио, радио и тестовое оборудование.Объединив небольшие размер и очень низкая стоимость единицы емкости, электролитические конденсаторы (далее называемые электролитиками) – единственный экономичный выбор для дорогостоящие приложения, такие как фильтрация источников питания в большинстве потребительских механизм. Однако электролиты нельзя использовать для переменного напряжения (т. Е. изменение полярности не допускается), и по сравнению с другими типами конденсаторов, их электрические характеристики ужасно плохие. Они менее линейны, имеют огромную утечку и диэлектрическое поглощение, имеют очень слабые допуски (например, +/- 20% или хуже) и очень короткие сроки хранения и эксплуатации по сравнению со всеми другими широко доступными типами конденсаторов.Если хочешь чтобы узнать больше о работе электролитических конденсаторов, вот Примечание по применению Nichicon (формат PDF), часть 1 и часть 2, в которой подробно рассматривается тема.

    Электролитики бездействием не переносят. Они могут вызвать большие неприятности при простое в течение длительного времени, требуется периодическая подзарядка, чтобы оставаться «сформированным» и поддерживать оксидный слой, изолирующий проводящие пластины. Иногда их можно «реформировать», постепенно возвращаясь к работе. напряжение (см. ниже). Даже при регулярном использовании электролиты выходят из строя. из-за высыхания или утечки электролита в результате внутренней коррозии.Если электролит вздувается, показывает очевидную потерю электролита или просто не может быть реформирован, вы должны заменить его.

    Обратите внимание, что есть два типа утечки; физические и электрические. Поскольку электролит представляет собой жидкость или пасту, когда электролит катастрофически в случае неудачи обычно выделяется какая-то едкая слизь: физическая утечка. В отличие от идеальный конденсатор, электролиты слегка проводят при наличии напряжения пластины: утечка электричества. Помимо отклонения от идеала поведение, небольшая утечка в новом электролите не вызывает серьезных проблем; по мере старения электролита утечка увеличивается.Утечка выделяет тепло, что приводит к старению электролита и увеличивает утечку, вызывая больше тепла, и так далее. При достаточной утечке электролит закипает, и пар лопается. предохранительная заглушка контейнера, вызывающая физическую утечку и сигнализирующая кончина конденсатора.

    Обратите внимание, что существуют и другие формы отказа клемм, в том числе: полная потеря емкости (разомкнутая) или замыкание проводящих пластин (короткая). Хотя вы можете реформировать свой 30-50-летний оригинал электролитические, они могут работать не так хорошо, как новые.Может быть частичная потеря емкости или может быть чрезмерная утечка ( колпачки действительно нагреваются) или и то, и другое. Если вы не хотите сохранить оригинал состояние вашего усилителя, превентивная «перепланировка» может быть лучшим решением восстановить оборудование до функционально первоначального состояния.

    Реформирование

    Тонкий слой оксида алюминия, образованный для изоляции фольги конденсатора. составляет образование. Производители конденсаторов используют проприетарные смесь химикатов и электричества постоянного тока для создания этого изоляционного слоя, который портится со временем и бездействием.Часто оксидный слой находится в такое плохое состояние в старом оборудовании, что его необходимо реформировать или иначе конденсатор выйдет из строя. Все методы реформирования используйте медленное повторное применение электричества постоянного тока для восстановления оксидного слоя до первоначальной толщины и однородности. На мой взгляд никого нет проверенный способ реформирования – доступно много разных подходов, но все есть один общий элемент – медлительность. Реформирование должно происходить быстрее чем накопление тепла из-за низкого сопротивления неисправного оксида слой – это займет как минимум часы, а может и дни.

    Метод ограничения тока (от Angela Instruments): Вот ссылка к инструкциям Angela instruments по переработке старых электролитов из их шасси с помощью внешнего источника питания. В этом методе используется большая серия резистор и высоковольтный источник питания для преобразования конденсаторов, которые не используются. (новый-старый сток) или конденсаторы, снятые с шасси оборудования.

    Метод ограничения по напряжению 1: В методах ограничения по напряжению используется удобное устройство, называемое переменным автотрансформатором (a.к.а. Вариак, генерал Фирменное наименование радио). Используя внешний высоковольтный источник питания, каждый конденсатор медленно доводится до рабочего напряжения путем медленного повышения линейное напряжение к источнику питания. Это также можно сделать с помощью переменной DC питание с диапазоном примерно от 50 В до 500 В, но варианты дешевле и чаще. Резистор может быть установлен последовательно для контроля тока, но наблюдение за напряжением также может выявить прогресс реформирования; на каждом вариакте При установке, напряжение будет медленно расти, пока не произойдет преобразование при этом напряжении. полный.

    Запас для этой цели сделать несложно из мусорных коробок; Схема представляет собой пару трансформаторов 500 мА 24 В, подключенных вторично к вторичный, за которым следует цепь утроения напряжения. Общая стоимость составила около 10 долларов (правда), включая коробку из местной Radio Shack. Будучи напряжением утроение, регулирование слабое, и напряжение сильно падает с увеличением тока. Я использовал эту характеристику, чтобы дать приблизительную оценку текущего слейте воду, как показано в таблице вверху источника.(Значения были измерены используя реостат и мой цифровой мультиметр – источник питания с другим набором деталей будет иметь аналогичное поведение, но будет измерять по-другому). Обычно я подключил бы мою поставку через электролитики, которые нужно реформировать, вдоль с моим цифровым мультиметром, установленным на максимальное значение напряжения. Я подключаю питание к variac (выключен, установлен на ноль), включите variac и медленно увеличивайте на настройку 30 вольт. Если показание напряжения на цифровом мультиметре не повышается, или поднимается ниже 95 вольт, вероятно короткое замыкание.Если напряжение повышается, напряжение указывает ток, потребляемый источником питания. Как конденсатор начинает восстанавливаться, ток утечки будет уменьшаться, и напряжение будет продолжают расти. Как только утечка снизится до приемлемого уровня, Я пошагово поднимаюсь вверх с настройкой variac до тех пор, пока рабочее напряжение для конденсатора достигается.

    В шасси оборудования часто конденсаторы разного номинального напряжения соединены резисторами для падения напряжения, а в оборудовании используются текущие требования схемы для поддержания напряжения в рабочем диапазоне.Вы могли отключите каждый конденсатор от схемы и восстановите индивидуально, или, возможно, следуйте методу 2.

    Метод ограничения по напряжению 2: Используя двухступенчатый метод, мы можем используйте нагрузку цепи, чтобы поддерживать напряжение во всех цепях. конденсаторы источника питания в рабочем диапазоне. Это метод, который Я обычно использую, и это можно сделать с помощью собственного оборудования. источник питания. Посмотрите на схему и обратите внимание на самое низкое номинальное напряжение все конденсаторы, которые подключаются к источнику высокого напряжения (B +).Удалить лампы от шасси и, используя вариак, отремонтировать блок питания конденсаторы на это самое низкое напряжение. Теперь вставьте трубы в шасси и поднимите конденсатор с максимальным рабочим напряжением до этого минимального напряжения. Этот обычно дает около 60% B + и достаточное напряжение накала обеспечить нагрузку. Медленно повышайте напряжение в сети (используя вариак) преобразовать каждый конденсатор источника питания, подключенный через резистор, к своему собственному рабочее напряжение (или чуть выше).

    Этот метод имеет несколько больший риск по сравнению с реформированием шасси. – вам нужно будет следить за общим потребляемым током и повышать напряжение больше медленно, так как у вас меньше информации о состоянии человека конденсаторы.Помните, что вполне вероятно, что все подключенные конденсаторы, за исключением одного, будут исправлены, но эта одна плохая секция потянет жребий тока. Вы не можете предположить, что , если допустимая утечка для одного электролита это 1 мА, то нормально для 4 подключенных электролитов вместе иметь утечку около 4 мА – ваша группа из 4 электролитов должна иметь суммарную утечку меньше, чем допустимо для одного электролитического иначе вы допустили возможность 3 хорошего качества и 1 драндулет.

    Если в оборудовании есть ламповый выпрямитель, вы должны перемыть его кремниевые диоды для работы этого метода. Это действительно просто – удалить выпрямитель и используйте несколько зажимов и пару 1N4007s, как показано на этом рисунке. WARNING – очевидно, что этот метод оставляет провода незащищенными во время работы. Эти провода потенциально на ВЫСОКОЕ НАПРЯЖЕНИЕ , которое может убить. Например, если вы положите правую руку на вариак (землю) и коснетесь открытые зажимы, которые образуют цепь от одной руки через вашу грудь, и вниз через другую руку, что может вызвать остановку сердца.Для меня это кажется не более опасным, чем работа с оборудованием, работающим под напряжением, с крышками выключено, хотя в обоих случаях требуется особая осторожность. Действуйте на свой страх и риск!

    Некоторые последние предостережения:

    • Избыточный ток: , вы должны внимательно следить за скорость нарастания напряжения, или вы должны измерить ток прямо при реформировании. Либо распаять соединение между выпрямитель и конденсатор и вставьте измеритель тока или вставьте резистор (при измерении напряжения на резисторе и вычислении ток), либо уже правильно использовать падение напряжения на резисторе помещен в цепь, чтобы следить за током.
    • Вакуумные ламповые выпрямители: Они получают напряжение накала от того же силового трансформатора, что и блок питания B +. Таким образом, при низком начальном напряжения, при которых вы хотели бы начать реформирование, они не проводят. Соблюдая полярность, временно замените их кремниевыми диодами. с использованием старого цоколя лампы (с припаянными диодами) или с подключенными диодами клипсой.
    • Плавкий предохранитель: Для защиты силового трансформатора во время реформирования, замените обычный предохранитель на 2 или 3 ампера на предохранитель очень низкого значения, например 0.25 или 0,5 А. Ваш variac предотвратит скачок включения, который обычно открывает этот размер предохранитель.
    • Повышенное напряжение конденсаторов: Будьте осторожны при эксплуатации напряжение при снятии трубок с шасси; без нагрузки напряжение от трансформатора B + будет намного выше, чем при нормальной эксплуатации напряжение и может превышать номинальное напряжение конденсатора.

    Замена на шасси

    Насколько мне известно, доступны три типа замены крепления на шасси. сегодня; поворотные замки (новые или винтажные), колпачки для компьютеров и защелкивающиеся крепления.

    Слева направо у нас есть компьютерный конденсатор LCR, Elna Cerafine. компьютерный тип (к сожалению, снят с производства), крепление на защелках Panasonic TSHA конденсатор, твистлок Aero-M нового производства, твистлок NOS Mallory, и хорошая, но бывшая в употреблении Элна, снятая с оборудования.

    Twist-Locks можно приобрести NOS (новый старый-сток) через обычные по каналам розничной торговли и в обменных пунктах, из старых запасов электронных магазинов, и так далее. Большинство из этих типов имеют несколько разделов (т.е. больше, чем один конденсатор в банке) и были построены с множеством различных комбинаций секций как по емкости, так и по номинальному напряжению. Последнее, что я слышал, Aero M / Mallory имел прекратили производство электролитиков Twistlock на замену, но в недавнем сообщении группы новостей утверждалось, что производство будет возобновлено, если были востребованы. Антикварная электроника в настоящее время имеет ограниченный запас. Иногда удачно использованные твистлоки можно удалить с старое оборудование или найденное на свапе электроники встречается.

    Подержанные или замененные NOS должны быть восстановлены перед установкой.С разнообразие используемых товаров или типов БДУ становится все более и более ограниченным со временем вам, возможно, придется довольствоваться меньшим количеством разделов, чем в исходном конденсаторы. Это не должно быть проблемой, если вы можете скрыть оставшиеся разделы в шасси оборудования. Вы также можете принять замену на более высокую емкость, чем у оригинала, от 60% до 80% и, возможно, больше в зависимости от расположения в цепи. Однако не используйте замену с более низким номинальным напряжением, чем оригинальное оборудование (более высокое номинальное нормально, даже желательно).Разделы также могут быть параллельны, чтобы получить более высокую емкости; например, если вам нужен 40/20/20/25 мкФ @ 450/350/350/25 В, и вы нашли конденсатор на замену 20/20/20/20/20 мкФ @ 500/500/500/500 В, вы бы подключили две секции по 20 мкФ параллельно, чтобы получить 40 мкФ при 500 В, и используйте две оставшиеся секции 20uF @ 500V на 350V, затем поставьте 25uF / 25V конденсатор где-то в шасси.

    Замена несложная, но хорошо помните о проводе. места перед любой распайкой. Также обратите внимание на расположение клеммы заземления, чтобы при установке новой крышки все провода дойдут до их наконечников.

    Корпуса компьютеров различаются по высоте и диаметру; если они может поместиться на вашем шасси, вы можете выбрать один из многих физических размеров для ваш проект. Разъемы с винтовыми зажимами и наконечниками (типа Faston) использовал. Несмотря на то, что доступно множество диаметров и номинальных напряжений, мы сосредоточить внимание на высоковольтных компьютерных крышках диаметром 1,3125 дюйма и кратным разделы. Этот диаметр соответствует обычному диаметру поворотных замков. обсуждалось выше, и, таким образом, может использоваться для замены без серьезных модификация оборудования.

    Производство электролитов с синей пластиковой оболочкой производства LCR прекращено (некоторые на складе все еще есть), но аналогичные конденсаторы продолжают производить JJ Electronics в Словакии. Elna в черной куртке, ориентированная на аудиофилов Cerafines были прекращены, хотя аудиофилы были нацелены на Black Gates. можно купить по бешеной цене, но я не могу позволить себе владеть примерами из тех. Для JJs, Триодная электроника, Анджела Инструменты, Запчасти Экспресс. Для черных Gates, Handmade Electronics, Angela Instruments, поставщики других запчастей на моей домашней странице.Показан пример моего Scott 299C с LCR. справа.

    Для установки этих крышек требуется зажим, прикрученный к корпусу, и вы обычно приходится добавлять несколько отверстий для крепления зажима, а возможно и увеличивать отверстие с зазором для соединительных наконечников. Зажимы можно найти в Mouser Electronics примерно за 50 центов. Обычно здесь меньше секций по сравнению с оригинальными поворотными замками, поэтому некоторые из секции необходимо переместить в шасси.

    Заглушки Snap Mount обычно устанавливаются на печатную плату.В штифты защелкиваются в отверстиях на печатной плате и остаются там достаточно хорошо, чтобы их можно было волновать. припаял на место. Легко припаять прямо к контактам … и некоторые защелкивающиеся крепления имеют правильный диаметр (35 мм) для замены поворотных замков используя те же зажимы, которые использовались для крышек компьютеров выше. К несчастью, только с одним разделом, вам все равно нужно скрыть остальные разделы в шасси, хотя дают возможность залить некоторые площади шасси с качественной емкостью, а не с мертвым конденсатором.Проверьте Panasonic TSHA или TSHB (от Digikey Electronics) или Nichicon NT (Майкл Перси, но вероятно, другие производители тоже).

    Установка под шасси

    Из-за компактных размеров современных конденсаторов обычно можно найти достаточно места в шасси вашего оборудования, чтобы найти конденсаторы для замены. Если вы можете решить механические проблемы, современные стили конденсаторов также имеют гораздо более высокую производительность чем винтажные модели, поэтому вы можете наслаждаться звуком, используя только современные стили крышек для вашей замены, восстановления или ремонта.Механические проблемы включают
    • Где поставить конденсаторы: нужно найти достаточно места для новые конденсаторы, в месте рядом с текущей проводкой и вдали от любые источники тепла, например резисторы для падения напряжения.
    • Как перенаправить проводку: возможно придется распаять имеющуюся проводку и замените на новую проводку, достаточно длинную, чтобы достать до новых конденсаторов, и проложите эту проводку вдали от источников шума (например, параллельная проводка переменного тока). Обязательно используйте провод, рассчитанный на допустимое напряжение.
    • Как закрепить электролитический элемент на шасси: Приклеивание непосредственно к Я считаю, что шасси следует избегать, хотя некоторые используют этот метод. Я предпочитаю построить подшасси или клеммную колодку, смонтировать электролитические элементы на держатель и установите держатель на шасси.

    При выборе конденсаторов для монтажа под шасси помните о качество конденсатора, который вы планируете использовать. Я знаю по личному опыту что дешевые общие излишки электролитов взорвутся, если подвергнуться воздействию высоких пульсирующий ток.Специально для конденсатора, электрически ближайшего к выпрямителя, выберите новый конденсатор высокого качества, специально предназначенный для сильных пульсаций тока, например Panasonic EB (поставляется Digikey Electronics).

    Выше 3 камеры Panasonic TSHA 47 мкФ / 400 В, смонтированные на стекловолокне. плату (FR4) с помощью втулок. Изготовлены втулки и установочный инструмент. компанией Keystone и доступен в Mouser Электроника. Вы также можете протравить печатные платы для этой цели; Шелдон Стоукс из SDS Labs построил несколько высококачественных заменяющих плат для Harmon-Kardon Citation II и Dynaco ST-70.Обидно не использовать занимаемое пространство шасси колпачками твистлок, но доски Sheldon – очень изящное решение. Немного досок Sheldon также продаются Триодная электроника.

    КОНДЕНСАТОРЫ, ПОДКЛЮЧАЕМЫЕ СЕРИИ: Недостаточное номинальное напряжение может быть проблемой, а последовательное соединение может быть единственным способ получения электролитов с достаточно высоким номинальным напряжением. Я знаю только несколько современных электролитов с номинальное напряжение выше 450 В, включая LCR (500 В) и атомы Sprague (600 В).Последовательное соединение требует добавления так называемых резисторов для выравнивания напряжения или резисторов , уравновешивающих напряжение, по одному на каждом конденсаторе, проводя ток, который поддерживает напряжение в серии конденсаторы симметричные. Некоторые из них описаны в заявке производителя. Примечания; Источниками здесь являются, в частности, примечания к приложениям Nichicon и Rifa.

    Даже новейшие высококачественные электролитические конденсаторы в некоторой степени проводят ток. Этот ток утечки зависит от качества электролита, температуры и состояния электролита. конденсатор, и может быть представлен сопротивлением, параллельным конденсатору.На рисунке последовательно соединенные конденсаторы C1 и C2 имеют некоторое сопротивление утечке RL1 и RL2. Потому что широкие допуски электролитов, этот ток утечки варьируется от образца к пробе и по закону Ома влияет на баланс напряжений между электролитическими конденсаторы соединены последовательно. Обратите внимание, что мы рассматриваем только новые, идентичные конденсаторы, подключенные последовательно – пожалуйста, не смешивайте номиналы, типы или марки.

    Балансные резисторы RB1 и RB2 поддерживают баланс напряжений между последовательными конденсаторами. в пределах допуска за счет включения другого большего тока параллельно с утечкой Текущий.Уравновешивающий ток выбран достаточно большим, чтобы подавить любую утечку. дисбаланс и тем самым гарантировать безопасную работу. Для расчета стоимости балансировочные резисторы, сначала определите приблизительную максимальную утечку последовательно соединенные конденсаторы. Ток утечки в мкА составляет от 1/5 кв. 1/2 sqrt (CV) согласно Nichicon, где C в мкФ, В в вольтах и ​​ток в мкА. Вы также можете получить характеристики утечки из вашего конденсатора. техническая спецификация. Общее практическое правило для балансировочного тока – 10-кратная утечка. ток – таким образом, для двух конденсаторов 100 мкФ / 350 В, соединенных последовательно, чтобы сформировать 50 мкФ конденсатор, максимальная утечка 1/2 sqrt (100 * 350) = 94 мкА, умноженное на 10 составляет примерно 1 мА.Допустим, мы хотим, чтобы наш прикладной напряжение должно быть 650 В, тогда RB1 и RB2 = 325 кОм. Рассеиваемая мощность I * V = 0,325 Вт, таким образом, резистор минимум 1 Вт обеспечит достаточный запас прочности. Обязательно проверьте напряжение рейтинг любых балансировочных резисторов тоже.

    Можно подумать, что два электролита 350 В, соединенные последовательно, будут иметь напряжение номинал 700В, но опять мешают слабые допуски электролитов. В качестве указано в инструкции по применению электролитического конденсатора Evox Rifa, последовательные конденсаторы действуют как емкостный делитель напряжения, а N электролитические элементы, подключенные последовательно с диапазоном допуска емкости от Cmin до Cmax имеют максимальное разделенное напряжение (на стыке двух конденсаторов) Vdiv = (Vapplied * Cmax) / (Cmax + (N – 1) * Cmin).Итак, в нашем примере с допуском емкости +/- 20% Cmax = 1,2 * 100 и Cmin = 0,8 * 100, с Vdiv = (650 * 120) / (120 + (2-1) * 80) = 390V. Это превышает номинальное напряжение электролитов на 40 вотч; с некоторой алгеброй мы можем видеть, что 350 + 350 дает максимум 583 В при допуске емкости 20%. Для наших прикладных напряжение 650 В, минимальное номинальное напряжение для каждого конденсатора должно быть 400 В.

    В примечании к применению Nichicon представляет более точный расчет балансировочного тока, чем приведенное выше правило 10-кратной утечки.Пусть Vdif = (Vmax – Vmin) – разность рабочее напряжение в результате дисбаланса утечки для двух последовательно соединенных электролитов, а Idif = (Imax – Imin) – это максимальная разница в ток утечки между двумя конденсаторами, тогда RB1 = RB2 = Vdif / Idif (см. примечание по применению, хотя получить такой результат довольно просто). Используя текущий диапазон, указанный выше, Idif = 0,3 * sqrt (CV) * Tc * F, где Tc – температурный коэффициент и F – коэффициент выдумки. Электролитики проводят больше по мере увеличения температуры с Tc при 20 ° C от 1 до 2 примерно при 60 ° C и 5 примерно при 85 ° C.Опять же, вы можете найти эту характеристику в своем паспорт конденсатора. Фактор выдумки – это произвольный коэффициент безопасности дополнительные 40%, например, для нашего примера при 60 ° C: 0,3 * sqrt (100 * 400) * 2 * 1,4 = 168 мкА. Ничикон выбирает произвольное значение Vdif, равное 10% от номинала конденсатора, но зная предполагаемое приложение, мы можем сделать лучшую оценку в худшем случае.

    Учтите, что в худшем случае дисбаланс напряжения из-за тока утечки между Последовательные конденсаторы увеличиваются с уменьшением тока балансного резистора.Таким образом чем больше дисбаланс, который мы можем терпеть, тем меньше может быть ток баланса. Если мы не игнорируем емкостной допуск, мы должны добавьте эффекты емкости и утечки, чтобы получить действительную оценку в наихудшем случае дисбаланс напряжений. Используя 2 последовательных соединения при 400 В / 100 мкФ, работающих при 650 В, наихудший дисбаланс напряжения из-за с допуском по емкости 20% 390 – 260 = 130В. Этот дисбаланс может увеличение из-за утечки максимум на 20 В до 400 – 250 = 150 В и Vdif / Idif = 20 В / 168 мкА = 120 К Ом или 2.7 мА. Это 0,9 Вт на балансный резистор … требуется два 2 Вт или более мощные резисторы. Лучшее решение было бы увеличить номинальное напряжение до 450 В, что привело бы к небольшому увеличение разницы тока утечки (10uA) с увеличением напряжения допуск дисбаланса на 100В. Тогда Vdif / Idif = 120 В / 178 мкА = 675 кОм или 480 мкА при 0,16 Вт. Также может быть целесообразно сопоставить устройства, чтобы минимизировать емкостные дисбаланс, хотя должна оставаться некоторая терпимость, чтобы учесть возможные изменение характеристик стареющих конденсаторов.

    Поскольку 450 В – это наивысшее доступное электролитическое напряжение, для напряжения намного выше 650 В, мы должны увеличить количество последовательно соединенных конденсаторы. С 3 последовательно соединенными конденсаторами по 450 В и емкостью 20% Допуск, максимальное рабочее напряжение 450 * (120 + 2 * 80) / 120 = 1050В. Выбор рабочего напряжения 900 В с номиналом 300 В на каждом конденсатор, если два конденсатора работают при самом низком напряжении, а один – при низком напряжении. наибольшее, тогда Vmax = 1,2 * 900 / (1,2 + 0.8 + 0,8) = 346В. Здесь Vdif = 2 * (450-346) а Idif по-прежнему 178 мкА, поэтому Vdif / Idif = 1,2 МОм или 250 мкА.

    Сводя это к выводам, не требующим математики, для нескольких одинаковых последовательно соединенных электролитические конденсаторы:

    • Сумма номинальных напряжений должна быть на 30-40% выше, чем приложенное напряжение.
    • Требуется сеть резисторов, уравновешивающих напряжение, и ток баланса должен быть не более 1 мА.
    Правило 10-кратной утечки не делает предположения о напряжениях используемых конденсаторов, обеспечивающие консервативное требование, но без учета дисбаланса напряжений из-за к допускам емкости и тока утечки.Для строителя / ремонтника-любителя, используя бит больший ток баланса, чем минимальный, как рекомендовано правилом 10-кратной утечки, не имеет значения. Более тщательный анализ гарантирует, что номинальное напряжение последовательно соединенных конденсаторы находятся в пределах наихудшего случая. Производитель Рекомендации указывают на факторы, влияющие на баланс конденсаторов – температура, диапазон тока утечки, емкостной допуск, диапазон напряжения – и эти факторы следует учитывать при выборе и установке.

    Восстановление конденсаторов

    Для электролитических банок с номиналом менее 450 В вы можете их восстановить. себя, сохраняя существующие связи. После перестройки останется “шрам” на банке, так что вы можете попробовать услугу восстановления для любого электролиты от сверхценного мятного аудиооборудования или радиоприемников. Вот объявление от Antique Radio Classic для Frontier Capacitor:

    Конденсатор можно восстановить, теперь с быстрым возвратом восстановленного может. Любой поворотный замок можно восстановить за 30 долларов, до четырех секций.Максимум 450 вольт по этой цене. Банки с гайкой, односекционные, $ 20, для многосекционных Добавьте 2 доллара за секцию только для банок с гайкой. Доставка добавляет $ 4 за заказ для приоритетной и застрахованной доставки через PO. Восстановленные банки возвращаются только после квитанция о чеке, денежном переводе или информации о кредитной карте. Наша гарантия на все восстановленные бидоны, 1 год. Мы проверим любую банку на утечку и емкость, при правильное напряжение за 2 доллара. Конденсатор Frontier, PO Box 218, Lehr, ND 58460 или 403 С. Макинтош, UPS. Бесплатный звонок (877) 372-2341.Тел .: (701) 378-2341. Факс: (701) 378-2551, запись голосовой почты в любое время

    Я полагаю, что Frontier может открыть обжатое дно банки и замените пластины и электролит, затем закройте банку, чтобы восстановить оригинальный внешний вид.

    Если вы восстанавливаете электролитик самостоятельно, вам нужно будет разрезать банку. и заменить существующее содержимое банки новыми электролитиками, направив новые провода к клеммам. Эта процедура требует некоторого мастерства, здравого смысла и планирования, поэтому остерегайтесь поражения электрическим током и / или возгорания, если вы сделаете какие-либо ошибки.Вот несколько пошаговых инструкций:

    Сначала соберите новые электролиты, которые вы будете использовать для замены существующих. кишки банки. Они должны уместиться внутри банки, так что расставьте их как хотите. поместите в банку и убедитесь, что они не превышают высоту или диаметр банки, плюс немного места для маневра. Обратите внимание на совет по выбору крышки в предыдущий раздел.

    Далее нужно разрезать банку. Я использовал широкую пилу X-acto, или зажал конденсатор в токарном станке по металлу и прорезал узким бит металлорежущий.Мой друг использует инструмент Dremel с отрезным диском. Конденсатор содержит катушку из алюминиевых пластин (фольги), разделенных электролитом и выводы из алюминиевой фольги от пластин подключаются к клеммам в фенольная плита основания. Капля смолы закрепляет пластины в алюминии. может (обычно). Монтажный фланец, банка и фенольное дно обжать вместе, чтобы закрыть банку.

    Когда у вас будет банка, снимите и выбросьте пластины. Обрежьте вывод как можно ближе к фенольной пластине.Соскребите смолу. Чистый Удалите посторонний электролит влажным ватным тампоном.

    Хорошо, а теперь немного о планировании: поскольку вы вырезали выводы, вы нужно подвести провода к клеммам от новых конденсаторов внутри банка. Вам также потребуется создать новое заземление, так как электролитики теперь будут изолированы от баллончика. Я начинаю с приклеивания конденсаторы вместе с небольшой каплей силиконового герметика (RTV) в ориентацию они будут принимать при установке в банку. Вам нужно спланировать расположение выводов так, чтобы они могли проходить через фенольный диск и оберните вокруг основания существующих клемм.В зависимости от свинца длины, возможно, вам придется добавить дополнительный провод … обычно мне нужно только добавьте провод для заземляющего провода. Если вам нужно сложить новый электролитик внутри банки, чтобы они поместились, обязательно изолируйте все провода от других провода и банка с трубкой для спагетти или термоусадочной трубкой.

    Что касается RTV, я использую для этой работы легко доступную торговую марку хозяйственного магазина. Обычный RTV выделяет уксусную кислоту при отверждении, поэтому он может вызвать коррозию любых металлов. он соприкасается с.У меня не было проблем с коррозией, но вы могли используйте RTV, не вызывающий коррозии, если это проблема. Клей-расплав может также можно использовать, но будьте осторожны с пальцами, так как он очень горячий и прилипает к коже нравится, ну и клей.

    Используя сверло наименьшего размера, просверлите отверстие для каждого нового выводного провода рядом с каждый терминал, к которому он будет подключен. Протолкните провода через фенольный диск, размещение нового электролита на диске. Оберните провода вокруг их клеммы и протрите землю к банке, добавив немного спагетти. при необходимости трубку.Припаяйте новые выводы к клеммам.

    Я предпочитаю добавить немного RTV вокруг конденсаторов, чтобы стабилизировать их в банке. Теперь вы должны закрыть банку, которую вы разрезали. Я закончил довольно много таких перестроек, просто склеив банку медью ленты, но недавно я добавил тонкую медную накладку, приклеенную к внутренней стороне банка. Больше клея на пластыре, и банку можно соединить вместе, как коробок спичек. Остается едва заметная тонкая линия на месте пореза. Тот же друг, упомянутый выше использует немного эпоксидной смолы или, может быть, жидкую сталь.Он также близко режет к основанию и удерживает верх с помощью эпоксидной смолы, которая может быть больше эстетически приемлемо.

    Вот мой Eico HF-85 с восстановленным фильтрующим конденсатором блока питания. используя вышеуказанный метод. Этот ремонт был произведен на месте , хотя я не рекомендую оставив электролит в шасси, так как вам нужно припаять к все равно терминалы.

    Тим Риз
    Центр биомедицинской визуализации Мартинос
    Военно-морская верфь Чарлстауна
    13th Street, Bldg 149 (2301)
    Boston MA 02129

    Типы неполяризованных конденсаторов

    Конденсаторы – это электронные устройства, которые имеют две проводящие поверхности (пластины), разделенные изолятором (диэлектриком).Они могут временно накапливать электрический заряд. Единственный тип конденсатора, который поляризован (работает по-разному в зависимости от того, в каком направлении течет ток) – это электролитический конденсатор. Электролитические конденсаторы имеют более высокую емкость, но для большинства целей предпочтительнее неполяризованный конденсатор. Они дешевле, могут устанавливаться в любом направлении и служат дольше.

    Керамические конденсаторы

    Керамические конденсаторы являются наиболее распространенным типом неполяризованных конденсаторов. Это проверенная технология и самый дешевый конденсатор.Самый старый стиль (относящийся к 1930-м годам) имеет форму диска, но более новые стили имеют форму блока. Они хорошо работают в радиочастотных цепях, а более новые модели работают в микроволновом диапазоне. Они доступны в диапазоне от 10 пикофарад до 1 микрофарада. У них есть некоторая утечка (через диэлектрик), а их характеристики и температурная стабильность варьируются в зависимости от производителя.

    Серебряные слюдяные конденсаторы

    Серебряные слюдяные конденсаторы встречаются нечасто – в основном потому, что они относительно дороги.Они очень стабильны и устойчивы к температуре. Они работают в диапазоне от 1 пикофарада до 3000 пикофарад и имеют очень небольшую утечку. Они используются в схемах генераторов и фильтров, а также там, где важна стабильность.

    Полиэфирные конденсаторы

    Полиэфирные конденсаторы также известны как майларовые конденсаторы. Они недорогие, точные (имеют точный номинал, который на них указан) и имеют небольшую утечку. Они работают в диапазоне от 0,001 до 50 микрофарад и используются, когда точность и стабильность не так важны.

    Конденсаторы из полистирола

    Конденсаторы из полистирола очень точны, имеют небольшую утечку и используются в фильтрах и других местах, где важны стабильность и точность. Они относительно дороги и работают в диапазоне от 10 пикофарад до 1 микрофарада. Ходят слухи, что они уходят с рынка, поэтому они все реже и реже появляются в схемотехнике.

    Конденсаторы из поликарбоната

    Конденсаторы из поликарбоната дороги и очень высокого качества, с высокой точностью и очень низкой утечкой.К сожалению, они были сняты с производства, и сейчас их трудно найти. Они хорошо преформируются в суровых условиях и при высоких температурах в диапазоне от 100 пикофарад до 20 микрофарад.

    Полипропиленовые конденсаторы

    Полипропиленовые конденсаторы – дорогие и высокоэффективные конденсаторы в диапазоне от 100 пикофарад до 50 мкФ. Они очень стабильны во времени, очень точны и имеют чрезвычайно низкую утечку.

    Тефлоновые конденсаторы

    Это самые стабильные конденсаторы на рынке.Они очень точны и почти не имеют протечек. Они широко считаются лучшими из имеющихся конденсаторов. Особо следует отметить то, что они ведут себя одинаково в широком диапазоне частотных колебаний. Они работают в диапазоне от 100 пикофарад до 1 микрофарада.

    Стеклянные конденсаторы

    Стеклянные конденсаторы очень прочные, и их лучше всего использовать в суровых условиях. Они стабильны и работают в диапазоне от 10 до 1000 пикофарад. К сожалению, они также являются самыми дорогими конденсаторами.

    Конденсатор полярности и неполярности

    Неполяризованный конденсатор постоянной емкости
    Неполяризованный («неполярный») конденсатор – это тип конденсатора, который не имеет явной полярности – он может быть подключен любым способом в цепи. Керамические, слюдяные и некоторые электролитические конденсаторы неполяризованы. Иногда вы также слышите, как люди называют их «биполярными» конденсаторами.

    Поляризованный конденсатор постоянной емкости

    Поляризованный («полярный») конденсатор – это тип конденсатора, имеющий неявную полярность – он может быть подключен только в одной цепи.Положительный вывод показан на схеме (и часто на конденсаторе) небольшим символом «+». Отрицательный вывод обычно не показан на схеме, но может быть отмечен на конденсаторе полосой или символом «-». Поляризованные конденсаторы обычно являются электролитическими.
    , вам действительно нужно обратить внимание на правильное подключение поляризованного конденсатора (как в отношении полярности, так и в отношении того, чтобы конденсатор не превышал его номинальное напряжение). Если вы достаточно сильно «толкнете» поляризованный конденсатор, можно начать «электролиз» влажного электролита.Современные электролитические конденсаторы обычно имеют вентиляционное отверстие для сброса давления, чтобы предотвратить катастрофическое повреждение алюминиевой банки.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *