Как к осветительной сети подключить светодиод
Как к осветительной сети подключить светодиод
Светодиод — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.
Прочитав этот заголовок, кто-то, возможно, спросит: «А зачем?» Да, если просто воткнуть светодиод в розетку, даже включив его по определенной схеме, практического значения это не имеет, никакой полезной информации не принесет. А вот если тот же светодиод подключить параллельно нагревательному элементу, управляемому от терморегулятора, то можно визуально контролировать работу всего прибора. Иногда такая индикация позволяет избавиться от множества мелких проблем и неприятностей.
Задача кажется тривиальной: просто поставил ограничительный резистор нужного номинала, и вопрос решен. Но все это хорошо, если питать светодиод выпрямленным постоянным напряжением: как подключили светодиод в прямом направлении, так он и остался.
При работе на переменном напряжении все не так просто. Дело в том, что на светодиод, кроме прямого напряжения, будет воздействовать еще и напряжение обратной полярности, ведь каждый полупериод синусоида меняет знак на противоположный. Это обратное напряжение не будет засвечивать светодиод, но привести его в негодность может очень быстро. Поэтому приходится принимать меры по защите от этого «вредного» напряжения.
В случае сетевого напряжения расчет гасящего резистора следует вести исходя из величины напряжения 310В. Почему? Здесь все очень просто: 220В это действующее напряжение, амплитудное же значение составит 220*1,41=310В. Амплитудное напряжение в корень из двух (1,41) раз больше действующего, и об этом забывать нельзя. Вот такое прямое и обратное напряжение приложится к светодиоду. Именно из величины 310В и следует рассчитывать сопротивление гасящего резистора, и именно от этого напряжения, только обратной полярности, защищать светодиод.
Как защитить светодиод от обратного напряжения
Почти для всех светодиодов обратное напряжение не превышает 20В, ведь никто не собирался делать на них высоковольтный выпрямитель. Как же избавиться от такой напасти, как защитить светодиод от этого обратного напряжения?
Оказывается, все очень просто. Первый способ – последовательно со светодиодом включить обычный выпрямительный диод с высоким обратным напряжением (не ниже 400В), например, 1N4007 – обратное напряжение 1000В, прямой ток 1А. Именно он не пропустит высокое напряжение отрицательной полярности к светодиоду. Схема такой защиты показана на рис.1а.
Второй способ, не менее эффективный, – просто зашунтировать светодиод другим диодом, включенным встречно – параллельно, рис.1б. При таком способе защитный диод даже не должен быть с высоким обратным напряжением, достаточно любого маломощного диода, например, КД521.
Более того, можно просто включить встречно – параллельно два светодиода: поочередно открываясь, они сами защитят друг друга, да еще и оба будут излучать свет, как показано на рисунке 1в. Это уже получается третий способ защиты. Все три схемы защиты показаны на рисунке 1.
Рисунок 1. Схемы защиты светодиодов от обратного напряжения
Ограничительный резистор на этих схемах имеет сопротивление 24КОм, что при действующем напряжении 220В обеспечивает ток порядка 220/24=9,16мА, можно округлить до 9. Тогда мощность гасящего резистора составит 9*9*24=1944мВт, почти два ватта. Это притом, что ток через светодиод ограничен на уровне 9мА. Но длительное использование резистора на предельной мощности ни к чему хорошему не приведет: сначала он почернеет, а потом совсем сгорит. Чтобы этого не произошло, рекомендуется ставить последовательно два резистора по 12КОм мощностью по 2Вт каждый.
Если задаться уровнем тока в 20мА, то мощность резистора составит еще больше – 20*20*12=4800мВт, без малого 5Вт! Естественно, что печку такой мощности для отопления помещения никто себе позволить не сможет. Это из расчета на один светодиод, а что если будет целая светодиодная гирлянда?
Конденсатор – безваттное сопротивление
Схема, показанная на рисунке 1а, защитным диодом D1 «срезает» отрицательный полупериод переменного напряжения, поэтому и мощность гасящего резистора снижается вдвое. Но, все равно, мощность остается весьма значительной. Поэтому, часто в качестве ограничительного резистора применяют балластный конденсатор: ток он ограничит ничуть не хуже резистора, а вот тепла выделять не будет. Ведь недаром часто конденсатор называют безваттным сопротивлением. Этот способ включения показан на рисунке 2.
Рисунок 2. Схема включения светодиода через баластный конденсатор
Здесь вроде бы все хорошо, даже есть защитный диод VD1. Но не предусмотрены две детали. Во-первых, конденсатор C1 после выключения схемы может остаться в заряженном состоянии и хранить заряд до тех пор, пока кто-нибудь не разрядит его своей рукой. А это, поверьте, обязательно когда-нибудь произойдет. Удар током получается, конечно, не смертельный, но достаточно чувствительный, неожиданный и неприятный.
Поэтому, во избежание такой неприятности, эти гасящие конденсаторы шунтируются резистором с сопротивлением 200…1000КОм. Такая же защита устанавливается и в бестрансформаторных блоках питания с гасящим конденсатором, в оптронных развязках и некоторых других схемах. На рисунке 3 этот резистор обозначен как R1.
Рисунок 3. Схема подключения светодиода к осветительной сети
Кроме резистора R1, на схеме появляется еще резистор R2. Его назначение ограничить бросок тока через конденсатор при подаче напряжения, что помогает защитить не только диоды, но и сам конденсатор. Из практики известно, что при отсутствии такого резистора конденсатор иногда обрывается, емкость его становится намного меньше номинальной. Излишне говорить, что конденсатор должен быть керамический на рабочее напряжение не менее 400В или специальный для работы в цепях переменного тока на напряжение 250В.
На резистор R2 возлагается еще одна немаловажная роль: в случае пробоя конденсатора он срабатывает как предохранитель. Конечно, светодиоды придется тоже заменить, но, по крайней мере, соединительные провода останутся целыми. По сути дела именно так срабатывает плавкий предохранитель в любом импульсном блоке питания, – транзисторы сгорели, а печатная плата осталась почти нетронутой.
На схеме, показанной на рисунке 3, изображен всего один светодиод, хотя на самом деле их можно включить последовательно несколько штук. Защитный диод вполне справится со своей задачей один, но емкость балластного конденсатора придется, хотя бы приблизительно, но все, же рассчитать.
Как рассчитать емкость гасящего конденсатора
Для того, чтобы рассчитать сопротивление гасящего резистора, надо из напряжения питания вычесть падение напряжения на светодиоде. Если соединено последовательно несколько светодиодов, то просто сложить их напряжения, и также вычесть из напряжения питания. Зная этот остаток напряжения и требуемый ток, по закону Ома рассчитать сопротивление резистора очень просто: R=(U-Uд)/I*0,75.
Здесь U – напряжение питания, Uд – падение напряжения на светодиодах (если светодиоды включены последовательно, то Uд есть сумма падений напряжения на всех светодиодах), I – ток через светодиоды, R – сопротивление гасящего резистора. Здесь как всегда, – напряжение в Вольтах, ток в Амперах, результат в Омах, 0,75 – коэффициент для повышения надежности.
Величина прямого падения напряжения для светодиодов разных цветов разная. При токе 20мА у красных светодиодов 1,6…2,03В, желтых 2,1…2,2В, зеленых 2,2…3,5В, синих 2,5…3,7В. Самым высоким падением напряжения обладают белые светодиоды, обладающие широким спектром излучения 3,0…3,7В. Нетрудно видеть, что разброс этого параметра достаточно широкий.
Здесь приведены падения напряжения лишь нескольких типов светодиодов, просто по цветам. На самом деле этих цветов намного больше, а точное значение можно узнать лишь в техдокументации на конкретный светодиод. Но зачастую этого и не требуется: чтобы получить приемлемый для практики результат, достаточно подставить в формулу какое-то среднее значение (обычно 2В), конечно, если это не гирлянда из сотни светодиодов.
Для расчета емкости гасящего конденсатора применяется эмпирическая формула C=(4,45*I)/(U-Uд),
где C – емкость конденсатора в микрофарадах, I – ток в миллиамперах, U – амплитудное напряжение сети в вольтах. При использовании цепочки из трех последовательно соединенных белых светодиодов Uд примерно около 12В, U амплитудное напряжение сети 310В, для ограничения тока на уровне 20мА понадобится конденсатор емкостью
C=(4,45*I)/(U-Uд)= C=(4,45*20)/(310-12)= 0,29865мкФ, почти 0,3мкФ.
Ближайшее стандартное значение емкости конденсатора 0,15мкФ, поэтому, для использования в данной схеме придется применить два параллельно соединенных конденсатора. Здесь надо сделать замечание: формула действительна только для частоты переменного напряжения 50Гц. Для других частот результаты будут неверны.
Конденсатор сначала надо проверить
Перед тем, как использовать конденсатор, его необходимо проверить. Для начала просто включить в сеть 220В, лучше через предохранитель 3…5А, и минут через 15 проверить на ощупь, а нет ли заметного нагрева? Если конденсатор холодный, то можно его использовать. В противном случае обязательно взять другой, и тоже предварительно проверить. Ведь все-таки 220В это уже не 12, тут все несколько иначе!
Если эта проверка прошла успешно, конденсатор не нагрелся, то можно проверить, не случилась ли ошибка в расчетах, той ли емкости конденсатор. Для этого надо включить конденсатор как в предыдущем случае в сеть, только через амперметр. Естественно, что амперметр должен быть переменного тока.
Это напоминание о том, что не все современные цифровые мультиметры могут измерять переменный ток: простые дешевые приборы, например, очень популярные у радиолюбителей серии DT838, способны измерять только постоянный ток, что покажет такой амперметр при измерении переменного тока никому не ведомо. Скорей всего это будет цена на дрова или температура на Луне, но только не переменный ток через конденсатор.
Если измеренный ток будет примерно таким, как получилось при расчете по формуле, то можно смело подключать светодиоды. Если же вместо ожидаемых 20…30мА получилось 2…3А, то тут, либо ошибка в расчетах, либо неправильно прочитана маркировка конденсатора.
Выключатели с подсветкой
Здесь можно заострить внимание еще на одном способе включения светодиода в осветительную сеть, используемого в выключателях с подсветкой. Если такой выключатель разобрать, то можно обнаружить, что никаких защитных диодов там нет. Так что же, все что написано чуть выше – бред? Совсем нет, просто надо внимательно приглядеться к разобранному выключателю, точнее к номиналу резистора. Как правило, его номинал не менее 200КОм, может даже несколько больше. При этом, очевидно, что ток через светодиод ограничится на уровне около 1мА. Схема выключателя с подсветкой показана на рисунке 4.
Рисунок 4. Схема подключения светодиода в выключателе с подсветкой
Здесь одним резистором убивают сразу несколько «зайцев». Конечно, ток через светодиод будет мал, светиться он будет слабо, но вполне ярко, чтобы разглядеть это свечение темной ночью в комнате. А ведь днем это свечение вовсе не нужно! Так что пусть себе светится незаметно.
При этом слабым будет и обратный ток, настолько слабым, что никоим образом не сможет спалить светодиод. Отсюда экономия ровно на один защитный диод, о котором было рассказано выше. При выпуске миллионов, а может даже миллиардов, выключателей в год экономия получается немалая.
Казалось бы, что после прочтения статей о светодиодах, все вопросы об их применении ясны и понятны. Но существует еще немало тонкостей и нюансов при включении светодиодов в различные схемы. Например, параллельное и последовательное соединение или, по-другому, хорошие и плохие схемы.
Иногда хочется собрать гирлянду из нескольких десятков светодиодов, но как ее рассчитать? Сколько можно включить последовательно светодиодов, если есть блок питания с напряжением 12 или 24В? Эти и другие вопросы будут рассмотрены в следующей статье, которую так и назовем «Хорошие и плохие схемы включения светодиодов».
Ранее ЭлектроВести писали, что глава Национальной комиссии, осуществляющей госрегулирование в сфере энергетики и коммунальных услуг (НКРЭКУ), Валерий Тарасюк прогнозирует тариф НЭК “Укрэнерго” на передачу электроэнергии в следующем году на уровне, приблизительно, 340 грн/Мвт*ч.
По материалам: electrik. info.
Питание светодиодов
Интенсивное развитие светодиодных технологий за последние пять лет привело к их внедрению во все сферы деятельности, которые нуждаются в подсветке. Надёжность и экономичность – вот главное преимущество, которое стало неоспоримым фактом. А если к этим показателям добавить длительный срок службы и безопасность эксплуатации, то становится понятным, почему привычные источники искусственного света постепенно сдают позиции. Действительно, люминесцентные лампы наносят непоправимый вред экологии, а лампы накаливания весьма прожорливы и недолговечны.
Светодиоды, в свою очередь, бывают самой разнообразной формы и исполнения, ежегодно увеличивая ассортимент. Постараемся выделить их основные типы:
— слаботочные светодиоды в пластиковом корпусе;
— мощные планарные светодиоды в пластиковом корпусе;
— светодиодные индикаторы;
— светодиодные ленты;
— светодиодные сборки.
Кроме этого все они могут отличаться цветовой гаммой и размерами. Каждая вышеперечисленная особенность подчеркивает не только визуальное отличие друг от друга, но и заставляет задуматься о технических характеристиках. Главной задачей для потребителя до сих пор остаётся правильность включения в электрическую сеть. Только правильная «запитка» того или иного типа излучающего диода позволит получить максимальную световую отдачу и многолетний срок службы.
Существует два основных параметра, которые объединяют все типы диодов. Это ток потребления и падение напряжения. Изменение этих параметров большую сторону позволяет изобретателям постоянно удивлять нас новыми сверхмощными экземплярами. Но начнём по порядку, с самых простых диодов в прозрачном корпусе. Чаще всего они встречаются диаметром от трёх до десяти миллиметров, что сильно не влияет на их вольтамперную характеристику. В данном случае гораздо большее влияние оказывает цветовое различие. То есть длина волны излучения напрямую зависит от полупроводникового материала, который, в свою очередь, задаёт падение напряжения на p-n переходе. Ниже приведена таблица, наглядно демонстрирующая обратную зависимость между длиной волны и напряжением на диоде.
Как правило, на упаковке с излучающими диодами производитель указывает величину номинального напряжения, при котором будет достигаться наибольший эффект. Задача потребителя – правильно подобрать токоограничивающий резистор для достижения номинального значения. При этом следует помнить, что диоды нельзя включать в нагрузку без соответствующего сопротивления. Исключение составляют слаботочные источники питания – батарейки-таблетки, которые часто применяют для тестирования в магазинах.
Как видно из рисунка самое простое включение предусматривает наличие источника постоянного тока напряжением +5В и двух элементов цепи: светодиода и резистора. При помощи закона Ома и элементарных математических вычислений можно без труда рассчитать значение сопротивления. Если IVD=20мА, UVD=3В, то получим
R=(5-3)/0.02=100 Ом.
При последовательно-параллельном включении нескольких светодиодов в каждую ветвь нужно включать элементы с одинаковым рабочим током. В противном случае невозможно правильно рассчитать компенсирующий резистор, что скажется на яркости свечения. Для быстрого и точного расчета более сложных электрических цепей применяют законы Кирхгофа. Сложнее ситуация обстоит с полноцветными диодами. Внутри корпуса размещены кристаллы красного, синего и зелёного цвета, которые соединены с выводами. Кроме этих трёх выводов имеется ещё один – общий (анод или катод). Подключение таких образцов требует точных данных о технических характеристиках, так как каждый цвет имеет разное падение напряжения. К примеру, модель MCDL-5013RGB (I=20мА):
Ured = 2.0В;
Ugreen = 3.5В;
Ublue = 3.5В.
В продаже можно встретить мигающие и RGB-диоды с двумя выводами, в корпусе которых уже вмонтирован управляющий чип. К ним подводят обычное 3-хвольтовое питание, а хорошо зарекомендовали они себя в новогодних гирляндах. Каждый производитель бытовой микропроцессорной техники и не только, старается оснащать новые модели светодиодными или жидкокристаллическими индикаторами. Бесспорно, жидкие кристаллы постепенно вытесняют LED-индикацию, но далеко не во всех областях промышленности.
Если по какой-то причине самостоятельно не хочется конструировать источник питания для светодиодов (заново изобретать велосипед), можно применить унифицированный блок, который свободно продаётся в специализированных магазинах.Простые самоделки в виде декоративных подсветок не требуют прецензионного питания, а значит, можно воспользоваться любым импульсным блоком питания (ИБП) на 5, 9 или 12В постоянного напряжения. Чтобы получить на выходе постоянное напряжение нестандартной величины можно самостоятельно доработать принципиальную схему, применив интегральную микросхему-стабилизатор.
Справа на рисунке представлено типовое включение интегрального стабилизатора LM317. Общий вывод выполняет роль регулировочного входа, задавая, таким образом, стабильно малый ток потребления. Подбирая значения резисторов R1 и R2 можно получить на выходе напряжение в пределах 1.25-25В. Наиболее точно застабилизировать Uвых можно путём замены обычного R2 на два последовательно соединённых резистора. Один из них – имеет фиксированное сопротивление, а второй подстроечный с малым отклонением от номинала. LM317 выпускается в разных корпусах, отличаясь максимальными токами нагрузки. Ниже представленная принципиальная схема представляет собой усиленный вариант предыдущей схемы.
Отличие заключается в установке силового транзистора на входе стабилизатора. Такое включение является классическим вариантом и позволяет нарастить ток в нагрузке до 5А. Однако у стабилизаторов напряжения есть несколько недостатков, ограничивающие их применение в питании излучающих диодов. Например, один из диодов вышел из строя «накоротко». Тогда всё напряжение равномерно распределится на оставшиеся элементы, что станет причиной роста тока нагрузки. Вывод один: диоды гаснут в результате цепной реакции. Поэтому, конструируя дорогостоящие светодиодные самоделки, обратите внимание на стабилизаторы тока. Схемотехнически стабилизатор тока не сильно отличается от стабилизатора напряжения, что заметно на рисунке. Главное отличие кроется в управляющем выводе, который заводят непосредственно к нагрузке. По приведенной формуле не сложно рассчитать выходной ток для конкретного светодиода. Количество светодиодов в нагрузке ограничено лишь напряжением питания микросхемы (37В), а величина тока может достигать 1А. Стабилизаторы тока широко применяются для тюнинга автомобиля, где бортовое напряжение может меняться в диапазоне от 11,5 до 14,2В. Скачки обратного напряжения(к которому очень чувствительны все типы LED диодов) исключаются путём установки в цепь обычного диода. Высоковольтные выбросы положительной полярности можно нейтрализовать добавлением супрессора на 24 вольта. Ниже показано готовое схемотехническое решение самого простого стабилизатора. Остаётся добавить пару советов о его эксплуатации.
Во-первых, на больших токах (от 350мА) необходимо позаботиться об теплоотводе. Во-вторых, Uст должно стремиться к 1. 3В, чтобы снизить тепловые потери на LM317. Кстати, источники постоянного тока широко применяются в люстрах со светодиодной подсветкой. Имея в доме такой источник освещения, каждый радиолюбитель может своими глазами убедиться простотой и надёжностью такого схемотехнического решения.
Совершенствование источников питания излучающих диодов дало толчок развитию их нового типа – драйверов (LED drivers). Они очень схожи с токовыми стабилизаторами, но более функциональны и надёжны. В основе устройства заложена микросхема с параметрами, максимально подобранными под определённый тип диода. В качестве примера готового практического решения можно привести прожектора и фонари, в центре которых закреплён однокристальный мощный диод. Но чаще всего их используют в качестве подсветки жидкокристаллических дисплеев. Ключевым показателем работы драйвера является его энергетическая эффективность. Стремление достичь наибольших значений в соотношении Лм/Вт доказывает практическую пользу новых разработок в управлении мощными светодиодными лампами. Уже сегодня передовым производителям удалось найти оптимальное решение без ущерба критически важных параметров. Ещё один щепетильный момент – это надёжность. Изначально драйвер считался наиболее слабым звеном в светодиодной системе. Но интенсивное развитие рынка освещения дало толчок поиску потенциальных возможностей по совершенствованию параметров всей системы в целом. В настоящее время драйверы выпускаются как в пластиковом корпусе, так и в виде печатной платы.
На рисунке наглядно показан вариант драйвера открытого типа. Главное их назначение подразумевает стабилизацию тока нагрузки, что необходимо для поддержания постоянной яркости свечения. Все драйверы – это импульсные преобразователи постоянного сигнала повышающего или понижающего типа с КПД более 90%. На практике прекрасно зарекомендовали себя повышающие преобразователи. Классический вариант такого устройства представлен на рисунке ниже. Главным элементом схемы является микросхема МР3204, к выходу которой рекомендуется подключать 3 светодиода.
Внутри микросхемы последовательно взаимодействуют генератор сигнала, ШИМ, модуль обратной связи, датчик тока и выходной усилитель на полевом транзисторе. Из рисунка следует, что при подаче высокого уровня сигнала на четвёртый вывод происходит накопление энергии в сердечнике дросселя L1. При размыкании полевого транзистора начинает заряжаться конденсатор С2 через диод D1. В следующий такт накопленная энергия поступает в нагрузку. Касательно практического применения рекомендуется использовать керамические конденсаторы и дроссель известных производителей. Значение резистора R1 подбирается под конкретный тип светодиодов и может варьироваться в широком диапазоне. Существуют и другие варианты включения МР3204, расширяющие её возможности.
А что, если в качестве источника питания применить унифицированный компьютерный блок питания? Тем более что для этих целей прекрасно подойдёт устройство с любого ПЭВМ, даже десятилетней давности. Одновременно возникает второй вопрос: «Весь ли ассортимент светодиодной продукции можно включать на выход такого БП?» Теоретически, да. Но, как упоминалось выше, практически эффективнее использовать стабилизаторы тока или специализированные драйверы. БП компьютера стабилизирует напряжение, а значит, радиолюбителю придётся самостоятельно подбирать нужный резистор. Исключение составляют ленты, в которых через равные промежутки уже запаяны резисторы. Таким образом, компьютерный блок питания наилучшим образом подходит для подключения к светодиодным лентам. Самостоятельная переделка БП займёт не более одного часа. Вначале нужно избавиться от жгута с проводами и разъёмами, которые больше нам не пригодятся. Эта операция легко реализуется при помощи мощного паяльника. Оставить нужно лишь два провода (+12В и общий вывод) для непосредственного соединения с нагрузкой. В старых блоках их можно запаять на контакты резервного разъёма 220В, предназначенного для подключения монитора. В остальном – индивидуальная фантазия и удобство. Стоит обратить внимание на тип ленты и её длину (количество диодов). Например, 5 метров ленты с кристаллами типа smd5050 двойной плотности потребляет порядка восьми ампер. Промышленные источники с токами нагрузки около 10А стоят очень дорого. Именно этим фактом обосновано практическое применение бывших в употреблении блоков питания ПЭВМ.
Подытоживая вышесказанное, можно отметить, что вопросу выбора подходящего источника питания следует уделять не меньше внимания, чем качеству светодиодов. От того, насколько правильно будет подобрано питание для инновационного освещения, будет зависеть срок службы всего изделия.
Диод. Светодиод. Стабилитрон / Хабр
Не влезай. Убьет! (с)
Постараюсь объяснить работу с диодами, светодиодами, а также стабилитронами на пальцах. Опытные электронщики могут пропустить статью, поскольку ничего нового для себя не обнаружат. Не буду вдаваться в теорию электронно-дырочной проводимости pn-перехода. Я считаю, что такой подход обучения только запутает начинающих. Это голая теория, почти не имеющая отношения к практике. Впрочем, интересующимся теорией предлагаю
эту статью. Всем желающим добро пожаловать под кат.
Это вторая статья из цикла электроники. Рекомендую к прочтению также
первую, которая повествует о том, что такое электрический ток и напряжение.
Диод – полупроводниковый прибор, имеющий 2 вывода для подключения. Изготавливается, упрощенно говоря, путем соединения 2х полупроводников с разным типом примеси, их называют донорной и акцепторной, n и p соответственно, поэтому диод содержит внутри pn-переход. Выводы, обычно состоящие из луженой меди, называют анод (А) и катод (К). Эти термины пошли еще со времен электронных ламп и используются в письменном виде, для обозначения направленности диода. Гораздо проще графическое обозначение. Названия выводов диода запомнятся сами собой при применении на практике.
Как я уже писал, мы не будем использовать теорию электронно-дырочной проводимости диода. Просто инкапсулируем эту теорию до черного ящика с двумя зажимами для подключения. Примерно так же программисты инкапсулируют работу со сторонними библиотеками, не вдаваясь в е… подробности их работы. Или, например, когда, пользуясь пылесосом, мы не вдаёмся в подробности, как он устроен внутри, он просто работает и нам важно одно из свойств пылесоса – сосать пыль.
Рассмотрим свойства диода, самые очевидные:
- От анода к катоду, такое направление называется прямым, диод пропускает ток.
- От катода к аноду, в обратном направлении, диод ток не пропускает. (Вообще-то нет. Но об этом позже.)
- При протекании тока, в прямом направлении, на диоде падает некоторое напряжение.
Возможно эти свойства вам и так хорошо известны. Но есть некоторые дополнения. Что же считать прямым, а что обратным направлением? Прямым называют такое включение, когда на аноде напряжение больше, чем на катоде. Обратное, наоборот. Прямое и обратное включение – это условность. В реальных схемах напряжение на одном и том же диоде может меняться с прямого на обратное и наоборот.
Кремниевый диод начинает пропускать хоть какой-либо значимый ток только тогда, когда на аноде напряжение будет больше примерно на 0,65 В, чем на катоде. Нет, не так. При протекании хоть какого-либо тока, на диоде образуется падение напряжения, примерно равное 0,65 В и выше.
Напряжение 0,65 В – называют прямым падением напряжения на pn-переходе. Это лишь примерная средняя величина, она зависит от тока, температуры кристалла и технологии изготовления диода. При изменении протекающего тока, она изменяется нелинейно. Чтобы как-то обозначить эту нелинейность графически, производители снимают вольтамперные характеристики диода. В мощных высоковольтных диодах падение напряжения может быть больше в 2, 3 и т.д. раза. Это означает, что внутри диода включено несколько pn-переходов последовательно.
Для определения падения напряжения можно использовать вольтамперную характеристику (ВАХ) диода в виде графика. Иногда эти графики приводятся в дата-листах (datasheets) на реальные модели диода, но чаще их нет. На первом мне попавшемся графике ниже приведены ВАХ КД243А, хотя это не важно, они все примерно похожи.
На графике Uпр – это прямое падение напряжения на диоде. Iпр – протекающий через диод ток. График показывает какое падение напряжения на диоде будет, при протекании n-го тока. Но чаще всего в даталистах не показываются реальные ВАХ, а приводится прямое падение напряжения, указанное при определенном токе. В английской литературе падение напряжения обозначается как forward voltage.
Как применять
Падение напряжения на диоде – для нас плохая характеристика, поскольку это напряжение не совершает полезной работы и рассеивается в виде тепла на корпусе диода. Чем меньше падение, тем лучше. Обычно падение напряжения на диоде определяют исходя из тока, протекающего через диод. Например, включим диод последовательно с нагрузкой. По сути это будет защита схемы от переплюсовки, на случай, если блок питания отсоединяемый. На рисунке ниже в качестве защищаемой схемы взят резистор 47 Ом, хотя в реальности это может быть все, что угодно, например, участок большой схемы. В качестве блока питания – батарея на 12 В.
Допустим, нагрузка без диода потребляет 255 мА. В данном случае это можно посчитать по закону Ома: I= U / R = 12 / 47 = 0,255 А или 255 мА. Хотя обычно потребление сферической схемы в вакууме уже известно, хотя бы по максимальным характеристикам блока питания. Найдем на графике ВАХ, указанный выше, падение напряжения для диода КД243А при 0,255 А протекающего тока, при 25 градусах. Оно равно примерно 0,75 В. Эти 0,75 В упадут на диоде, и для питания схемы останется 12 — 0,75 = 11,25 В — иногда может и не хватить. Как бонус, можно найти мощность, в виде тепла и потерь выделяющуюся на диоде по формуле P = I * U = 0,75 * 0,255 = 0,19 Вт, где I и U – ток через диод и падение напряжения на диоде.
Что же делать, когда график ВАХ недоступен? Например, для популярного диода 1n4007 указано только прямое напряжения forward voltage 1 В при токе 1 А. Нужно и использовать это значение, либо измерить реальное падение. А если для какого-либо диода это значение не указано, то сойдет среднее 0,65 В. В реальности проще это падение напряжения измерить вольтметром в схеме, чем выискивать в графиках. Думаю, не надо объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода.
Немного про другие характеристики
В предыдущем примере, если перевернуть батарейку, я имею ввиду поменять полярность, см. нижний рисунок, ток не потечет и падение напряжения на диоде в худшем случае составит 12 В — напряжение батареи. Главное, чтобы это напряжение не превышало напряжение пробоя нашего диода, оно же обратное напряжение, оно же breakdown voltage. А также важно еще одно условие: ток в прямом направлении через диод не превышал номинальный ток диода, он же forward current. Это два основных параметра по которых выбирается диод: прямой ток и обратное напряжение.
Иногда в даталистах также указывается рассеиваемая мощность диодом или номинальная мощность (power dissipation). Если она указана, то ее нельзя превышать. Как ее посчитать, мы уже разобрались на предыдущем примере. Но если мощность не указана, тогда надо ориентироваться по току.
Говорят, что в обратном направлении ток через диод не течет, ну или почти не потечет. На самом деле через него протекает ток утечки, reverse current в английской литературе. Этот ток очень маленький, от нескольких наноампер у маломощных диодов до нескольких сот микроампер, у мощных. Также этот ток зависит от температуры и приложенного напряжения. В большинстве случаем ток утечки не играет никакой роли, например, в как в предыдущем примере, но, когда вы будете работать с наноамперами и поставите какой-либо защитный диод на входе операционного усилителя, тогда может случиться ой… Схема поведет себя совсем не так, как задумывалась.
У диодов так же есть некоторая маленькая паразитная емкость capacitance. Т.е., по сути, это конденсатор, параллельно включенный с диодом. Эту емкость надо учитывать при быстрых процессах при работе диода в схеме с десятками-сотнями мегагерц.
Также несколько слов по поводу термина «номинал». Обычно номинальные ток и напряжение обозначают, что при превышении этих параметров производитель не гарантирует работу изделия, если не сказано другое. И это для всех электронных компонентов, а не только для диода.
Что еще можно сделать
Применений диодов существует множество. Разработчики-радиоэлектронщики обычно выдумывают свои схемы из кусочков других схем, так называемых строительных кирпичиков. Вот несколько вариантов.
Например, схема защиты цифровых или аналоговых входов от перенапряжения:
Диоды в этой схеме при нормальной работе не пропускают ток. Только ток утечки. Но когда по входу возникает перенапряжение с положительной полуволной, т.е. напряжение входа становится больше чем Uпит плюс прямое падение напряжения на диоде, то верхний диод открывается и вход замыкается на шину питания. Если возникает отрицательная полуволна напряжения, то открывается нижний диод и вход замыкается на землю. В этой схеме, кстати, чем меньше утечки и емкость у диодов, тем лучше. Такие схемы защиты уже, как правило, стоят во всех современных цифровых микросхемах внутри кристалла. А внешними мощными сборками TVS-диодов защищают, например, USB порты на материнских платах.
Также из диодов можно собрать выпрямитель. Это очень распространённый тип схем и вряд ли кто-то из читателей про них не слышал. Выпрямители бывают однополупериодные, двухполупериодные и мостовые. С однополупериодным выпрямителем мы уже познакомились в нашем самом первом многострадальном примере, когда рассматривали защиту от переплюсовки. Никакими особыми плюсами не обладает, кроме плюса на батарейке. Один из самых важных минусов, который ограничивает применение схемы однополупериодного выпрямителя на практике: схема работает только с положительной полуволной напряжения. Отрицательное напряжение напрочь отсекает и ток при этом не течет. «Ну и что?», скажете вы, «Такой мощности мне будет достаточно!». Но нет, если такой выпрямитель стоит после трансформатора, то ток будет протекать только в одну сторону через обмотки трансформатора и, таким образом, трансформаторное железо будет дополнительно подмагничиваться. Трансформатор может войти в насыщение и греться намного больше положенного.
Двухполупериодные выпрямители этого недостатка лишены, но им необходим средний вывод обмотки трансформатора. Здесь при положительной полярности переменного напряжения открыт верхний диод, а при отрицательной – нижний. КПД трансформатора используется не полностью.
Мостовые схемы лишены обоих недостатков. Но теперь на пути тока включены два диода в любой момент времени: прямой диод и обратный. Падение напряжения на диодах удваивается и составляет не 0,65-1В, а в среднем 1,3-2В. С учетом этого падения считается выпрямленное напряжение.
Например, нам надо получить 18 вольт выпрямленного напряжения, какой трансформатор для этого выбрать? 18 вольт плюс падение на диодах, возьмем среднее 1,4 В, равно 19,4 В. Мы знаем из
предыдущей статьи, что амплитудное значение переменного напряжения в корень из 2 раз больше его действующего значения. Поэтому во вторичной цепи трансформатора переменное действующее напряжение равно 19,4 / 1,41 = 13,75В. С учетом того, что напряжение в сети может гулять на 10%, а также под нагрузкой напряжение немного просядет, выберем трансформатор 230/15 В.
Мощность требуемого нам трансформатора можно посчитать от тока нагрузки. Например, мы собираемся подключать к трансформатору нагрузку в один ампер. Это если с запасом. Всегда оставляйте небольшой запас, в 20-40%. Просто по формуле мощности можно найти P = U * I = 15 * 1 = 15 ВА, где U и I – напряжение и ток вторичной обмотки. Если вторичных обмоток несколько, то их мощности складываются. Плюс потери на трансформацию, плюс запас, поэтому выберем трансформатор 20-40 ВА. Хотя часто трансформаторы продаются с указанием тока вторичных обмоток, но проверить по габаритной мощности не помешает.
После выпрямительного моста необходим сглаживающий конденсатор, на рисунке не показан. Не забывайте про него! Есть умные формулы по расчету этого конденсатора в зависимости от количества пульсаций, но порекомендую такое правило: ставить конденсатор 10000мкФ на один ампер потребления тока. Вольтаж конденсатора не меньше, чем выпрямленное без нагрузки напряжение. В данном примере можно взять конденсатор с номиналом 25В.
Диоды в этой схеме выберем на ток >=1А и обратное напряжение, с запасом, больше 19,4 В, например, 50-1000 В. Можно применить диоды Шоттки. Это те же диоды, только с очень маленьким падением напряжения, которое часто составляет десятки милливольт. Но недостаток диодов Шоттки – их не выпускают на более-менее высокие напряжения, больше 100В. Точнее с недавнего времени выпускают, но их стоимость заоблачная, а плюсы уже не так очевидны.
Светодиод
Внутри устроен совсем по другому, чем диод, но имеет те же самые свойства. Только еще и светится при протекании тока в прямом направлении.
Все отличие от диода в некоторых характеристиках. Самое важное – прямое падение напряжения. Оно гораздо больше, чем 0,65 В у обычного диода и зависит в основном от цвета светодиода. Начиная от красного, падение напряжения которого составляет в среднем 1,8 В, и заканчивая белым или синим светодиодом, падение у которых около 3,5 В. Впрочем, у невидимого спектра эти значения шире.
По сути падение напряжения здесь – минимальное напряжение зажигания диода. При меньшем напряжении, у источника питания, тока не будет и диод просто не загорится. У мощных осветительных светодиодов падение напряжения может составлять десятки вольт, но это значит лишь, что внутри кристалла много последовательно-параллельных сборок диодов.
Но сейчас поговорим об индикаторных светодиодах, как наиболее простых. Их выпускают в различных корпусах, наиболее часто в полуокруглых, диаметром 3, 5, 10 мм.
Любой диод светится в зависимости от протекающего тока. По сути это токовый прибор. Падение напряжения получается автоматически. Ток мы задаем сами. Современные индикаторные диоды более-менее начинают светиться при токе 1 мА, а при 10 мА уже выжигают глаза. Для мощных осветительных диодов надо смотреть документацию.
Применение светодиода
Имея лишь соответствующий резистор можно задать нужный ток через диод. Конечно, понадобится еще и блок питания постоянного напряжения, например, батарейка 4,5 В или любой другой БП.
Например, зададим ток 1мА через красный светодиод с падением напряжения 1,8 В.
На схеме показаны узловые потенциалы, т.е. напряжения относительно нуля. В каком направлении включать светодиод нам подскажет лучше всего мультиметр в режиме прозвонки, поскольку иногда попадаются напрочь китайские светодиоды с перепутанными ногами. При касании щупов мультиметра, в правильном направлении, светодиод должен слабо светиться.
Поскольку применен красный светодиод, то на резисторе упадет 4,5 — 1,8 = 2,7В. Это известно по второму закону Кирхгофа: сумма падений напряжения на последовательных участках схемы равно ЭДС батарейки, т.е. 2,7 + 1,8 = 4,5В. Чтобы ограничить ток в 1мА, резистор по закону Ома должен обладать сопротивлением R = U / I = 2,7 / 0,001 = 2700 Ом, где U и I – напряжение на резисторе и необходимый нам ток. Не забываем переводить величины в единицы СИ, в амперы и вольты. Поскольку выпускаемые номиналы сопротивлений стандартизованы выберем ближайший стандартный номинал 3,3кОм. Конечно, при этом ток изменится и его можно пересчитать по закону Ома I = U / R. Но зачастую это не принципиально.
В этом примере ток, отдаваемый батарейкой, мал, так что внутренним сопротивлением батареи можно пренебречь.
С осветительными светодиодами все тоже самое, только токи и напряжения выше. Но иногда им уже не требуется резистор, надо смотреть документацию.
Что-то еще про светодиод
По сути, светить – это основное назначение светодиода. Но есть и другое применение. Например, светодиод может выступать в качестве источника опорного напряжения. Они необходимы, например, для получения источников тока. В качестве источников опорного напряжения, как менее шумные, применяют красные светодиоды. Их включают в схему так же, как и в предыдущем примере. Поскольку напряжение батарейки относительно постоянное, ток через резистор и светодиод тоже постоянный, поэтому падение напряжения остается постоянным. От анода светодиода, где 1,8В, делается отвод и используется это опорное напряжение в других участках схемы.
Для более надежной стабилизации тока на светодиоде, при пульсирующем напряжении источника питания, вместо резистора в схему ставят источник тока. Но источники тока и источники опорного напряжения – это тема еще одной статьи. Возможно, когда-нибудь я ее напишу.
Стабилитрон
В английской литературе стабилитрон называется Zener diode. Все тоже самое, что и диод, в прямом включении. Но сейчас поговорим только про обратное включение. В обратном включении под действием определенного напряжения на стабилитроне возникает обратимый пробой, т.е. начинает течь ток. Этот пробой полностью штатный и рабочий режим стабилитрона, в отличие от диода, где при достижении номинального обратного напряжения диод просто выходил из строя. При этом, ток через стабилитрон в режиме пробоя может меняться, а падение напряжение на стабилитроне остается практически неизменным.
Что нам это дает? По сути это маломощный стабилизатор напряжения. Стабилитрон имеет все те же характеристики, что и диод, плюс добавляется так же напряжение стабилизации Uст или nominal zener voltage. Оно указывается при определенном токе стабилизации Iст или test current. Также в документации на стабилитроны указываются минимальный и максимальный ток стабилизации. При изменении тока от минимального до максимального, напряжение стабилизации несколько плавает, но незначительно. См. вольт-амперные характеристики.
Рабочая зона стабилитрона обозначена зеленым цветом. На рисунке видно, что напряжение на рабочей зоне практически неизменно, при широком диапазоне изменения тока через стабилитрон.
Чтобы выйти на рабочую зону, нам надо установить ток стабилитрона между [Iст. min – Iст. max] с помощью резистора точно так же, как это делалось в примере со светодиодом (кстати, можно также с помощью источника тока). Только, в отличие от светодиода, стабилитрон включен в обратном направлении.
При меньшем токе, чем Iст. min стабилитрон не откроется, а при большем, чем Iст. max – возникнет необратимый тепловой пробой, т.е. стабилитрон просто сгорит.
Расчёт стабилитрона
Рассмотрим на примере нашего рассчитанного трансформаторного БП. У нас есть блок питания, выдающий минимум 18 В (по сути там больше, из-за трансформатора 230/15 В, лучше мерить в реальной схеме, но суть сейчас не в этом), способный отдавать ток 1 А. Нужно запитать нагрузку с максимальным потреблением 50 мА стабилизированным напряжением 15 В (например, пусть это будет какой-нибудь абстрактный операционный усилитель – ОУ, у них примерно такое потребление).
Такая слабая нагрузка выбрана неспроста. Стабилитроны довольно маломощные стабилизаторы. Они должны проектироваться так, чтобы через них мог проходить без перегрева весь ток нагрузки плюс минимальный ток стабилизации Iст. min. Это необходимо, потому что ток после резистора R1 делится между стабилитроном и нагрузкой. В нагрузке ток может быть непостоянным, либо нагрузка может выключаться из схемы совсем. По сути это параллельный стабилизатор, т.е. весь ток, который не уйдет в нагрузку, примет на себя стабилитрон. Это как первый закон Кирхгофа I = I1 + I2, только здесь I = Iнагр + Iст. min.
Итак, выберем стабилитрон с напряжением стабилизации 15 В. Для установки тока через стабилитрон всегда необходим резистор (или источник тока). На резисторе R1 упадет 18 – 15 = 3 В. Через резистор R1 будет протекать ток Iнагр. + Iст. min. Примем Iст. min = 5 мА, это примерно достаточный ток для всех стабилитронов с напряжением стабилизации до 100 В. Выше 100 В можно принимать 1мА и меньше. Можно взять Iст. min и больше, но это только будет бесполезно греть стабилитрон.
Итак, через R1 течет Ir1 = Iнагр. + Iст. min = 50 + 5 = 55 мА. По закону Ома находим сопротивление R1 = U / I = 3 / 0,055 = 54,5 Ом, где U и I – напряжение на резисторе и ток через резистор. Выберем из ближайшего стандартного ряда сопротивление 47 Ом, будет чуть больше ток через стабилитрон, но ничего страшного. Его даже можно посчитать, общий ток: Ir1 = U / R = 3 / 47 = 0,063А, далее минимальный ток стабилитрона: 63 — 50 = 13 мА. Мощность резистора R1: P = U * I = 3 * 0,063 = 0,189 Вт. Выберем стандартный резистор на 0,5 Вт. Советую, кстати, не превышать мощность резисторов примерно Pmax/2, дольше проживут.
На стабилитроне тоже рассеивается мощность в виде тепла, при этом в самом худшем случае она будет равна P = Uст * (Iнагр + Iст.) = 15 * (0,050 + 0,013) = 0,945 Вт. Стабилитроны выпускают на разную мощность, ближайшая 1Вт, но тогда температура корпуса при потреблении около 1Вт будет где-то 125 градусов С, лучше взять с запасом, на 3 Вт. Стабилитроны выпускают на 0,25, 0,5, 1, 3, 5 Вт и т.д.
Первый же запрос в гугле «стабилитрон 3Вт 15В» выдал 1N5929BG. Далее ищем «datasheet 1N5929BG». По даташиту у него минимальный ток стабилизации 0,25 мА, что меньше 13 мА, а максимальный ток 100 мА, что больше 63 мА, т.е. укладывается в его рабочий режим, поэтому он нам подходит.
В общем-то, это весь расчёт. Да, стабилизатор это неидеальный, внутреннее сопротивление у него не нулевое, но он простой и дешевый и работает гарантировано в указанном диапазоне токов. А также поскольку это параллельный стабилизатор, то ток блока питания будет постоянным. Более мощные стабилизаторы можно получить, умощнив стабилитрон транзистором, но это уже тема следующей статьи, про транзисторы.
Проверить стабилитрон на пробой обычным мультиметром, как правило, нельзя. При более-менее высоковольтном стабилитроне просто не хватит напряжения на щупах. Единственное, что удастся сделать, это прозвонить его на наличие обычной диодной проводимости в прямом направлении. Но это косвенно гарантирует работоспособность прибора.
Еще стабилитроны можно использовать как источники опорного напряжения, но они шумные. Для этих целей выпускают специальные малошумящие стабилитроны, но их цена в моем понимании зашкаливает за кусочек кремния, лучше немного добавить и купить интегральный источник с лучшими параметрами.
Также существует много полупроводниковых приборов, похожих на диод: тиристор (управляемый диод), симистор (симметричный тиристор), динистор (открываемый импульсно только по достижении определенного напряжения), варикап (с изменяемой емкостью), что-то еще. Первые вам понадобятся в силовой электронике при постройки управляемых выпрямителей или регуляторов активной нагрузки. А с последними я уже лет 10 не сталкивался, поэтому оставляю эту тему для самостоятельного чтения в вики, хотя бы про тиристор.
Является ли резистор, ограничивающий ток, для светодиодов, если напряжение прямого питания и напряжение питания равны?
Нет, это неправильно, хотя бы потому, что ни светодиод, ни блок питания не имеют напряжения 3,3 В. Питание может составлять 3,28 В, а напряжение светодиода 3,32 В, а затем простой расчет для резистора серии больше не выполняется.
Модель светодиода – это не просто постоянное падение напряжения, а постоянное напряжение, последовательное с резистором, внутреннее сопротивление. Поскольку у меня нет данных для вашего светодиода, давайте посмотрим на эту характеристику для другого светодиода, Kingbright KP-2012EC Светодиод:
Для токов выше 10 мА кривая является прямой, а наклон является инверсией внутреннего сопротивления. При 20 мА прямое напряжение составляет 2 В, при 10 мА это 1,95 В. Тогда внутреннее сопротивление
\ $ R_ {INT} = \ dfrac {V_1 – V_2} {I_1 – I_2} = \ dfrac {2V – 1.95V} {20mA – 10mA} = 5 \ Omega \ $.
Внутреннее напряжение
\ $ V_ {INT} = V_1 – I_1 \ times R_ {INT} = 2V – 20mA \ times 5 \ Omega = 1.9V. \ $
Предположим, что у нас есть источник питания 2В, тогда проблема немного похожа на оригинал, где у нас было 3,3 В для питания и светодиода. Если бы мы подключили светодиод через резистор 0 \ $ \ Omega \ $ (оба напряжения равны после всех!), Мы получаем светодиодный ток 20 мА. Если напряжение источника питания изменится на 2.05 В, а только на 50 мВ, то ток светодиода будет
\ $ I_ {LED} = \ dfrac {2.05V – 1.9V} {5 \ Omega} = 30mA. \ $
Таким образом, небольшое изменение напряжения приведет к большому изменению тока. Это показывает крутизну графика и низкое внутреннее сопротивление. Вот почему вам нужно внешнее сопротивление, которое намного выше, так что мы лучше контролируем ток. Конечно, падение напряжения на 10 мВ, скажем, 100 \ $ \ Omega \ $ дает только 100 \ $ \ mu \ $ A, что вряд ли будет видно. Поэтому требуется также более высокая разность напряжений.
Для резистора всегда требуется достаточно большое падение напряжения , чтобы иметь более или менее постоянный ток светодиода.
Светлый угол – светодиоды • Питание ИК светодиодов.
Здравствуйте, уважаемые гуру светодиодов.В светодиодах я нуб. Не полный, но продвинутый нуб, если можно так сказать.
Когда дело касается обычных светодиодов – здесь всё более-менее понятно.
Однако, сейчас возникла несколько нетривиальная (для меня) задача – изготовить ИК светильник (читай многодиодный фонарик) для видеосъёмки в тёмное время суток или в тёмных помещениях.
Вкратце объясню суть дела, чтобы было более понятно.
Играю в страйкбольно-ролевые игры по мотивам вселенной S.T.A.L.K.E.R. и снимаю на играх видео. Потом из этого получается сериал, который выкладывается на канале в ютубе.
Как показала практика, очень не хватает ночных съёмок. Игры, как правило, идут двое суток в режиме нон-стоп. Начинаются в пятницу и заканчиваются в воскресенье днём.
Поскольку все мои камеры ничего не видят, как только становится темно, я просто тупо иду в жилой лагерь и ложусь спать. Однако, игра продолжается и ночью происходит не менее интересная “движуха” в “Зоне”, чем днём. Я решил исправить этот недостаток и купил камеру специально для ночных съёмок. Собственно, обычная маленькая экшн-камера от Панасоник, но единственная в мире, которая не имеет в своей оптической системе ИК фильтра. Фильтры идут в комплекте в виде накручивающегося на объектив светофильтра. Один из них для дневной съёмки (собственно сам ИК фильтр) и обычное прозрачное стекло для ночной съёмки с ИК подсветкой. Можно, конечно, взять любую экшн-камеру, скрутить объектив и выломать ИК фильтр, но тогда камера не будет пригодна для дневных съёмок. Что ограничивает её применение.
Чтобы не “палить контору” на играх, в качестве осветительных приборов были выбраны светодиоды с длиной волны более 900 нМ.
Конкретно 940 нМ. В этом диапазоне, свет от диода не виден не вооружённым взглядом. Думал сначала купить готовые фонарики от Pulsar. У них есть фонари на 915 и 940 нМ.
Но решил, что мне такие не нужны. Дело не в дороговизне, а в том, что они светят далеко и узким лучом. Грубо говоря, на 300 метров, в камере с широким углом съёмки (120 градусов) удалённый объект будет настолько мелким, что разглядеть его сложно. Даже днём, даже с более продвинутой камеры (например, GoPro 4 BE).
Мне нужна подсветка, которая светит широким углом и в ближних зонах (не далее 20 метров).
Один из подписчиков паблика в ВК подкинул вот такую инфу, о сборе средств на кикстартере на налобный широкоугольный фонарь (осветитель).
В общем, идея валялась на поверхности – светодиодная лента.)))
Но мне идея понравилась и я подумал, что по такому же принципу можно сделать налобный 5 диодный ИК фонарь для съёмок.
Купил на радиорынке Митинском пять ИК диодов и платы к ним (звёзды). И одну линзу на 80 градусов (120 градусных не было в продаже, к сожалению) для экспериментов.
Немного потестив понял, как делать так, чтобы равномерно распределить оптические системы, которые могли бы равномерно засвечивать и ближние зоны и более отдалённые (до 20 метров).
Просто разместить линзы с разными углами в определённом алгоритме.
К чему этот спич (прошу прощения, если кому-то он показался бесполезным).
Теперь нужно решить проблему питания диодов. Условия – полевые, погода может быть любой.
Продавцы на радиорынке сказали, что диоды у них 3W. В пакетике с диодами лежала бумажка с вот такими параметрами:
938-942 нМ
13-17 mW
VF: 1.45-1.67 v
700mA
Ни производителя, ни чего другого нет. Я загугли и попытался найти подобные диоды, чтобы уточнить параметры.
С такими параметрами диодов нет. Но есть 940 нМ и с напряжением питания 1.4-1.7v и, да, есть 3W с током питания 700мАч.
По приезду домой, я припаял один диод к плате и подключил его к обычной алкалиновой батарейке 1.5в. Диод работает.
Светит прилично. Видимо продавцы не обманули и похоже на 3W. Я попробовал поснимать с подсветкой одним диодом в полной темноте и результаты меня полностью удовлетворили.
Без линзы не плохо светит метра на 3 широким углом. Если подключить 5 диодов, будет очень хорошо. Во время тестовых съёмок, диод работал от батарейки примерно минут 20.
За это время не нагрелся вообще, а если и нагрелся, то не значительно (здесь я не совсем понял, ибо держал плату с диодом в рука – в пальцах и, возможно, алюминиевая плата тупо нагрелась от тела).
Я понимаю, что диодам нужен стабилизированный ток и желательно использовать драйвер. Но я пока не определился, от чего запитывать диоды.
Склоняюсь к аккумуляторам 18650. У меня их штук 12 есть (использую их в 3-осевом электронном стабилизаторе для видеокамеры).
Я примерно подсчитал, что если включить последовательно два акб 18650, то в номинале они будут давать 7,4 вольт/5 диодов = 1,48в. То есть в нижнем пределе диапазона питания диода.
Однако и яркость диода будет наименьшая. Здесь возник вопрос, а нужен ли драйвер, если питаешь диоды от аккумулятора? Ведь по-сути, диод берёт от аккумулятора столько питания (по току), сколько ему нужно?
Понимаю, что можно просадить 18650 до состояния “не стояния” и тупо испортить (у меня почти все 18650 без защиты). Но дело не в этом.
Что мне не понятно в драйверах. Например, есть драйверы на те же 700мА (у продавцов есть такие, я как-то давно покупал для другого дела),
на таком драйвере написано, что входное напряжение 12В (есть драйверы с питанием 5-12В). Но ведь это драйверы стабилизации по току, но не по напряжению.
Если я подам на драйвер те же 7.4 вольта от двух последовательно соединённых 18650, то на выходе получу те же 7,4 вольта? А если подам 12 вольт, то на выходе будет те же 12В?
Например, чтобы увеличить напряжение питания светодиода до 1.6в/700мА – 1.6 х 5 = 8в. Для питания подключаем три 18650 последовательно и получаем 11.1 вольт.
Чтобы уменьшить напряжение, мне придётся после (или до) драйвера ставить гасящий резистор? Или, предположим, стабилизатор по напряжению на той же LM317.
То есть придётся городить огород из двух стабилизаторов (по току и по напряжению)?
Подскажите, как лучше (и проще всего) запитать все 5 диодов? В какую сторону бежать…
Заранее спасибо!
Вопросы подключения мощных светодиодов / Теория, измерения и расчеты / Сообщество EasyElectronics.ru
Предисловие.Когда-то давно я писал статью про подключение мощных светодиодов для одного сайта, который так и умер, не родившись — статья осталась лежать в столе. Несколько позже я писал длинный пост на Радиокоте, посвященный этой же теме. А недавно в обсуждении статьи про мой дачный фонарь прозвучала просьба пояснить, для чего все эти пляски с импульсными драйверами и отчего бы не использовать резистор. В ответ я обещал посвятить этому статью. Сим я выполняю это обещание, а заодно и утилизирую накопившийся в столе материал, скомбинировав и переработав его. Dixi.
Идемте верным путем, товарищи!
В наши дни каждый прогрессивный человек знает, что светодиоды — будущее освещения. У них огромный по современным меркам световой КПД, малые габариты, малое рабочее напряжение… Одним словом, идеальный источник света. Единственное, что смущает, это их цены. Однако, уже довольно давно в продаже есть одноваттные светодиоды, которые, на мой взгляд, являют собой оптимальное соотношение цена/характеристики, что позволяет с уверенностью говорить о целесообразности их применения для освещения уже сегодня.
Помимо же осознания важности светодиодов для народного хозяйства, прогрессивного человека сегодняшнего дня также отличает осознание того факта, что светодиод — прибор токовый. А это означает, что перед тем, как наслаждаться осознанием своей прогрессивности, созерцая свет сих приборов будущего, мы неизбежно должны построить стабилизатор тока. Однако перед тем, как заняться этим достойным делом, я хотел бы сделать небольшое отступление, предназначенное для заблудших,
доныне не познавших светодиодное дао, и упорно пытающихся подключать оные кристаллы к разнообразным источникам напряжения.
Почему не батарейка?
В принципе, теоретически, если мы определили напряжение на конкретном светодиоде при нужном токе, и потом поддерживаем его с высокой точностью, все вроде должно быть хорошо, и вроде как светодиод при таких условиях должен нормально работать от источника напряжения. Отлично. А теперь давайте подогреем сей кристалл градусов этак на пятнадцать (а если кристалл мощный, так он и сам нагреется, без нашей помощи). Или охладим. Или просто подождем, пока он постареет. Все эти факторы оказывают влияние на рабочее напряжение. Что будет? Если мы его нагреем, то рабочее напряжение диода упадет (ибо упадет сопротивление, полупроводник все же). Однако источник будет стараться держать напряжение на диоде стабильным, поднимая ток по экспоненциальной ВАХ диода. Очевидно, что в этом случае кристалл будет еще сильнее разогреваться от проходящего тока, его сопротивление будет еще больше падать, ток будет расти еще больше, и светодиод сгорит.
Потому светодиод прежде всего требует поддержания стабильного рабочего тока.
Выбираем источник тока.
Первое, что приходит в голову — включить последовательно со светодиодом резистор. Однако давайте посмотрим, чем нам это грозит.
Да, совсем забыл сказать — если мы хотим подключить несколько светодиодов к одному источнику, разумно включать их последовательно, ибо, как уже говорилось, светодиод — токовый прибор. Поэтому, включая несколько одинаковых светодиодов, мы должны включать их так, чтобы обеспечить одинаковость тока. А это возможно именно при последовательном подключении (при условии, что максимальное напряжение, которое может выдать наш источник, больше суммы падений на диодах). В противном случае нам придется делать отдельный стабилизатор тока для каждого светодиода, поскольку, если запараллелить их напрямую, то из-за разности рабочих сопротивлений токи неизбежно будут отличаться, что в перспективе также может привести к перегреву и выходу из строя сначала одного, а потом и всех диодов по очереди, поскольку с выгоранием очередного диода ток через оставшиеся будет расти, провоцируя еще более скорый выход последующих из строя.
Так вот, давайте посчитаем. Светодиод у нас потребляет ток I при среднем напряжении на нем Uпр. Тогда резистор должен принимать на себя оставшиеся Uпит.-Uпр. вольт (где Uпит. — напряжение питания). Соответственно, сопротивление резистора можно сосчитать по закону Ома:
R=(Uпит. — Uпр.)/I
При этом мощность, на нем рассеиваемая, будет равна
P=I2R
Вроде бы ничего страшного, более того, для маломощных светодиодов такой подход можно считать правильным, поскольку при напряжениях питания, существенно превосходящих среднее прямое падение на диоде и малых токах (20 — 50мА) номинал резистора получается достаточно большим для того, чтобы пристойно стабилизировать ток через диод. Происходит это следующим образом: при нагреве диода ток, как уже было выяснено, пытается вырасти, а вместе с ним растет и напряжение, которое падает на резисторе; т.о., напряжение на диоде опускается до нового, соответствующего новым условям.
Однако давайте попробуем посчитать потери на резисторе исходя из того, что мы собираемся подключать не какой-нибудь 5мм светодиод, а хороший такой одноваттный Luxeon. Обычный рабочий ток одноваттного светодиода — 350мА, среднее падение на нем примем равным 3.5В. Тогда при 12В источнике питания мощность, рассеиваемая на резисторе, составит 3 Ватта! При том, что сам светодиод у нас потребляет один Ватт! Таким образом, почти полностью теряется преимущество светодиода в КПД. Кроме того, это решение страдает еще рядом недостатков. Во-первых, невозможно заранее точно расчитать сопротивление резистора. Говоря про падение напряжения, я не случайно сказал что беру «среднее», ибо, как уже было не раз сказано, нормируется только рабочий ток, а напряжение на каждом отдельном светодиоде свое. При этом во время работы оно может изменяться в довольно широких пределах, в частности, из-за нагрева светодиода, изменения погоды на Марсе и ряду других причин. Однако, оно явно входит в формулу расчета резистора. Поэтому заранее точно рассчитать сопротивление невозможно. Во вторых, при подключении светодиода через резистор ток будет зависить от напряжения на входе. И нам потребуется стабилизировать еще и напряжение, при этом мы будем еще сильнее проигрывать в КПД. И, наконец, в-третьих, очевидно, что, чем мощнее диод, тем меньший номинал резистора для него потребуется. Но из вышесказанного также очевидно, что стабилизирующая способность резистора напрямую зависит от его номинала, причем прямо пропорционально. Одним словом, очевидно, что питать мощные диоды через резистор крайне нежелательно.
Как же быть?
Посмотрим теперь, как можно исправить перечисленные недостатки. Мощность, выделяющуюся на резисторе, можно сократить, уменьшая падение напряжения на нем. Этого можно добиться, подбирая количество включенных последовательно с ним светодиодов таким образом, чтобы максимально приблизить суммарное падение напряжения на них к напряжению источника питания. Тем не менее, ясно, что это пройдет только с маломощными диодами, которые не слишком чувствительны к стабильности тока. А вот от остальных недостатков без изменения схемотехники уйти невозможно.
Идя по пути совершенствования можно использовать микросхему вроде LM317 для стабилизации тока — это позволит не задумываться о значениях прямого напряжения на светодиодах и улучшить стабильность тока по сравнению с резистором, но даже в таком виде стабилизатор будет рассеивать слишком много тепла, так как в лучшем случае на LM317 будет падать где-то 3В. При этом тепловыделение составит как минимум около ватта, что тоже много, учитывая что светодиод, который мы собираемся использовать, тоже потребляет около ватта. То есть, используя линейный стабилизатор, мы теряем возможность подключить еще как минимум один светодиод.
Что же делать?
А есть ли иное решение, свободное и от повышенного тепловыделения? Оказывается, есть! Во всех предыдущих вариантах мы стабилизировали ток, сбрасывая излишек энергии в виде тепла на регулирующем элементе. Между тем существует другой подход к стабилизации: сначала мы берем нужную нам порцию энергии от источника, а потом передаем ее потребителю уже при другом напряжении и токе, сохраняется только количество энергии. При таком подходе КПД часто переваливает за 90%. Этот принцип реализуется в так называемых импульсных стабилизаторах, которыми и являются большинство драйверов мощных светодиодов. По сути это источники напряжения с обратной связью по току — т.е., они сами подстраивают выходное напряжение так, чтобы ток во внешней цепи был постоянен.
Собственно, импульсные драйверы и являются наилучшим выбором. Возможно я напишу о них в одной из следующих статей.
Всё о светодиоде
Что такое светодиод
Светодиод – это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED, по-русски – СИД.
Из чего состоит светодиод?
Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации. Конструкция мощного современного светодиода схематически изображена на рисунке.
Чем хорош светодиод?
В светодиоде, в отличие от лампы накаливания или люминесцентной лампы,электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод – низковольтный электроприбор, а стало быть, безопасный.
Каковы электрические и оптические характеристики светодиодов?
Светодиод – низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4В постоянного напряжения при токе до 50 мА.Светодиод, который используется для освещения, потребляет такое же напряжение,но ток выше – от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).
При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности.Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.
Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.
Почему нужно стабилизировать ток через светодиод?
В рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.
Чем определяется срок службы светодиода?
Считается, что светодиоды исключительно долговечны. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 50 – 100тысяч часов. Старение выражается в первую очередь в уменьшении яркости.
Не вреден ли светодиод для человеческого глаза?
Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо – доподлинно не известно, потому что, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют. Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально.
Где сегодня целесообразно применять светодиоды?
Светодиоды находят применение практически во всех областях светотехники. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах.Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию и где высоки требования по электробезопасности.
Возможности и применение
Изобретение первых светодиодов – полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку -относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.
Появление сверхярких, а также синих (в середине 1990-х годов) и белых диодов(в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе – мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного,синего и зеленого) позволило получать цвета вывесок фактически любых оттенков,а также конструировать из них дисплеи с выводом полноцветной графики и анимации.
Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий,отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными-газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого светодиоды еще недостаточно распространены является пока еще высокая стоимость светодиодов.
Преимущества
Экономично
Одним из достоинств светодиодов является их долговечность. Данные источники света обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной работы. Для сравнения – максимальный срок работы газоразрядных и люминесцентных ламп составляет 10 тыс. часов.
За это же время в световом модуле, использующем люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания придется заново «вкручивать»от 30 до 40 раз. Использование светодиодных модулей позволяет снизить затраты на электроэнергию до 87%!
Работа при низких температурах
Благодаря полупроводниковой природе светодиодов их яркость обратно пропорциональна температуре окружающей среды, что делает их применение особенно актуальным в наших климатических условиях. Диапазон температуры эксплуатации светодиодов от -50…+60 град С.
Стойкость к механическим воздействиям
Отсутствие стеклянных деталей, нитей накаливание делает светодиоды устойчивыми к механическим воздействиям, ударам и вибрации.
Высокая светоотдача
Яркость светодиодов сравнима с неоном. Для сравнения: обычная лампа накаливания дает до 10 люмен на 1 Вт потребленной энергии, светодиоды — 70 люмен и выше.Сверхяркие светодиоды обеспечивают сильный световой поток для изделий такого класса.
Чистота цвета
Возможность получения любого цвета и оттенка излучения светодиодов: например,чистый синий, чистый белый, оранжевый, сине-зеленый и десятки других чистых цветов и оттенков — чего нельзя получить, используя лампы накаливания.
Высокий уровень безопасности
Обеспечивается малым тепловыделением светодиодов и низким питающим напряжением.
Простой электромонтаж
А также легкое крепление к любой поверхности существенно облегчают монтаж и ремонт, и соответственно расходы связанные с ними.
Безинерционность
Возможность управления через контроллеры, диммеры, в том числе с плавным изменением яркости и цвета свечения. Управляя интенсивностью и режимом свечения можно достичь фантастического эффекта «живого света».
Замена существующих источников света
Светотехнические и электрические параметры модулей позволяют легко заменить любые ранее установленные источники света и значительно сократить расходы на эксплуатацию и обслуживание.
Экологическая и пожарная безопасность
Не содержат вредных веществ, побочного ультрафиолетового или инфракрасного излучения и почти не нагреваются.
Недостатки
Поверхностный взгляд на использование светодиодов сразу отмечает их высокую стоимость – главный недостаток по сравнению с лампами накаливания и газоразрядными лампами различных типов. Если говорить о цене изделия как таковой, то LED-изделия действительно «не каждому по карману». Однако производители по всему миру продолжают наращивать мощности по изготовлению светодиодов, и цены на данные источники света неуклонно понижаются. Практика показывает, что совокупные затраты на приобретение и эксплуатацию светодиодных изделий, в конечном итоге оказываются в 2 – 2,5 раза ниже затрат на обычные светильники.
Светодиодные лампы 480v | Высоковольтные светодиодные лампы для кукурузы
A: Указывает диапазон напряжения, в котором будет работать лампа или лампочка. Известен как мультивольтный прибор или драйвер. В этом случае 200-480 В переменного тока означает, что любое используемое вами напряжение от 200 до 480 В будет работать. Типичные примеры: 208 В переменного тока, 277 В переменного тока, 347 В переменного тока и 480 В переменного тока. В традиционных мультивольтных пускорегулирующих аппаратах требовалось вырезать вкладки, но более современные светодиоды обычно переключаются автоматически.
На самом деле, давайте перейдем к техническим вопросам, что такое 480 В переменного тока для хардкора?
VAC обозначает вольт (электрическое давление) переменного тока.480 В переменного тока – это обычно используемое напряжение в коммерческих и промышленных энергосистемах. Он относится к среднеквадратичному значению (RMS) линейного переменного напряжения. Обычно он подается с частотой 60 Гц и имеет пиковое значение приблизительно 679 В.
480 В, 3 фазы Промышленное питание в США
Обычно 480 В используется в трехфазных коммерческих и промышленных двигателях. Он рассчитан на работу в соответствии со спецификацией при 460 В (номинальное) между линиями. Несмотря на то, что они широко известны как высоковольтные, Американский национальный институт стандартов классифицирует трехфазную мощность 480 В как низковольтную систему питания.При работе с напряжением 120 или 240 В называть 480 В как низкое напряжение – это неправильно. Однако понимание классификации напряжения до 1 100 000 В помогает понять, почему 480 В относится к категории низкого напряжения.
Большинство промышленных предприятий предпочитают трехфазное напряжение 480 В вместо 204 В и 208 В, поскольку оно обеспечивает в 2,0 (480/240) или 2,3 (480/208) раз больше мощности при том же токе. Кроме того, он обеспечивает большую мощность при том же токе, что снижает стоимость строительства с меньшими электрическими услугами и снижает затраты на энергию, поскольку меньше энергии теряется на нагрев формы или сопротивление току.
480 В, 3 фазы, звезда
480 В, 3 фазы, звезда, аналогичны трехфазной схеме 208 В, в том, что они имеют 3-фазную 4-проводную конфигурацию питания и нейтральный провод. Большинство систем питания на 480 В имеют конфигурацию «звезда», поскольку они могут питать однофазные осветительные нагрузки 277 В, а напряжение между фазой и нейтралью составляет 277 В или ниже 300 В.
Трехфазная система питания 480 В, звездочка также называется 480 В / 277 В или 480 В, фаза 4, 4 провода. Технически эти термины более точны, поскольку относятся к нейтральному. Y в 480Y / 277V обозначает нейтраль как центр Y-образного источника питания, в то время как 4-проводной в 480-вольтовом 3-фазном 4-проводном соединении обозначает нейтраль как 4-й провод
480V 3-фазный дельта
480 3-фазный Delta 3-проводная конфигурация питания без нейтрального провода.Обычно системы питания на 480 В не имеют дельта-конфигурации, поскольку фаза на землю превышает 300 В.
Вау. Это было много, отступите, пожалуйста. А как насчет основ власти?
Что такое напряжение?
Напряжение – это давление от источника питания электрической цепи, которое проталкивает ток через проводящий контур. Это разница в электрическом потенциале между двумя точками. Напряжение – это один из параметров, описывающих электрические условия в цепи. Единица измерения – вольт.
Первоначально напряжение называлось электродвижущей силой (ЭДС). Это причина, по которой он представлен символом E в некоторых уравнениях, таких как закон Ома.
Единицами измерения напряжения согласно Международной системе единиц являются вольты (СИ). Единица СИ для работы на единицу – джоули на кулон. 1 вольт равен 1 джоуля работы на 1 кулон заряда. Основными составляющими вольта как единицы СИ являются мощность и ток. 1 вольт равен 1 ватту мощности на 1 ампер.
Что такое переменное напряжение?
Альтернативное напряжение заряда, обычно известное как напряжение переменного тока, представляет собой ток, который периодически меняет полярность или направление. Следовательно, уровень напряжения также меняется на противоположный вместе с током. Чаще всего напряжение переменного тока используется для подачи питания в дома, офисы и т. Д. Это форма питания, используемая при использовании бытовой и офисной техники. Устройство, используемое для генерации переменного тока, известно как генератор переменного тока.
Переменный ток содержит синусоидальную волну, полупериод которой соответствует положительному направлению тока и наоборот.Однако некоторые устройства, например гитарные усилители, используют различные формы волны, такие как прямоугольные и треугольные волны.
Что такое стандартное напряжение?
Стандартное напряжение относится к уровню подачи электроэнергии, рекомендованному для использования в различных условиях. Двумя основными характеристиками электроснабжения являются частота и напряжение. В разных странах используются разное напряжение и частота. Наиболее распространенная комбинация – 230 В и 50 Гц, которая используется в Южной Америке, Европе и большинстве частей Азии и Африки.Наиболее распространенная комбинация в Северной Америке – 120 В и частота 60 Гц.
А как насчет замены HID-фонарей на кукурузные лампочки 480 В?
Лампы типа «кукуруза» – лучшая замена светодиодным лампам высокой мощности, таким как лампы на парах ртути, галогениды металлов и натриевые лампы высокого давления HID. Они известны как кукурузные фонари, потому что на них есть ряды светодиодных чипов на лампах, которые похожи на ряды початков на початке кукурузы.
Конструкция светодиодных ламп типа «кукуруза» обеспечивает большое количество света с помощью светодиодов, для которых требуется много диодов.Диоды крепятся к металлическому стержню и имеют достаточную площадь поверхности для охлаждения. Светодиодные фонари «кукуруза»
можно закрепить на многих винтах в гнездах. Однако вам нужна подходящая розетка. В настоящее время существуют кукурузные лампы E39 для E26 Corn Lamps (Mogul) (E39 подходит для E40, а E26 подходит для E27), что позволило сократить половину ламп.Два основных типа светодиодных ламп накаливания кукурузы – это балласт с байпасом и подключи и работай.
Plug and play светодиодные фонари для кукурузы
Plug and play – это приспособление, работающее с балластом.Он не требует повторного подключения или снятия балласта, так как работает с существующим балластом. Это также известно как прямая посадка.
Plug and play – это проблема, потому что этот балласт выйдет из строя, и вам придется его обслуживать. Удалите его один раз и покончите с этим. Plug and play также имеют более короткую жизнь. Основная роль балласта – управлять потоком электрического тока к HID люминесцентной арматуре. Такое изменение и усиление мощности опасно и ненужно.
Обвод балласта
Это правильный путь!
В байпасе балласта балласт снимается, и лампа получает энергию непосредственно от патронов.Он также известен как линейный светодиод с прямым проводом. Большинство людей предпочитают заменять металлогалогенные лампы на балластные версии с байпасом. Большинство из них также удаляют балласт и подают напряжение непосредственно в бытовую розетку среднего размера. Это помогает снизить энергопотребление и снизить затраты на техническое обслуживание.
Список литературы;
https://www.fluke.com/en/learn/best-practices/measurement-basics/electricity/what-is-voltage
https://www.allaboutcircuits.com/textbook/direct-current/chpt -1 / напряжение-ток /
https: // ctlsys.com / support / electric_service_types_and_voltages /
https://www.allaboutcircuits.com/textbook/alternating-current/chpt-1/what-is-alternating-current-ac/
|
Лаборатория: Измерение прямого напряжения светодиодов
Светодиоды (светодиоды) освещают наш современный мир.Во всем, от индикаторов состояния до дисплеев и даже… ну, в общем, для освещения используются светодиоды всех цветов, форм и размеров. Как мы выяснили в предыдущем эксперименте, цвет светодиода определяется свойствами материала кремния, из которого он сделан. В этой лабораторной работе мы исследуем эти свойства и выясним, как они соотносятся с цветом светодиода.
Светоизлучающие диоды, как следует из их названия, похожи на обычные диоды в том смысле, что ток может течь через них только в одном направлении.Это потому, что они состоят из двух различных типов полупроводников, спрессованных вместе. Мы назовем их N-Type и P-Type . Материалы N-типа заряжены отрицательно, потому что в них есть лишние электроны, в то время как материалы P-типа заряжены положительно, потому что в них отсутствуют электроны (у них есть «дырки»). Когда подается ток, электроны текут от N-типа к P-типу и притягиваются к отверстиям. Эти текущие электроны обладают довольно высокой энергией, и когда они «захватываются» дырками, которые находятся на более низком энергетическом уровне, им приходится отдавать часть этой энергии.В светодиодах эта энергия выделяется в виде света. Чем больше разность энергий (известная как ширина запрещенной зоны ), тем больше энергии должен отдать электрон и тем короче длина волны света [1].
«Высота», на которую электрон «падает» в отверстие, является шириной запрещенной зоны светодиода и определяет длину волны излучаемого света.Представьте, что вы стоите на лестнице и бросаете теннисные мячи в ведро с водой (будьте осторожны). Чем выше вы поднимаетесь по лестнице, тем больше «всплеск» вы произведете.По сути, это то, что определяет цвет светодиода. С красными светодиодами (с низкоэнергетическим длинноволновым светом) вы сбрасываете теннисные мячи с первых двух перекладин. С синими светодиодами (с высокоэнергетическим коротковолновым светом) вы роняете их почти сверху (опять же, будьте осторожны там, наверху). Высота, с которой вы бросаете теннисные мячи, – это ширина запрещенной зоны.
Напряжение, которое мы прикладываем, чтобы заставить светодиод светиться, пропорционально уровню энергии электронов, проходящих через него. Измеряя это напряжение, мы можем оценить, сколько энергии теряют электроны, проходя через него.(Неточно, но довольно близко)
Беспричинное изображение светодиодов- Светодиоды – непостоянные звери. Они довольно чувствительны и могут взорваться, если вы дадите им слишком много тока (здесь говорит личный опыт). Обязательно тщательно отрегулируйте их ток и перепроверьте свою проводку.
- Некоторые светодиоды могут быть очень яркими даже при малых токах. Хотя на них, вероятно, безопасно смотреть, старайтесь не смотреть прямо в них.
Это специальный эксперимент, разработанный для лабораторий с ограниченным оборудованием.Мы создали две версии этого эксперимента на основе имеющегося в вашей лаборатории оборудования / расходных материалов:
- Лаборатория A: Ручные мультиметры, потенциометры и резисторы
- Лаборатория B: Настольный источник питания
Хотя процедуры и материалы разные, конечный результат точно такой же. Однако это может быть проще в зависимости от оборудования, имеющегося в вашей лаборатории.
- Ручной мультиметр
- Все, что может измерять напряжение до 0.01В будет хорошо.
- Резистор 100 Ом
- Потенциометр 10 кОм
- Батарея 9 В и выводы
- Различные светодиоды
- Желательно, чтобы вам был нужен хотя бы синий, красный и зеленый светодиод.
- Постройте следующую схему. Батарею пока не вставляйте. (нажмите на фото, чтобы увеличить):
- Поверните потенциометр так, чтобы цифры наверху были направлены на отрицательный провод аккумулятора.(в моем случае я повернул его до упора вправо)
- Если у вас другой потенциометр, он может работать по-другому. Выньте светодиод и вставьте аккумулятор. Поместите щупы мультиметра на отрицательный провод аккумулятора и одну из ножек резистора. Поворачивайте потенциометр, пока измеритель не покажет ноль вольт. Затем вставьте светодиод обратно.
(сначала удалите светодиод)
- Запомните, в какую сторону смотрит потенциометр, когда счетчик показывает ноль вольт.
- Поместите провод мультиметра на каждую ножку резистора и поверните потенциометр, пока напряжение не покажет 0.1V , положительный или отрицательный. Вы должны увидеть, как светодиод начнет светиться.
- Измерьте напряжение на светодиоде. Запишите это значение. Это прямое напряжение светодиода .
- Верните потенциометр в исходное положение.
- Замените светодиоды и повторите шаги 3-5.
- Настольный блок питания
- Блок питания должен иметь регулировку напряжения и тока, а также цифровые дисплеи или шкалы для измерения этих значений.
- Выводы источника питания
- Используйте провода типа «банановый разъем» с зажимами типа «крокодил» на концах.
- Различные светодиоды
- Желательно, чтобы вам понадобились как минимум красный, зеленый и синий светодиоды.
- (дополнительно) Мультиметр
- Мультиметры обычно более точны, чем показания напряжения / тока на блоке питания, поэтому вам следует использовать его для перепроверки ваших измерений, если они у вас есть.
- Установите ограничение тока блока питания на 10 мА.
- На некоторых источниках питания это можно сделать, установив низкое напряжение (0,1 В), закоротив его выход и поворачивая ограничение тока до тех пор, пока оно не станет равным 10 мА.
- Полностью уменьшите напряжение.
- Подключите светодиод к проводам источника питания.
- Медленно увеличивайте напряжение, пока оно не перестанет расти. Светодиод должен загореться примерно при 1-2 В.
- Запишите напряжение, при котором это происходит. Это прямое напряжение светодиода .
- Снова полностью убавьте напряжение.
- Замените светодиод другим и повторите шаги 3–6.
- Светодиод не горит
- Проверьте правильность полярности светодиода. Светодиод загорается только тогда, когда ток течет от его положительного вывода к его отрицательному выводу.
- Если вы выполняете лабораторную работу А, убедитесь, что аккумулятор достаточно заряжен. Измерьте напряжение мультиметром. Эта лабораторная работа должна работать с батареей с низким напряжением 5 В (очень, очень разряженная батарея на 9 В!)
- Если вы выполняете лабораторную работу B, убедитесь, что выход источника питания включен. У некоторых источников питания есть кнопка, которая позволяет включать или отключать их выход.
- Если ни один из вышеперечисленных шагов не помог, возможно, ваш светодиод неисправен. Отложите его и сообщите об этом своему лаборанту.
- Проверьте правильность полярности светодиода. Светодиод загорается только тогда, когда ток течет от его положительного вывода к его отрицательному выводу.
- Светодиод становится очень ярким, а затем внезапно гаснет
- Возможно, ваш потенциометр был повернут неправильно, когда вы начали. Это может привести к тому, что через светодиод будет протекать очень сильный ток, который повредил его. Не волнуйтесь, светодиоды не так уж и дороги! Отложите это, сообщите об этом своему инструктору лаборатории и считайте это опытом обучения. Убедитесь, что напряжение на светодиоде показывает ноль вольт, когда потенциометр находится в исходном положении.
Цвет светодиода | Прямое напряжение (В) |
Инфракрасный | 1.09 |
Красный | 1,80 |
Оранжевый | 1,84 |
Желтый | 1,87 |
Желто-зеленый | 1,88 |
Зеленый | 2,36 |
Синий | 2,65 |
Белый | 2,66 |
1N914 | 0,62 |
Наряду с обычными цветами светодиодов я также тестировал инфракрасные и белые светодиоды, а также обычный слабосигнальный диод 1N914.Обратите внимание на то, что прямое напряжение для нормального диода намного меньше, чем для светодиода.
Проверка диода с помощью «метода потенциометра» не так интересна визуально, как проверка светодиодов.Как мы исследовали в предыдущей лабораторной работе, белые светодиоды на самом деле являются синими светодиодами с желтым люминофором. Тот факт, что его прямое напряжение очень похоже на напряжение синего светодиода, говорит нам о том, что именно этот белый светодиод был сделан таким образом.
Помните, как работают люминофорные светодиоды (посередине)? Белый светодиод с люминофором содержит синий светодиод внизу.Вот таблица общих цветов светодиодов и их (приблизительных) длин волн [2]:
Цвет | Длина волны (нм) |
Красный | ~ 670 |
Оранжевый | ~ 610 |
Желтый | ~ 580 |
Желто-зеленый | ~ 560 |
Зеленый | ~ 540 |
Синий | ~ 470 |
Вы заметили, как светодиоды с большей длиной волны имеют более низкое прямое напряжение?
Вот удобная формула для определения энергии фотона определенной длины волны [3]:
Другими словами:
Обратите внимание, как энергия увеличивается с уменьшением длины волны.
Помещая это в таблицу выше, мы имеем:
Цвет | Длина волны (нм) | Энергия фотона (эВ) |
Красный | ~ 670 | ~ 1,9 |
Оранжевый | ~ 610 | ~ 2,0 |
Желтый | ~ 580 | ~ 2,1 |
Желто-зеленый | ~ 560 | ~ 2,2 |
Зеленый | ~ 540 | ~ 2.3 |
Синий | ~ 470 | ~ 2,6 |
Это говорит нам, сколько энергии электрон должен потерять, чтобы произвести фотон данной длины волны. Обратите внимание на то, что единицы измерения – электрон-вольт (эВ), то есть заряд электрона, умноженный на 1 вольт. У вас может возникнуть соблазн сравнить эти значения с измеренными вами прямыми напряжениями, но они не совсем сопоставимы. Из-за некоторых других эффектов прямое напряжение светодиода, умноженное на заряд электрона, на самом деле меньше энергии фотона! Однако они должны быть по крайней мере пропорциональны измеренным вами значениям [4].
Если у вас есть спектроскоп или спектрометр, вы действительно можете измерить длину волны ваших светодиодов! Я использовал спектроскоп Eisco PH 0100QA (не связанный с ними), недорогой и относительно точный. Обычно вы можете найти их за несколько долларов на многих веб-сайтах, посвященных физике или химии.
Мой спектроскоп. Вы смотрите через маленький конец и указываете большим концом на источник света.Для спектроскопа Eisco вы смотрите в окуляр и наводите трубку так, чтобы свет, который вы хотите измерить, проходил через щель на другом конце.Вы должны увидеть яркое пятно в правой части поля зрения, где есть числовая шкала. Пиковая длина волны – это самая яркая точка пятна. Эти спектроскопы обычно лучше всего работают в слегка затемненной (не полностью темной) комнате, где света достаточно, чтобы видеть числа.
Красный светодиод, если смотреть через спектроскоп. Справа, прямо под числовой шкалой, вы можете видеть, что самое яркое пятно находится где-то между отметками 6 и 6,5, то есть около 620-630 нм, то же самое с зеленым светодиодом.Его самое яркое пятно составляет около 530–540 нм, а яркое пятно синего светодиода – около 460–470 нм.Используя свой спектроскоп, я измерил следующие длины волн своих светодиодов:
Цвет | Длина волны (нм) |
Инфракрасный * | 940 |
Красный | 630 |
Оранжевый | 600 |
Желтый | 585 |
Желто-зеленый | 560 |
Зеленый | 530 |
Синий | 465 |
* Я получил этот таблицы, так что у нас есть основа для сравнения, поскольку инфракрасное излучение невидимо невооруженным глазом, а спектроскоп в любом случае не работает так высоко.
Когда вы связываете длину волны с прямым напряжением светодиода, вы получаете этот красивый график:
Я также добавил линию (красную), чтобы показать, какой должна быть рассчитанная ширина запрещенной зоны светодиода. Обратите внимание, как измеренное мной прямое напряжение постоянно ниже. Скорее всего, это могло быть из-за того, что мой спектроскоп плохо откалиброван. Это также может указывать на то, что что-то помимо электрической потенциальной энергии может вносить вклад в энергию фотонов, но для уверенности мне понадобятся более точные приборы.Длина волны (нм) | Прямое напряжение (В) |
940 | 1.09 |
630 | 1,80 |
600 | 1,84 |
585 | 1,87 |
560 | 1,88 |
530 | 2,36 | 465 | 2,65 | 465 | 2,65 |
В отличие от лазеров, светодиоды не очень точны. Их длины волн могут немного меняться в зависимости от температуры и силы тока (что, вероятно, просто нагревает светодиод).Это связано с тем, что более высокие температуры приводят к сужению запрещенной зоны светодиода, уменьшая энергию излучаемых фотонов [5].
Пробовали этот эксперимент? Прокомментируйте ниже свои наблюдения!
- https://en.wikipedia.org/wiki/Light-emitting_diode_physics; http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/led.html
- https://en.wikipedia.org/wiki/Color
- http://faculty.sites.uci.edu/ chem1l / files / 2013/11 / RDGLED.pdf; https://en.wikipedia.org/wiki/Photon_energy
- https: // www.spiedigitallibrary.org/conference-proceedings-of-spie/11143/111432S/Is-a-glowing-LED-meaningful-to-determine-the-Planks-constant/10.1117/12.2508193.full?webSyncID=9a0ce46e-9e6-e-c7 9dab-6a0cbad05932 и sessionGUID = 9ad883c9-d902-bc99-93ce-d268bead49a2; http://electron6.phys.utk.edu/phys250/Laboratories/Light%20emitting%20diodes.htm
- https://en.wikipedia.org/wiki/Band_gap
Поделитесь тем, что вы узнали
Текущий ограничивающий резистор для светодиода и нагрузки
Сегодня мой сын научился использовать светодиод для батареи 3В.Как мы знаем, светодиоды имеют напряжение около 1,8 В, как наиболее правильный свет, а не тепло, а потребляемая мощность составляет примерно от 10 мА до 20 мА. Как использовать его с источником питания напряжением 3 В или более.
Резистор понижения тока или напряжения
Лучший способ, настолько простой и дешевый – это резистор понижения напряжения. Он подходит для более низкой токовой нагрузки. И текущая стабильная схема использования. Например, светодиоды, фонарики, реле и прочее.
Он измеряет напряжение двух АА 1.Аккумулятор 5V в серии
Он использует макетную плату и аккумуляторный отсек. Тогда он сможет прочитать про 3В.
Затем он помещает 3-миллиметровый светодиод на клемму 3-вольтовой батареи и измеряет напряжение, около 2,7 вольт
Светодиод получает слишком большой ток
Мы не должны использовать высокое напряжение, это может убить светодиод.
На изображении напряжение на батарее 3В. Затем светодиод горит ярко, а температура слишком высокая.
Использование резистора ограничения тока
В настоящее время на светодиодах было напряжение выше, чем это было бы невыносимо.Нам нужно снизить напряжение. До уровня примерно 1,8 В.
Какой у них популярный способ уменьшить ток? Срабатывает ограничивающий резистор тока. Мы будем использовать его в последовательной цепи со светодиодом.
Сколько сопротивление-R1?
На принципиальной схеме они представляют собой последовательную цепь.
Сопротивление R1 можно найти, используя треугольник закона Ома.
R = V / I
Нам нужно сопротивление (R). Нам нужно заранее знать напряжение (В) и ток (I).
1. Теперь мы знаем ток. (IR1)
По принципу схемы
Ток, протекающий через все устройства, одинаков.
IR1 = ILED
Когда светодиод использует ток примерно 20 мА.
Значит, ток тоже 20 мА.
2. Напряжение резистора (VR1) – это то, что нужно искать!
Когда резистор и светодиод включены последовательно. Затем параллельно или поперек батареи 3 В.
Таким образом, VR1 в сочетании с VLED – напряжение светодиода – равно батарее 3V.
Когда мы знаем, что напряжение светодиода 1,8 В, значит, напряжение резистора равно?
= 3 В – 1,8 В
= 1,2 В
Следовательно:
Сопротивление R1 = 1,2 В / 2 мА
= 60 Ом
Но это значение можно купить во всех магазинах.
Итак, мы используем 56 Ом лучше .
Мы можем резюмировать простую формулу:
R1 = (Vin-VLED) / ILED. или
R1 = (Vin – Vload) / Iload
Смотрите на блок-схему. Ясно лучше.
Какая мощность резистора ограничения тока
Мой ребенок спросил, на сколько нам следует использовать размер резистора?
Из закона Ома: P = V x I
V = напряжение резистора = 1,2 В
I = ILED = 20 мА = 0,02 A
P = 1,2 В x 0,02 A
= 0,024 Вт
Итак, мы можем использовать 0,25 Резистор W.
Затем он использует ElectroDroid на мобильном телефоне, чтобы найти цветовой код резистора.
Затем нарисуйте и раскрасьте его на ноутбуке как Рисунок 5
и позже мы вставляем резистор на 56 Ом в макетную плату и снова измеряем напряжение на светодиоде.Это снижает напряжение до 1,8 В, и светодиод работает нормально.
Как преобразовать напряжение 12 В в реле 6 В
Я хотел бы показать вам еще один пример. Предположим, вам нужно использовать реле на 6 В.
Это реле 6В 80 Ом, однополюсное реле.
Но нужно использовать с аккумулятором 12 В. Это так нехорошо.
т.к. использует большой ток. Так как сопротивление катушки составляет 80 Ом. При использовании аккумулятора 12 В. Реле имеет слишком много токов, протекающих через катушку. Это около 0,15 А (150 мА). От
I = 12 В / 80 Ом
= 0.15A
Аккумулятор быстро разряжен.
И главное! Катушка реле слишком горячая.
У нас есть много способов снизить напряжение. Но использование резистора – недорогой способ.
По схеме аналогична указанной выше. Мы используем катушку реле вместо светодиода.
С помощью резистора уменьшите напряжение на реле.
Диод-D1 защищает другие части от импульса высокого напряжения, который генерируется в катушке реле, когда реле выключено.
Нахождение резистора-R1
Так как резистор-R1 = (Vin – Vload) / Iload
Vin = батарея 12 В
Vload = напряжение катушки реле = 6 В
Iload – это ток, протекающий через катушку реле.Но сейчас мы этого не знаем. Поскольку он показывает сопротивление катушки, 80 Ом.
По закону сопротивления
I = V / R
V = 6 В, R = 80 Ом
R = 6/80
= 0,075 A или 75 мА.
Итак, Iload составляет 0,075A
Снова введите его в формулу выше.
R1 = (12В – 6В) / 0,075А
= 80 Ом А вот такого сопротивления в обычном магазине не найти.
Итак, мы должны использовать 82 Ом.
Далее нам нужно использовать резистор подходящей мощности.
P = V x I
V = 6V
I = ток реле = 0.075A
Значит мощность резистора.
= 6 В x 0,075 А
= 0,45 Вт
Мы можем использовать резистор 82 Ом 0,5 Вт .
Примечание: Сейчас мой сын плохо разбирается в электронике. Но ему нравилось играть с электроникой.
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
LED Vs. Низковольтные ландшафтные светильники | Home Guides
По мере развития технологий выбор ландшафтного освещения становится все более разнообразным, например, выбор между различными приборами, типами ламп и источниками питания.Два распространенных варианта – это светодиодные (светоизлучающие диоды) системы и низковольтное освещение. Обе эти системы освещения обеспечивают достаточный свет вдоль садовых дорожек с помощью приспособлений различной формы, но они имеют ряд различных преимуществ и недостатков, основанных на их общей конструкции.
Преимущества светодиодного освещения
Основное преимущество светодиодной технологии – долговечные лампы. Изначально разработанные как электронные компоненты, светодиоды потребляют небольшое количество электроэнергии по сравнению с традиционными лампами; они живут дольше, поскольку не переносят постоянных скачков напряжения, как другие типы ламп.Светодиоды также доступны в виде солнечной или проводной сборки. Используя солнечную энергию, ваши фонари не нуждаются в соединительных проводах для питания. Однако, если ваш регион подвержен сильной облачности, проводные светодиодные системы являются разумной альтернативой, тем более, что небольшой трансформатор не увеличивает стоимость покупки по сравнению с другими системами освещения.
Преимущества низковольтного освещения
Низковольтное освещение использует понижающий трансформатор, чтобы изменить напряжение питания 120 В в вашем доме на 12 В для освещения; такое преобразование мощности делает эту систему освещения безопасной в установке и обслуживании, поскольку уровень напряжения значительно ниже, чем в стандартной электрической розетке.Обычно это недорогой вариант освещения, для этого требуется всего лишь рыть участок во дворе, чтобы спрятать провода. Поскольку провода не являются высоковольтными, вы просто прячете их под землей, в основном из эстетических соображений. Если вам нужно переместить освещение для перепланировки ландшафта, провода легко поднимутся из почвы для быстрой реорганизации.
Недостатки светодиодных фонарей
Хотя они служат дольше, чем лампы конкурентов, светодиодные фонари со временем теряют свои характеристики и стоят дороже.Специальное покрытие на лампах разрушается и изменяет как яркость, так и тип цвета, например, мягкий желтый или нежелательный бело-голубой оттенок. Кроме того, если вам нужны яркие светодиодные фонари, они, как правило, имеют неприглядный цветовой оттенок, поскольку этот цветовой спектр дает наиболее видимый свет. Яркие светодиоды также невозможны в светильниках на солнечной энергии; накопленная световая энергия не может обеспечить такую же выходную мощность, как проводное освещение.
Недостатки низковольтного света
Низковольтный свет имеет пониженную яркость, независимо от того, питается ли он от солнечной или прямой электроэнергии; Безопасный источник питания 12 В не может создавать яркие прожекторы, которые обычно подключаются к стандартной электрической розетке.