Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Неполярные электролитические конденсаторы: отличия от полярных

Неполярный конденсатор является распространенным элементом многих радиоэлектронных схем. Специалист, работающий в этой области, должен знать основные конструктивные и эксплуатационные особенности этих устройств, уметь их правильно монтировать и тестировать.

Внешний вид неполярных конденсаторов

Внешний вид неполярных конденсаторов

Определение неполярных конденсаторов

Данные устройства представляют собой пассивные элементы, способные накапливать и хранить электрический заряд. Их отличительной особенностью является сохранение корректной работы при любом порядке подключения выводов в цепь. Это объясняется отсутствием серьезных различий в характеристиках сред, образующихся с двух сторон границы обкладок и диэлектрика.

В чем отличие полярного и неполярного конденсатора

Полярные конденсаторы имеют пару электродов: плюсовой и минусовой. Чтобы устройство могло функционировать, при его подсоединении в электроцепь необходимо соблюдение полярности. В противном случае элемент быстро придет в негодность или даже взорвется. Электролитические накопители этого типа имеют также черты полупроводникового элемента.

От неполярных эти устройства отличаются наличием существенной разницы физико-химических свойств между средами с двух сторон раздела, которые и создают полярность. В изготовлении обоих видов устройств применяются такие токопроводящие материалы, как алюминий и тантал.

Алюминиевые электролиты

Неполярный электролитический конденсатор с алюминиевыми обкладками отличается от других изделий довольно высоким показателем индуктивности. Она образуется вследствие скручивания обкладочных заготовок для более удобной установки в корпус-цилиндр. Несмотря на нецелесообразность индуктивных явлений в ряде случаев, изделия из алюминия пользуются популярностью, благодаря невысокой цене и доступности. Изготавливаются они в smd форме для монтажа на поверхность печатной плиты.

Главная сфера их применения – нивелирование пульсаций в цепях, где выпрямляется переменный ток. Также с помощью этих устройств пульсирующий электроток разделяется на постоянную и переменную компоненты (это применяется в устройствах, проигрывающих звукозаписи).

Важно! При выборе конденсатора желательно брать образец с меньшим значением ESR (эквивалентного последовательного сопротивления). Особенно это критично для систем, требующих фильтрации пульсаций с высокими частотами (например, блок питания ЭВМ).

Конденсаторы с электролитом из алюминия

Конденсаторы с электролитом из алюминия

Электролиты на основе тантала

Этот материал дает возможность создания высокоемких изделий, сохраняющих это свойство при значительных показателях рабочего напряжения. В отличие от предыдущего типа, они почти не имеют индуктивности, что обеспечивает им большую широту сферы применения. Изделия малогабаритны, работают стабильно, служат долго. Выпускаются в двух вариантах исполнения корпуса, заточенных под разные типы монтажа. Smd-варианты предназначены для размещения на поверхности платы. Они обладают высокой емкостью при миниатюрных размерах. Монтаж таких элементов осуществляется роботами. Есть изделия, снабженные длинными выводами, продеваемыми в дырочки на платах.

Изделия из полимеров

В таких устройствах вместо металлических обкладок применяются полимерные материалы, проводящие ток. В остальном по особенностям строения они идентичны ранее описанным категориям.

Особенности конструкции и включения НЭК

Отличительная особенность таких изделий – отсутствие постоянного смещения масс электронов на обкладочных элементах. Это достигается благодаря тому, что детали из алюминия подвергаются окислению с двух сторон диэлектрика.

Конструкция

Из-за особенностей строения рассматриваемые устройства можно сравнить с парой встречно соединенных полярных электролитических элементов, не имеющих заряда на обкладочных поверхностях. Поэтому, когда такой конденсатор подсоединяется в цепь, потребности в жесткой привязке к потенциалам не возникает. Таким образом, эти изделия способны функционировать на разных участках электроцепи и поддерживать нужные емкостные показатели.

Особенности включения

Если при подключении полярного устройства перепутать местами плюсовой и минусовой выводы, оно не сможет заряжаться и разряжаться. Поэтому нормально работать такой элемент не будет. Неполярные электролитические устройства способны работать при подключении в разные схемы без внимания к полярности. Это связано с их строением – у них отсутствуют анод и катод (пластинки с отрицательным и положительным зарядами).

Помимо электролитических, есть другая разновидность неполярных устройств. Их конструкция включает в себя пару обкладочных поверхностей (без поляризации) с вмонтированным промеж них диэлектриком. В электроцепях такие детали ставятся в роли малоемких элементов с функциями разделения тока на компоненты, блокировки и задания времени.

Как сделать неполярный конденсатор из полярного

Порой случаются ситуации, когда для усилителя или иного прибора нужно применить неполярный конденсаторный элемент, но под рукой присутствуют исключительно полярные. Заменить неполяризованный конденсатор можно парой изделий с полюсами с емкостью, вдвое превышающей ту, которая требуется в схеме. Они соединяются друг с другом встречно-последовательно: идентичные (положительные или отрицательные) выводы соединяются между собой, другие два запаиваются в схему.

Схожий принцип имеет строение НЭК с окисями на обеих обкладках. За счет этого такие продукты имеют более крупные габариты, чем полярные изделия с тем же параметром электролитической емкости. Базируясь на этом же механизме, производят НЭК с опцией пуска, заточенные под эксплуатацию в цепях переменного тока.

Соединение неполярных устройств с целью получения полярного

Соединение неполярных устройств с целью получения полярного

Как проверить неполярный конденсатор мультиметром

Чтобы провести процедуру тестирования, аппарат потребуется установить в режим омметра. Его основное назначение – измерить параметр сопротивления. При работе с данной группой элементов проверяется сопротивление утечки. Рабочие щупы подсоединяются к выводам конденсатора, подвергающегося проверке. Теперь нужно смотреть на показания прибора. Если на экране отображается единица, значение сопротивления превышает 2 мегаом. Это считается нормальным показателем. Если сопротивление ниже, имеет место значительная утечка.

Важно! Нужно избегать держания обеими руками выводов тестируемого устройства и щупов измерительного прибора. Это приведет к получению некорректных результатов измерений.

Проверка с помощью мультиметра

Проверка с помощью мультиметра

Маркировка

Обозначение емкости на таких изделиях состоит из трех цифр. Последняя из них показывает число нулей, другие две – значение параметра в пикофарадах. Например, если на устройстве имеются цифры 123, емкость можно посчитать так: 12 пФ и 3 нуля – 12 000 пФ, то есть 0,012 мкФ. Маркировка малоемких элементов (меньше 10 пФ) отличается использованием латинской литеры R в качестве символа, разделяющего целую и дробную части числа.

Неполярные керамические изделия для smd-монтажа маркировкой не снабжаются вовсе. Емкость таких компонентов может находиться в диапазоне от 1 пФ до 10 мкФ. Танталовые и алюминиевые элементы имеют цифровую или цифробуквенную кодировку. Они различаются формой корпуса: у первых она прямоугольная, у вторых – цилиндрическая.

Будучи менее требовательными к условиям подключения, чем поляризованные изделия, неполярные элементы широко используются при монтаже электросхем. Они способны правильно работать в любом месте электроцепи и давать нужное значение емкости.

Видео

amperof.ru

Как определить полярность конденсатора и не перепутать?

Все конденсаторы имеют высокий показатель удельной емкости. Это объяснятся применением оксидной пленки в качестве диэлектрика, который располагается между обкладками. Этот слой появляется на поверхности металла – AL, Ta, Nb. Она характеризуется большой электрической прочностью, а также своими вентильными свойствами. Ее толщина колеблется от 0,01 до 1мкм.

Если создается напряжение в 100 вольт, создается напряженность на этом слое в 107В на см. Таким образом приближается к максимальному пределу своей прочность, исходя из теории ионной кристаллов.

В статье разобраны все аспекты как определить полярность конденсаторы и что такое полярность конденсаторов. В качестве дополнения есть ролик и скачиваемый файл на эту тему.

Полярность конденсаторов

Полярность конденсаторов.

Параметры, которыми характеризуется конденсаторы

Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности. Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего. Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.

Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты. Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры. ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.

Что такое полярность конденсатора и как ее определить? Маркировка конденсаторов.

Это приведет к нагреву конденсатора. Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру. В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR. Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома. Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора. Поэтому он быстро выйдет из строя.

Что такое полярность конденсатора и как ее определить?

Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.

Параллельное соединение

Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.

Материал в тему: все о переменном конденсаторе.

На материнских платах в цепи низковольтного источника напряжения, питающего ядро процессора, используется несколько однотипных конденсаторов, соединенных параллельно. Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов? Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.

Соединения конденсаторов

Соединения конденсаторов.

Что будет если перепутать полярность

Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут  корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

Как определить полярность электролитического конденсатора

Если у вас оказался оксидная емкость со стертой маркировкой, то прежде чем задействовать ее в какой-либо радиолюбительской схеме, нужно обязательно определить полярность, т.к эти радио компоненты нельзя включать, не соблюдая полярность. Иначе из-за огромного тока утечки конденсатор не будет работать правильно Итак, чтобы узнать полярность нужно всего лишь заряжать емкость низким током, сравнимым с этими самыми утечками. При их появлении их, этот компонент, не сумеет зарядиться до напряжения, подаваемого от источника питания.

Что такое полярность конденсатора и как ее определить?

Если его подсоединить в правильной полярности, подавая плюс на положительный, а минус на отрицательный вывод, то конденсатор медленно зарядится. При обратной полярности, он зарядится до меньшего уровня- наполовину или даже ниже.

В последнем случае напряжение будет зависеть от соотношения зарядного тока, определяемого сопротивлением, и тока утечки. Но в любом случае, оно будет заметно ниже. Аналогичным способом определить полярность можно и при помощи миллиамперметра, включенного в разрыв цепи. Если он будет показывать наличие повышенного тока утечки, то конденсатор подключен неправильно.

Как определить полярность электролитического конденсатора

Как определить полярность электролитического конденсатора.

Полярные и неполярные конденсаторы – в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Интересный материал для ознакомления: что такое вариасторы.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

олярные и неполярные конденсаторы

Полярные и неполярные конденсаторы.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Что такое полярность конденсатора и как ее определить?

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

Полярность конденсатора

Полярность конденсатора.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

полярный и неполярный конденсатор

Полярный и неполярный конденсатор

Полярные (электролитические) конденсаторы

Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.

Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны. На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.

полярный и неполярный конденсатор

полярный и неполярный конденсатор

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с большим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

В данной статье были рассмотрены основные особенности трансформаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике Электрические конденсаторы В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.nauchebe.net

www.masterkit.ru

www.radiostorage.net

www.texnic.ru

www.radioelementy.ru

electroinfo.net

Полярный конденсатор в цепи переменного тока, неполярные электролиты

Полярные и неполярные конденсаторы — в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) — просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Смотрите также: Конденсаторы в электронных схемах

Андрей Повный

Конденсаторы электролитические неполярные

Конденсаторы электролитические неполярные
Диапазон емкостей1 — 220 мкФ
Диапазон напряжений16 — 160 В
Допустимое отклонение емкости±20%
Ток утечки 4 мкА
Тангенс угла потерь, tgδ0,12 — 0,24
Выработка2000 ч
Рабочая температура-40°C – +85°C
СерияЦенаСерияЦена
1мкФ 50В 85°C $0,02 + – 22мкФ 16В 85°Cпо запросу + –
1мкФ 100В 85°C $0,02 + – 22мкФ 25В 85°Cпо запросу + –
2,2мкФ 50В 85°C $0,02 + – 22мкФ 100В 85°C $0,12 + –
3,3мкФ 50В 85°C $0,02 + – 33мкФ 16В 85°C $0,03 + –
4,7мкФ 35В 85°C $0,02 + –100мкФ 25В 85°C $0,05 + –
4,7мкФ 50В 85°C $0,03 + –100мкФ 35В 85°C $0,08 + –
10мкФ 16В 85°C $0,02 + –100мкФ 50В 105°C $0,09 + –
10мкФ 35В 85°C $0,03 + –220мкФ 16В 85°C $0,08 + –
10мкФ 50В 105°C $0,02 + –220мкФ 25В 85°C $0,08 + –
10мкФ 160В 85°C $0,12 + –

Маркировка конденсаторов электролитических радиальных:

220мкФ Номинальная емкость.
25В Номинальное напряжение.
85°C Рабочая температура.

Габаритные и установочные размеры конденсаторов электролитических радиальных:

ЕмкостьРазмеры DxL, мм
16В25В35В50В63В100В160В
1мкФ5×115×11
2,2мкФ5×115×116,3×11
3,3мкФ6,3×116,3×118×11,510×16
4,7мкФ5×115×116,3×116,3×118×11,510×16
10мкФ5×116,3×116,3×118×11,58×11,510×1613×20
22мкФ6,3×118×11,58×11,510×12,510×1612,5×2013×25
33мкФ8×11,58×11,510×12,510×1610×2012,5×2516×25
47мкФ8×11,510×12,510×1610×2012,5×2016×2516×35
100мкФ10×1610×2012,5×2012,5×2516×2516×31,519×35
220мкФ10×2012,5×2012,5×2516×31,516×31,516×35,5
Подробные характеристики неполярных электролитических конденсаторов
Номинальное напряжение16В25В35В50В63В100В160В
Импульсное напряжение20В32В44В63В79В125В200В
Тангенс угла потерь0,170,150,120,120,120,120,15
Коэффициент импеданса
-25°С / +20°С
2222224
Коэффициент импеданса
-40°С / +20°С
654433

Устройство электролитических конденсаторов:

В цилиндрическом алюминиевом корпусе расположены две электродные фольги – электроды, между которыми находится бумага, пропитанная электролитом, диэлетрик (тонкая оксидная пленка) и бумажный разделитель. В неполярных конденсаторах диэлетрик (тонкая оксидная пленка) нанесена на оба электрода для симметрии их электрических параметров.

В нижней части конденсатора размещен резиновый уплотнитель и вывода. Алюминиевый корпус конденсатора покрыт изолирующей оболочкой.

На верхней торцевой части корпуса расположен предохранительный клапан или защитные надсечки (крестообразные, в форме буквы К или Т), которые обеспечивают взрывобезопасность конденсатора при его выходе из строя вследствие перегрева, пробоя или переполюсовки. Суть защитного устройства базируется на возможности выброса накопленного внутри корпуса излишнего давления паров газа электролита. Возрастание внутреннего давления сопровождается выбросом пробки клапана или разрушением корпуса по надсечкам, но без взрыва, разбрасывания обкладок и сепаратора, предотвращая таким образом повреждения соседних элементов схемы.

Емкость электролитического конденсатора обратно пропорциональна минусовой температуре: с понижением температуры вязкость электролита увеличивается, тем самым снижая его проводимость. Повышение температурного режима приводит к уменьшению срока службы конденсатора, поэтому при их установке следует избегать близкого расположения тепловыделяющих компонентов.

Неполярный конденсатор из полярных:

Получить неполярный электролитический конденсатор можно путем последовательного соединения двух одинаковых полярных электролитов полюсами друг к другу — плюс к плюсу или минус к минусу. В этом случае его емкость будет равна половине емкости одного полярного конденсатора, а номинальное напряжение останется неизменным.

Изменение емкости электролитических конденсаторов от температуры и частоты:


  • Типовая зависимость емкости электролитического конденсатора от температуры


  • Типовая зависимость емкости электролитического конденсатора от
    частоты

Монтаж электролитических конденсаторов на плату:

  • Монтаж электролитических конденсаторов осуществляется на печатную плату методом групповой пайки или с помощью паяльника.

    При установке конденсатора нужно обязательно соблюдать классификационные параметры (ёмкость, номинальное напряжение).

    Пространство вокруг конденсатора в радиусе до 3 мм следует оставить свободным для возможного срабатывания защитного клапана, а зазор между конденсатором и печатной платой должен быть минимальным (приблизительно 1 мм).

Рекомендации по монтажу и эксплуатации:

  • Располагайте конденсаторы так, чтобы другие компоненты и проводники находились на расстоянии от вентиляционного отверстия конденсатора.
  • Конденсаторы с жесткими выводами «snap-in» должны плотно, без люфта и зазора устанавливаться на печатную плату.
  • Конденсаторы под винт «screw terminal» монтируются в вертикальном положении выводами вниз или горизонтально с положительным выводом сверху относительно отрицательного.
  • После хранения конденсаторы рекомендуется «тренировать» подачей постоянного напряжения через токоограничивающий резистор сопротивлением примерно 1кОм.
  • Перед установкой конденсаторы следует разрядить, замыкая выводы через резистор сопротивлением 1кОм.

Допустимое расстояние между корпусом конденсатора и стенкой корпуса оборудования:

Диаметр конденсатораЗазор
6,3 – 16 мм> 2 мм
18 – 35 мм> 3 мм
более 40 мм> 5 мм

Пайка электролитических конденсаторов:

Режимы пайки (длительности и температуры на каждой операции) должны соответствовать указаниям в спецификации к конденсатору.

Есть два способа пайки электролитических конденсаторов:

  • Пайка волной – выполняется при температуре до 260°С и не более 10 секунд.
  • Групповая пайка оплавлением пасты в печи с конвекционным или инфракрасным нагревом.

  • Параметры режима групповой пайки оплавлением пасты

  • Параметры режима групповой пайки оплавлением пасты бессвинцовыми припоями

Меры предосторожности:

  • При появлении «дыма» с предохранительного клапана электролитического конденсатора следует немедленно обесточить электрическую цепь.
  • Не приближайте лицо к предохранительному клапану электролитического конденсатора. Газы, выбрасываемые из конденсатора, могут достигать температуры свыше 100°C.
  • Не препятствуйте работе вентиляционных систем, соблюдайте необходимый зазор между корпусом конденсатора и стенкой корпуса оборудования.
  • Не используйте конденсаторы в системах с частыми внезапными зарядами и разрядами, т.к. конденсаторы могут быть повреждены.
  • Подаваемое на конденсатор напряжение не должно превышать значения номинального напряжения.
  • Используйте конденсатор при допустимом значении тока пульсации, т.к. превышение допустимого тока пульсации может вызвать перегрев, уменьшение емкости или повреждение конденсатора.
  • Используйте конденсаторы при допустимом диапазоне рабочих температур.
  • Не применяйте чрезмерную силу воздействия на терминалы и выводы конденсаторов, чтобы исключить повреждение и нарушение внутренних элементов.
  • Длительное хранение конденсаторов допускается только в сухих прохладных помещениях.

kabel-house.ru

Разновидности конденсаторов по типу диэлектрика

Электролитические конденсаторы

В радиоэлектронике используются огромное количество всевозможных конденсаторов. Все они различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск.

Но это лишь основные параметры. Ещё одним немаловажным параметрам может служить то, из какого диэлектрика состоит конденсатор. Рассмотрим более подробно, какие бывают конденсаторы по типу диэлектрика.

В радиоэлектронике применяются полярные и неполярные конденсаторы. Отличие полярных конденсаторов от неполярных заключается в том, что полярные включаются в электронную схему в строгом соответствии с указанной полярностью. К полярным конденсаторам относятся так называемые электролитические конденсаторы. Наиболее распространены радиальные алюминиевые электролитические конденсаторы. В отечественной маркировке они имеют обозначение К50-35.

Радиальный электролитический конденсатор
Радиальный электролитический конденсатор

У аксиальных конденсаторов проволочные выводы размещены по бокам цилиндрического корпуса, в отличие от радиальных конденсаторов, выводы которых размещаются с одной стороны цилиндрического корпуса. Аксиальными электролитами являются конденсаторы с маркировкой К50-29 К50-12, К50-15 и К50-24.

Аксиальные электролитические конденсаторы
Аксиальные электролитические конденсаторы серии К50-29 и импортный фирмы PHILIPS

В обиходе радиолюбители называют электролитические конденсаторы “электролитами”.

Обнаружить их можно в блоках питания радиоэлектронной аппаратуры. В основном они служат для фильтрации и сглаживания выпрямленного напряжения. Также электролитические конденсаторы активно применяются в усилителях звуковой частоты (усилках) для разделения постоянной и переменной составляющей тока.

Электролитические конденсаторы обладают довольно значительной ёмкостью. В основном, значения номинальной ёмкости простираются от 0,1 микрофарады (0,1 мкФ) до 100.000 микрофарад (100000 мкФ).

Номинальное рабочее напряжение электролитических конденсаторов может быть в диапазоне от 10 вольт до нескольких сотен вольт (100 – 500 вольт). Конечно, не исключено, что есть и другие образцы, с другой ёмкостью и рабочим напряжением, но на практике встречаются они довольно редко.

Стоит отметить, что номинальная ёмкость электролитических конденсаторов уменьшается по мере роста срока их эксплуатации.

Поэтому, для сборки самодельных электронных устройств, стоит применять либо новые купленные, либо те конденсаторы, которые эксплуатировались в электроаппаратуре небольшой срок. В противном случае, можно столкнуться с ситуацией неработоспособности самодельного устройства по причине неисправности электролитического конденсатора. Наиболее распространённый дефект “старых” электролитов – потеря ёмкости и повышенная утечка.

Перед повторным применением стоит тщательно проверить конденсатор, ранее бывший в употреблении.

Опытные радиомеханики могут многое рассказать про качество электролитических конденсаторов. В пору широкого распространения советских цветных телевизоров в ходу была очень распространённая неисправность телевизоров по причине некачественных электролитов. Порой доходило до того, что телемастер заменял практически все электролитические конденсаторы в схеме телевизора, после чего аппарат исправно работал долгие годы.

В последнее время всё большее распространение получают компактные электролитические конденсаторы для поверхностного монтажа. Их габариты значительно меньше, чем классических выводных.

Электролитические SMD конденсаторы
Конденсаторы электролитические алюминиевые для SMD монтажа на плате CD – привода

Также существуют миниатюрные танталовые конденсаторы. Они имеют довольно малые размеры и предназначены для SMD монтажа. Обнаружить их легко на печатных платах миниатюрных МР3 плееров, мобильных телефонов, материнских платах ноутбуков и компьютеров.

Танталовые конденсаторы
Танталовые электролитические конденсаторы на печатной плате MP-3 плеера

Несмотря на свои маленькие размеры, танталовые конденсаторы имеют значительную ёмкость. Они аналогичны алюминиевым электролитическим конденсаторам для поверхностного монтажа, но имеют значительно меньшие размеры.

Танталовый smd конденсатор
Танталовый SMD конденсатор ёмкостью 47 мкФ и рабочее напряжение 6 вольт.
Печатная плата компьютерного CD-привода

В основном в компактной аппаратуре встречаются танталовые конденсаторы на 6,3 мкФ, 10 мкФ, 22 мкФ, 47 мкФ, 100 мкФ, 470 мкФ и на рабочее напряжение 10 -16 вольт. Столь небольшое рабочее напряжение связано с тем, что напряжение источника питания в малогабаритной электронике редко превышает порог в 5 – 10 вольт. Конечно, есть и более высоковольтные экземпляры.

Кроме танталовых конденсаторов в миниатюрной электронике используются и полимерные для поверхностного монтажа. Такие конденсаторы изготавливаются с применением твёрдого полимера. Он выполняет роль отрицательной обкладки – катода. Плюсовым выводом – анодом – в полимерном конденсаторе служит алюминиевая фольга. Такие конденсаторы хорошо подавляют электрические шумы и пульсации, обладают высокой температурной стабильностью.

На танталовых конденсаторах указывается полярность, которую необходимо учитывать при их использовании в самодельных конструкциях.

Кроме танталовых конденсаторов в SMD корпусах есть и выводные с танталовым диэлектриком. Их форма напоминает каплю. Отрицательный вывод маркируется полосой на корпусе.

Такие конденсаторы также обладают всеми преимуществами, что и танталовые для поверхностного монтажа, а именно низким током утечки, высокой температурной и частотной стабильностью, более высоким сроком эксплуатации по сравнению с обычными конденсаторами. Активно применяются в телекоммуникационном оборудовании и компьютерной технике.

Выводные танталовые конденсаторы
Выводной танталовый конденсатор ёмкостью 10 микрофарад и рабочее напряжение 16 вольт

Среди электролитических конденсаторов есть и неполярные. Выглядят они, так же как и обычные электролитические конденсаторы, но для них не важна полярность приложенного напряжения. Они применяются в схемах с переменным или пульсирующим током, где использование полярных конденсаторов невозможно. К неполярным относятся конденсаторы с маркировкой К50-6. Отличить полярный конденсатор от неполярного можно, например, по отсутствию маркировки полярности на его корпусе.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Неполярный электролитический конденсатор маркировка – Морской флот

1. Маркировка тремя цифрами.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0.047 нФ
68068 пФ0.068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ0.033 мкФ
473 47000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировказначениемаркировказначениемаркировказначениемаркировказначение
A1.0J2.2S4.7a2.5
B1.1K2.4T5.1b3.5
C1.2L2.7U5.6d4.0
D1.3M3.0V6.2e4.5
E1.5N3.3W6.8f5.0
F1.6P3.6X7.5m6.0
G1.8Q3.9Y8.2n7.0
H2.0R4.3Z9.1t8.0

5. Планарные электролитические конденсаторы.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

букваeGJACDEVH (T для танталовых)
напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

КодЕмкость [мкФ]
R10,1
R470,47
11,0
4R74,7
1010
100100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

КодЕмкость
p100,1 пФ
Ip51,5 пФ
332p332 пФ
1НО или 1nО1,0 нФ
15Н или 15n15 нФ
33h3 или 33n233,2 нФ
590H или 590n590 нФ
m150,15мкФ
1m51,5 мкФ
33m233,2 мкФ
330m330 мкФ
1mO1 мФ или 1000 мкФ
10m10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Количество источников, использованных в этой статье: 23. Вы найдете их список внизу страницы.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Маркировка конденсаторов обладает большим разнообразием по сравнению с маркировкой резисторов. Довольно сложно увидеть маркировку маленьких конденсаторов, потому что площадь поверхности их корпусов очень незначительная. В этой статье рассказывается, как читать маркировку практически всех типов современных конденсаторов, произведенных за рубежом. Возможно, на вашем конденсаторе маркировка будет нанесена в другом порядке (по сравнению с описываемым в этой статье). Более того, на некоторых конденсаторах отсутствуют значения напряжения и допуска – для создания низковольтной цепи вам понадобится только значение емкости.

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Неполярный электролитический конденсатор маркировка

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

Неполярный электролитический конденсатор маркировка

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Неполярный электролитический конденсатор маркировка

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Неполярный электролитический конденсатор маркировка

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

Неполярный электролитический конденсатор маркировка

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Неполярный электролитический конденсатор маркировка

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Неполярный электролитический конденсатор маркировка

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

morflot.su

Свойства электролитического конденсатора. Устройство и особенности.

Устройство и особенности электролитических конденсаторов

Главная особенность электролитических конденсаторов, наверняка, состоит в том, что они по сравнению с остальными обладают большой ёмкостью и довольно небольшими габаритами.

Широко распространённые алюминиевые конденсаторы по сравнению с другими имеют некоторые специфические свойства, которые следует учитывать при их использовании.

За счёт того, что алюминиевые обкладки электролитических конденсаторов скручивают для помещения в цилиндрический корпус, образуется индуктивность. Эта индуктивность во многих случаях нежелательна. Также алюминиевые электролитические конденсаторы обладают так называемым эквивалентным последовательным сопротивлением (ЭПС или на зарубежный манер, ESR). Чем ниже ESR конденсатора, тем он качественнее и более пригоден для работы в цепях, где требуется фильтрация высокочастотных пульсаций. Примером может служить рядовой импульсный блок питания компьютера или адаптер питания ноутбука.

В основном электролитические конденсаторы служат для сглаживания пульсаций тока в цепях выпрямителей переменного тока. Кроме этого они активно используются в звуковоспроизводящей технике для разделения пульсирующего тока (ток звуковой частоты + постоянная составляющая) на постоянную и переменную составляющую тока звуковой частоты, которая подаётся на следующий каскад усиления. Такие конденсаторы называют разделительными.

Алюминиевые электролитические конденсаторы

В практике ремонта можно встретить неисправность, когда разделительный конденсатор “высыхает”, а, следовательно, теряет изначальную ёмкость. При этом он плохо разделяет ток звуковой частоты от пульсирующего и не пропускает звуковой сигнал на последующий каскад усиления. Амплитуда звукового сигнала в соответствующем каскаде усиления резко снижается либо вносятся существенные искажения. Поэтому при ремонте усилителей и прочей звуковоспроизводящей аппаратуры стоит внимательно проверять исправность разделительных электролитических конденсаторов.

В связи с тем, что электролитические конденсаторы имеют полярность, то при работе на их обкладках должно поддерживаться постоянное напряжение. Это является их недостатком. В результате их можно применять в цепях с пульсирующим или постоянным током.

Кроме алюминиевых электролитических конденсаторов в современной электронике легко обнаружить и танталовые. У них нет жидкого электролита, он у них твёрдотельный. Также танталовые конденсаторы имеют достаточно низкое ESR, благодаря чему активно применяются в высокочастотной электронике. Из минусов можно отметить высокую стоимость и низкое номинальное напряжение, обычно не превышающее 75V. Более подробно о танталовых конденсаторах я рассказывал здесь.

Устройство алюминиевого электролитического конденсатора.

Чтобы узнать, как устроены алюминиевые электролитические конденсаторы, давайте распотрошим одного из них. На фото показан разобранный экземпляр ёмкостью 470 мкФ и на номинальное напряжение 400V.

Электролитический конденсатор изнутри

Взял я его из промышленного частотника. Надо сказать, весьма неплохой конденсатор с низким ESR.

Вскрытый алюминиевый электролитический конденсатор

Конденсатор состоит из двух тонких алюминиевых пластин, к которым крепятся выводы. Между алюминиевыми пластинами помещается бумага. Она служит диэлектриком. Но это ещё не всё. В данном случае получается обычный бумажный конденсатор с малой ёмкостью.

Устройство электролитического конденсатора

Для того чтобы получить большую ёмкость и уменьшить размеры готового прибора, бумагу пропитывают электролитом. На фотках можно разглядеть желтоватый электролит на дне алюминиевого стакана.

Далее, пропитанную электролитом бумагу помещают между алюминиевыми обкладками. В результате электрохимических процессов алюминиевая фольга окисляется под действием электролита. На поверхности фольги образуется тонкий слой окисла – оксида алюминия (Al2O3). На вид можно легко определить сторону обкладки с тонким слоем окисла – она темнее.

Алюминиевая обкладка конденсатора со слоем окисла

Оксид алюминия является отличным диэлектриком и обладает свойством односторонней проводимости. Поэтому электролитические конденсаторы полярны и способны работать лишь в цепях с пульсирующим, либо постоянным током.

А что будет, если на электролитический конденсатор подать напряжение обратной полярности?

Если так произойдёт, то начнётся бурная электрохимическая реакция, которая сопровождается сильным нагревом. Электролит моментально вскипает и конденсатор “бабахает”. Именно поэтому при установке такого конденсатора в схему нужно строго соблюдать полярность его включения.

Кроме оксида алюминия (Al2O3), благодаря которому удаётся изготавливать конденсаторы с большой электрической ёмкостью, применяются и другие уловки, чтобы увеличить ёмкость и уменьшить размеры готового изделия. Известно, что ёмкость зависит не только от толщины слоя диэлектрика, но и от площади обкладок. Чтобы её увеличить применяют метод травления, аналогичный тому, что используют в своей практике радиолюбители для изготовления печатных плат. На поверхности алюминиевой обкладки вытравливают канавки. Размеры этих канавок малы и их очень много. За счёт этого активная площадь обкладки увеличивается, а, следовательно, и ёмкость.

Если присмотреться, то на алюминиевой обкладке можно заметить еле заметные полоски, наподобие дорожек на грампластинке. Это и есть те самые канавки.

В неполярных электролитических конденсаторах окисляются обе алюминиевые обкладки. В результате он становиться неполярным.

Особенности применения электролитических конденсаторов.

Нетрудно заметить, что на верхней части цилиндрического корпуса у большинства радиальных электролитических конденсаторов нанесена защитная насечка – клапан.

Электролитические конденсаторы с радиальными выводами

Дело в том, что если на электролит воздействует переменное напряжение, то конденсатор сильно разогревается и жидкий электролит начинает испаряться, давить на стенки корпуса. Из-за этого он может “хлопнуть”. Поэтому на корпусе и наноситься защитный клапан, чтобы под действием избыточного давления он открылся и предотвратил “взрыв” конденсатора, выпустив закипающий электролит наружу.

"Взорвавшийся" электролитический конденсатор
“Взорвавшийся” электролитический конденсатор

Отсюда исходит правило, которое необходимо учитывать при самостоятельном конструировании электроники и ремонте радиоаппаратуры. При диагностике неисправности, а также при первом включении конструируемого или ремонтируемого аппарата, необходимо держаться на расстоянии от электролитических конденсаторов. В случае если при сборке в схеме была допущена ошибка, приводящая к завышению предельного рабочего напряжения конденсатора, либо воздействию на него переменного тока, конденсатор нагреется и “хлопнет”. При этом сработает защитный клапан, и электролит под давлением рванёт наружу. Нельзя допускать, чтобы электролит попадал на кожу и тем более в глаза!

Выход из строя электролитического конденсатора не редкость. По внешнему виду можно сразу определить его неисправность. Вот лишь несколько примеров. Все эти конденсаторы пострадали из-за превышения допустимого напряжения.

Автомобильный усилитель. Как видим, “хлопнула” целая грядка электролитов во входном фильтре. Видимо на усилитель подали 24V вместо положенных 12.

Вздувшиеся конденсаторы на плате автомобильного усилителя

Далее – жертва “сетевой атаки”. В электросети 220V резко подскочило напряжение из-за обледенения вводов. Как результат, полная неработоспособность блока питания ноутбука. Кондик просто испустил пар. Насечка на корпусе вскрылась.

Электролитический конденсатор после превышения допустимого напряжения

Маленькое отступление.

Помнится, в студенческую пору была распространена известная забава. Брался электролитический конденсатор, к его выводам подпаивались проводки и в таком виде конденсатор кратковременно подключался к розетке электроосветительной сети 220 Вольт. Он заряжался, накапливая заряд. Далее, ради “прикола” выводами кондёра касались руки ни в чем не подозревающего человека. Тот, естественно, ничего не подозревает и его дёргает небольшой электрический удар. Так вот, делать это крайне опасно!

Как сейчас помню, когда перед началом практики старший мастер строго запретил данную забаву, аргументировав это тем, что был случай, когда парнишке сильно повредило кисть руки, когда тот решил “зарядить” электролитический конденсатор от розетки 220 В. Конденсатор, не выдержав поданного переменного напряжения, взорвался в его руке!

Электролитический конденсатор может выдержать несколько “экспериментальных” попыток заряда от электросети, но может и хлопнуть в любой момент. Всё зависит как от конструкции конденсатора, так и от приложенного напряжения. Данная информация приведена лишь с целью предупредить о крайней опасности таких экспериментов, которые могут закончиться печально.

При ремонте радиоаппаратуры не стоит забывать о том, что после выключения прибора электролитические конденсаторы некоторое время сохраняют электрический заряд. Перед проведением работ их необходимо разряжать. Особенно это стоит учитывать при ремонте всевозможных импульсных блоков питания и выпрямителей, электролитические конденсаторы в которых имеют значительную ёмкость и рабочее напряжение, достигающее 100 – 400 вольт.

Если нечаянно коснуться его выводов, то можно получить неприятный электрический удар. Иногда после таких случаев можно заметить лёгкий ожог кожного покрова в месте касания электродов. О том, как разрядить конденсатор перед проведением работ или измерений уже упоминалось в статье как проверить конденсатор.

Электролитические конденсаторы в блоке питания
Мощные электролитические конденсаторы ёмкостью 10000 мкФ. в блоке питания усилителя Marantz

При использовании электролитических конденсаторов стоит помнить, что рабочее напряжение на них должно соответствовать 80% от номинального рабочего напряжения. Это правило стоит учитывать, если вы хотите обеспечить долгую и стабильную работу конденсатора. Так, если в схеме на конденсатор будет действовать напряжение в 50 вольт, то его стоит выбирать на рабочее напряжение 63 вольта или более. Если установить конденсатор с меньшим рабочим напряжением, то он скоро выйдет из строя.

Как и у любой другой радиодетали, у электролитического конденсатора есть допустимый диапазон рабочей температуры. На его корпусе обычно указывается верхний порог, например +85 или +105.

Маркировка максимальной рабочей температуры конденсатора

Маркировка максимальной рабочей температуры конденсатора

Для разных моделей конденсаторов диапазон рабочей температуры может простираться от -60 до +850C. Или же от -25 до +1050С. Более конкретно узнать допустимый диапазон температур для конкретного изделия можно из документации на него.

Поскольку в электролитических конденсаторах присутствует жидкий электролит, то он со временем высыхает. При этом теряется его ёмкость. Именно поэтому их не рекомендуется размещать рядом с сильно нагревающимися элементами, например, радиаторами охлаждения или же в плохо вентилируемом корпусе.

Стоит отметить тот факт, что электролиты – это ахиллесова пята любой электроники. По своему опыту скажу, что это одна из самых ненадёжных, некачественных и, при этом, дорогих деталей. Качество во многом зависит от производителя. Но это уже другой разговор.

Кроме электролитических конденсаторов в аппаратуре можно встретить и другой элемент, который обладает куда большей ёмкостью и меньшими габаритами, чем классический электролит. Это – ионистор.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Конденсаторы неполярные электролитические — Купите выгодно ➤ DIP8: характеристики, цены, доставка

Производитель: NICHICON

Код товара: UVP1H010MDD

Конденсатор электролитический, биполярный, THT, 1мкФ, 50ВDC, ±20%