Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Почему мультиметр показывает VAC на выходе блока питания постоянного тока?

Чтение 25 В переменного тока на выходе источника питания 12 В постоянного тока определенно неверно. К сожалению, из того, что вы нам рассказали, сложно определить, что именно не так. Возможно, это предложение просто сломано.

Лучше всего было бы посмотреть на его выходное напряжение на прицеле. Тогда вы точно увидите, что происходит. Есть и другие способы получить представление о сигнале переменного тока. Например, подключите динамик последовательно с резистором 1 кОм на выходе источника питания. Если у него действительно такой большой переменный ток, и он находится в диапазоне слышимости, то вы обязательно его услышите. Если он действительно выдает среднеквадратичное значение 25 В переменного тока (в это трудно поверить), то резистор 1 кОм будет рассеивать более 600 мВт, что приведет к очень быстрому нагреву обычного резистора "1/4 Вт". Если напряжение действительно такое большое, вы услышите что-то с резистором 10 кОм, включенным последовательно с динамиком.

Вы также можете попробовать наложить некоторую емкость на выход источника питания и посмотреть, как это повлияет на показания счетчика. Чтобы быть в безопасности, получите конденсатор, рассчитанный как минимум на 50 В. Вам, вероятно, нужно 10 секунд мкФ, прежде чем что-то случится. Если этот запас действительно сломан, он может взорвать крышку. Опять же, прицел скажет нам, что на самом деле происходит.

Добавлено:

У меня просто была другая мысль о том, что происходит. 25 В переменного тока от 12 В постоянного тока кажется немного невероятным, даже для отключенного. Я предполагаю, что ваш счетчик на самом деле не подключен через выход питания должным образом. Возможно, у этого источника есть 3 терминала? Я видел кое-кого, где немного сбивает с толку, какие два на самом деле являются выходом питания, а третий - заземлением розетки. Как правило, между заземлением стены и одним из двух концов подачи имеется ремень. Когда это не связано, и вы помещаете счетчик между выходом и заземлением стены, вы можете получить именно то, что видите. Будет некоторая емкость в источнике питания на горячей стороне линии переменного тока, и это добавит синфазный сигнал на выход источника питания. Это высокий импеданс, поэтому не проблема. Если при считывании напряжения переменного тока вы поместите резистор 10 кОм по счетчику, и он сильно упадет, то это то, что происходит.

Добавлено 2:

Судя по вашим последним экспериментам, когда вы проводите тесты переменного тока, заглушка блокировки постоянного тока не включена в серию. Посмотри внимательно на свой метр. Есть ли только два места для подключения проводов, или есть два или более разъемов для красного провода, в зависимости от того, что вы пытаетесь измерить? При проведении измерений переменного тока убедитесь, что на шкале не только напряжение переменного тока, но и что провода подключены в правильных местах для измерения напряжения переменного тока.

в каком случае покажет 220В, правила проведения тестирования

Умение проверять напряжение при помощи тестеров – важный навык для любого пользователя электричества. Без него невозможно самостоятельно починить розетку, найти проблему, по которой не работает бытовой прибор. Если дома фиксируются чрезмерные скачки напряжения, придется устанавливать стабилизаторы, чтобы не вышли из строя бытовые устройства.

Зачем знать напряжение в розетке

В розетке протекает переменный ток. Это значит, что происходят отклонения от номинального значения в большую или меньшую сторону. Номинальным напряжением в России считается 220 Вольт, но фактически значение равняется 230 Вольт. Современные бытовые приборы создаются с учетом допустимых отклонений, превышение характеристики способно вызвать поломку устройств. Особенно подвержены влиянию устройства с электромоторами (кондиционер, холодильники). Для снижения риска поломки нужно уметь определять напряжение при помощи специальных тестеров.

Многие считают, что данный навык обычному пользователю не обязателен и нужен только специалистам. Это не так, ведь с определения силы напряжения начинается починка розетки, проверка наличия сети в квартире и другие работы, связанные с проводкой.

Как измерить напряжение в розетке тестером

Если дома нет мультиметра, можно проверить наличие электричества при помощи пробника, который также называется индикаторной отверткой. Измерить величину таким способом не получится, а лишь проверить его наличие.

Чтобы измерить напряжение, нужно дотронуться пальцем до пятака на индикаторе, затем жало поочередно вставить в отверстия розетки. Если засветился индикатор, электричество в сети есть.

Проверить напряжение можно при помощи вольтметра, включенного параллельно. Его электрическое сопротивление не окажет влияния на само напряжение, и на экране будет указано значение в розетке. Подключать вольтметр нужно следующим образом:

  • От первого разъема розетки провод идет к началу шунта, к нему же и подключают один из щупов вольтметра.
  • Другой щуп нужно подсоединить к концу шунта, от которого провод идет к первому контакту цоколя лампы, используемой в качестве нагрузки.
  • От цоколя лампы провод идет ко второму разъему розетки.

На вольтметре должен быть установлен режим переменного напряжения.

Как измерить 220 в мультиметром

Для измерения используются мультиметры. Они бывают двух видов:

  • Стрелочные или аналоговые. Такие модели использовались до появления электронных. Стоят недорого, не требовательны при работе и не требуют источника постоянного тока. Недостатком устройства является неудобство снятия показаний из-за размеров шкалы.
  • Электронные или цифровые. Это современные удобные устройства с большим количеством функций. Стоят дороже, но точность показания выше. Большинство специалистов используют данный вид устройств.

Тип мультиметра не влияет на технику измерения.


Мультиметр позволяет определить следующие технические параметры:
  • постоянное и переменное напряжение;
  • сопротивление;
  • емкостные и частотные характеристики;
  • силу постоянного и переменного тока;
  • параметры диодов и транзисторов;
  • температурный режим.

Переключение режимов производится при помощи ручки на панели устройства.

Перед подключением нужно обязательно проверить изоляцию щупов. Поврежденные провода нельзя использовать


В комплекте любого электронного тестеры имеются 2 вещи – сам прибор и щупы черного и красного цвета.

Алгоритм работы:

  • Перед началом работы устройство собирается. В разъем с надписью COM всегда вставляется черный щуп. Красный нужно подключить к разъему с надписью VΩmA. Существует третий выход 10 А – это значит, что мультитестер способен измерять силу тока до указанного значения.
  • После подключения выбирается режим измерения. Его нужно выставлять внимательно, так как при неправильных настройках устройство может выйти из строя. Менять положение переключателя во время работы запрещено. Поворотный выключатель устанавливается в поле ACV или V в положение 750.
  • Теперь щупы можно вставлять в гнезда розетки и смотреть результат. Значение в 220 В будет иметь отклонения, по ГОСТу погрешность достигает 10%. Если значение выходит за рамки погрешности, рекомендуется установить дома стабилизатор напряжения.

Принцип работы стрелочного устройства аналогичен. Щупы подсоединяются к сети, и по шкале нужно считать показания.


При измерениях можно касаться только изолированной части. Металлические элементы трогать нельзя. Также щупы не должны соприкасаться, иначе может произойти короткое замыкание.

Что покажет при неисправности розетки

Если сеть отсутствует, на мультиметре будет значение 0 Вольт. Причина – неисправность розетки или отсутствие электричества. Чтобы установить причину, нужно прозвонить другие розетки в помещении. Если не работает только одна, проверяются ее контакты и по необходимости производится замена на новую.

При скачках напряжения значения на мультитестере будут сильно отличаться от номинальных 220 Вольт. По ГОСТу допустимо отклонение в 10%, больший разброс может привести к поломке электроприборов. Если зафиксирован сильный скачок напряжения, стоит установить в квартире дополнительно устройство для стабилизации.
Домашняя сеть работает на напряжение в 220 Вольт, однако в розетке оно может отличаться от номинала. Напряжение, находящееся в пределах установленной ГОСТом нормы, является залогом качественной и стабильной работы бытовых приборов. Важно уметь проверять напряжение при помощи мультитестера, чтобы предотвратить риск поломки электроустройств. При значительном отклонении от установленных значений следует позаботиться о стабилизации напряжения в помещении.

Полезное видео

Нестандартные методы диагностики и измерений при проведении автотехнической экспертизы.

Нестандартные методы, позволяющие без значительных затрат сил и времени определить в процессе диагностики или экспертизы наличие неисправностей в проверяемом узле, зачастую не используются даже опытными специалистами. В основе нестандартных способов заложены знания, опыт, наблюдательность и умение видеть то, на что другие не обращают внимания. При всем этом нестандартные методы не всегда подразумевают использование дорогого оборудования и приборов, бывает достаточно простой хитрости: например можно поднести руку к выхлопной трубе, чтобы определить наличие пропусков воспламенения; при этом нестандартные методы не принесут ощутимой пользы без знаний и умения пользоваться стандартными способами, умением комбинировать разные методы в зависимости от поставленной задачи.

        Начнем с возможности нестандартного применения цифрового мультиметра, или как еще его называют - АВОМетра (Ампер Вольт Ом Метр).

Рассмотрим такой пример: сканер показал неисправность клапана вентиляции топливного бака. Классические действия диагноста: проверка сопротивления клапана, наличия на нем питания и активация клапана со сканера.

Но - сопротивление клапана в норме, питание есть, а активация со сканера - не проходит. Возможно, что в цепи проводки имеется обрыв. Можно начать с разборки салона, чтобы добраться до блока управления, по принципиальной схеме найти на разъёме нужный пин и мультиметром прозвонить цепь между ЭБУ и клапаном. Но можно вспомнить, что в большинстве выходных транзисторов встроен защитный диод, который может помочь нам прозвонить проводку от разъёма клапана до блока управления, не добираясь до разъёма самого блока управления.

 Для этого выключаем зажигание, выбираем в мультиметре режим «проверка диодов». Обязательно красный щуп мультиметра подключаем к массе машины, а черный щуп - к одному из выводов разъёма клапана. Если мультиметр показал нам практически нулевое напряжение - скорее всего мы подключились к питающему пину разъёма клапана; если мы видим на дисплее напряжение примерно 550 мВ - проводка до блока управления у нас целая, выходной транзистор исправен. Если  мультиметр не отображает цифровых значений, а показывает знак «превышение» -  с большой вероятностью имеется обрыв в проводке.


Сам транзистор мы «прозвонить» конечно не можем; но обычно в транзистор, работающий в ключевом режиме, часто встраивают защищающий от индуктивных выбросов диод, и при неисправности из строя выходят оба. Диод подключен относительно транзистора с обратной полярностью, поэтому мы для проверки щупы мультиметра подключаем также с обратной полярностью. При правильном подключении щупов через диод пойдет слабый ток, и на индикаторе мультиметра мы увидим величину напряжения его прямого перехода, которое и будет подтверждением исправности проводки.


Мультиметр в режиме «проверка диодов» через встроенный резистор подаёт на свои щупы напряжение, равное примерно 1,5 В, но сам в этом режиме не может отображать напряжение больше 999 мВ - поэтому на индикаторе будет знак «превышение». Если замкнуть щупы между собой - индикатор покажет около 0 мВ, так как мы «закоротили» проверочное напряжение; примерно то же самое происходит, если мы подключаем черный щуп мультиметра на питающий провод разъёма клапана и через маленькое сопротивление других соленоидов фактически замыкаем щупы между собой.


 Пример: один мультиметр включен в режим «проверка диодов», а другой - в режим измерения напряжения и оба подключены к магазину сопротивления (к переменному резистору). Уменьшая сопротивление резистора и тем самым уменьшая напряжение, выдаваемое мультимером, индикатор будет отображать цифровые значения при напряжении ниже 1 В, поэтому мультиметр также можно использовать как источник безопасного  напряжения с индикацией от 0 до 999 мВ для имитации работы некоторых датчиков.

 

Возьмём другой пример: сканер показал неисправность датчика детонации. В ремонтных мануалах обычно приводится одна проверка - усилие затяжки датчика; но это вовсе не означает, что других неисправностей с этим датчиком не бывает...Как проверить этот датчик мультиметром? Данный датчик имеет очень большое внутреннее сопротивление, которое в режиме "Омметр" не измерить. Некоторые производители встраивают в датчик детонации резистор для его проверки по сопротивлению (примерно 50 - 100 кОм), но как «прозвонить» датчик, в котором нет проверочного резистора? Оказывается это возможно, если вспомнить, что пьезоэлемент в датчике детонации - это тот же конденсатор, у которого можно измерить его емкость мультиметром, имеющим соответствующий режим измерения.


К тому же - в технических данных для датчика детонации приводится конкретное значение его емкости, которое должно составлять примерно 900 - 1300 пФ. При измерении емкости датчика от разъёма блока управления надо учитывать, что длинные провода к датчику могут добавлять собственную емкость к емкости датчика.

Также датчик детонации можно проверить простым мультиметром, измеряя его выходное напряжение при постукивании по датчику, но такой метод весьма неточен из-за отличия времени удара по датчку от времени измерения мультиметра. При каждом воздействии мы будем получать разную величину измеренного напряжения, даже ударяя по датчику с одинаковым усилием; плюс иногда датчик детонации устанавливается на блоке цилиндров в труднодоступном месте, и постучать по нему не всегда представляется возможным.

Качественные мультиметры имеют много дополнительных режимов измерения, набор которых в основном определяются назначением мультиметра. Профессиональный мультиметр может зафиксировать и по отдельности отобразить «максимальный уровень» (MAX) и «минимальный уровень» (MIN) измеренного напряжения. Это очень удобная функция, когда уровень напряжения постоянно меняется, а отследить на индикаторе изменение числовых значений весьма непросто. В мультиметрах средней ценовой категории имеется немного «урезанная функция», которая может фиксировать лишь «максимальное напряжение» (MAX HOLD).


Она нам может быть полезна во многих случаях -  например возможно без помощника проверить, подаётся ли напряжение на лампочки стоп-сигналов. Включив на мультиметре данный режим, мы можем отойти, чтобы нажать на педаль тормоза; мультиметр измерит и "запомнит" максимальное напряжение, которое появлялось в измеряемой точке цепи в наше отсутствие.

К сожалению в мультиметрах общего назначения нет функции фиксации «минимального напряжения» (MIN HOLD), которая нам тоже весьма пригодилась бы. Хотя...если подумать, то мы сего-то можем "обмануть" мультиметр и заставить его запомнить минимальное напряжение; для этого всего-то нужно поменять местами щупы при измерении напряжения.


Красный щуп мы подключаем к минусовому проводу, а черный - к плюсовому. Мультиметр будет нам показывать отрицательное напряжение...но мы-то знаем, что это не так. Единственное неудобство - наша функция фиксации минимального напряжения «потеряет» запомненное значение и отобразит 0 В при отсоединении щупов мультиметра, ведь он по прежнему запоминает максимальное напряжение, а 0 В всегда больше любого отрицательного напряжения. Теперь мы можем зафиксировать факт просадки напряжения при проверке целостности проводки, не наблюдая постоянно за индикатором, боясь пропустить нужный момент или измерить и зафиксировать просадку напряжения при запуске двигателя, что весьма актуально при жалобах на плохой пуск. Так как время запуска двигателя может быть соизмеримо секунде, то желательно отключить автопереключение диапазона напряжения в мультиметрах с автоматическим режимом измерения.

Практически все мультиметры позволяют измерять «переменное» и «постоянное» напряжение, но недорогие мультиметры могут некорректно отображать «постоянное» напряжение в режиме «переменного» из-за сильно упрощённой внутренней схемотехники; к тому же они имеют весьма неудобное переключение между «постоянным» и «переменным» режимами.


А зачем нам вообще измерять «переменное» напряжение, если «классического» переменного напряжения в машинах практически нет? Мультиметр в режиме измерения «переменного» напряжения показывает и «пульсирующее» напряжение неизменяющейся полярности, которое в современных машинах присутствует почти повсеместно.

Как без осциллографа определить - какое у нас напряжение: «постоянное», «пульсирующее» или к примеру «ШИМ» сигнал (Широтно Импульсная Модуляция)? Подключив мультиметр, мы можем это узнать по величине напряжения для «переменного» и «постоянного» режимов измерения. Конечно мы точно не определим - какая имеется величина ШИМ сигнала в %; для этого надо подключать осциллограф или мультиметр с функцией измерения частоты и скважности сигнала.

Получается, что мы можем использовать мультиметр как индикатор, отображающий сигнал в абстрактных единицах.

Также мультиметр в «постоянном» и «переменном» режимах может измерять не только напряжение, но и ток. О диагностике по току многие слышали, но используют такие методы в своей работе лищь малая часть диагностов...и в основном из-за высокой стоимости токовых датчиков, не всегда подходящих для подключения к осциллографу. Почему именно к осциллографу? Для создания какого-либо диагностического метода необходимо сначала изучить принципы работы системы; осциллограф как универсальный прибор лучше всего подходит для этих задач. Это уже потом методику можно упростить и использовать для диагностики более дешевые приборы; используя мультиметр как индикатор, достоверность проверок у нас будет ниже, но этого бывает достаточно, чтобы быстро определить наличие неисправности в проверяемом узле.

Диагностировать ток  методом размыкания цепи с помощью мультиметра хоть и можно, но очень неудобно. Для того, чтобы подключиться и измерить ток - необходимо разъединить цепь штатной проводки  (разрезать провод), а такие действия могут быть оправданными только в исключительных случаях и с обязательным последующим качественным соединением и изоляцией разрезанного места, в противном случае после нашей диагностики мы оставим будущие неисправности, которые не так легко будет найти.

Единственное место, куда проще всего подключиться для измерения тока - гнездо штатного предохранителя. Для этого берём сгоревший предохранитель и припаиваем к его ножкам провода соответствующего сечения, и эти провода подключаем к мультиметру для измерения тока. В данную схему желательно ещё встроить «страховочный предохранитель», если мы не хотим, чтобы сгорел предохранитель в мультиметре в случае превышения тока или короткого замыкания.


Теперь можно легко измерить например ток бензонасоса. Вы спросите: А что нам это даст? Давление топлива таким способом достоверно не определить, так как разные бензонасосы имеют разное потребление тока. Относительное давление или забитость топливного фильтра мы определим с очень низкой точностью, но мы и не собираемся этого делать, хотя эти не столь точные данные тоже будут полезны при поиске неисправностей. Мы будем сравнивать разницу между измерением «постоянного» тока и «переменного».

Не следует забывать, что в составе бензонасоса имеется коллекторный двигатель, у него есть щётки, которые истираются и теряют со временем контакт с якорем. Мы, не зная об износе щеток, часто приписываем возникающие неисправности  износу механики насоса, хотя принципиальной разницы в этом нет и неисправный бензонасос все равно нужно менять.

Вы спросите - а откуда у нас возьмётся «переменный» ток, если бензонасос питается постоянным напряжением? Дело в том, что при износе щеток их контакт с ламелями ротора будет неравномерный при вращении. За каждый оборот ротора контакт с щетками будет пропадать и снова появляться, ток бензонасоса станет «пульсирующим» при постоянном напряжении. И чем больше будет "неконтактов" - тем больше будет величина «пульсирующего» тока, а величина «постоянного» тока будет уменьшаться. Бензонасос создаёт давление топлива, и на это тратится определенная мощность, в месте отсутствия контакта вращение ротор будет замедляться, а в месте появления - ускоряться. Это будет создавать увеличенную токовую нагрузку на ламели, имеющие контакт с щетками; зона неконтакта будет увеличиваться, снижая производительность и давление бензонасоса. Если при выключении двигателя ротор бензонасоса остановится в месте отсутствия контакта -насос не включится и двигатель уже не заведётся. В таких случаях иногда помогает постукивание по топливному баку, чтобы от вибрации появился достаточный для начала вращения бензонасоса контакт щеток с ламелями якоря.

Многие могут вспомнить случаи из практики, когда машину привезли на эвакуаторе, но она нормально заводится и прилично работает. Конечно не всегда такие дефекты связаны с щетками бензонасоса, но ведь это несложно проверить! Не надо ничего разбирать - просто подключаем щупы мультиметра вместо предохранителя бензонасоса и заводим двигатель.

 

Измеряем «постоянный» ток, а затем - его «переменную» составляющую. Если «переменное» значение тока будет примерно 10% от постоянного значения, то щетки бензонасоса вполне исправны. Если «переменный» ток будет составлять примерно 50% от «постоянного» тока или иметь такое же значение - этот бензонасос надо менять.





По току можно определить и механические неисправности: это нарушение механического соединения насоса с электродвигателем.


Забитость приемной сетки и «завоздушивание» бензонасоса.



Не все производители ставят отдельный предохранитель на бензонасос. Таким методом можно проверять исправность не только бензонасоса, но и любого коллекторного двигателя, например вентилятора радиатора системы охлаждения или отопителя. По опыту - щетки коллектора могут работать нормально, а через некоторое время - работать плохо.



Но ток их потребления зачастую превышает максимальный предел измерения мультиметра. Тогда на помощь приходят (хоть и дорогие, но очень полезные в работе!) бесконтактные токовые клещи, способные измерять постоянный ток в больших пределах. Например АРРА-32 или подобные им, измеряющие ток бесконтактно с помощью линейных датчиков Холла.


Токовыми клещами работать намного удобнее, но необходимо знать некоторые особенности их применения: перед измерением тока надо выставить на цифровом индикаторе "ноль" вращением корректировочного резистора или нажатием соответствующей кнопки, если клещи оборудованы системой автоматической установки нуля. Дело в том, что нас всегда окружают электромагнитные поля, которые влияют на чувствительные датчики Холла в токовых клещах. Если выставить "ноль", а затем всего лишь повернуть токовые клещи в сторону - показания индикатора у нас сразу изменятся, поэтому нужно сначала приставить токовые клещи к измеряемому проводу, не заводя измеряемый провод внутрь губок.


Выставить "ноль", а затем, разжав губки, ввести проверяемый провод и считать показания. При этом надо стараться как можно меньше изменять положение токовых клещей, тогда мы получим наиболее точные результаты.


Важным параметром токовых клещей, которые рассчитаны на подключение к мультиметру и не имеют своего цифрового индикатора, является соотношение проходящего тока к выходному напряжению. Эти соотношения стандартные и могут составлять 1 мВ выходного напряжения на 1 Ампер проходящего тока (1 мВ/А). Более чувствительный диапазон в 10 мВ выходного напряжения на 1 А проходящего тока (10 мВ/А). Самые чувствительные датчики, дают 100 мВ на 1 ампер проходящего тока (100 мВ/А). Есть ещё  один параметр, который может ввести в заблуждение при выборе токовых клещей - диапазон измеряемого тока. Одни токовые клещи имеют диапазон измерения от 0 до 40А, а другие токовые клещи - от 0 до 100А. Можно решить, что клещи на 40 А будут лучше и дадут нам более точные значения, чем на 100 А. Ничего подобного - чувствительность обеих датчиков одинаковая (10 мВ/А). А вот максимальное выходное напряжение у клещей на 40А составит от 0 до 400 мВ, а у клещей на 100А - от 0 до 1000 мВ. Для подключения этих датчиков к мультиметру предел выходного напряжения не имеет принципиального значения, а вот для подключения к осциллографу клещи на 100А будут предпочтительнее. Мультиметр, преобразовывая напряжение в цифровую форму, автоматически компенсирует имеющиеся помехи в сигнале и поэтому его максимальная чувствительность обычно выше, чем у осциллографа. Осциллограф, графически отображая напряжение, не компенсирует помехи в сигнале, и поэтому имеет ограничения по чувствительности, хотя при использовании в осциллографе специального дифференциального входа или его программного аналога можно компенсировать помехи, но данную функцию мало кто применяет.

Оригинальным решением стала разработка токового датчика CTi специально для осциллографа. CTi имеет два диапазона чувствительности: 100 мВ/А  (отображает ток от -20 до +50А) и 500 мВ/А (отображает ток от -4 до +10А). Данный датчик получает питание 12 В от АКБ машины и способен давать выходное напряжение сигнала примерно от 0 до 9 В. Главное отличие CTi от стандартных датчиков в том, что его выходное напряжение нулевого тока составляет не 0 вольт как обычно, а около 2,5 вольт, поэтому при измерении отрицательной полярности тока в - 20 А на выходе датчика будет 0,5 В. При измерении положительной полярности тока в 50 А на выходе датчика будет 7,5 В. Для второго, более чувствительного диапазона в 500 мВ/А (-4А…+10А) выходное напряжение датчика будет таким же от 0,5 до 7,5 В. Хотя данная чувствительность является несколько нестандартной, но в осциллографе имеется автоматическая функция пересчета напряжения датчика в амперы; также можно легко поднять чувствительность датчика до 1000 мВ/А, всего лишь изменив способ прокладки проводов к датчику.



Токовый датчик CTi предназначен для визуального отображения формы токового сигнала на экране осциллографа и не предназначен для подключения к мультиметру, поэтому датчик CTi не имеет функции подстройки напряжения нулевого тока.

Это только первые наброски на бумагу методов нестандартной диагностики при проведении диагностики и автотехнических экспертиз. Если у Вас хватило сил дочитать статью и тем более разобраться в вышеописанных методах - Вы наверняка сможете реализовать эти возможности на практике.

Следующая часть статьи из данной серии раскроет еще более изощренные методы борьбы с неисправностями на автомобильном транспорте. Удачи…

 

Специалист                    Андрей Бежанов (ник на форуме andreika).

Мультиметр DT-832. Устройство и ремонт. — Радиомастер инфо

Прибор не измеряет напряжения, сопротивления, неустойчиво работает в режиме прозвонки. Все сегменты индикатора работают.

Ремонт мультиметра DT-832 начинаем с проверки напряжения кроны. Затем открываем и внимательно осматриваем каждую деталь на плате. Прибор собран на основе БИС 7106. Микросхема очень хорошо описана, приведены типовые схемы включения и обстоятельные пояснения в этой книжке:

У меня при внешнем осмотре выявлен разорванный транзистор Q1A и сгоревшие резисторы R24, R22, Rt1.

В выше упомянутой книжке есть схема на мультиметр М832 не полностью совпадающая с DT-832, но похожая.

Более точным оказался перечень деталей мультиметра DT-832 найденный в интернете:

Согласно оставшимся надписям на сгоревших деталях, а также приведенным выше схеме и перечню деталей установлено:

Сгоревший транзистор (на плате Q1A) n-p-n, вместо него установлен 1Вр34 (ВС846)

R24 — 9 Ом

R22 – 900 Ом

Rt1 -1,5 кОм.

Все указанные детали заменены.

Прибор заработал. При проверке точности измерений показания сравнивал с заведомо исправным прибором. Приходилось подбирать сопротивления, особенно Rt1 (влияет на показания в режиме прозвонки диодов). Удобно установить подстроечный резистор, выставить ним показания как на исправном приборе. Затем отпаять подстроечный резистор, измерить его сопротивление и подобрать постоянный. Возможно этот постоянный резистор придется сделать из двух, соединенных параллельно.

Если после замены обнаруженных сгоревших деталей мультиметр DT-832 не заработал, нужно проверить исправность микросхемы-капли 7106.

Для этого достаточно измерить ее режим:

При напряжении кроны под нагрузкой, у меня 8,46В, напряжение между выводами 1 и 26 составило 8В. Напряжение между выводами 1 и 32 стабилизировано самой микросхемой и должно быть 3±0,05 В. Напряжение между выводами 32 и 36 должно быть 0,1 В (выставляется резистором VR1(Vref) по схеме).

На выводе 39 должны быть импульсы более 30 кГц, амплитудой не менее 5В:

Подробнее о проверке и замене микросхемы 7106 на примере мультиметра DT-9208A рассказано здесь.

Часто количество выводов на микросхеме-капле отличается от количества выводов микросхемы в корпусе PDIP (40 выводов) или MQFP (квадратная 44 вывода). Тогда нужно определять незадействованные выводы микросхемы-капли непосредственно по печатной плате и при нумерации выводов не считать их.

Материал статьи продублирован на видео:

 

Как проверить мультиметром напряжение в машине

Проблема с автомобильным аккумулятором

В автомобиле довольно часто встречается неисправность бортовой сети, которая запитана от аккумулятора. Например, одним из симптомов такой неисправности может быть уменьшение напряжения. Наиболее наглядным проявлением этого может стать прикуриватель, который не разогревается до необходимой температуры. При этой неисправности соответствующий индикатор должен засветиться, указывая на проблему с аккумулятором. И действительно, аккумулятор может быть причиной этого. Но рекомендуется вспомнить дату его покупки, и был ли он при этом новым.

Новый аккумулятор обычно не подводит своего владельца в первые 5-6 лет своей работы. Особенно если это товар известного производителя. Некоторые владельцы авто, не имеющие достаточного опыта и хороших консультантов, но при деньгах после нескольких неудачных попыток запуска движка идут в магазин за новым аккумулятором. Но к своему удивлению и разочарованию, они довольно скоро получают то же самое с новым приобретением. Как выясняется, в конце концов, причиной проблемы является генератор. И разобраться в подобной неисправности не сложно.

Методика проверки на месте

Каждый может провести в своём автомобиле проверку генератора мультиметром. Однако, для этого необходимо иметь правильное представление устройства автомобильного генератора. Его частями, которые могут нести в себе неисправность, могут быть статор, ротор, выпрямитель, узел со щётками, подшипники ротора. Далее можно обозначить следующий перечень причин проблемы:

  • не вращается ротор или вращается медленно с пробуксовкой приводного ремня из-за трения в одном или обоих подшипниках;
  • генератор не вырабатывает электроэнергию из-за обрыва или короткого замыкания в обмотках статора или ротора;
  • генератор не обеспечивает положенный зарядный ток из-за проблем в узле со щётками;
  • неисправность в выпрямителе – регуляторе.

Проблема с подшипниками косвенно связана с использованием мультиметра. Это самая хлопотная неисправность которая требует самых больших затрат времени и сил. Потому прежде чем приступать к замене подшипников в генераторе имеет смысл проверить, как он справляется со своим предназначением. При появлении признаков отсутствия подзарядки аккумулятора надо оценить при помощи мультиметра поступает ли от генератора зарядный ток в аккумулятор. Для этого надо измерить напряжение на аккумуляторных клеммах. Обычно при не работающем двигателе мультиметр показывает величину напряжения между 12 В и 13 В. При запуске двигателя в исправном автомобиле начинает вращаться генератор и напряжение на клеммах увеличивается до значения между 14,0 В и 14,5 В.

Двигатель выключен Двигатель работает

Если разница величин напряжений незначительна, то есть чуть больше, на доли вольта, чем при выключенном двигателе имеет смысл более глубоко исследовать проблему. С этой целью надо включить в автомобиле с работающим двигателем все потребители электроэнергии и снять «минусовую» клемму с аккумулятора глядя на показания мультиметра. Один из щупов мультиметра должен быть на снятой клемме, а другой щуп – на «плюсовой» клемме. Если напряжение не изменилось, значит, генератор работает, но его напряжение меньше чем положено и это неисправность выпрямителя – регулятора. Если напряжение заметно уменьшилось надо разобраться с предохранителями и найти тот из них, который установлен в цепи генератора.

Его надо вынуть, а в гнёзда предохранителя установить щупы мультиметра подготовленного для измерения силы тока. Но перед этим следует проверить состояние предохранителя и проводов в цепи зарядки аккумулятора. Для этого тестером измеряется их сопротивление, которое должно быть ничтожно малым при их исправном состоянии. Затем, если выяснится что предохранитель и провода исправны, надо расположить мультиметр так, чтобы его было хорошо видно при запуске двигателя. Если аккумулятор уже заметно разрядился, что и стало причиной всего происходящего, но генератор исправен мультиметр покажет зарядный ток.

Проверка на стенде

Если же зарядного тока нет или он меньше ожидаемого, надо осмотреть как вращается вал генератора. Если по неопытности попытка запуска двигателя продолжалась настолько долго, что аккумулятор разрядился, придётся прибегнуть к посторонней помощи, чтобы крутить вал движка вручную. Поскольку потребуется работать с мультиметром и разобраться с состоянием вращения вала генератора. Если выяснится что проблема в заклинивании вала или в одной из других перечисленных выше причин генератор можно снять и проверить на импровизированном стенде в собственном гараже с соответствующим ремонтом по результатам проверки. Для этого нужны:

аккумулятор и мультиметр лампочка 12 В с выключателем
соединительные провода 2 шт. с зажимами на обоих концах электродрель с насадкой под вал генератора

Лампочка присоединяется к клеммам электрогенератора. Далее генератор потребуется жёстко зафиксировать потому, что его вал будет раскручиваться электродрелью. Но и провода удобнее присоединять к надёжно закреплённому генератору. Для его фиксации хорошо подойдут достаточно большие тиски соизмеримые с габаритами электрогенератора.

Один из зажимов проводов, который предназначен для соединения с одной из клемм аккумулятора надо присоединять в последнюю очередь после того как сделаны все остальные соединения. Это позволит избежать случайного короткого замыкания аккумулятора и нежелательного фейерверка, которым может стать следствием этого со всеми вытекающими последствиями. Очень важно не перепутать полярность клемм аккумулятора и генератора. Иначе может быть повреждён выпрямитель – регулятор. Далее подготавливаем мультиметр для измерения постоянного напряжения в диапазоне до 20 В. Щупы мультиметра присоединяем к клеммам аккумулятора.

После этого включаем выключатель лампочки. Свечение лампы имитирует работу подсветки приборной панели и указывает на работу от аккумулятора.

Затем берём электродрель, стыкуем с валом электрогенератора и включаем её. Вал электрогенератора начинает вращаться, а лампочка при этом должна погаснуть.

Одновременно с вращением вала генератора контролируем показания мультиметра. На его табло должно быть постоянное напряжение по величине между 14,0 В и 14,5 В.

После остановки вращения вала лампочка снова загорается. Это, а также показания мультиметра свидетельствует об исправности электрогенератора. Для полноты проверки надо нагрузить аккумулятор. Для этого хорошо применить галогенную автомобильную лампу мощностью порядка 200 Вт. Она подключается к аккумуляторным клеммам.

При раскручивании вала генератора первая лампочка гаснет, а галогенная продолжает светиться без изменения. Мультиметр при этом показывает напряжение в пределах 13,5-14,0 В.

Если лампочка не гаснет, а показания мультиметра отличаются надо разбирать генератор с целью замены выпрямителя – регулятора.

Опять сел аккумулятор? А нет ли у вас утечки тока? Попробуем найти «виновника» собственными усилиями.

Не выключили!

Простейшие причины утечек тока могут быть вызваны рассеянностью владельца машины. Грубо говоря, он не выключил на ночь внешние световые приборы, а машина, в свою очередь, ничего ему не подсказала.

Бывают и машины с дурной заводской задумкой — вспомнить хотя бы обогрев заднего стекла, цепь питания которого идет мимо замка зажигания.

А еще — дети! Особенно мальчики. Даже в нашем коллективе уже несколько сотрудников по первому зову жены не смогли покинуть дачу, после того как пацаны посидели на водительском месте и покрутили разные ручки, оставив включенными потребители.

Не так подключили

В эпоху повального увлечения автомузыкой многие магнитолы легко высасывали заряд батареи, потому что установщик не удосужился правильно их подключить. А ведь достаточно было пустить один провод питания через замок зажигания.

Второй нештатный похититель электричества — установленная противоугонка. Если до ее установки все было нормально, а затем начались проблемы, то размышлять нечего — пусть уважаемый установщик докажет, что он не верблюд. Справедливости ради отметим, что некоторые охранные системы действительно потребляют под сотню миллиампер, но даже при таком токе за ночь стоянки с батареей ничего не случится.

Наконец, не забывайте про гнездо прикуриватели или розетку — у кого что. Далеко не во всех машинах они обесточиваются при выключенном зажигании. Поэтому случайно забытый подключенный прибор — радар-детектор, регистратор, навигатор и т п. — может высасывать ток, не принося при этом никакой пользы.

А есть ли утечка?

Бывает и так, что никакой утечки нет, а батарея утром — никакая. Такое бывает при наличии отрицательного баланса «заряд/разряд». Если машина постоянно ползает в пробках, пробеги при этом короткие, глушить и пускать мотор приходится часто, а на улице еще к тому же и холодно, то батарея просто не успевает заряжаться до нормального состояния. А потому однажды отказывает. Кроме того, виноватой может быть всё та же автомузыка с киловаттными мощностями на выходе — такие музыкальные монстры потребляют сумасшедшие токи. Но, повторяем, к утечкам тока это не имеет отношения: это уже не утечки, а просто чрезмерное потребление.

Грязные делишки

Причиной настоящей утечки тока может быть то, чего у нас много — грязь, стало быть. Тут лидирует цепь с толстенным стартерным проводом, постоянно живущим в антисанитарных условиях — соль, вода и т.п. Практически те же проблемы могут быть и с проводкой генератора. И не только с проводкой — сам генератор напоминает дуршлаг, сквозь который постоянно фильтруется песко-соляная смесь, которой посыпают дороги. Поверхность батареи также редко бывает чистой: кулоны любят убегать по таким электропроводным участкам в «никуда». Заметим, что изношенная проводка с дрянной изоляцией способна порождать не только утечку, но и возгорание. Однако не будем о страшилках.

Как обнаружить неисправность?

Мультиметр

Машина чистая, сигналка и музыка в порядке, а батарея все-таки разряжается каждую ночь? Значит, пора хватать амперметр. Амперметр в чистом виде — это сегодня уже редкость, но переключить мультиметр в режим измерения тока несложно.

Мультиметр

Отсоединяем провод от минусовой клеммы батареи и подключаем мультиметр в образовавшийся разрыв. Двигатель, естественно, должен быть выключен. Прибор при этом тут же оживет и покажет величину тока, потребляемого машиной на стоянке.

Мультиметр

Если машина, как говорится, «голая» — без сигналок, «музыки» и др., то ток потребления не должен превышать 70–80 мА.

Мультиметр

Как только мультиметр отреагирует резким снижением показаний тока, виновник найден. Остальное — дело техники. Само собой, каждый предохранитель после проверки цепи следует тут же возвращать на место. Номиналы у них разные, а потому простая замена одного на другой недопустима.

А если не получается?

Если предохранители кончились, а мультиметр ничего не отловил, то остаются только силовые цепи, не защищенные ничем. Как правило, это стартер, генератор и система зажигания.

Предохранители

Особняком стоят сигналка и «музыка». Нужно ли «копаться» дальше — решайте сами. Если устранить утечку тока своими силами не позволяет квалификация и опыт, лучше отправиться на сервис. Теперь даже нечистый на руку сервисмен не сможет вас одурачить, ведь причина утечки вам уже известна.

  • Когда аккумулятор быстро разряжается, возникают вопросы: как проверить утечку тока на автомобиле мультиметром и как устранить утечку тока в автомобиле.

    Утечка тока – частая неприятность старых автомобилей. Электропроводка изнашивается, клеммы приходят в негодность, изоляция плавится или протирается. Иногда это приводит к короткому замыканию и даже пожару.

    Случаются такие проблемы и у более современных автомобилей. Проблема часто в нештатном оборудовании, не предусмотренном производителем.

    Главный признак, по которому автолюбитель замечает утечку тока и задумывается, как проверить утечку тока на автомобиле мультиметром – быстрый разряд аккумулятора.

    Утечка тока даже в 200 мА может привести к полной разрядке батарее за один день простоя. Прежде чем заподозрить утечку, проверьте состояние АКБ, генератора и стартера.

    Если батарея исправна, генератор и стартер в норме, это означает, что ток из АКБ при выключенном двигателе потребляют узлы автомобиля.

    Причины утечки тока

    После выключения двигателя автомобиля электроснабжение поступает из аккумуляторной батареи. Некоторые системы продолжают потреблять энергию и при стоянке машины.

    Например, бортовой компьютер, часы, магнитола: при включении зажигания часы показывают правильное время, а память магнитолы не приходится настраивать заново.

    Современные автомобили, «напичканные» электроникой потребляют энергии больше. Но и в этом случае до полной разрядки аккумулятора при исправности всех систем автомобиль простоит без движения 2-3 месяца.

    Если вы подозреваете утечку тока, то причины две: какие-то потребители энергии и короткое замыкание в цепи.

    Помочь диагностировать существование проблемы может специальный прибор и знание, как проверить утечку тока на автомобиле мультиметром.

    Косвенно о причинах вы можете догадаться, если знаете, что в автомобиле:

    1. Самостоятельно или не на заводе-производителе установлено дополнительное электрическое оборудование: сигнализация, подогрев, телевизор, сабвуфер, навигатор, автоматическое опускание стёкол.
      Плохо уложенные и недостаточно защищённые провода таких систем плавятся от близости к горячим деталям автомобиля, перетираются, загрязняются.
      Подключение может быть выполнено неправильно или небезопасно. В этих случаях можно действовать самостоятельно, если знать, как устранить утечку тока в автомобиле.
    2. Постоянно присутствует прибор, подключенный в прикуриватель или розетку.
      Он может потреблять электричество даже в выключенном состоянии (например, навигатор или видеорегистратор).
    3. Старая проводка, повреждённая изоляция проводов.
      Они могут привести к короткому замыканию и возгоранию автомобиля.
    4. Окислившиеся или грязные клеммы, грязь, соль, частая влага на проводах.
    5. Как проверить утечку тока на автомобиле мультиметром

      В первую очередь необходимо проверить исправность АКБ и генератора. Если они исправны и нареканий нет, можно перейти к следующему шагу.

      Для диагностики нам понадобится измеритель – мультиметр. Это универсальный прибор, который включает в себя амперметр, вольтметр и омметр.

      Если у вас его нет, зато есть амперметр, для измерения силы тока можно взять его. Посмотрим, как проверить утечку тока на автомобиле мультиметром.

      1. Заглушите автомобиль.
        Представьте, что вы поставили автомобиль на стоянку и выключите фары, магнитолу и т.д, вытащите ключ из замка зажигания.
        Откройте водительское окно на случай, если при проверке заклинит центральный дверной замок.
      2. Поставьте автомобиль на охрану.
      3. Подождите 1-2 минуты.
        Сигнализационная система войдёт в нормальный режим своей работы и можно будет точнее измерить утечку тока.
      4. Переведите мультиметр в режим измерения тока, он обозначен латинскими буквами DCA (Direct Current Amperage – сила тока постоянного напряжения в амперах). Нам нужен режим 10 А.
      5. Чёрный провод мультиметра – минус – подключается в разъём COM, красный – плюс – в разъём с надписью 10 ADC.
      6. Снимите с минусовой клеммы аккумулятора провод.
        Минусовой, т.е. чёрный провод подсоедините к клемме АКБ, второй, красный – к отсоединённому проводу.
      7. На экране прибора появится значение тока, проходящего по этой цепи.

      Нормальные значения на современных автомобилях – 15-70 мА. Сюда включены расходы бортового компьютера, магнитолы, часов, сигнализации и т.д.

      Вставьте ключ зажигания в автомобиль и поверните, но не заводите двигатель! На экране мультиметра отобразится значение 1-2 А. Если оно выше – происходит утечка.

      Как устранить утечку тока в автомобиле самостоятельно

      Если вы увидели на мультиметре значения выше нормы, поочерёдно отключайте узлы автомобиля. После каждого действия проверяйте не изменилось ли значение на мультиметре.

      1. Осмотрите все лампочки внутри салона.
        Если при открытии дверей, бардачка или багажника ток в цепи не меняется, а лампочки горят, это означает, что они подключены неправильно и светят постоянно, но вы этого не видите, потому что не замечаете при закрытых крышках.
      2. Отключите приборы, которые влияют на потребление тока: навигатор и видеорегистратор, включенные в розетку, видеосистема, встроенный телефон.
      3. Отключите сигнализацию.
      4. Поочерёдно отключайте и включайте все внештатные приборы, предохранители и реле (и сразу же после проверки возвращайте обратно, чтобы не перепутать).

      Если вы нашли систему, которая даёт утечку тока, её необходимо правильно переподключить, отремонтировать или заменить. Чаще всего утечка происходит из-за неправильного подключения, но возможны и поломки.

      Если проверка не дала результатов, проведите визуальный осмотр. Осмотрите провода, нет ли где-то признаков нарушения изоляции или расплавления.

      Отнеситесь внимательно к этому этапу, короткое замыкание – очень опасно, оно может привести к пожару! Так же необходимо тщательно проверить все соединения и клеммы. Нет ли на них окислов, грязи, воды.

      Если проверка показала утечку, а самостоятельно причину обнаружить не удалось, обратитесь на станцию технического обслуживания, где вам помогут провести тщательную диагностику автомобиля.

      К сожалению, даже зная, как проверить утечку тока на автомобиле мультиметром, не всегда возможно быстро и правильно выявить причину неполадки.

      Как проверить напряжение в розетке мультиметром

      Не каждый день пригодится такое умение, но как проверить напряжение в розетке мультиметром и что он должен при этом показывать, лучше узнать заранее. Кроме напряжения электронный тестер способен измерять силу тока и сопротивление проводов, для чего на приборе надо менять местами подключение штекеров. За их правильным подключением надо внимательно следить – если проводить измерения неправильно, то произойдет короткое замыкание.

      Немного теории – как подключаются измерительные приборы

      Электронный мультиметр объединяет в себе несколько различных устройств, которые по-разному подключаются к участку цепи. Чтобы им правильно пользоваться, надо знать чем измеряется напряжение, а чем сила тока и правильно производить подключение устройства.

      Когда провода просто подключены к рабочему источнику питания, то на них появляется электрическое напряжение, которое можно померить между плюсом и минусом (фазой и нулем). Это значит, что напряжение можно измерить как при подключенной в сеть нагрузке (работающем приборе), так и без нее.

      Электрический ток в проводах появляется только в том случае, когда цепь замкнута – только тогда он начинает течь от одного полюса к другому. При этом, измерения тока проводятся при подключении измерительного устройства последовательно. Это значит, что ток должен пройти через прибор и только в этом случае он сможет замерить его величину.

      Разумеется, чтобы измерительный прибор не оказывал влияния на силу тока, которую он измеряет, сопротивление мультиметра должно быть как можно меньше. Соответственно, если прибор настроен на измерение силы тока, а по ошибке попробовать измерить им напряжение, то случится короткое замыкание. Правда и тут не все однозначно – измерение тока и напряжения современными электронными мультиметрами проводится с одинаковым подключением клемм к устройству.

      Если вспоминать хотя бы поверхностные школьные знания про электрические цепи, то сформулировать правила измерения напряжения и силы тока можно следующим образом: напряжение одинаковое на параллельно подключенных участках цепи, а сила тока при последовательном соединении проводников.

      Чтобы не было ошибок, перед измерениями надо обязательно сверяться с маркировкой, нанесенной возле контактов мультиметра и его переключателя режимов.

      Маркировка шкалы мультиметра

      У различных моделей устройств есть свои особенности, но основные возможности у них примерно одинаковые, особенно у бюджетных моделей.

      Самые простые приборы могут измерять:

      • ACV – переменное напряжение. Установка переключателя на это деление превращает мультиметр в тестер напряжения, обычно до 750 и 200 Вольт;
      • DCA – силу постоянного тока. Здесь надо быть внимательным – на шкале многих бюджетных приборов есть предельные значения измерений 2000µ (микроампер) и 200m (миллиампер) и штекер надо оставлять в той же клемме, что и при измерении напряжения, а если измеряется сила тока до 10 Ампер, то штекер переставляется в другую клемму с соответствующим обозначением.
      • 10A – сила постоянного тока от 200 миллиампер до 10 Ампер. Обычно на приборе нарисовано, что при включении этого режима надо переставить штекер.
      • hFe – проверка транзисторов.
      • >l – проверка целостности диодов, но чаще всего этой функцией пользуются как прозвонкой проводов.
      • Ω – измерение сопротивления проводов и резисторов. Чувствительность от 200 Ом до 2000 килоом.
      • DCV – постоянное напряжение. Чувствительность выставляется от 200 милливольт до 1000 Вольт.

      К разъемам мультиметра обычно подключается два провода – черный и красный. Штекера на них одинаковые, а расцветка разная исключительно для удобства пользователя.

      Измерение сопротивления провода

      Это самый простой режим работы – по сути надо взять провод, для которого надо провести измерение сопротивления и прикоснуться щупами мультиметра к его концам.

      Измерение сопротивления происходит благодаря источнику питания, который есть внутри мультиметра – прибор измеряет его напряжение и силу тока в цепи, а затем по закону Ома высчитывает сопротивление.

      Нюансов при измерении сопротивления два:

      1. Мультиметр показывает сумму сопротивлений измеряемого провода вместе с щупами, которыми к нему прикасаются. Если нужны точные значения, то изначально должны измеряться провода щупов и потом полученный результат вычитаться из общего.
      2. Заранее сложно прикинуть примерное сопротивление провода, поэтому измерения желательно производить понижая чувствительность прибора.

      Измерение напряжения

      Обычно в таком случае стоит задача как измерить напряжение в розетке или просто проверить его наличие. Первым делам подготавливается сам тестер – черный провод вставляется в клемму в маркировкой COM – это минус или «земля». Красный вставляется в клемму, в обозначении которой есть буква «V»: зачастую она написана рядом с другими символами и выглядит это примерно так ֪– VΩmA. Возле колеса выбора режимов мультиметра показаны граничные значения – 750 и 200 Вольт (В разделе с маркировкой ACV). При измерении напряжения в розетке напряжение должно около 220 Вольт, поэтому переключатель ставится на деление 750.

      Если в этом случае выставить предел измерения в 200 Вольт, то есть вероятность испортить прибор.

      На экране устройства появятся нули – прибор готов к работе. Теперь надо вставить щупы в розетку и узнать какое в ней сейчас напряжение и есть ли оно вообще. Так как надо измерить напряжение в сети переменного тока, то нет никакой разницы каким щупом касаться фазы, а каким нуля – результат на экране будет неизменным – 220 (+/-) Вольт, если напряжение в розетке есть или ноль, если его там нет. Во втором случае надо быть осторожным – если в розетке нет ноля, то устройство просто покажет, что розетка нерабочая, поэтому чтобы не получить удар током, дополнительно не помешает проверить контакты пробником напряжения.

      Точно так же проводится измерение постоянного напряжения – с той только разницей, что щупом с черным проводом надо касаться минуса, а красным – плюса (если они правильно подключены к клеммам прибора). Колесо выбора режимов, разумеется, надо перевести в область DCV.

      Здесь есть такая же приятная особенность, как и при измерении переменного напряжения: на самом деле определяя напряжение можно черным щупом касаться как минуса, так и плюса – просто если перепутать полярность, то на экране устройства будет отображаться правильный результат, но со знаком минуса.

      Это все особенности, которые надо знать перед тем как измерить напряжение мультиметром – в каком-либо устройстве или розетке.

      Измерение силы тока

      Хорошо если в хозяйстве есть сравнительно неплохой мультиметр, на котором есть метка A~ что показывает способность прибора измерять силу переменного тока. Если же используются бюджетные приборы для измерения, то, скорее всего, на его шкале будет только метка DCA (постоянный ток) и чтобы им воспользоваться нужно будет проводить дополнительные манипуляции, для которых придется вспоминать азы построения электроцепей.

      Если прибор «умеет» мерять переменный ток «из коробки», то в целом все делается так же как и для измерения напряжения, но мультиметр подключается в цепь последовательно с нагрузкой, например, лампой накаливания. Т.е. от первого разъема розетки провод идет к первому щупу мультиметра – от второго щупа провод идет к первому контакту на цоколе лампы – от второго контакта цоколя провод идет ко второму разъему розетки. Когда цепь замкнута, то на экране мультиметра отобразится сила тока, которая протекает через лампу.

      Подробно об измерении силы тока рассказано в этом видео:

      Всегда надо хотя бы примерно представлять себе какую силу тока придется мерить, чтобы не испортить сам измеряющий прибор.

      Измерение силы переменного тока вольтметром

      Если надо измерить силу переменного тока, но под рукой есть только бюджетный мультиметр, в котором нет такого функционала, то выйти из положения можно воспользовавшись методом измерения с помощью шунтирования. Его смысл отображается формулой I = U / R, Где I – сила тока, которую нужно найти, U – напряжение на локальном участке проводника, а R – сопротивление этого участка. Из формулы понятно, что если R будет равно единице, то сила тока на участке цепи будет равна напряжению.

      Для измерения надо найти проводник с сопротивлением 1 Ом – это может быть достаточно длинный провод от трансформатора или кусок спирали от электропечки. Сопротивление провода, т.е. его длина, регулируются тестером в соответствующем режиме проверки.

      В итоге получится следующая схема (в качестве нагрузки лампа накаливания):

      1. От первого разъема розетки провод идет к началу шунта, сюда же подключается один из щупов мультиметра.
      2. Второй щуп мультиметра подсоединяется к концу шунта и от этой точки провод идет к первому контакту цоколя лампы.
      3. От второго контакта цоколя лампы провод идет ко второму разъему розетки.

      Мультиметр устанавливается в РЕЖИМ ИЗМЕРЕНИЯ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ. По отношению к шунту он подключен параллельно, так что все правила соблюдены. При включении питания он будет показывать напряжение, равное силе тока, проходящего через шунт, которая в свою очередь такая же, как и на нагрузке.

      Наглядно про этот метод измерения на видео:

      Как итог

      Даже бюджетный универсальный измерительный прибор – мультиметр позволяет проводить измерения в достаточно широких пределах, достаточных для домашнего использования. Но при покупке устройства надо хотя бы в общих чертах представлять себе для каких целей он будет использоваться – может будет правильнее немного переплатить но в результате иметь «на подхвате» тестер, способный выполнить любую поставленную перед ним задачу. Также перед его применением не помешает хотя бы в общих чертах освежить в памяти азы построения электрических цепей и использования в них электроизмерительных приборов.

      Обнаружение падения напряжения с использованием мультиметра :: carway.info

      При достаточной квалификации электрика диагностику неисправностей электросистемы автомобиля можно осуществить, воспользовавшись таким простым прибором, как функциональный цифровой мультиметр. При этом зачастую ошибок в диагностике можно избежать, всего лишь имея навыки правильного считывания показаний мультиметра.

      При измерении напряжения показания мультиметра отображают значение разницы потенциала между красным и черным щупом. Например, если красный щуп замкнуть на 12 В, а черный на 0 В, на табло мультиметра высветится показатель 12 В (разница между 12 и 0). Однако если оба щупа замкнуть на 12 В, разности напряжения между щупами не будет, и на дисплей мультиметра будет выведен показатель 0 вольт.

      Контрольное напряжение – прежде всего

      Перед проведением любых испытаний электрической системы автомобиля следует убедиться в наличии контрольного напряжения. Измеряется оно на подключенной АКБ автомобиля, приложением щупов мультиметра к обоим клеммам. Красный щуп замыкается на положительную клемму (+), а черный — на отрицательную (-).

      Для правильного выполнения процедуры измерения придерживайтесь таких инструкций:
      1. При выключенном мультиметре убедитесь, что щупы подключены к нужным разъемам мультиметра (обычно есть разъемы для переменного и постоянного тока, иногда – два разъема для постоянного тока разной силы)
      2. Переключите мультиметр в режим «Вольты постоянного тока»
      3. Выберите положение круглого переключателя, соответствующее десяткам вольт (обычно маркируется «20»).
      4. После этого замкните красный и черный щупы на клеммы аккумулятора.

      Замер на цепи – не показатель

      В приведенном примере, если измерение напряжения выполняется на противоположных клеммах АКБ автомобиля (при выключенном двигателе), мультиметр покажет приблизительно 12,7 вольт. Это и есть значение разницы потенциалов.

      Если же считывание проводится с предохранителя (или любых двух участков цепи) – на исправной цепи мультиметр покажет 0 вольт, поскольку потенциал на красном и черном щупе идентичен.

       

      После ознакомления с теоретическими аспектами, диагностика неисправностей становится более понятной. Теперь можно искать место падения напряжения по цепи.

      Проверка отдельного кабеля

      В приведенном выше примере показано падение напряжения от положительной клеммы аккумулятора к положительной клемме стартера. При обнаружении такового следует проверить кабель на предмет наличия или отсутствия разрывов. Для выполнения данного теста мультиметр находился в режиме «Вольты постоянного тока», а щупы прикладываются к разным концам исследуемого кабеля. Стартер проворачиваем для подачи нагрузки на кабель.

      Предполагаемый результат не должен превышать приблизительно 0,5 вольт, что свидетельствует о возможности нормальной эксплуатации кабеля – разница обусловлена сопротивлением самого кабеля. Если же результат изменения превышает рекомендованную величину в полвольта, это может свидетельствовать о повреждении кабеля или о высоком сопротивлении в цепи.

      Исправный кабель берет не больше полувольта

      Аналогичный метод испытаний можно применить к любой электрической цепи.
      При замыкании мультиметра на отрицательную клемму аккумулятора и контакта стартера на массу, как показано ниже, следует ожидать результата показаний около 0,5 вольт для кабеля, пригодного к эксплуатации.

       

       

       

      Аналогичный метод измерения падения напряжения может применяться к любой электрической цепи автомобиля и является надежным методом определения таких типов неисправностей:

      • Открытый контур (разрыв провода или перегоревший предохранитель),
      • Высокое сопротивление (поражение клеммы коррозией или повреждение провода),
      • Неисправность потребителя.

      Информация предоставлена компанией Delphi.

      солнечная панель - выдает вольт, но не ампер - солнечная панель

      Привет Далибор,

      Глядя на ваше видео (кстати, очень хорошее), я думаю, что проблема в том, что ваш «контроллер» солнечной панели, вероятно, делает то, для чего он был разработан. Вероятно, он имеет так называемую защиту от короткого замыкания '. Это означает, что при коротком замыкании на выходе он отключается, чтобы защитить солнечную панель, оборудование, которое она питает, от дальнейшего повреждения и самого себя.

      Мультиметр, настроенный на считывание тока (А), фактически является коротким замыканием, но когда он настроен на считывание напряжения (В), это высокое сопротивление.

      В опубликованном вами видео «Как проверить солнечные панели» нет контроллера, подключенного к панели. Тестировали прямо с выхода самой панели. Это нормально, если вы хотите проверить, способна ли панель выдавать максимальный ток, если вы думаете, что она неисправна, но в реальных ситуациях это не так.Вам необходимо защитить панели и оборудование, к которому они подключены. Поэтому между панелью и выходом находятся контроллеры.

      Примечание: Если ваш контроллер солнечной панели также имеет регулируемое выходное напряжение (напряжение никогда не превышает 12-13 В постоянного тока), то ток, подаваемый на аккумулятор, может зависеть от напряжения, которое имеет аккумулятор, например, если солнечный выходное напряжение составляет 12,3 В, а аккумулятор - 12 В, тогда аккумулятор заряжается только на 0,3 В, и ток зарядки будет небольшим.

      Сначала убедитесь, что обе солнечные панели подключены от выходного провода панели + ve к входному терминалу контроллера + ve и выходного провода панели -ve к входному разъему контроллера -ve (как у вас, вероятно, есть)

      Способ проверки выходного тока, который заряжает аккумулятор, выглядит следующим образом:

      1. Измерьте выходное напряжение контроллера солнечной панели - попробуйте получить максимальное напряжение, наклоняя панели. Может случиться так, что вы никогда не получите больше 12-13В

      2.Измерьте напряжение аккумулятора . - надеюсь, это на меньше , чем выходное напряжение контроллера солнечной панели .

      3. Если есть, продолжайте.

      4. Подсоедините выходной провод -ve солнечного контроллера к -ветовой клемме аккумуляторной батареи.

      5. Подсоедините выходной провод + ve солнечного контроллера к одному проводу мультиметра. (Измеритель должен быть настроен на считывание диапазона ампер / постоянного тока 10 А, общих выводов и клеммы 10 А - как вы правильно сделали в видео)

      6.Подключите другой вывод мультиметра к плюсовой клемме аккумулятора

      .

      Ваш счетчик соединен последовательно с одним выходным проводом от солнечного контроллера, например, солнечный контроллер + выход ve - вход счетчика - выход счетчика - батарея + клемма ve .

      7. Если ваше показание меньше 0,2 А (<0,2 А), измените диапазон вашего измерителя на диапазон ампер / постоянного тока 200 мА и измените провод с клеммы 10 А на другую клемму на измерителе, чтобы получить более точные показания. .

      Если вы не получаете показания таким образом (еще раз проверьте выходное напряжение солнечной батареи, чтобы убедиться, что оно больше, чем у батареи), возможно, ваш мультиметр может быть неисправен при считывании тока.Обратитесь к руководству пользователя измерителя, если в измерителе есть предохранитель на диапазон 10A. В большинстве счетчиков диапазоны 0–200 мА имеют предохранители (для защиты в случае более высокого тока), а диапазоны 10 А - нет. Может, хотя у тебя есть. Просто нужно проверить.

      Проверьте, есть ли в контроллере возможность регулируемого выхода напряжения. Если нет, и это фиксированный выход 12-13 В, зарядный ток всегда будет небольшим, пока заряжаемый аккумулятор имеет напряжение, близкое к выходному сигналу контроллера. Зарядное напряжение всегда должно быть выше, чем напряжение того, что заряжается. , иначе ток будет течь в обратном направлении. Большинство контроллеров также имеют «защиту от обратного напряжения», которая останавливает обратный ток от батареи к контроллеру, если напряжение батареи выше, чем выходное напряжение контроллера. Это может произойти, если облако, например, закрывает солнце, и выходное солнечное напряжение падает.

      В идеале для эффективной зарядки аккумулятора, такого как на видео, выходной сигнал контроллера солнечной батареи должен находиться в диапазоне 13.5 - 14В. После того, как аккумулятор заряжен, наличие так называемого «непрерывного» заряда (выход солнечной энергии чуть выше напряжения аккумулятора) будет поддерживать аккумулятор на пиковом уровне, если он не используется в течение длительного периода времени.

      Надеюсь, это поможет.

      Аккумуляторы

      - Неверные показания мультиметра при измерении свинцово-кислотного аккумулятора 12 В

      Ситуация: диапазон измерителя переменного тока показывает двойное значение постоянного тока, когда диапазон переменного тока используется для постоянного тока:

      У меня есть счетчик той же марки и очень похожей модели (UT33B в отличие от U33C), и мой счетчик ведет себя точно так, как указано.Подробности в конце.

      В свое время для диапазонов измерителей переменного тока на аналоговых измерителях было чрезвычайно распространено показывать вдвое большее значение при подаче постоянного тока.
      То, что вы видите, почти наверняка кто-то использует схему старого стиля.

      Напряжение аккумулятора зависит от состояния заряда, а также во время зарядки и разрядки. Номинальные значения могут сильно отличаться от фактических. например,

      • Свинцово-кислотный 12 В - примерно от 10 В до 13,7 В при нормальном заряде и более 14 В в некоторых ситуациях.

      • 3,6 В, литий-ионный - менее 3 В при полностью разряженном и примерно 4,2 В при полностью заряженном (на элемент)

      • 1,2 В NimH - Около 1,45 В при зарядке при полной зарядке, 1,35 В сразу после зарядки, 1,3 В после полной зарядки через некоторое время, 1,0 - 1,3 во время разрядки, иногда ниже 1 В при полной разрядке.

      • NiCd - аналогично NimH

      • AA Щелочные - от 1,60 до 1,65 В. Совершенно новый. 0,9 - 1,5В при разряде.

      • AA углеродистый цинк или сверхмощный - 1.5V новый. 0,9 - 1,5 разряда.


      Обновление - отчетные результаты подтверждены независимо:

      Счетчик по картинке узнал :-).
      Я купил несколько таких устройств некоторое время назад, чтобы обеспечить возможность одновременного выполнения нескольких проверок работоспособности на некотором оборудовании. Я только что проверил поведение переменного / постоянного тока с входом постоянного тока, и, как и ожидалось, результаты такие, как указано. Как отмечалось выше, это согласуется с тем, что я видел в метрах в далеком прошлом.

      Применяя несколько полуслучайных напряжений к диапазонам 200 В постоянного тока и 200 В переменного тока, я получаю

        2.9 5,9
            6,4 13,5
           11,9 25,6
           38,1 83,4
        

      В диапазонах 500 В постоянного / 500 В переменного тока последнее напряжение давало

        38 83
        

      Немного больше 2: 1 и немного увеличивается с увеличением Vin.
      Я постараюсь как-нибудь в ближайшее время найти схему трассировки.
      (сейчас 3:30 и утренняя встреча, так что ...)

      Устранение неполадок сенсора с помощью мультиметра

      Итак, у вас проблемы с сигналом от сенсора. Может быть, это срабатывает только изредка, может быть, слишком много шума, чтобы установить надежное соединение, или, может быть, вы просто не знаете, что не так.Один из простых способов выяснить, что не так, - это проверить датчик с помощью мультиметра. Не волнуйтесь, мы расскажем, как использовать мультиметр для устранения неполадок промышленного датчика и в кратчайшие сроки заставить его работать должным образом!

      Но подождите - что такое мультиметр и как он работает? Давайте быстро взглянем. В конце концов, у нас есть датчик для устранения неполадок.

      Хотите сразу приступить к поиску и устранению неисправностей? Не беспокойтесь, нажмите здесь, чтобы узнать, как использовать мультиметр для поиска и устранения неисправностей датчика!

      Что такое мультиметр?

      Мультиметр - это электрический прибор, который используется для проверки цепей.Мультиметры могут измерять напряжение, ток, сопротивление и целостность цепи, отсюда и название: мультиметр. Мультиметр очень важен для устранения неполадок. При неисправности цепи или устройства проверка целостности цепи (т. Е. Непрерывность цепи от источника к датчику и обратно) и измерение напряжения / тока / сопротивления могут помочь найти и выявить проблемы.

      На мультиметре вы найдете несколько настроек, доступных для тестирования в различных областях. Наиболее распространенные настройки:

      • для тока как переменного (AC), так и постоянного (DC), от микро- или миллиампер до ампер;
      • для напряжения переменного и постоянного тока от милливольт до сотен вольт;
      • для сопротивления, измеряемого от Ом до мегаом.

      Более продвинутые модели имеют дополнительные настройки для измерения емкости, децибел, частоты, индуктивности и / или температуры.

      Как работает мультиметр?

      Волшебные миниатюрные эльфы.

      Или нет. Нам не удалось связаться с ними для получения комментариев.

      Пока мы не получим известие от эльфов, мы должны будем предположить, что мультиметры разработаны с использованием фундаментальной теории электрических цепей. (Я знаю, это далеко не так весело, как волшебные эльфы.) Закон Ома устанавливает фиксированное соотношение между напряжением, током и сопротивлением между любыми двумя точками в цепи: I = V / R (т.е.т.е. ток равен напряжению, деленному на сопротивление). Мультиметры, как и любой хороший студент-математик, используют две известные величины для вычисления третьего, неизвестного количества:

      .
      • Для измерения сопротивления измеряется изменение напряжения, создаваемое небольшим током.
      • Для измерения напряжения измеряется движение, создаваемое измеряемым малым током через известное сопротивление.
      • Для измерения тока аналогичное движение измеряется через сопротивление в определенном соотношении к рассматриваемому току.

      Другие упомянутые выше величины (емкость и т. Д.) Измеряются аналогичными методами.

      Пошаговая инструкция по тестированию мультиметра

      Итак, у вас в руках мультиметр. Что теперь? Давайте проведем три простых теста, которые помогут нам определить проблему. Используйте приведенную ниже схему для справки при прохождении тестов.

      Тест мультиметра: целостность

      Начнем с проверки целостности цепи мультиметра. Мы хотим убедиться, что все провода подключены правильно.

      Шаг 1

      Отсоедините провода датчика от источника питания (точка A на схеме).

      Шаг 2

      Вставьте черный щуп в COM (общий) порт мультиметра. Вставьте красный щуп в порт VΩ.

      Шаг 3

      Установите мультиметр в режим «Непрерывность» - символ выглядит примерно так: •))).

      Шаг 4

      Подключите красный зонд к проводу +, идущему к датчику, а черный зонд к заземляющему проводу, идущему к датчику.

      Примечание. Проводка связи часто бывает сложнее, чем провод «+» и «-», и будет варьироваться в зависимости от выходного сигнала вашего датчика и вашей системы управления. Пожалуйста, обратитесь к руководству пользователя вашего датчика или к производителю для получения дополнительной информации.

      Шаг 5

      Если мультиметр регистрирует показания, ваша электрическая проводка не повреждена. Если мультиметр не регистрирует показания, значит, с проводкой что-то не так. Повторите эти шаги для различных участков цепи между источником и датчиком, чтобы изолировать проблему.

      Шаг 6

      Этот процесс может (и должен!) Также выполняться с помощью коммуникационной проводки вашего датчика.

      Тест мультиметра: напряжение

      Убедившись в целостности цепи, проверим напряжение источника, а не источника.

      Шаг 1

      Подключите источник питания датчика.

      Шаг 2

      Отсоедините провода питания от датчика (точка C на схеме) или точки подключения, ближайшей к датчику (точка B, если кабель к датчику нельзя отсоединить от датчика).

      Шаг 3

      Поддерживайте те же соединения щуп - мультиметр.

      Шаг 4

      Подключите красный щуп к входящему + проводу, контакту или клемме, а черный щуп - к проводу / контакту / клемме заземления.

      Шаг 5

      Выберите значение DCV на мультиметре, которое ближе всего к напряжению источника, но больше, чем оно.

      Шаг 6

      Включите источник питания.

      Шаг 7

      Убедитесь, что напряжение на датчике находится в пределах диапазона, рекомендованного в вашем руководстве пользователя.Если да, то мы исключили источник напряжения как проблему. В противном случае источник напряжения - это, по крайней мере, проблема, если не проблема. (И в любом случае снова выключите источник питания!)

      Тест мультиметра: сопротивление

      Затем мы проверим полное сопротивление или сопротивление цепи *. В общем, полное сопротивление цепи имеет решающее значение только для цепей связи (Modbus, Hart и т. Д.), Но проверка все же может быть полезной для других цепей.

      Шаг 1

      Подсоедините провода питания к датчику.

      Шаг 2

      Отсоедините коммуникационные провода датчика от источника (точка A).

      Шаг 3

      Поддерживайте те же соединения щуп - мультиметр.

      Шаг 4

      Как и раньше, подключите красный щуп к + проводу, идущему к датчику, а черный щуп к заземляющему проводу, идущему к датчику.

      Шаг 5

      Для многих датчиков, использующих протоколы связи, требуется минимум от 150 Ом до 180 Ом, поэтому выберите значение Ом на мультиметре, которое ближе всего к 200 Ом, но больше, чем.Если полное сопротивление цепи меньше рекомендованного в руководстве пользователя, добавьте в схему соответствующее сопротивление.

      Шаг 6

      Если мультиметр не регистрирует импеданс, выберите следующий по величине номинал в Ом. Если полное сопротивление цепи слишком велико (и не бесконечно), необходимо что-то удалить из схемы (переключиться на провод меньшего диаметра, слишком много промежуточных переходов и т. Д.).

      Ваш датчик все еще не работает?

      Если эти действия не помогли вам выявить и изолировать проблему, возможно, проблема связана с вашим датчиком.Если вам нужен новый датчик, ознакомьтесь с нашей подборкой высококачественных датчиков. Мы заботимся о том, чтобы все наши продукты были надежными и всегда были доступны для поддержки наших клиентов. Вы можете отправить нам электронное письмо напрямую или заполнить контактную форму, и один из наших представителей свяжется с вами в течение 24 часов!

      * Да, я знаю, что существует разница между импедансом и сопротивлением (X = R + jωL). Однако я также знаю, что разница критична только для схем переменного тока на высокой частоте.Но даже для этой цепи постоянного тока полное сопротивление току называется импедансом, а не сопротивлением.


      кредит на верхнюю фотографию: Эндрю Мейсон через flickr cc

      Измерение напряжения на макетной плате

      Измерение напряжения на макетной плате


      Рисунок 1. Измерение падения напряжения на резисторе в цепи.

      Измерение напряжения в цепи аналогично измерению давление в водопроводе.В то время как манометр показывает давление разница между внутренней и внешней стороной трубы, вольтметр указывает на "давление" разность между его красным датчиком и черный зонд. Мы называем эту разницу «электрического давления» "Напряжение."

      Каждый резистор в электрической цепи "израсходован" Некоторое напряжение, подаваемое батареей или другим источником. Чтобы измерить это падение напряжения, используйте цифровой мультиметр (DMM), как показано, поместив измеритель щупы на каждом конце резистора.См. Рисунок 1.

      Ручка цифрового мультиметра должна быть установлена ​​на диапазон постоянного напряжения для измерения постоянного тока. напряжения. Используйте курсор мыши, чтобы щелкнуть и повернуть ручку в желаемый диапазон. На рисунке 2 ручка установлена ​​на « 20 DCV ». Это означает Цифровой мультиметр может отображать измерения до 20 вольт. Значит, цифровой мультиметр считывает На рисунке 2 предполагается, что напряжение составляет 5,79 вольт.


      Рисунок 2. Ручка цифрового мультиметра установите диапазон 20 вольт, показав 5,79 вольт.

      Если ручка повернута на «2000 м», цифровой мультиметр может считывать значения от до 2000 милливольт. При этой настройке цифровой мультиметр не будет показывать десятичные разряды. Например, отображение "652" будет понятным как 652 милливольта. Если на дисплее отображается «755» с ручкой, установленной в положение «1000 DCV», что это за измерение? (ответ: 755 вольт!)

      Примечание: Будьте осторожны при работе с агрегатами. Наиболее формулы, такие как закон Ома, ожидают измерения в вольтах. Но вы часто встретите меры в милливольт (то есть 1/1000 вольт). Итак, вы можете преобразовать меру 652 милливольта в вольты:

      Как видите, преобразование милливольт в вольт на самом деле так же просто, как перемещение десятичной точки на три позиции влево, что приводит к делению числа на 1000.

      Как использовать мультиметр напряжения для поиска и устранения неисправностей при установке светодиодов

      1.) Выберите правильную настройку переменного тока на вольтметре

      .

      Для проверки высокого напряжения переменного тока необходимо сначала установить мультиметр в правильное положение на переключателе диапазонов и вставить измерительный провод в соответствующее гнездо. На нашем мультиметре напряжение переменного тока отмечено красным. Как видите, есть вариант 600 или 200. Вы хотите выбрать вариант с более высоким напряжением, чем тестируемое вами напряжение.В этом случае мы тестируем 120 В переменного тока, поэтому мы устанавливаем шкалу на 200. Если вы тестировали напряжение выше 200 В переменного тока, вы бы установили селекторный переключатель на 600.

      2.) Подключите измерительные провода к источнику питания переменного тока

      .

      Подсоедините испытательные провода к двум точкам, в которых должно быть снято показание напряжения, в этом случае один вывод на вашей нагрузке и один провод на нейтрали, полярность не имеет значения (НИКОГДА НЕ ПРИКАСАЙТЕСЬ К ДВУМ ТОЧКАМ ОДНИМ ПРОВОДОМ, ПОРАЖЕНИЕ ЭЛЕКТРИЧЕСКИМ ТОКОМ БУДЕТ ПРОИСХОДИТЬ). Будьте осторожны, не касайтесь проводов под напряжением какими-либо частями тела.Никогда не заземляйте себя при проведении электрических измерений. Не прикасайтесь к оголенным металлическим трубам, розеткам, арматуре и т. Д., Которые могут иметь потенциал земли. Изолируйте свое тело от земли, используя сухую одежду, резиновую обувь, резиновые коврики или любой одобренный изоляционный материал. Никогда не прикасайтесь к оголенной проводке, соединениям или любым проводам цепи под напряжением при проведении измерений. Перед использованием всегда проверяйте правильность работы испытательного оборудования.

      3.) Проверьте показания напряжения переменного тока на мультиметре

      .

      Если все было сделано правильно, вы должны увидеть напряжение на цифровом экране вашего мультиметра.В этом случае мы тестировали, чтобы убедиться, что источник питания получает входное напряжение 120 В переменного тока, а показание составило 118,9 В переменного тока, что является приемлемым. При любом показании напряжения следует ожидать небольшого отклонения в любом направлении.

      1.) Выберите правильную настройку постоянного тока на вольтметре

      .

      Для проверки низкого напряжения постоянного тока необходимо сначала установить мультиметр в правильное положение на переключателе диапазонов и вставить измерительный провод в соответствующее гнездо. На нашем мультиметре напряжение постоянного тока отмечено черным цветом.Как видите, есть вариант 200, 20 или 2. Вы хотите выбрать вариант с более высоким напряжением, чем тестируемое вами напряжение. В этом случае мы тестируем на 12 В постоянного тока, поэтому мы устанавливаем шкалу на 20. Если вы тестировали напряжение выше 20, вы бы установили селекторный переключатель на 200.

      2.) Подключите измерительные провода к источнику постоянного тока

      .

      Подсоедините тестовые провода к двум точкам, в которых должно быть снято показание напряжения, в этом случае красный провод к положительному, а черный к отрицательному, при обратной полярности показания будут отрицательными (НИКОГДА НЕ ПРИКАСАЙТЕСЬ К ДВУМ ТОЧКАМ С ОДИН ПРИВОД).Будьте осторожны, не касайтесь проводов под напряжением какими-либо частями тела. Никогда не заземляйте себя при проведении электрических измерений. Не прикасайтесь к оголенным металлическим трубам, розеткам, арматуре и т. Д., Которые могут иметь потенциал земли. Изолируйте свое тело от земли, используя сухую одежду, резиновую обувь, резиновые коврики или любой одобренный изоляционный материал. Никогда не прикасайтесь к оголенной проводке, соединениям или любым проводам цепи под напряжением при проведении измерений. Перед использованием всегда проверяйте правильность работы испытательного оборудования.

      3.) Проверьте показания постоянного напряжения на мультиметре

      .

      Если все было сделано правильно, вы должны увидеть напряжение на цифровом экране вашего мультиметра. В этом случае мы тестировали, чтобы убедиться, что источник питания выдает 12 В постоянного тока, а показание составило 12,12 В постоянного тока, что является приемлемым. При любом показании напряжения следует ожидать небольшого отклонения в любом направлении. Если вы измените полярность на тестовых проводах, показание будет -12,12 В постоянного тока, это хороший способ проверить полярность, если она не отмечена на вашем светодиодном продукте.

      1.) Найдите проблему непрерывности

      Выполняется проверка целостности цепи, чтобы определить, является ли цепь разомкнутой или замкнутой. Например, настенный выключатель замкнут, когда он переведен в положение «включено», и разомкнут, когда он выключен. Обрыв цепи не может проводить электричество. Замкнутый контур имеет непрерывность. Этот тест следует проводить при НЕТ тока. Перед проверкой целостности всегда отключайте устройство от сети или выключайте главный прерыватель цепи. Перед использованием всегда проверяйте правильность работы испытательного оборудования.Если все сделано правильно, можно использовать тест на непрерывность, чтобы определить точное место проблемы, например, обрыва паяного соединения или потери провода, в этом случае у светодиодной ленты есть разрыв паяного соединения.

      2.) Выберите правильную настройку на вашем вольтметре

      .

      Чтобы проверить целостность цепи, установите переключатель выбора диапазона в положение минимального сопротивления или значок, который выглядит как боковой символ Wi-Fi, и подключите красный измерительный провод к соответствующему разъему. Существует множество вариантов проверки уровней сопротивления, но эти параметры не очень важны для устранения каких-либо распространенных проблем со светодиодами.Вы можете проверить, работает ли ваш мультиметр должным образом, соприкоснув два тестовых провода вместе, прибор должен издать звуковой сигнал или зарегистрировать показание 0, что означает отсутствие сопротивления.

      3.) Проверьте целостность источника проблемы

      После того, как вы установили, что, по вашему мнению, является источником проблемы, и настроили для мультиметра правильную настройку, вы можете приступить к поиску и устранению источника проблемы. В этом случае мы проверили положительное соединение на каждой стороне светодиодной ленты, где, по нашему мнению, паяное соединение сломано.Как вы можете видеть, вольтметр не опустился на ноль и не издал звуковой сигнал, что означает отсутствие непрерывности между этими двумя точками, а это означает, что питание не может продолжаться между этими двумя точками. Теперь мы можем проверить два момента до и после проблемы, чтобы убедиться, что это единственное место с проблемой.

      4.) Проверьте целостность до и после источника проблемы

      После того, как вы нашли то, что, по вашему мнению, является источником проблемы, и проверили непрерывность, теперь вы можете протестировать непрерывность до и после проблемы, чтобы убедиться, что это единственный источник проблемы.Поместив два тестовых провода на две положительные медные площадки до и после разрыва паяного соединения, измеритель напряжения сообщает мне с помощью дисплея 0 и звукового сигнала, что между этими двумя точками есть непрерывность. Теперь я могу быть уверен, что причиной проблемы является сломанный паяный стык, и с помощью быстрой пайки внахлест я могу легко решить проблему.

      1.) Падение напряжения на светодиодах

      Распространенное заблуждение при установке светодиодов состоит в том, что вы можете просто соединить вместе большое количество светодиодных продуктов в серию без каких-либо проблем.У нас есть некоторые продукты, которые могут работать дальше, чем другие в одной серии, но в целом, чем дольше вы запускаете светодиодный продукт в серии, тем большее падение напряжения вы испытаете, особенно когда вы используете длинные соединительные провода от источника питания. источник. Параллельное соединение - лучший способ бороться с падением напряжения в светодиодной продукции, и знание напряжения, которое получают ваши светодиодные продукты, имеет решающее значение для срока службы и яркости ваших светодиодных продуктов.

      2.) Проверка выхода постоянного тока от источника питания

      Если вы читали приведенное выше руководство по тестированию напряжения постоянного тока, вы должны знать, как правильно измерять выходную мощность источника постоянного тока.В этом случае источник питания выдает 12,12 Вольт, как и предполагалось, но когда я добавлю 200 футов провода между источником питания и моими лампами, вы увидите падение напряжения. Имейте в виду, что 200 футов проволоки предназначены просто для демонстрационных целей. В любой установке светодиодного освещения, чем короче провод, тем лучше и равномернее будет светоотдача.

      3.) Проверка входа постоянного тока на светодиодном приборе

      После добавления 200-футового провода 18AWG между моими светодиодными лампами и источником питания постоянного тока я могу просто использовать тестовые провода мультиметра для измерения входного напряжения моих светодиодных фонарей.В этом случае входное напряжение составляет 10,91 В постоянного тока в начале полосы, поэтому мы потеряли более 1 В по всей проводке. Вам также следует проверить конец установки светодиодов, поскольку падение напряжения на светодиодах продолжает происходить. Если на конце светодиода наблюдается падение напряжения, подайте питание на оба конца и начало, чтобы выровнять падение напряжения.

      4.) Регулировка выходного напряжения источника питания светодиодов

      ** Никогда не регулируйте потенциометр на источнике питания без использования измерителя напряжения. Это неправильный способ сделать ваши фонари ярче, с течением времени неправильное напряжение светодиодных фонарей сократит срок их службы и потенциально может стать причиной возгорания.**

      Вы можете регулировать выходное напряжение на некоторых источниках питания с помощью регулировочного потенциометра, расположенного на передней панели устройства. Только наши неводонепроницаемые источники питания имеют потенциометр для регулировки напряжения. Просто поверните потенциометр по часовой стрелке для увеличения и против часовой стрелки для уменьшения, а затем повторно проверьте напряжение в начале светодиодов.

      5.) Повторно протестируйте вход постоянного тока на светодиодном приборе

      После регулировки выходного напряжения источника питания светодиодов вы можете повторно проверить входное напряжение в начале светодиодных индикаторов.После регулировки потенциометра мое напряжение на моей светодиодной полосе теперь составляет 12,15 В постоянного тока, что гораздо более приемлемо, чем 10,9 В постоянного тока. Обязательно проверьте напряжение на всех ваших светодиодных лентах, оптимальное напряжение составляет + или - 0,75 В.

      Статус HTTP 404 - страница не найдена

      Тяга кабеля

      Рыбные ленты

      Рыбные палочки

      Полилиния

      Головки вытяжные

      Принадлежности

      Гибка трубопроводов и аксессуары Драйверы

      Отвертки

      Гайковерты

      Отвертки с шестигранной головкой

      Плоскогубцы

      Бокорезы

      Длинногубцы

      Диагональная резка

      Клещи для опрессовки

      Разное.Инструменты

      Испытания и измерения

      Мультиметры

      Токоизмерительные клещи

      Детекторы и тестеры напряжения

      Тестеры цепей

      Изображения

      Принадлежности

      Комплекты

      ИК-термометры

      Изготовление отверстий

      Шнековые буровые коронки

      Короткие шнековые насадки

      Гибкие биты

      Кольцевые пилы

      Фрезы с твердосплавными напайками

      Сверла ступенчатые

      Пробойники

      Свёрла / метчики

      Голос, данные и видео

      Тестирование

      Прекращение действия

      Раскрой

      Зачистка

      Разное

      Освещение

      Верхнее временное освещение

      Рабочие фары

      Постоянное освещение

      Лампы и аксессуары

      Струнные светильники

      Персональное освещение

      Шнуры

      Внутренние шнуры

      Уличные шнуры

      Катушки для шнура

      Временные решения для электроснабжения GFCI

      Адаптеры

      с возможностью подключения пользователем

      Наборы линейных шнуров

      Наборы прямоугольных шнуров

      Дуплексные / четырехместные коробки

      Панельные крепления

      GFCI высокой мощности / ELCI

      Введение в электронное оборудование

      Введение

      В этом семестре вы будете изучать электричество и магнетизм.Чтобы сделать ваше пребывание здесь более поучительным, мы разработали это лабораторное упражнение, чтобы познакомить вас с некоторым оборудованием, которое вы будете использовать в этом курсе. Некоторые из терминов, которые будут использоваться, будут более подробно объяснены в последующих лабораторных занятиях, но будут использоваться здесь без подробных объяснений для начала.

      Вам нужно будет распечатать копию этого документа. Ответы не будут отправляться в электронном виде. Версию для печати можно найти, нажав кнопку печати в правом верхнем углу этой страницы.

      Вот список оборудования, которое вы будете использовать сегодня:

      1

      DC ( D irect C urrent) источник питания. Это источник напряжения, полярность которого не меняется, как в источнике напряжения AC, ( A, , чередующийся C, ). Стандартные электрические розетки подают напряжение переменного тока. Использование этого источника питания будет таким же, как при использовании сухой аккумуляторной батареи, за исключением того, что вы сможете изменять используемое напряжение.

      2

      Генератор сигналов. Это устройство генерирует сигнал переменного тока в форме синусоидальной, зубчатой ​​или прямоугольной формы. Частота (скорость изменения полярности сигнала), а также амплитуда (которая в этом упражнении будет такой же, как и напряжение) могут быть изменены по выбору пользователя. Это будет более безопасная и гибкая альтернатива использованию переменного напряжения от настенной розетки.

      3

      Цифровой мультиметр. Как следует из названия, это устройство измеряет (или метров ) несколько величин, связанных с электрическими цепями.Мультиметр может использоваться как вольтметр , (для измерения напряжения), амперметр , (для измерения тока, как постоянного, так и переменного тока) и омметр (для измерения сопротивления).

      4

      Осциллограф . Этот элемент оборудования выглядит самым запутанным из всего оборудования, которое вы будете использовать сегодня. Однако по сути это просто вольтметр, который может показывать изменяющиеся во времени изменения напряжения.

      Часть 1. Измерение напряжения, тока и сопротивления цифровым мультиметром

      Для этой лаборатории предоставляются три разных мультиметра: Fluke 77, Radio Shack и Tenma.Работа этих мультиметров очень похожа, поэтому мы сосредоточимся здесь на Fluke 77. Большая центральная ручка используется для определения типа выполняемого измерения. Типы измерений, которые могут быть выполнены: переменное напряжение (), постоянное напряжение

      (В),

      постоянное напряжение ниже 300 мВ

      (300 мВ), сопротивление

      (Ом), переменный ток () и постоянный ток

      ( А).

      Чувствительность измерителя можно выбрать, нажав желтую кнопку в центре ручки. Счетчик имеет цифровой дисплей (четыре полных цифры плюс первая цифра, которая может быть либо 1, либо ничего), поэтому могут отображаться положительные или отрицательные значения от 0 до 19 999.Нажав желтую кнопку, можно сместить десятичную точку, или вы можете использовать функцию автоматического выбора диапазона, которая автоматически устанавливает десятичную точку. Вы всегда должны использовать максимально чувствительную шкалу, чтобы получить максимальное количество значащих цифр.

      Рисунок 1

      Внизу мультиметра четыре гнезда. Они используются для подключения измеряемого объекта к мультиметру. Для измерения постоянного, переменного и переменного напряжения используйте два разъема, обозначенные «VΩ» и «COM».«При измерении напряжений разъем« VΩ »(красный) имеет положительный полюс, а разъем« COM »(черный) - отрицательный. Для измерения переменного или постоянного тока используйте разъем« 10 А »или« 300 мА »и разъем« Гнездо COM ". Гнездо" 300 мА "предназначено для измерения токов менее 300 мА, а гнездо" 10 А "- для измерения токов более 300 мА, но менее 10 А. Если вы когда-либо не уверены в величине тока в цепи всегда лучше использовать сначала соединение с более высоким током 10 А, чтобы избежать повреждения счетчика или перегорания предохранителя для соединения с нижним током 300 мА.Если вы обнаружите, что ваш измеритель не работает должным образом, вы можете проверить целостность предохранителя, используя другой мультиметр для измерения сопротивления цепи амперметра (которое должно составлять всего несколько Ом, а не «OL» для перегрузки или бесконечного сопротивления, что обычно указывает на то, что предохранитель перегорел и его необходимо заменить). Если вашему мультиметру требуется много времени для стабилизации при считывании напряжения, возможно, батарея разряжена (на что указывает символ «разряженная батарея» на дисплее). Ваш лабораторный инструктор может помочь вам, если вам потребуется помощь в замене предохранителя или батареи.Точность мультиметров указана в приложении.

      Как использовать цифровой мультиметр

      В этом сегменте мы будем измерять напряжение, ток и сопротивление цифровым мультиметром. Напряжение - это разность электрических потенциалов между двумя точками в цепи, измеренная в единицах Вольт . Ток - количество электроэнергии, протекающей через сегмент цепи , измеренное в единицах Ампер или Ампер . Сопротивление - сопротивление току, измеряемое в единицах Ом .
      Измерение напряжения
      Сначала создайте простую схему, подключив маленькую лампочку к источнику питания с помощью двух шнуров с банановой вилкой. Убедитесь, что источник питания полностью повернут вниз (ручка управления должна быть полностью повернута против часовой стрелки).

      Примечание: цвет проводов не критичен.Цвет помогает определить полярность (красный для положительного, черный для отрицательного) и используется в качестве стандартного наглядного пособия.

      Медленно поверните ручку управления источником питания по часовой стрелке, пока лампочка не засветится со средней яркостью (ручка должна находиться примерно на полпути к максимальному значению на шкале; точное положение не имеет значения). Будьте осторожны, чтобы не пережечь лампу из-за слишком высокого напряжения! Не изменяйте эту настройку, так как она будет использоваться в следующей процедуре.Теперь мы измерим напряжение, которое источник питания подает на схему.

      Осторожно: НЕ поворачивайте блок питания намного дальше половины точки - установка напряжения выше этого значения может легко повредить лампы!

      Включите мультиметр, настройте его на измерение постоянного напряжения и подключите провода от мультиметра к источнику питания. Провода должны подключаться к мультиметру в гнездо с маркировкой «COM» (отрицательный полюс) и гнездо с меткой «V.Эти провода затем должны быть подключены к источнику питания поверх проводов, идущих к лампочке («совмещенный» стиль). Теперь вы измеряете напряжение на двух клеммах источника питания. В отведенном для этого месте на вашей бумажной копии рабочего листа напишите напряжение с правильными единицами измерения и погрешностью. Примечание: По данным производителя, расходомеры Fluke 77 рассчитаны на погрешность ± (0,3% от показаний + младшая значащая цифра) для напряжений от 0,001 В до 320 В.(Пример: 10,00 В ± (0,03 + 0,01) В. Измерители Micronta рассчитаны с точностью ± (0,5% от показаний + младший разряд) для напряжений от 300 мВ до 3 В и ± (1,0% от показаний). показание + младшая значащая цифра) для напряжений от 3 В до 1000 В. Напряжение Питания: Что означает отрицательное значение напряжения? ( подсказка: полярность )
      Измерение тока
      Теперь мы будем использовать мультиметр для измерения тока в цепи.Поскольку измерение тока через в цепи сильно отличается от измерения напряжения в двух точках в цепи, нам придется отрегулировать то, как мы вставляем мультиметр в схему. Путь цепи должен быть разорван и амперметр должен быть подключен так, чтобы ток проходил через мультиметр. Выключите источник питания, не касаясь ручки управления. Отсоедините провода мультиметра от источника питания. На мультиметре переместите провод от разъема с маркировкой «V» к разъему с маркировкой «300 мА».«Теперь отсоедините один из проводов, идущих к лампочке, и замените его мультиметром и его проводами. Подключите один провод от мультиметра к источнику питания, а другой - к лампочке. Настройте мультиметр на измерение постоянного тока и включите снова включен источник питания. Теперь ваш счетчик должен измерять ток , протекающий через цепь . В отведенном ниже месте напишите ток с правильными единицами измерения и погрешностью. В отведенном для этого месте на вашей печатной копии рабочего листа напишите напряжение с правильными единицами измерения и неопределенностью. Примечание: Измерители Fluke 77 рассчитаны на точность ± (1,5% от показаний + 2 · наименьшая значащая цифра) для токов до 10 А. Счетчики Micronta рассчитаны на точность ± (1,0% от показаний + младшая значащая цифра) для токов до 30 мА, ± (1,5% от показания + младшая значащая цифра) для токов от 30 мА до 300 мА и ± (2,0% от показания + младшая цифра) для токов от 0,3 до 10 А. Ток в цепи: Что означает отрицательное значение тока?
      Измерение сопротивления
      Мы будем использовать мультиметр для последнего измерения этой цепи.Измерим сопротивление лампочки. Сопротивление измеряется аналогично измерению напряжения. Провода счетчика размещаются по обе стороны от элемента схемы, а сопротивление считывается с помощью счетчика. Разница между измерением напряжения и измерением сопротивления заключается в том, что мультиметр в режиме измерения сопротивления пропускает небольшой ток через элемент схемы, используя собственную батарею. Измерения сопротивления должны выполняться при отключенном от цепи компоненте. Снова выключите питание. Полностью вытащить лампочку из цепи. Установите ручку управления мультиметра в положение, обозначенное «Ω» (это греческий символ омега, обозначающий сопротивление). Подключите провод с одной стороны лампы к гнезду VΩ, а другой провод от гнезда COM к другой стороне лампы. Обязательно запишите свое значение на листе с правильными единицами измерения. Примечание : расходомеры Fluke 77 рассчитаны на точность ± (0,5% от показания + младшая значащая цифра) для сопротивлений до 3.2 МОм. Измерители Micronta рассчитаны на погрешность ± (1,0% от показаний + младшая значащая цифра) для сопротивлений до 300 кОм, ± (2,0% от показаний + младшая значащая цифра) для сопротивлений от 300 кОм до 3 МОм и ± ( 3,5% от показания + младший разряд) для сопротивлений от 3 МОм до 30 МОм. Сопротивление лампочки (при выключенном питании):

      Часть 2. Измерение напряжения с помощью осциллографа

      Эта часть лаборатории будет очень похожа на часть 1 в том, что вы будете измерять напряжение от простой цепи постоянного тока.Однако в этом случае вы будете использовать осциллограф.

      Краткое описание осциллографов

      Осциллограф очень похож на телевизионную трубку, где пучок электронов направляется к задней части экрана с помощью переменных электрических и магнитных полей. Экран покрыт люминофорным покрытием, которое светится при ударе электронов. Дальнейшее, более глубокое обсуждение можно найти в ряде электронных справочных материалов. Наиболее важными элементами управления осциллографа являются настройки усиления и развертки.Настройка усиление (измеряется в вольт на деление ) регулирует масштаб вертикальной координаты напряжения . Настройка развертки (измеряется в секунд на деление ) регулирует горизонтальный масштаб горизонтальной координаты времени . Экран осциллографа очень похож на декартову систему координат. Оси координат разделены на большие части (длиной около 1 см) и меньшие части между большими.

      Рисунок 2

      Большие деления по вертикали называются единицами усиления в вольтах на деление. Итак, если вы измеряли напряжение батареи AA (максимум 1,5 В) с настройкой усиления 1 В / деление, вы бы увидели, что горизонтальная кривая осциллографа появляется на 1,5 больших деления над центральной линией (с правильным полярность; ниже линии с обратной полярностью). Если установить усиление на 2 вольта / деление, кривая появится на 3 единицы выше средней линии.Крупные деления на горизонтальной шкале называются единицами развертки секунд на деление. При более высоком значении развертки будет отображаться больше сигнала (как широкоугольный объектив на объективе). камера). При низком значении развертки увеличивается меньшая часть кривой сигнала. Настройка развертки поможет вам разместить кривую сигнала на экране, чтобы можно было проводить более точные измерения. Развертка используется чаще всего при работе с сигналом переменного тока, в то время как усиление используется для регулировки сигналов переменного и постоянного тока.

      Примечание: Внутренние ручки настроек усиления и развертки должны быть повернуты до упора по часовой стрелке, чтобы обеспечить их правильную калибровку; в противном случае ваши измерения могут быть неточными.

      Процедура

      Напряжение постоянного тока
      Сначала вам нужно включить осциллограф и убедиться, что он правильно настроен. Вы должны увидеть ярко-зеленую горизонтальную линию поперек экрана. Отрегулируйте вертикальное положение линии кривой так, чтобы она совпадала с центральной линией сетки осциллографа.Отрегулируйте интенсивность и / или фокусировку, пока не получите тонкую сфокусированную линию. Теперь вы готовы визуально измерить напряжение вашего источника постоянного тока. Подключите провода бананового штекера от блока питания к осциллографу (помните полярность!). Как и раньше, установите напряжение примерно на половину максимального значения. Если вы больше не видите горизонтальную кривую, отрегулируйте настройку усиления, пока кривая снова не станет видимой. На своем рабочем листе запишите настройку усиления и смещение кривой на экране. Настройка усиления на осциллографе: Кол-во подразделений: Напряжение питания: Что означает отрицательное значение напряжения?
      Генератор сигналов и напряжение переменного тока
      Теперь мы будем иметь дело с сигналом переменного тока.Этот сигнал будет поступать от генератора сигналов . Эти устройства могут показаться такими же запутанными, как осциллограф, с таким же множеством ручек и переключателей; генератор сигналов делает именно то, что подразумевает его название: он генерирует сигнал. Вы указываете частоту и форму волны (мы будем иметь дело только с синусоидальными и прямоугольными сигналами), и он генерирует сигнал в соответствии с вашими требованиями. Наиболее важными элементами управления являются переключатели диапазонов , функциональные переключатели и ручка точной настройки .С помощью переключателей диапазона вы можете регулировать частоту от доли цикла в секунду (Гц) до миллионов циклов в секунду (МГц). Функция переключает выбор между синусоидальной, квадратной и пилообразной волнами. Ручка точной настройки сообщает вам, в каком диапазоне диапазона (выбранном переключателями диапазонов) вы находитесь. Ручка обычно имеет шкалу от 0 до 1. Таким образом, если вы выбрали диапазон 1 кГц и установили ручку примерно на 0,75, вы будете иметь дело с сигналом с частотой около 750 Гц.

      ПРИМЕЧАНИЕ: Всегда поворачивайте ручку амплитуды до максимального значения (т. Е. До упора по часовой стрелке). Это даст вам полный сигнал от генератора.

      Настройте осциллограф, как в предыдущем разделе (убедитесь, что вы обнулили кривую и т.
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *