Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Терморезисторы.

Обозначение на схеме, разновидности, применение

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его “потроха”. Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

  • Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

  • Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

Давайте разберёмся, какая между ними разница.

NTC-термисторы.

Своё название NTC-термисторы получили от сокращения NTC –

Negative Temperature Coefficient, или “Отрицательный Коэффициент Сопротивления”. Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.


Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР’а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 – VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить “плавный запуск” электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в “подогретом” состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Далее на фото наглядный пример – сгоревший NTC-термистор 5D-11, который был установлен в зарядном устройстве ИКАР-506. Он ограничивал пусковой ток при включении.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт, называют позисторами. Они же PTC-термисторы (PTC – Positive Temperature Coefficient, “Положительный Коэффициент Сопротивления”).

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Условное обозначение позистора на схеме.

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук “бдзынь”, когда включается телевизор – это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

Далее на фото трёхвыводный позистор СТ-15-3.

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-“таблеток”, которые установлены в одном корпусе. На вид эти “таблетки” абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3 ~ 3,6 кОм, а у другой всего лишь 18 ~ 24 Ом.

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.

Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора – это самовосстанавливающийся предохранитель.

SMD-терморезисторы.

С активным внедрением SMT-монтажа, производители стали выпускать миниатюрные терморезисторы, адаптированные и под него. Размеры их корпуса, как правило, соответствуют стандартным типоразмерам (0402, 0603, 0805, 1206), которые имеют чип резисторы и конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

назначение, сопротивление и характеристики, маркировка, принцип работы, как проверить и подключить

Люди, далекие от радиоэлектроники, смутно представляют назначение и принцип действия терморезистора. Какие функции выполняет этот элемент? Для его он предусмотрен? Как маркируется? О каких тонкостях проверки и подключения необходимо знать? Какие бывают виды, и в чем их особенности? Эти и другие вопросы рассмотрим ниже.

Что такое терморезистор, общие положения

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.

С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.

В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов.  Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.

Где используется (сфера применения)

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Устройство и виды

Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:

  1. Термисторы — детали с негативным температурным коэффициентом (NTC). Их особенность состоит в падении сопротивления при росте температуры.
  2. Позисторы — элементы, имеющие «плюсовой» температурный коэффициент (PTC). В отличие от прошлого вида, при повышении T сопротивление, наоборот, растет.

В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.

Типы по принципу действия

Терморезисторы различаются по принципу действия. Выделяется два типа:

  1. КОНТАКТНЫЕ. К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.
  2. БЕСКОНТАКТНЫЕ. В эту группу входят терморезисторы, построенные на инфракрасном принципе действия. Они активно применяются в оборонной сфере, благодаря способности выявлять тепловое излучение ИК и оптических лучей (выделяются газами и жидкостями).

Классификация по температурному срабатыванию

Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:

  1. НИЗКОТЕМПЕРАТУРНЫЕ. Такие элементы срабатывают при температуре ниже 170 Кельвинов (минус 1020С). 1 Кельвин = минус 272,150С.
  2. СРЕДНЕТЕМПЕРАТУРНЫЕ. Здесь диапазоне работы выше и находится между 170 и 510 Кельвинами.
  3. ВЫСОКОТЕМПЕРАТУРНЫЕ. Терморезисторы такого класса работают при температурах от 570 Кельвинов.
  4. ОТДЕЛЬНЫЙ КЛАСС. Выделятся также индивидуальная группа высокотемпературных термических резисторов, работающих в диапазоне от 900 до 1300 К.

Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.

Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.

По виду нагрева

По способу нагревания терморезисторы делятся на два типа:

  1. ПРЯМОГО НАГРЕВА. Подразумевается изменение температуры детали под действием окружающего воздуха или тока, протекающего через деталь. Устройства с прямым нагревом чаще всего применяются для решения двух задач — изменения температуры или восстановления нормального режима. Такие терморезисторы применяются в градусниках, ЗУ, термостатах и других устройствах.
  2. КОСВЕННОГО НАГРЕВА. В отличие от прошлого типа здесь нагрев происходит из-за элементов, находящихся в непосредственной близости от резистора. Узлы никак не взаимосвязаны. При таком подходе сопротивление полупроводника обуславливается изменением тока, который проходит через близлежащий элементы. Терморезисторы, работающие на косвенном принципе, нашли применение в мультиметрах (комбинированных приборах).

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Параметры терморезисторов:

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Читайте также:

Базовые характеристики терморезисторов

При оценке терморезисторов нужно учесть и проанализировать их характеристики:

  1. Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
  2. Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
  3. Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.

Общий принцип действия

Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.

Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.

Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

NTC

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

Читайте также:

Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

PTC

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

  1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
  2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
  3. Нагревательный узел в пистолетах для приклеивания.
  4. В машинах для нагрева тракта впуска.
  5. Размагничивание ЭЛТ-кинескопов и т. д.

Как проверить с помощью мультиметра

Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.

С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.

Алгоритм действий:

  1. Перевод прибора в режим замера сопротивления.
  2. Подключение щупов к клеммам терморезистора (расположение не имеет значения).
  3. Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
  4. Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
  5. Если сопротивление снижается или увеличивается, полупроводник работает правильно.

Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.

После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.

Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.

Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.

Как подключить

Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.

Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.

Вторую отпайку терморезистора необходимо посадить на «землю». Центр двух резисторов подключается к контакту «Аналог 0).

<

Где находится на схеме

Отображение терморезистора на схеме может различаться. Изделие легко найти по обозначениям t и t0. Внешне оно отражается как сопротивление, через которое проходит полоска по диагонали с «подставкой» под t0 снизу. Главные обозначения — R1, Th2 или RK1.

Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.

Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.

SMD и встроенные терморезисторы

Существует также еще два вида терморезисторов, которым стоит уделить внимание:

  1. SMD — детали с особым типом монтажа (для внешнего крепления). Внешне они не сильно отличаются от конденсаторов SMD, изготовленных из керамики. Габариты соответствуют стандартному ряду — 1206, 0805, 0603 и т. д. По виду отличить такие изделия от терморезисторов SMD почти невозможно.
  2. Встроенные. Применяются в паяльных станциях (для контроля температуры жала), в том числе термовоздушного типа.

Читайте также:

В дополнение стоит сказать, что в электронике вместе с терморезисторами используются термореле и термические предохранители, которые работают на похожем принципе и также устанавливаются в электронных приборах.

<

Принципы построения систем температурного контроля на NTC-термисторах компании Epcos – Компоненты и технологии

Статья посвящена исследованию работы терморезисторов с отрицательным температурным коэффициентом сопротивления, рассмотрению преимуществ и недостатков применения термисторов, принципам построения систем измерения и контроля температуры, а также факторам, влияющим на работу термисторов в качестве датчиков температуры, и снижению погрешности измерительной системы.

Потребность измерения температуры и управления ей возникает во многих сферах деятельности человека. А основными требованиями к результатам измерения и управления, как всегда, оказываются скорость и точность, независимо от того, где используется прибор — в быту или в промышленности. В основе любого измерения, в том числе и температуры, положен датчик, и как первостепенный элемент он определяет технико-экономические показатели системы контроля в целом. Применение того или иного вида термочувствительного элемента опять же зависит от требований, предъявляемых к системе в целом, и не говорит о полном преимуществе одного датчика над другими. Для промышленного применения, как правило, используются термопары или резистивные термопреобразователи, выполненные в виде законченных устройств. Непригодность этих термочувствитеьных элементов для повсеместного использования объясняется высокой ценой применяемых материалов и невозможностью удаленного контроля из-за сравнительно маленьких величин выходных параметров, которые сильно подвержены влиянию внешних факторов. Все большее применение находят датчики интегрального исполнения, имеющие низкую нелинейность выходной характеристики от температуры и достаточно малую стоимость, но именно интегральное исполнение является «ахиллесовой пятой» этих элементов ввиду ограниченности рабочего температурного диапазона. Другое дело — терморезисторы с отрицательным ТКС (отрицательный температурный коэффициент сопротивления, или NTC — Negative Temperature Coefficient) — они имеют достаточно большой диапазон рабочих температур, возможность удаленного мониторинга, действуют в сильных магнитных полях. Но есть недостатки, такие как сложная повторяемость экземпляров и сильная нелинейность температурной характеристики, что в свою очередь усложняет и повышает стоимость всего изделия. Так было до прихода микроконтроллеров, на «плечи» которых и будет возложена конечная задача по линеаризации и математической обработке температурной характеристики.

Основные параметры и характеристика NTC-термисторов

В рабочем диапазоне температур зависимость сопротивления терморезистора от температуры достаточно точно описывается выражением [1]:

где R — сопротивление рабочего тела терморезистора при данной температуре Т, Ом; RN — номинальное сопротивление терморезистора при температуре ТN, Ом; Т, ТN — температура, К; В — коэффициент, постоянный для данного экземпляра терморезистора (паспортные данные).

Любой NTC-терморезистор кроме температурной характеристики описывается рядом параметров, без которых невозможно полное представление о работе данного типа термодатчиков. Далее приводятся определения основных параметров.

Материал, из которого изготовлен термистор, сохраняет свои свойства при температурах, не выходящих за рамки определенного диапазона, который называют допустимой температурой. При температурах, выходящих за эти пределы, в сенсоре могут произойти необратимые изменения, и он выйдет из строя.

Значение коэффициента В определяется материалом датчика и представляет собой наклон характеристики R/T. В уравнении (1) значение коэффициента В определено двумя точками характеристики R/T (RT, T) и (RN, TN), исходя из этого:

Терморезистор, имея номинальное значение сопротивления при определенной температуре, как и любой резистор, может иметь отклонение ΔR/RN (допуск), обусловленное технологией изготовления. Этот параметр дается производителем на одну точку (обычно 25 °С). Однако когда требуется высокая точность измерений в широком диапазоне температур, допуск может быть указан производителем не на сопротивление, а на температуру в гарантированном диапазоне ΔT. Соответственно, такой термистор будет измерять другие значения температур с тем же самым отклонением (точностью).

Температурный коэффициент α выражает в процентах изменение абсолютной величины сопротивления при изменении температуры на 1°. Вследствие нелинейности температурной характеристики значение температурного коэффициента зависит от величины температуры, поэтому его записывают обычно с индексом, указывающим температуру, при которой имеет место данное значение. Например, α293 — температурный коэффициент термистора при температуре 293. Вычисляют температурный коэффициент по формуле, вытекающей из его определения и выражения температурной характеристики:

Сопротивление при нулевой мощности измерения — это значение сопротивления термистора, измеренное при определенной температуре под электрической нагрузкой, настолько маленькой, что она практически не оказывает влияния на результат измерения. Если же измерительный ток будет высоким или же сопротивление термистора будет иметь низкое значение, результат измерений будет искажен из явления саморазогрева, что должно быть принято во внимание. Явление саморазогрева зависит не только от электрической нагрузки, но и от теплового коэффициента рассеяния δth и геометрических размеров датчика. Оно описывается следующим выражением:

где P — приложенная электрическая мощность, мВт; U — мгновенное значение напряжения на терморезисторе, В; I — мгновенное значение тока, протекающего через терморезистор, мА; Т — мгновенная температура терморезистора, К; ТА — температура окружающей среды, К; Сth — теплоемкость терморезистора, мДж/К; dT/dt — изменение температуры во времени, К/с.

Если постоянная электрическая мощность будет приложена к терморезистору, то его температура сначала незначительно увеличится, но это изменение со временем будет снижаться. А после некоторого временного промежутка будет достигнуто устойчивое состояние, при котором приложенная мощность рассеется за счет эффекта теплопроводности или конвекции. Если принять dT/dt равным нулю, а U = R×I, где R — сопротивление терморезистора, соответствующее его температуре, то получим:

Полученные формулы являются параметрическим представлением вольт-амперной характеристики с зависимостью сопротивления терморезистора от температуры R(T). Очевидным является и то, что вольт-амперная характеристика зависит от коэффициента рассеяния, который, в свою очередь, зависит от геометрических размеров датчика и среды, в которую он помещен.

Максимально допустимый ток — ток, при протекании которого через терморезистор температура последнего равна максимально допустимой. Величина допустимого тока зависит от температуры среды и ее характера. При одинаковой температуре двух сред допустимый ток будет больше в той среде, которая обладает большей теплопроводностью. Соответственно, коэффициент рассеяния, зависящий от параметров среды, определяет максимально допустимую мощность, рассеиваемую датчиком, помещенным в такую среду:

Коэффициент рассеяния определяется как отношение изменения в рассеиваемой энергии к изменению температуры терморезистора. В численном виде выражается в мВт/К и служит мерой нагрузки, которая вызывает изменение температуры терморезистора на 1 К в установившемся состоянии окружающей среды:

Для определения коэффициента рассеяния к терморезистору прикладывают нагрузку, при которой соотношение U/I соответствует значению сопротивления, измеренному при температуре Т = 85 °С:

где Т — температура тела терморезистора, °С; ТА — температура окружающей среды, °С.

Теплоемкость Сth — количество тепла, которое надо сообщить терморезистору, чтобы повысить температуру рабочего тела на один градус. Величина теплоемкости является функцией температуры, однако при температурах, не превышающих допустимой, можно принять ее постоянной и вычислять по формуле:

где τС — тепловая постоянная времени охлаждения, с.

Постоянная времени τС — время, в течение которого температура рабочего тела при его свободном охлаждении понижается на 63,2% от первоначальной разности температур рабочего тела и окружающей среды. Как правило, температура, до которой нагревают терморезистор, равна 85 °С, а температура среды, в которую помещают терморезистор для охлаждения, берется равной 25 °С. Соответственно, охлаждение рабочего тела терморезистора происходит тем быстрее, чем меньше его геометрические размеры.

Как и у любого радиоэлемента, материал, из которого изготовлен терморезистор, подвержен необратимому изменению характеристик (у терморезисторов это увеличение сопротивления и изменение коэффициента В). Это происходит из-за теплового перенапряжения, приводящего к дефектам кристаллической решетки, окисления незащищенных частей терморезистора, связанного с повреждением корпуса датчика, или из-за диффузии в контактных поверхностях металлизированного покрытия электродов. При низких температурах эти процессы происходят медленно, но на высоких температурах ускоряются, а со временем снижаются. Поэтому для увеличения временной стабильности параметров и уменьшения влияния изменения характеристик многие производители умышленно подвергают терморезисторы процессу старения непосредственно после изготовления.

Обзор NTC-термисторов компании Epcos

Термисторы компании Epcos изготавливаются из тщательного отобранного и протестированного сырья. Основой для изготовления служат оксиды металлов, таких как марганец, железо, кобальт, никель, медь, цинк. Оксиды первоначально измельчаются до порошкообразной массы, смешиваются с пластиковыми связующими элементами и сжимаются до нужной формы. Затем их плавят для получения поликристаллического корпуса термистора. После определенного этапа тестирования термисторы подвергаются старению для получения необходимой стабильности параметров.

Компания Epcos выпускает достаточно большой ряд терморезисторов, с которым можно ознакомиться в специальном документе по выбору Selector Guide [2]. В рамках же данной статьи мы рассмотрим лишь прецизионные малогабаритные датчики (табл. 1).

Таблица 1. Основные характеристики NTC-термисторов Epcos

Как говорилось ранее, выбор того или иного термопреобразователя чаще всего обусловлен требованиями к разрабатываемой системе контроля, поэтому основными параметрами, на которые опирается разработчик, оказываются рабочий температурный диапазон, массо-габаритные показатели, допуск на номинальное сопротивление, постоянная времени и стоимость элемента.

Нестандартный подход к стандартной характеристике NTC-термисторов

В начале статьи говорилось, что температурная зависимость сопротивления термистора точно описывается выражением (1), однако опытным путем было установлено, что эта же характеристика может быть не менее точно воспроизведена следующим полиномом:

где r(T) — сопротивление терморезистора при температуре Т; А0, А1, А2Аn — некие коэффициенты, зависящие лишь от свойств материалов, которые используются при в изготовлении термистора.

Казалось бы, это нисколько не упрощает представление о поведении температурной характеристики термистора, а наоборот — ведет к усложнению из-за переноса температуры в знаменатель и бесконечного числа возможных коэффициентов. Но как показала обработка этой математической модели на «живых» образцах, практически любой термистор можно описать с помощью семи первых членов полинома, так как вклад последующих составляющих в конечное значение сопротивления незначителен:

Тогда, переходя к термопроводимости, мы получим:

где r(T) — сопротивление, кОм; g(T) — проводимость, мСм.

Такая зависимость имеет ряд преимуществ перед экспоненциальной при ее использовании в целях линеаризации характеристики с помощью математического моделирования. Для наглядного представления рассмотрим применение этой зависимости на стандартной R(T) характеристике терморезистора В57861 (S861) с номинальным сопротивлением 10 кОм.

Из представленных данных (табл. 2, рис. 1) видно, что разница между значениями сопротивлений, которые предоставляет производителем в виде табличной характеристики № 8016 [3], и значениями термосопротивлений, полученными с помощью математической модели, не значительна и не превышает 0,1%, что позволяет в дальнейших математических расчетах пренебречь этими отклонениями. Коэффициенты математической модели, с помощью которых получены расчетные данные, равны:

Рис. 1. Температурная зависимость терморезистора B57861 (S861)

Таблица 2. Характеристика терморезистора В57861 (S861)

Сразу же оговоримся, что представленные коэффициенты подходят только для указанного температурного диапазона и табличной характеристики 8016 NTC-термисторов компании Epcos. Номинальное сопротивление терморезистора в этом случае не имеет значения. Кроме того, ограниченность температурного диапазона не обусловлена невозможностью описания с помощью математической модели, а связана с конкретным применением, для которого проводились эти расчеты.

Последующим этапом реализации практического применения полиноминального представления характеристики термосопротивления является воспроизведение зависимости (12), для чего оказалось достаточным и удобным использование операционного усилителя (ОУ) в неинвертирующей схеме включения (рис. 2).

Рис. 2. Преобразователь R(T) U(T)

Указанная схема будет иметь следующую выходную характеристику:

графическое построение которой представлено на рис. 3.

Рис. 3. Графическое представление линеаризации температурной характеристики

Масштаб координатной сетки температурной зависимости U(T) можно легко менять с помощью резистора обратной связи ROC и резистивного делителя опорного напряжения UREF, состоящего из резисторов R1 и R2. Соответственно, преобразователь R(Т)

U(T) с поставленной задачей справляется.

Линеаризация температурной характеристики NTC-термисторов

Вопрос линеаризации выходной характеристики термопреобразователя остается до сих пор открытым. Существуют методы частичной или же мнимой линеаризации, которые предлагают даже сами производители нелинейных элементов, но они не дают полного решения этой задачи.

Предлагаемый в рамках данной статьи метод, основанный на математическом моделировании, заключается в построении искусственной линейной температурной зависимости (a×T+b) и последующем построении дополнительной характеристики Y(Т), позволяющих с помощью простых вычислений определять температуру с высокой точностью. Но из этих математических построений вытекает ряд условий, которые необходимо соблюсти для получения данных высокой точности:

  1. Температурный диапазон, в котором предполагается использование датчика, должен быть четко определен.
  2. Использование микроконтроллера, так как воспроизведение искусственно созданных зависимостей с помощью аналоговой электроники не возможно.
  3. Использование прецизионных радиоэлементов для точного представления поведения датчика в рассматриваемом применении.

Процесс построения искусственной линейной зависимости в известном температурном диапазоне при наличии математической модели поведения терморезистора не составляет большого труда. Для этого достаточно взять две крайние точки характеристики U(T) (рис. 3) и провести между ними линейный отрезок (a×T+b). Получить значение коэффициентов a и b в системе уравнений:

где Т0 и ТN — соответственно начальная и конечная температуры контролируемого диапазона, также не вызовет затруднений. Вспомогательную характеристику Y(T) (рис. 3) получаем по следующей формуле:

Зависимость Y(T) имеет вид отрицательной параболы, исходя из этого, зависимость Y(T) можно представить следующим образом:

где PT, QT и RT — постоянные коэффициенты, которые не зависят от температуры, а определяются свойствами термистора.

Приравнивая выражения 15 и 16, получаем квадратное уравнение, где неизвестной величиной является температура:

Корни этого квадратного уравнения находятся известным путем:

Для нашего применения подходит только один из них, поэтому вычисление конечного значения температуры можно осуществлять по формуле:

Если температурный диапазон большой, а контроль температуры необходимо осуществлять с высокой точностью, то можно пойти по пути кусочной аппроксимации, и тогда коэффициенты PT , QT и RT для каждого температурного поддиапазона будут свои.

Практическое применение

Для рассмотрения представленного метода линеаризации на практике вернемся к уже известному терморезистору В57861 (S861) с номинальным сопротивлением 10 кОм ±1%. Использование термистора предполагается в температурном диапазоне от 0 до 155 °С. Исходя из этого, номиналы резисторов для преобразователя R(Т)

U(T) были взяты следующие: ROC = 1,62 кОм ±0,1%, R1 = 10 кОм ±0,1%, R2 = 1 кОм ±0,1%, а опорное напряжение UREF = (2,5 ±0,002) В.

Представленные данные (табл. 3) получены путем разбиения всего температурного диапазона на 8 поддиапазонов, для которых были вычислены соответствующие коэффициенты PT, QT и RT (табл. 4).

Таблица 3. Пример использования метода линеаризации

Таблица 4. Расчетные значения коэффициентов PT, QT и RT

Но даже применяя микроконтроллер, неудобно и программно неоправдано держать такое большое количество нецелочисленных коэффициентов. А переходя к аналого-цифровому преобразованию, для исключения дополнительной погрешности будет правильным в любую формулу подставлять дискреты, полученные от АЦП, а не пересчитанное значение напряжения. Поэтому конечная формула вычисления температуры для 12-битного АЦП будет выглядеть следующим образом:

где TU — вычисляемое значение температуры, iƒ (на английском «если») — условие использования одной из формул, ΔU — полученные дискреты от АЦП.

Соответственно, если ΔU < 391, то значение температуры ниже 0 °С, а если ΔU > 4022, то значение температуры выше 155 °С. Ну и, рассматривая каждый поддиапазон температур в отдельности, можно получить для него следующие точностные характеристики (табл. 5).

Таблица 5. Точностные характеристики поддиапазонов

Такая низкая разрешающая способность, а также ее неравномерность в интервале температур от 0 до 60 °С связана с нелинейностью выходной характеристики преобразователя R(Т)

U(T).

Указанная в таблице 5 погрешность не является полной, так как она не учитывает отклонение сопротивления резисторов и опорного напряжения от номинальных значений. В таблице 6 представлены возможное отклонение истинной вычисленной температуры от истинного значения и погрешность системы без учета допустимого отклонения термосопротивлений от величин, предоставленных производителем в качестве стандартной температурной характеристики № 8016.

Таблица 6. Погрешность системы для каждой контрольной точки

В начале статьи говорилось, что терморезистор, как и любой резистор, имеет отклонение ΔR/RN от номинального значения сопротивления, обусловленное технологией изготовления, и что этот параметр дается производителем на точку 25 °С. Однако, в отличие от простых резисторов, эта величина у терморезистора во всем температурном диапазоне не одинакова, и что еще важней — она увеличивается. Компания Epcos для упрощения вычислений и исключения необходимости самостоятельного определения отклонений в нужном температурном диапазоне предоставляет программу “NTC R/T Calculation” [4], которая позволяет в автоматическом режиме проводить все необходимые расчеты по определению отклонений сопротивления и температуры.

Исходя из данных таблицы 7, можно посчитать тотальную погрешность рассмотренной измерительной системы с учетом всех отклонений и допусков от соответствующих номинальных значений, ошибки АЦП и расчетов математической модели (табл. 8).

Таблица 7. Отклонения для терморезистора В57861S0103F040

Таблица 8. Абсолютная погрешность измерительной системы для каждой контрольной точки

Поправка на саморазогрев термистора

При работе в любой электрической схеме через терморезистор протекает измерительный ток, если его величина будет более 100 мкА или же сопротивление термистора будет иметь небольшую величину, то результат измерений искажается. Это явление называется саморазогревом и, как было сказано ранее, зависит не только от нагрузки, но и от применяемых материалов и конструкции датчика. Говоря другими словами, на полученный результат измерений необходимо делать поправку, вычисление которой можно проводить по следующей формуле:

где TA — действительно значение контролируемой температуры; Т — измеренное значение температуры; U — мгновенное значение напряжения на терморезисторе, I — мгновенное значение тока, протекающего через терморезистор; R(T) — значение сопротивления терморезистора, соответствующее температуре Т; δth — коэффициент теплового рассеяния.

Применительно к используемой схеме и при условии использования микроконтроллера с 12-битным АЦП выражение (20) будет выглядеть следующим образом:

В примененной схеме включения (рис. 2) величина поправки будет тем меньше, чем больше значение резистора в обратной связи операционного усилителя RОС. Следует отметить, что полученные значения поправки для температуры (табл. 9) справедливы только для указанных термисторов, преобразователя R(Т)

U(T), а также для значения коэффициента рассеяния в воздухе, равного 1,5 мВт/К. При применении термистора в любой другой среде необходимо определять значение этого коэффициента опытным путем.

Таблица 9. Поправка на саморазогрев для терморезистора В57861S0103F040

Заключение

Применение термисторов с отрицательным ТКС в качестве датчиков температуры имеет определенные ограничения, связанные с точностью и погрешностью измерений, но при использовании предложенного в рамках данной статьи метода такое применение возможно. Полученные на конкретном примере значения не являются обобщающими для всех терморезисторов, а введение небольших доработок в преобразователь позволяет увеличить точностные показатели измерительной системы в целом в 2–3 раза.

Литература

  1. http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/NonlinearResistors/NTCThermistors/PDF/PDF__General__technical__information,property=Data__en.pdf;/PDF_General_technical_information.pdf
  2. http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/NonlinearResistors/NTCThermistors/ PDF/PDF__SelectorGuide,property=Data__en.pdf;/PDF_SelectorGuide.pdf
  3. http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/NonlinearResistors/NTCThermistors/PDF/PDF__Standardized,property=Data__en.pdf;/PDF_Standardized.pdf
  4. http://www.epcos.com/web/generator/Web/Sections/DesignTools/NTCThermistors/Page__License2,locale=en.html

NTC термистор характеристики

А Вы знаете, что такое NTC термистор и какие у него характеристики?

NTC термистор


Что такое термисторы NTC? Термистор, встроенный в зонд из нержавеющей стали, представляет собой «отрицательный температурный коэффициент». Термисторы NTC – это резисторы с отрицательным температурным коэффициентом, что означает, что сопротивление уменьшается с повышением температуры.

Они в основном используются как резистивные температурные датчики и токоограничивающие устройства. Коэффициент температурной чувствительности примерно в пять раз больше, чем у кремниевых температурных датчиков (силисторы) и примерно в десять раз больше, чем у датчиков температуры сопротивления (RTD). Датчики NTC обычно используются в диапазоне от -55 ° C до 200 ° C.  

ntc термистор характеристики.



Нелинейность связи между сопротивлением и температурой, проявляемая резисторами NTC, представляла собой большую проблему при использовании аналоговых схем для точного измерения температуры, но быстрое развитие цифровых схем позволило решить эту задачу, позволяющую вычислять точные значения путем интерполяции таблиц поиска или путем решения уравнений которые приближаются к типичной кривой NTC.

Определение термистора NTC


Термистор NTC представляет собой термочувствительный резистор, сопротивление которого демонстрирует большое, точное и прогнозируемое снижение по мере того, как температура ядра резистора увеличивается в диапазоне рабочих температур. 

NTC термистор.


Характеристики термисторов NTC


В отличие от RTD (температурные детекторы сопротивления), изготовленные из металлов, термисторы NTC обычно изготавливаются из керамики или полимеров. Различные используемые материалы приводят к различным температурным откликам, а также к другим характеристикам. Реакция температуры Хотя большинство термисторов NTC обычно подходят для использования в температурном диапазоне от -55 ° C до 200 ° C, где они дают наиболее точные показания, существуют специальные семейства термисторов NTC, которые могут использоваться при температурах, приближающихся к абсолютному нулю (-273,15 ° C), а также те, которые специально предназначены для использования выше 150 ° C. Температурная чувствительность датчика NTC выражается как «процентное изменение на градус C». В зависимости от используемых материалов и особенностей производственного процесса типичные значения чувствительности к температуре колеблются от -3% до -6% на ° С.
 
 

Характеристическая кривая NTC термистора. 


Характеристическая кривая NTC


Как видно из рисунка, термисторы NTC имеют гораздо более крутой наклон сопротивления-температуры по сравнению с RTD платинового сплава, что приводит к лучшей температурной чувствительности. Тем не менее, RTD остаются наиболее точными датчиками, точность которых составляет ± 0,5% от измеренной температуры, и они полезны в температурном диапазоне от -200 ° C до 800 ° C, что намного шире, чем у датчиков температуры NTC.

Сравнение с другими датчиками температуры


По сравнению с RTD, NTC имеют меньший размер, более быстрый отклик, большую устойчивость к ударам и вибрации и имеют более низкую себестоимость. Они немного менее точны, чем RTD. По сравнению с термопарами точность, полученная от обоих, аналогична; однако термопары выдерживают очень высокие температуры (порядка 600 ° C) и используются вместо термисторов NTC, где их иногда называют пирометрами. Тем не менее, термисторы NTC обеспечивают большую чувствительность, стабильность и точность, чем термопары при более низких температурах, и используются с меньшими затратами электроэнергии и, следовательно, имеют более низкие общие затраты. Стоимость дополнительно снижается из-за отсутствия необходимости в схемах формирования сигнала (усилители, переводчики уровня и т. д.), Которые часто необходимы при работе с RTD и всегда необходимы для термопар.

Эффект самонагрева


Эффект самонагрева – это явление, которое происходит, когда ток протекает через термистор NTC. Поскольку термистор в основном является резистором, он рассеивает энергию в виде тепла, когда через него протекает ток. Это тепло генерируется в сердечнике термистора и влияет на точность измерений. Степень, в которой это происходит, зависит от количества протекающего тока, окружающей среды (будь то жидкость или газ, есть ли какой-либо поток над датчиком NTC и т. д.), Температурный коэффициент термистора, общее количество термистора области и т. д. Тот факт, что сопротивление датчика NTC и, следовательно, ток протекания через него, зависит от окружающей среды и часто используется в резервуарах для хранения жидкости.

Теплоемкость


Теплоемкость представляет собой количество тепла, необходимое для повышения температуры термистора на 1 ° C и обычно выражается в мДж / ° C. Знание точной теплоемкости имеет большое значение при использовании датчика термистора NTC в качестве ограничителя пускового тока, поскольку он определяет скорость отклика датчика температуры NTC.

Выбор и расчет кривой


Тщательный процесс отбора должен учитывать константу рассеяния термистора, постоянную времени термической обработки, значение сопротивления, кривую сопротивления-сопротивления и допуски, чтобы учесть в наиболее важных факторах. Поскольку зависимость между сопротивлением и температурой (кривая R-T) сильно нелинейна, в практических схемах системы должны использоваться определенные приближения.

Приближение первого порядка


Одним приближением и простейшим в использовании является приближение первого порядка, в котором говорится, что: формула приближения первого порядка: dR = k * dT Где k – отрицательный температурный коэффициент, ΔT – разность температур, ΔR – изменение сопротивления, возникающее в результате изменения температуры. Это приближение первого порядка справедливо только для очень узкого температурного диапазона и может быть использовано только для таких температур, где k почти постоянна во всем диапазоне температур. 3 Где ln R – естественный логарифм сопротивления при температуре T в Кельвине, а A, B и C – коэффициенты, полученные из экспериментальных измерений. Эти коэффициенты обычно публикуются поставщиками термисторов в составе таблицы данных. Формула Штейнхарта-Харта, как правило, составляет около ± 0,15 ° С в диапазоне от -50 ° С до + 150 ° С, что является большим для большинства применений. Если требуется высокая точность, диапазон температур должен быть уменьшен, а точность лучше, чем ± 0,01 ° C в диапазоне от 0 ° C до + 100 ° C.

Выбор правильного приближения


Выбор формулы, используемой для получения температуры из измерения сопротивления, должен основываться на доступной вычислительной мощности, а также на фактических требованиях допуска. В некоторых приложениях приближение первого порядка более чем достаточно, в то время как в других случаях даже уравнение Штейнхарта-Харта удовлетворяет требованиям, а термистор должен быть откалиброван по пунктам, делая большое количество измерений и создавая таблицу поиска.

Конструкция и свойства термисторов NTC


Материалами, обычно используемыми при изготовлении NTC-резисторов, являются платина, никель, кобальт, железо и оксиды кремния, используемые в виде чистых элементов или керамики и полимеров. Термисторы NTC можно разделить на три группы, в зависимости от используемого производственного процесса.

Терморезисторы


Форма бисера или шарика. Эти термисторы NTC изготовлены из свинцовых проводов из платинового сплава, непосредственно спеченных в керамический корпус. Они обычно обеспечивают быстрое время отклика, лучшую стабильность и позволяют работать при более высоких температурах, чем дисковые и чип-датчики NTC, однако они более хрупкие. Обычно они запечатывают их в стекле, чтобы защитить их от механических повреждений во время сборки и улучшить их стабильность измерений. Типичные размеры колеблются от 0,075 до 5 мм в диаметре.  

Диск и чип-термисторы

Терморезисторы.


Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков. Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов. Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.

Терморезисторы NTC с инкапсулированным покрытием


Стекловолокно с термистором NTC Это датчики температуры NTC, запечатанные в воздухонепроницаемом стеклянном пузыре. Они предназначены для использования при температурах выше 150 ° C или для монтажа на печатной плате, где требуется прочность. Инкапсуляция термистора в стекле повышает стабильность датчика, а также защиту датчика от окружающей среды. Они изготавливаются герметично уплотняющими резисторами типа NTC в стеклянный контейнер. Типичные размеры колеблются от 0,4 до 10 мм в диаметре.
 
Типичные области применения

Терморезисторы NTC с инкапсулированным покрытием.


Термисторы NTC используются в широком спектре применений. Они используются для измерения температуры, температуры управления и температурной компенсации. Они также могут использоваться для обнаружения отсутствия или наличия жидкости, в качестве устройств ограничения тока в цепях питания, мониторинга температуры в автомобильных агрегатах и многих других. Датчики NTC можно разделить на три группы, в зависимости от электрической характеристики, используемой в агрегатах и устройствах.  
Характеристика сопротивления-температуры

Типичные области применения.


Приложения, основанные на характеристике сопротивления-времени, включают измерение температуры, контроль и компенсацию. К ним также относятся ситуации, в которых используется термистор NTC, так что температура датчика температуры NTC связана с некоторыми другими физическими явлениями. Эта группа агрегатов требует, чтобы термистор работал в условиях нулевой мощности, что означает, что ток проходящий через него поддерживается как можно на более низком уровне, чтобы избежать нагрева зонда.

Текущая временная характеристика


Устройствами, основанными на характеристике текущего времени, являются: временная задержка, ограничение пускового тока, подавление перенапряжений и многое другое. Эти характеристики связаны с теплоемкостью и постоянной диссипации используемого термистора NTC. Схема обычно полагается на термистор NTC, нагреваясь из-за проходящего через него тока. В какой-то момент это вызовет какое-то изменение в схеме, в зависимости от устройства, в котором оно используется.

Характеристика напряжения


Устройства, основанные на характеристике напряжения и тока термистора, обычно включают изменения условий окружающей среды или изменения схемы, которые приводят к изменениям рабочей точки на заданной кривой в цепи. В зависимости от применения это может использоваться для ограничения тока, температурной компенсации или измерения температуры.

NTS термисторный символ.


NTS термисторный символ


Следующий символ используется для термистора с отрицательным температурным коэффициентом в соответствии со стандартом IEC.

Про терморезисторы (NTC 10D-9 Thermal Resistor)

Я частенько обращал внимание на «хлопки» в выключателях при включении лампочек (особенно светодиодных). Если в роли драйвера у них конденсаторы, то «хлопки» бывают просто пугающие. Эти терморезисторы помогли решить проблему.
Всем ещё со школы известно, что в нашей сети течёт переменный ток. А переменный ток — электрический ток, который с течением времени изменяется по величине и направлению (изменяется по синусоидальному закону). Именно поэтому «хлопки» происходят на каждый раз. Зависит от того, в какой момент вы попали. В момент перехода через ноль хлопка не будет вовсе. Но я так включать не умею:)
Чтобы сгладить пусковой ток, но при этом не оказывать влияние на работу схемы, заказал NTC-термисторы. У них есть очень хорошее свойство, с увеличением температуры их сопротивление уменьшается. То есть в начальный момент они ведут себя как обычное сопротивление, уменьшая своё значение с прогревом.
Терморези́стор (термистор) — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры.
По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (NTC-термисторы, от слов «Negative Temperature Coefficient») и положительным (PTC-термисторы, от слов «Positive Temperature Coefficient» или позисторы.)
В мою задачу входило увеличение срока службы лампочек (не только светодиодных), но и защита от порчи (обгорания) выключателей.
Не так давно делал обзор про многооборотное сопротивление. Когда его заказывал, обратил внимание на товар продавца. Там и увидел эти сопротивления. Сразу всё у прода и заказал.

Заказал в конце мая. Посылка дошла за 5 недель. С таким треком добиралась.
track24.ru/?code=MS04416957XSG

Сразу так и не скажешь, что тут 50 штук.

Пересчитал, ровно пятьдесят.
Когда подбирал терморезисторы под свои задачи, у одного продавца выудил вот такую табличку. Думаю, многим она пригодится. 10D-9 расшифровывается просто: сопротивление (при н.у.) 10 Ом, диаметр 9мм.

Ну а я составил свою таблицу на основе тех экспериментов, что провёл. Всё просто. С установки П321, при помощи которой калибрую мультиметры, подавал калиброванный ток.
Падение напряжения на терморезисторе снимал обычным мультиметром.
Есть особенности:
1. При токе 1,8А появляется запах лакокрасочного покрытия терморезистора.
2. Терморезистор спокойно выдерживает и 3А.
3. Напряжение устанавливается не сразу, а плавно приближается к табличному значению по мере прогрева или остывания.
4. Сопротивление терморезисторов при температуре 24˚С в пределах 10-11 Ом.

Красным я выделил тот диапазон, который наиболее применим в моей квартире.
Табличку перенёс на график.

Самая эффективная работа – на крутом спуске.
Изначально предполагал каждый терморезистор вживлять в лампочку. Но поле тестирования полученного товара и снятия характеристик понял, что для них (термисторов) нужна более серьёзная нагрузка. Именно поэтому решил вживить в выключатели, чтобы работали на несколько лампочек сразу. Выводы у резисторов тонковаты, пришлось выходить из ситуации вот таким способом.

Специальной обжимки у меня нет, поэтому работал пассатижами.

Для одинарного выключателя приготовил одинарный клеммник.

Для сдвоенного приготовил другой комплект. С клеммником будет удобнее монтировать.

Основное всё сделано. Встало без проблем.

Работают уже полгода. После установки на место страшных «хлопков» я больше не слышал.
Прошло достаточно времени, чтобы сделать вывод – годятся. И годятся не только для светодиодных лампочек.
А вот такой термистор я нашёл непосредственно в схеме светодиодного драйвера (ITead Sonoff LED- WiFi Dimming LED)
Больших сопротивлений китайцы не ставят, чтобы не мешать правильной работе схемы.

Что ещё хотел сказать в конце. Номинал сопротивления каждый должен подобрать сам в соответствии с решаемыми задачами. Технически грамотному человеку это вовсе не сложно. Когда я заказывал терморезисторы, инфы про них совсем не было. У вас она теперь есть. Смотрите на график зависимости и заказывайте то, что считаете более подходящим под ваши задачи.
На этом ВСЁ!
Удачи!

термистор ntc – характеристики (ВАХ), подключение, проверка на работоспособность

Термисторы NTC- это особый тип резистора, который имеет отрицательный температурный коэффициент. Это его основная особенность, которая понятна из самого слова «термо». Его внутреннее сопротивление сокращается по мере роста температуры. Обычно, эти радиодетали используются в температурных датчиках из-за своих токоограничивающих свойств.

Величина этого коэффициента у термистора выше в несколько раз, чем у силисторов – температурных датчиков, изготовленных на кремниевой основе и более чем на порядок выше( то есть в 10 раз), чем у датчиков RTD. Рабочий диапазон термистора лежит в диапазоне от -50 до +200 градусов. В данной статье описаны все особенности и отличия, устройство и схема подключения этой радиодетали, а также как и где их можно применять. Статья также содержит видеоролик и одну научную статью, посвященную рассматриваемому вопросу.

Различные термисторы

Характеристики термисторов NTC

В отличие от RTD (температурные детекторы сопротивления), изготовленные из металлов, термисторы NTC обычно изготавливаются из керамики или полимеров. Различные используемые материалы приводят к различным температурным откликам, а также к другим характеристикам. Хотя большинство термисторов NTC обычно подходят для использования в температурном диапазоне от -55 ° C до 200 ° C, где они дают наиболее точные показания, существуют специальные семейства термисторов NTC, которые могут использоваться при температурах, приближающихся к абсолютному нулю (-273,15 ° C), а также те, которые специально предназначены для использования выше 150 ° C. Температурная чувствительность датчика NTC выражается как «процентное изменение на градус C». В зависимости от используемых материалов и особенностей производственного процесса типичные значения чувствительности к температуре колеблются от -3% до -6% на ° С.

Термистор NTC – термочувствительный резистор, сопротивление которого демонстрирует большое, точное и прогнозируемое снижение по мере того, как температура ядра резистора увеличивается в диапазоне рабочих температур.

Три различных термистора NTC

Характеристическая кривая NTC

Как видно из рисунка, термисторы NTC имеют гораздо более крутой наклон сопротивления-температуры по сравнению с RTD платинового сплава, что приводит к лучшей температурной чувствительности. Тем не менее, RTD остаются наиболее точными датчиками, точность которых составляет ± 0,5% от измеренной температуры, и они полезны в температурном диапазоне от -200 ° C до 800 ° C, что намного шире, чем у датчиков температуры NTC.

Таблица основных характеристик NTC термисторов.

Сравнение с другими датчиками температуры

По сравнению с RTD, NTC имеют меньший размер, более быстрый отклик, большую устойчивость к ударам и вибрации и имеют более низкую себестоимость. Они немного менее точны, чем RTD. По сравнению с термопарами точность, полученная от обоих, аналогична; однако термопары выдерживают очень высокие температуры (порядка 600 ° C) и используются вместо термисторов NTC, где их иногда называют пирометрами. Тем не менее, термисторы NTC обеспечивают большую чувствительность, стабильность и точность, чем термопары при более низких температурах, и используются с меньшими затратами электроэнергии и, следовательно, имеют более низкие общие затраты.

Стоимость дополнительно снижается из-за отсутствия необходимости в схемах формирования сигнала (усилители, переводчики уровня и т. д.), Которые часто необходимы при работе с RTD и всегда необходимы для термопар.

  • Температурный диапазон:приблизительный общий диапазон температур, в которых может использоваться тип датчика. В пределах заданного температурного диапазона некоторые датчики работают лучше, чем другие.
  • Относительная стоимость:относительная стоимость, поскольку эти датчики сравниваются друг с другом. Например, термисторы недороги по отношению к термометрам сопротивления, отчасти потому, что предпочтительным материалом для термопреобразователей сопротивления является платина.
  • Постоянная времени:приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое термистору требуется для достижения 63,2% разницы температур от начального показания до окончательного.
  • Стабильность:способность контроллера поддерживать постоянную температуру на основе обратной связи датчика температуры.
  • Чувствительность:степень реакции на изменение температуры.

Интересно почитать: фотореле в уличном освещении.

Эффект самонагрева

Эффект самонагрева — это явление, которое происходит, когда ток протекает через термистор NTC. Поскольку термистор в основном является резистором, он рассеивает энергию в виде тепла, когда через него протекает ток. Это тепло генерируется в сердечнике термистора и влияет на точность измерений. Степень, в которой это происходит, зависит от количества протекающего тока, окружающей среды (будь то жидкость или газ, есть ли какой-либо поток над датчиком NTC и т. д.), Температурный коэффициент термистора, общее количество термистора области и т. д. Тот факт, что сопротивление датчика NTC и, следовательно, ток протекания через него, зависит от окружающей среды и часто используется в резервуарах для хранения жидкости.

Теплоемкость

Теплоемкость представляет собой количество тепла, необходимое для повышения температуры термистора на 1 ° C и обычно выражается в мДж / ° C. Знание точной теплоемкости имеет большое значение при использовании датчика термистора NTC в качестве ограничителя пускового тока, поскольку он определяет скорость отклика датчика температуры NTC.

Выбор и расчет кривой

Тщательный процесс отбора должен учитывать константу рассеяния термистора, постоянную времени термической обработки, значение сопротивления, кривую сопротивления-сопротивления и допуски, чтобы учесть в наиболее важных факторах.

Поскольку зависимость между сопротивлением и температурой (кривая R-T) сильно нелинейна, в практических схемах системы должны использоваться определенные приближения.

Приближение первого порядка

Одним приближением и простейшим в использовании является приближение первого порядка, в котором говорится, что:

формула приближения первого порядка: dR = k * dT

Где k — отрицательный температурный коэффициент, ΔT — разность температур, ΔR — изменение сопротивления, возникающее в результате изменения температуры. Это приближение первого порядка справедливо только для очень узкого температурного диапазона и может быть использовано только для таких температур, где k почти постоянна во всем диапазоне температур.

Бета-формула

Другое уравнение дает удовлетворительные результаты с точностью ± 1 ° C в диапазоне от 0 ° C до + 100 ° C. Он зависит от единственной константы материала β, которая может быть получена путем измерений. Уравнение можно записать в виде:

Бета-уравнение: R (T) = R (T0) * exp (бета * (1 / T-1 / T0))

Где R (T) — сопротивление при температуре T в Кельвине, R (T0) является точкой отсчета при температуре T0. Бета-формула требует двухточечной калибровки и обычно не более чем ± 5 ° C по всему полезному диапазону термистора NTC.

Уравнение Штейнхарта-Харта

Наилучшим приближением, известным на сегодняшний день, является формула Штейнхарта-Харта, опубликованная в 1968 году:

Уравнение Штейнхарта для точного приближения: 1 / T = A + B * (ln (R)) + C * (ln (R)) ^ 3.

Где ln R — естественный логарифм сопротивления при температуре T в Кельвине, а A, B и C — коэффициенты, полученные из экспериментальных измерений. Эти коэффициенты обычно публикуются поставщиками термисторов в составе таблицы данных. Формула Штейнхарта-Харта, как правило, составляет около ± 0,15 ° С в диапазоне от -50 ° С до + 150 ° С, что является большим для большинства применений. Если требуется высокая точность, диапазон температур должен быть уменьшен, а точность лучше, чем ± 0,01 ° C в диапазоне от 0 ° C до + 100 ° C.

Термисторы

Выбор правильного приближения

Выбор формулы, используемой для получения температуры из измерения сопротивления, должен основываться на доступной вычислительной мощности, а также на фактических требованиях допуска. В некоторых приложениях приближение первого порядка более чем достаточно, в то время как в других случаях даже уравнение Штейнхарта-Харта удовлетворяет требованиям, а термистор должен быть откалиброван по пунктам, делая большое количество измерений и создавая таблицу поиска.

Конструкция и свойства термисторов NTC

Материалами, обычно используемыми при изготовлении NTC-резисторов, являются платина, никель, кобальт, железо и оксиды кремния, используемые в виде чистых элементов или керамики и полимеров. Термисторы NTC можно разделить на три группы, в зависимости от используемого производственного процесса.

Терморезисторы

Форма бисера или шарика. Эти термисторы NTC изготовлены из свинцовых проводов из платинового сплава, непосредственно спеченных в керамический корпус. Они обычно обеспечивают быстрое время отклика, лучшую стабильность и позволяют работать при более высоких температурах, чем дисковые и чип-датчики NTC, однако они более хрупкие. Обычно они запечатывают их в стекле, чтобы защитить их от механических повреждений во время сборки и улучшить их стабильность измерений. Типичные размеры колеблются от 0,075 до 5 мм в диаметре.

Термисторы с различными техническими характеристиками

Преимущества и недостатки NTC и PTC

Термисторы NTC прочны, надежны и стабильны, и они оборудованы для работы в экстремальных условиях окружающей среды и помехоустойчивости в большей степени, чем другие типы датчиков температуры.

  • Компактный размер: варианты упаковки позволяют им работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
  • Быстрое время отклика: небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
  • Экономичность: термисторы не только дешевле, чем другие типы датчиков температуры; Если приобретенный термистор имеет правильную кривую RT, никакая другая калибровка не требуется во время установки или в течение срока ее эксплуатации.
  • Совпадение точек: способность получить определенное сопротивление при определенной температуре.
  • Соответствие кривой: сменные термисторы с точностью от +.

Термистор на схеме

Термисторы просты в использовании, недороги, прочны и предсказуемо реагируют на изменения температуры. Хотя они не очень хорошо работают при чрезмерно высоких или низких температурах, они являются предпочтительным датчиком для применений, которые измеряют температуру в желаемой базовой точке. Они идеальны, когда требуются очень точные температуры. Некоторые из наиболее распространенных применений термисторов используются в цифровых термометрах, в автомобилях для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, но они также встречаются практически в любом приложении, где для обеспечения безопасности требуются защитные контуры отопления или охлаждения.

 Для более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью, встроен термистор. Например, термистор 10 кОм является стандартом, который встроен в лазерные пакеты.

Диск и чип-термисторы

Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков. Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов. Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Терморезисторы NTC с инкапсулированным покрытием

Это датчики температуры NTC, запечатанные в воздухонепроницаемом стеклянном пузыре. Они предназначены для использования при температурах выше 150 ° C или для монтажа на печатной плате, где требуется прочность. Инкапсуляция термистора в стекле повышает стабильность датчика, а также защиту датчика от окружающей среды. Они изготавливаются герметично уплотняющими резисторами типа NTC в стеклянный контейнер. Типичные размеры колеблются от 0,4 до 10 мм в диаметре.

 

Типичные области применения

Термисторы NTC используются в широком спектре применений. Они используются для измерения температуры, температуры управления и температурной компенсации. Они также могут использоваться для обнаружения отсутствия или наличия жидкости, в качестве устройств ограничения тока в цепях питания, мониторинга температуры в автомобильных агрегатах и многих других. Датчики NTC можно разделить на три группы, в зависимости от электрической характеристики, используемой в агрегатах и устройствах.

Характеристика сопротивления-температуры

Приложения, основанные на характеристике сопротивления-времени, включают измерение температуры, контроль и компенсацию. К ним также относятся ситуации, в которых используется термистор NTC, так что температура датчика температуры NTC связана с некоторыми другими физическими явлениями. Эта группа агрегатов требует, чтобы термистор работал в условиях нулевой мощности, что означает, что ток проходящий через него поддерживается как можно на более низком уровне, чтобы избежать нагрева зонда.

Устройствами, основанными на характеристике текущего времени, являются: временная задержка, ограничение пускового тока, подавление перенапряжений и многое другое. Эти характеристики связаны с теплоемкостью и постоянной диссипации используемого термистора NTC. Схема обычно полагается на термистор NTC, нагреваясь из-за проходящего через него тока. В какой-то момент это вызовет какое-то изменение в схеме, в зависимости от устройства, в котором оно используется.

Характеристика напряжения

Устройства, основанные на характеристике напряжения и тока термистора, обычно включают изменения условий окружающей среды или изменения схемы, которые приводят к изменениям рабочей точки на заданной кривой в цепи. В зависимости от применения это может использоваться для ограничения тока, температурной компенсации или измерения температуры.

Одинаковые термисторы

Какие типы и формы термистора доступны на рынке

Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему. Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа. Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей.

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.

Заключение

Более подробно о термисторе рассказано в статье 2007_06_32. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.meanders.ru

www.ephy-mess.de

www.voltstab.ru

Предыдущая

ПолупроводникиЧто такое адресная светодиодная лента

Следующая

ПолупроводникиЧто такое полевые транзисторы?

Принцип работы терморезистора и что такое термосопротивление

Термодатчик относится к числу наиболее часто используемых устройств. Его основное предназначение заключается в том, чтобы воспринимать температуру и преобразовывать ее в сигнал. Существует много разных типов датчиков. Наиболее распространенными из них являются термопара и терморезистор.

Виды термодатчиков

Виды

Обнаружение и измерение температуры – очень важная деятельность, имеет множество применений: от простого домохозяйства до промышленного. Термодатчик – это устройство, которое собирает данные о температуре и отображает их в понятном для человека формате. Рынок температурного зондирования демонстрирует непрерывный рост из-за его потребности в исследованиях и разработках в полупроводниковой и химической промышленностях.

Термодатчики в основном бывают двух типов:

  • Контактные. Это термопары, заполненные системные термометры, термодатчики и биметаллические термометры;
  • Бесконтактные датчики. Это инфракрасные устройства, имеют широкие возможности в секторе обороны из-за их способности обнаруживать тепловую мощность излучения оптических и инфракрасных лучей, излучаемых жидкостями и газами.

Термопара (биметаллическое устройство) состоит из двух разных видов проводов (или даже скрученных) вместе. Принцип действия термопары основан на том, что скорости, с которыми расширяются два металла, между собой отличаются. Один металл расширяется больше, чем другой, и начинает изгибаться вокруг металла, который не расширяется.

Терморезистор – это своего рода резистор, сопротивление которого определяется его температурой. Последний обычно используют до 100 ° C, тогда как термопара предназначена для более высоких температур и не так точна. Схемы с использованием термопар обеспечивают милливольтные выходы, в то время как термисторные схемы – высокое выходное напряжение.

Важно! Основное достоинство терморезисторов заключается в том, что они дешевле термопар. Их можно купить буквально за гроши, и они просты в использовании.

Принцип действия

Терморезисторы обычно чувствительны и имеют разное термосопротивление. В ненагретом проводнике атомы, составляющие материал, имеют тенденцию располагаться в правильном порядке, образуя длинные ряды. При нагревании полупроводника увеличивается количество активных носителей заряда. Чем больше доступных носителей заряда, тем большей проводимостью обладает материал.

Кривая сопротивления и температуры всегда показывает нелинейную характеристику. Терморезистор лучше всего работает в температурном диапазоне от -90 до 130 градусов по Цельсию.

Важно! Принцип работы терморезистора основан на базовой корреляции между металлами и температурой. Они изготавливаются из полупроводниковых соединений, таких как сульфиды, оксиды, силикаты, никель, марганец, железо, медь и т. д., могут ощущать даже небольшое температурное изменение.

Электрон, подталкиваемый приложенным электрическим полем, может перемещаться на относительно большие расстояния до столкновения с атомом. Столкновение замедляет его перемещение, поэтому электрическое «сопротивление» будет снижаться. При более высокой температуре атомы больше смещаются, и когда конкретный атом несколько отклоняется от своего обычного «припаркованного» положения, он, скорее всего, столкнется с проходящим электроном. Это «замедление» проявляется в виде увеличения электрического сопротивления.

Для информации. Когда материал охлаждается, электроны оседают на самые низкие валентные оболочки, становятся невозбужденными и, соответственно, меньше двигаются. При этом сопротивление движению электронов от одного потенциала к другому падает. По мере увеличения температуры металла сопротивление металла потоку электронов увеличивается.

Особенности конструкций

По своей природе терморезисторы являются аналоговыми и делятся на два вида:

  • металлические (позисторы),
  • полупроводниковые (термисторы).

Позисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к этим устройствам предъявляются некоторые требования. Материал для их изготовления должен обладать высоким ТКС.

Для таких требований подходят медь и платина, не считая их высокой стоимости. Практически широко применяются медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное применение, не более 180 градусов.

Позисторы PTC предназначены для ограничения тока при нагревании от более высокой рассеиваемой мощности. Поэтому их размещают последовательно в цепь переменного тока, чтобы уменьшить ток. Они (буквально любой из них) становятся горячими от слишком большого тока. Эти приспособления используют в устройстве защиты цепи, таком как предохранитель, в качестве таймера в схеме размагничивания катушек ЭЛТ-мониторов.

Для информации. Что такое позистор? Прибор, электрическое сопротивление которого растет в зависимости от его температуры, называется позистором (PTC).

Примеры позисторов

Термисторы

Устройство с отрицательным температурным коэффициентом (это когда, чем выше температура, тем ниже сопротивление) называется терморезистором NTC.

Для информации. Все полупроводники имеют меняющееся сопротивление по мере увеличения или уменьшения температуры. В этом проявляется их сверхчувствительность.

Характеристики и обозначение термистора

Термисторы NTC широко используются в качестве ограничителей пускового тока, самонастраивающихся сверхтоковых защит и саморегулируемых нагревательных элементов. Обычно эти приборы устанавливаются параллельно в цепь переменного тока.

Их можно встретить повсюду: в автомобилях, самолетах, кондиционерах, компьютерах, медицинском оборудовании, инкубаторах, фенах, электрических розетках, цифровых термостатах, переносных обогревателях, холодильниках, печах, плитах и других всевозможных приборах.

Термистор используется в мостовых цепях.

Технические характеристики

Терморезисторы используют в батареях зарядки. Их основными характеристиками являются:

  1. Высокая чувствительность, температурный коэффициент сопротивления в 10-100 раз больше, чем у металла;
  2. Широкий диапазон рабочих температур;
  3. Малый размер;
  4. Простота использования, значение сопротивления может быть выбрано между 0,1 ~ 100 кОм;
  5. Хорошая стабильность;
  6. Сильная перегрузка.

Качество прибора измеряется с точки зрения стандартных характеристик, таких как время отклика, точность, неприхотливость при изменениях других физических факторов окружающей среды. Срок службы и диапазон измерений – это еще несколько важных характеристик, которые необходимо учитывать при рассмотрении использования.

Компактные терморезисторы

Область применения

Термисторы не очень дорогостоящие и могут быть легко доступны. Они обеспечивают быстрый ответ и надежны в использовании. Ниже приведены примеры применения устройств.

Термодатчик воздуха

Автомобильный термодатчик – это и есть терморезистор NTC, который сам по себе является очень точным при правильной калибровке. Прибор обычно расположен за решеткой или бампером автомобиля и должен быть очень точным, так как используется для определения точки отключения автоматических систем климат-контроля.  Последние регулируются с шагом в 1 градус.

Температурный датчик

Автомобильный термодатчик

Терморезистор встраивается в обмотку двигателя. Обычно этот датчик подключается к реле температуры (контроллеру) для обеспечения «Автоматической температурной защиты». Когда температура двигателя превышает заданное значение, установленное в реле, двигатель автоматически выключается. Для менее критического применения он используется для срабатывания сигнализации о температурном превышении с индикацией.

Датчик пожара

Можно сделать свое собственное противопожарное устройство. Собрать схему из термистора или биметаллических полосок, позаимствованных из пускателя. Тем самым можно вызвать тревогу, основанную на действии самодельного термодатчика.

Дымовой извещатель

В электронике всегда приходится что-то измерять, например, температуру. С этой задачей лучше всего справляется  терморезистор  – электронный компонент на основе полупроводников. Прибор обнаруживает изменение физического количества и преобразуется в электрическое количество. Они являются своего рода мерой растущего сопротивления выходного сигнала. Существует две разновидности приборов: у позисторов с ростом температуры растет и сопротивление, а у термисторов оно наоборот падает. Это противоположные по действию и одинаковые по принципу работы элементы.

Видео

Оцените статью:

Что такое термистор NTC

Термисторы – это термочувствительные элементы, изготовленные из спеченного полупроводникового материала для отображения значительных изменений сопротивления пропорционально небольшим изменениям температуры.

Это сопротивление можно измерить с помощью небольшого измеряемого постоянного тока, или постоянного тока, пропущенного через термистор, чтобы измерить возникающее падение напряжения.

Эти твердотельные датчики температуры фактически действуют как электрические резисторы, чувствительные к температуре.Отсюда и произошло название, представляющее собой четкое сочетание слов термический и резисторный. Ametherm специализируется на термисторах с отрицательным температурным коэффициентом (NTC).

Термисторы – невероятно точная категория датчиков температуры

Как правило, термисторы состоят из спеченной керамики, состоящей из высокочувствительного материала со стабильно воспроизводимыми характеристиками сопротивления в зависимости от температуры.

«Спрос на термисторы также увеличился в автомобильной промышленности, особенно в таких приложениях, как трансмиссия, безопасность и управление, а также транспортные средства, работающие на альтернативном топливе, в связи с изменением государственных стандартов и структур спроса со стороны конечных пользователей. Всего в автомобиле используется 30 термисторов, включая 20 датчиков с отрицательным температурным коэффициентом (NTC) и 5 ​​датчиков с положительным температурным коэффициентом (PTC). Термисторы в настоящее время являются постоянно растущим рынком, и ожидается, что эта тенденция сохранится и в ближайшие годы.”Датчики Онлайн

Термисторы

NTC – это нелинейные резисторы, характеристики сопротивления которых меняются в зависимости от температуры. Сопротивление NTC будет уменьшаться при повышении температуры. Способ уменьшения сопротивления зависит от константы, известной в электронной промышленности как бета или ß. Бета измеряется в ° K.

Термисторные зонды NTC

Типичные области применения:
  • Измерение температуры
  • Температурная компенсация
  • Контроль температуры

Вы можете легко рассчитать сопротивление термисторов NTC при заданной температуре, используя бета-коэффициент, но есть еще более точный способ сделать это, используя уравнение Стейнхарта и Харта.Термисторы NTC также являются отличной альтернативой полупроводниковым схемам для решения проблем, связанных с температурой. Их легко использовать для расчета температурного коэффициента. Мы предоставим вам рекомендации по использованию термисторов NTC для достижения максимально точных измерений.

Спросите у инженера

«Термисторы – недорогие, легко доступные датчики температуры. Они просты в использовании и легко адаптируются. Цепи с термисторами могут иметь разумные выходные напряжения, а не милливольтные выходы термопар.Благодаря этим качествам термисторы широко используются для простых измерений температуры. Они не используются при высоких температурах, но широко используются в тех диапазонах температур, в которых они работают ». Бакнеллский университет

Некоторые основные термины могут быть полезны для понимания термисторов и их потенциального использования. Во-первых, стандартная эталонная температура обычно составляет 25 ° C или температура корпуса термистора при предполагаемом сопротивлении нулевой мощности. Это сопротивление нулевой мощности представляет собой значение сопротивления термистора постоянному току при измерении при определенной температуре с достаточно низким рассеиванием мощности термистором для любого дальнейшего снижения мощности, приводящего к не более чем 1/10 определенного допуска измерения или изменение сопротивления на ноль целых один процент.

Коэффициент сопротивления – это характеристика, которая определяет отношение сопротивления при нулевой мощности термистора при 125 ° к сопротивлению при 25 ° C. Максимальная рабочая температура – это самая высокая температура тела, при которой термистор будет работать с приемлемой стабильностью в течение длительного периода времени.

Эта температура не должна превышать максимальное указанное значение. Точно так же максимальная номинальная мощность термисторов – это максимальная мощность, при которой термистор будет работать в течение определенного периода времени при сохранении стабильности.

Термисторы NTC Ametherm:

  • Доступен во множестве дизайнов, чтобы соответствовать практически любому желаемому применению
  • Создано с использованием материалов высочайшей чистоты для получения надежных результатов, на которые можно положиться
  • Настраивается для полного удовлетворения ваших потребностей

Как использовать устройства защиты от перегрева: Термисторы с NTC микросхемой | Указания по применению

Термисторы NTC представляют собой термочувствительные резистивные элементы, значения сопротивления которых быстро уменьшаются с повышением температуры.Благодаря этому свойству они используются в качестве устройств защиты от перегрева для защиты цепей от перегрева, а также в качестве датчиков температуры. TDK предлагает термисторы SMD NTC различных размеров как под торговой маркой TDK, так и под торговой маркой EPCOS, используя накопленные нами технологии материалов и технологию многослойной обработки. В этой статье описываются применения устройств защиты от перегрева для определения температуры и температурной компенсации.

Преимущества термисторов SMD NTC

Термисторы

NTC представляют собой термочувствительные резистивные элементы из полупроводниковой керамики с отрицательными температурными коэффициентами (NTC).Это означает, что сопротивление экспоненциально уменьшается с ростом температуры. Чем круче кривая RT, тем больше изменение сопротивления в заданном температурном диапазоне. Благодаря этому свойству они часто используются в качестве датчиков температуры, а также в качестве устройств защиты от температуры для таких целей, как измерение температуры и температурная компенсация.

Температурная компенсация – это способность цепи реагировать на изменение температуры и инициировать корректирующие действия для обеспечения стабильной работы (управления) и защиты от превышения или снижения температуры.Например, работа электронной схемы, использующей транзистор или кристаллический резонатор, становится слегка нестабильной при изменении температуры. Благодаря высокому отрицательному температурному коэффициенту термисторы NTC особенно подходят для компенсации нежелательной реакции схемы на изменения температуры. Два примера – это стабилизация рабочих точек силовой электроники и регулировка яркости ЖК-дисплеев.

Термисторы

NTC доступны во многих различных конструкциях, включая дисковые, стеклянные диоды, выводы с полимерным покрытием и типы SMD.Термисторы SMD NTC, основанные на многослойной технологии, являются первым выбором, когда требуется температурная защита на печатной плате. Ниже приведены примеры применения термисторов SMD NTC в качестве устройств защиты от перегрева для таких целей, как определение температуры и температурная компенсация.
* Термисторы NTC, упомянутые в тексте и схемах, являются термисторами SMD NTC. Также упрощены принципиальные схемы.

Примеры применения термисторов SMD NTC

Пример приложения: определение температуры и температурная компенсация для смартфонов и планшетов

Многие термисторы NTC используются в смартфонах и планшетах для определения температуры и температурной компенсации.

Рис. 1: Основные области применения термисторов NTC для определения температуры и температурной компенсации в смартфонах и планшетах

Базовая схема представляет собой схему деления напряжения с последовательно соединенными термистором NTC и постоянным резистором. Значение сопротивления термистора NTC, расположенного рядом с тепловыделяющей частью, такой как ЦП или силовой модуль, уменьшается с повышением температуры и изменяет выходное напряжение схемы деления напряжения.
Это изменение отправляется в микроконтроллер, чтобы инициировать действия по температурной компенсации и защитить компоненты схемы от перегрева.

Рис.2: Основные схемы для определения температуры и температурной компенсации

Пример приложения: определение температуры аккумуляторных батарей мобильных устройств

Все перезаряжаемые батареи и, в частности, литий-ионные батареи должны контролироваться и защищаться интеллектуальными цепями зарядки, поскольку устройство мобильной связи, получающее энергию от батарей, должно работать в различных средах, включая работу при низких и высоких температурах.
В качестве предпочтительных устройств для определения температуры в схеме защиты используются термисторы NTC. Термисторы NTC могут определять температуру окружающей среды для различных целей, в зависимости от системы батарей. В частности, для быстрой зарядки необходимо измерить температуру окружающей среды, поскольку не все аккумуляторы позволяют заряжаться в диапазоне высоких и низких температур. Обычно производители аккумуляторных блоков рекомендуют температуры зарядки от 0 ° C до 45 ° C для медленной зарядки и от 5 ° C, от 10 ° C до 45 ° C для быстрой зарядки в зависимости от химического состава аккумулятора.
Термистор NTC является частью интеллектуального блока управления зарядкой (см. Схему ниже), который гарантирует, что температура окружающей среды находится в диапазоне, допускающем быструю зарядку. Во время зарядки термистор NTC повторно измеряет температуру в течение 5–10 секунд и может обнаруживать повышение температуры аккумуляторного элемента в конце цикла зарядки или вызванное ненормальными условиями зарядки.
Во время разряда термисторы NTC также выполняют температурную компенсацию для измерения напряжения, что помогает измерить оставшийся заряд в батарее.

Рис. 3: Определение температуры аккумуляторных батарей мобильных устройств

Пример приложения: Определение температуры для микроконтроллеров

Микроконтроллеры смартфонов и других устройств должны быть защищены от перегрева для обеспечения надежности их работы. На приведенной ниже схеме показана схема температурной защиты микроконтроллера, в которой используется схема деления напряжения, состоящая из комбинации термистора NTC и постоянных резисторов R S .Когда протекает перегрузка по току, температура термистора NTC повышается, а его сопротивление уменьшается, тем самым подавляя управляющее напряжение микроконтроллера. Для обеспечения эффективной температурной защиты небольшие термисторы и резисторы SMD NTC монтируются либо на печатной плате, либо на теплогенерирующей части.

Рис.4: Определение температуры для микроконтроллеров

Пример применения: Определение температуры для светодиодных систем освещения

Во многих портативных электронных решениях светодиоды широко используются в общем освещении и автомобильном освещении, где высокая яркость становится все более популярной.Решением являются светодиоды высокой яркости (HBLED), которые обладают многочисленными преимуществами по сравнению с обычным освещением, но, как и любые другие полупроводниковые устройства, они выделяют тепло. Следовательно, одной из проблем является управление температурным режимом. Вообще говоря, высококачественные светодиоды – это надежные устройства, которые при правильном обращении могут работать более 100 000 часов. Однако высокие температуры могут значительно сократить срок их службы и негативно повлиять на их яркость. Чтобы гарантировать максимальный срок службы, производители светодиодов обычно рекомендуют начинать снижение номинального тока при температуре от 50 ° C до 80 ° C.Без контроля температуры разработчик должен обеспечить, чтобы температура никогда не превышала рекомендуемый порог снижения номинальных характеристик светодиода, или ограничить ток резистором до 57% от максимального номинала, что приведет к снижению полной яркости светодиода. Это делает термисторы NTC предпочтительным выбором для измерения температуры и управления в освещении из-за их привлекательного соотношения цены и качества. Они позволяют использовать светодиоды на полную мощность в течение заданного срока службы, что означает более высокий ток при более низкой температуре окружающей среды и адаптированный более низкий ток при повышении температуры.Это не только увеличивает срок службы светодиода, но и гарантирует хороший световой поток. Для наилучшей работы чувствительный термистор NTC должен быть расположен рядом со светодиодами или в горячей точке платы светодиодов.
Могут использоваться разные топологии в зависимости от конкретных драйверов светодиодов IC. Термистор NTC может работать в сети резисторов, где измеряемое напряжение может косвенно управлять током светодиода, влияя на коэффициент широтно-импульсной модуляции (PWM). Другой вариант показан на схеме ниже. Здесь термистор NTC используется в ветви измерения тока светодиода, чтобы влиять на сигнал обратной связи при более высоких температурах.В этой конфигурации NTC должен быть подключен к источнику постоянного напряжения, например. опорное выходное напряжение, обеспечиваемое драйвером.

Рис.5: Определение температуры для светодиодных систем освещения

Пример приложения: определение температуры для жестких дисков

Жесткий диск, который используется в качестве запоминающего устройства ПК и других интеллектуальных электронных устройств, является термочувствительным устройством, а высокая температура увеличивает вероятность ошибок и сбоев.По этой причине датчик температуры определяет ее температуру, и когда температура превышает определенный порог, включается вентилятор для охлаждения устройства. Точность относительно простой схемы определения температуры, состоящей из термистора NTC и постоянных резисторов, полностью достаточна для защиты жесткого диска и намного более рентабельна, чем схема с использованием ИС датчика температуры. На схеме ниже показана замена микросхемы датчика температуры на термистор с отрицательным температурным коэффициентом.

Рис.6: Определение температуры для жестких дисков

Пример приложения: Определение температуры для операций записи головки жесткого диска

Запись данных на жесткий диск – это магнитная запись в магнитном слое опорного диска (магнитного диска) с использованием магнетизма, создаваемого катушкой в ​​записывающей головке. Чрезмерное написание может вызвать перегрев головки и отрицательно повлиять на ее элементы. По этой причине схема определения температуры с термистором NTC, как показано на схеме ниже, используется для управления током, протекающим через головку.

Рис.7: Определение температуры для операций записи головки жесткого диска

Пример применения: Контроль температуры для термопринтеров

Термопринтеры, предназначенные для печати на термобумаге, используются в качестве принтеров чеков кассовых аппаратов POS и принтеров штрих-кодов или этикеток. Температура термоголовки коррелирует как с насыщенностью, так и с толщиной напечатанных символов: чем выше температура, тем они темнее и толще.Для поддержания постоянного качества печати напряжение регулируется путем изменения ширины импульса тока, подаваемого на термоголовку, в зависимости от измеренной температуры термоголовки. На схеме ниже показан пример блока схемы определения температуры с использованием термистора NTC.

Рис. 8: Контроль температуры для термопринтеров

Пример приложения: Температурная компенсация для ЖК-дисплеев

Контрастность ЖК-дисплеев, которые используются в смартфонах, планшетах и ​​других компактных устройствах, зависит от температуры и изменяется в зависимости от температуры окружающей среды.По этой причине необходимо регулировать напряжение привода в соответствии с температурой окружающей среды. На приведенной ниже схеме показана типичная схема температурной компенсации, в которой используется комбинация термистора NTC и постоянных резисторов.

Рис.9: Температурная компенсация для ЖК-дисплеев

Пример приложения: Температурная компенсация кварцевых генераторов

Кварцевый генератор, использующий кварцевый резонатор, используется в электронных устройствах, таких как ПК, для генерации опорной частоты (тактового сигнала).Как показано на графике ниже, температурные свойства кристаллического резонатора представляют собой кубическую кривую с точкой перегиба при стандартной температуре (в большинстве случаев 25 ° C) и отклонением частоты колебаний (вертикальная ось), которое в значительной степени зависит от температуры. Отклонение частоты колебаний уменьшается за счет включения схем компенсации, температурные свойства которых противоположны кристаллическому резонатору, в каждую из низкотемпературных и высокотемпературных областей. В таких схемах аналоговой компенсации используются термистор NTC, конденсатор и резистор.Кварцевый генератор со схемой внутренней температурной компенсации называется TCXO (кварцевый генератор с температурной компенсацией).

Рис.10: Температурная компенсация кварцевых генераторов

Пример применения: Температурная компенсация для полупроводниковых датчиков давления

Многие пьезорезистивные полупроводниковые датчики давления MEMS используются во многих бытовых приборах, автоматизированных производственных линиях на заводах, в автомобильной промышленности и т. Д.Такие датчики давления состоят из кремниевой подложки, протравленной для создания тонкой полой чувствительной к давлению диафрагмы с четырьмя пьезорезистивными частями (тензодатчиками), которые соединены с чувствительными к давлению мостами. Когда диафрагма подвергается давлению со стороны среды, между чувствительными элементами возникает разница в сопротивлении, которая затем генерирует электрический сигнал с обоих концов мостовой схемы.
Пьезорезистивные полупроводниковые датчики давления отличаются небольшими размерами и высокой чувствительностью, но поскольку чувствительность чувствительных элементов зависит от температуры, необходима компенсационная схема.На приведенной ниже схеме показана схема компенсации с комбинацией термистора NTC и постоянных резисторов. Температурная компенсация осуществляется путем управления напряжением, подаваемым на датчик давления, через зависящее от температуры сопротивление термистора NTC. Также были разработаны различные типы других схем компенсации.

Рис.11: Температурная компенсация полупроводниковых датчиков давления

Пример применения: Тепловая защита полупроводников

Полупроводники необходимо защищать от перегрева во время работы.Термистор NTC размещен на подложке внутри силового модуля для контроля температуры радиатора, на котором установлен модуль (схема). Клеммы термистора NTC будут подключены к компаратору контроллера. Как только сопротивление термистора NTC упадет ниже заданного значения, контроллер снизит мощность через все полупроводники, чтобы снизить температуру внутри корпуса.
Особенно когда в силовых модулях используются полупроводники с широкой запрещенной зоной (GaN или SiC), это приводит к более высоким рабочим температурам по сравнению со стандартным кремнием, и могут потребоваться другие методы монтажа компонентов.В то время как пайка или склейка подходили для стандартного кремния, более высокие рабочие температуры в настоящее время в основном требуют процессов спекания для прикрепления компонентов к DCB (прямое соединение меди) и соединений с золотым, серебряным или алюминиевым проводом, используемым для реализации межсоединения.

Рис.12: Термисторы SMD NTC, установленные на подложке внутри силового модуля

БТИЗ должен быть выключен при достижении температуры перехода, чтобы он не стал слишком горячим и впоследствии не был поврежден.Этот контроль температуры осуществляется термистором NTC, содержащимся в корпусе IGBT.

Связанные страницы

  • ■ Руководство по выбору термисторов Chip NTC

    Найдите для себя оптимальные термисторы NTC для микросхем промышленного и автомобильного качества, исходя из характеристик продукта (для использования с электропроводящими клеями, изделия с медным покрытием для заливки и т. Д.), Области применения и внешних размеров.

THERMISTOR BASICS – длинноволновая электроника

Диапазон температур: Приблизительный общий диапазон температур, в котором может использоваться датчик определенного типа. В пределах заданного диапазона температур одни датчики работают лучше, чем другие.

Относительная стоимость: Относительная стоимость при сравнении этих датчиков друг с другом. Например, термисторы недороги по сравнению с RTD, отчасти потому, что предпочтительным материалом для RTD является платина.

Постоянная времени: Приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое требуется термистору для достижения 63,2% разницы температур от начального до окончательного показания.

Стабильность: Способность контроллера поддерживать постоянную температуру на основе обратной связи датчика по температуре.

Чувствительность: Степень реакции на изменение температуры.

Какие формы термисторов доступны?
Термисторы

бывают разных форм – диск, микросхема, бусинка или стержень, и могут быть установлены на поверхности или встроены в систему.Они могут быть залиты эпоксидной смолой, стеклом, обожженным фенолом или окрашены. Наилучшая форма часто зависит от контролируемого материала, например твердого вещества, жидкости или газа.

Например, шариковый термистор идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей. Микросхема термистора обычно устанавливается на печатной плате (PCB). Существует много, много различных форм термисторов, некоторые из них:


Рисунок 3: Типы термисторов

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого отслеживается.Независимо от типа термистора, подключение к контролируемому устройству должно выполняться с помощью пасты с высокой теплопроводностью или эпоксидного клея. Обычно важно, чтобы эта паста или клей не проводили электричество.

Как термистор работает в управляемой системе?

В основном термистор используется для измерения температуры устройства. В системе с контролируемой температурой термистор – это небольшая, но важная часть более крупной системы. Контроллер температуры контролирует температуру термистора.Затем он сообщает нагревателю или охладителю, когда включать или выключать, чтобы поддерживать температуру датчика.

На схеме ниже, иллюстрирующей пример системы, есть три основных компонента, используемых для регулирования температуры устройства: датчик температуры, регулятор температуры и устройство Пельтье (обозначенное здесь как TEC или термоэлектрический охладитель). Головка датчика прикрепляется к охлаждающей пластине, которая должна поддерживать определенную температуру для охлаждения устройства, а провода присоединяются к контроллеру температуры.Контроллер температуры также имеет электронное соединение с устройством Пельтье, которое нагревает и охлаждает целевое устройство. Радиатор прикреплен к устройству Пельтье для отвода тепла.


Рисунок 4: Система с термисторным управлением
Работа датчика температуры заключается в отправке обратной связи по температуре на контроллер температуры. Через датчик проходит небольшой ток, называемый током смещения, который посылается контроллером температуры.Контроллер не может считывать сопротивление, поэтому он должен преобразовывать изменения сопротивления в изменения напряжения, используя источник тока для подачи тока смещения через термистор для создания управляющего напряжения.

Регулятор температуры – это мозг этой операции. Он берет информацию датчика, сравнивает ее с тем, что необходимо охлаждаемому блоку (так называемая уставка), и регулирует ток через устройство Пельтье, чтобы изменить температуру в соответствии с уставкой.

Расположение термистора в системе влияет как на стабильность, так и на точность системы управления.Для лучшей стабильности термистор необходимо разместить как можно ближе к термоэлектрическому или резистивному нагревателю. Для обеспечения максимальной точности термистор должен располагаться рядом с устройством, требующим регулирования температуры. В идеале термистор встроен в устройство, но его также можно прикрепить с помощью теплопроводящей пасты или клея. Даже если устройство встраивается, воздушные зазоры следует устранять с помощью термопасты или клея.

На рисунке ниже показаны два термистора, один из которых подключен непосредственно к устройству, а другой удален или удален от устройства.Если датчик расположен слишком далеко от устройства, время теплового запаздывания значительно снижает точность измерения температуры, а размещение термистора слишком далеко от устройства Пельтье снижает стабильность.


Рисунок 5: Размещение термистора

На следующем рисунке график показывает разницу в показаниях температуры, снятых обоими термисторами. Термистор, прикрепленный к устройству, быстро реагировал на изменение тепловой нагрузки и регистрировал точные температуры.Удаленный термистор тоже среагировал, но не так быстро. Что еще более важно, показания отклоняются чуть более чем на полградуса. Эта разница может быть очень значительной, когда требуются точные температуры.


Рисунок 6: График отклика положения термистора

После выбора места размещения датчика необходимо настроить остальную часть системы. Это включает определение сопротивления базового термистора, тока смещения для датчика и заданной температуры нагрузки на контроллере температуры.

Какое сопротивление термистора и ток смещения следует использовать?
Термисторы

классифицируются по величине сопротивления, измеренной при комнатной температуре, которая считается 25 ° C. Устройство, температуру которого необходимо поддерживать, имеет определенные технические характеристики для оптимального использования, определенные производителем. Их необходимо определить перед выбором датчика. Поэтому важно знать следующее:

Каковы максимальная и минимальная температура для устройства?
Термисторы идеально подходят для измерения температуры в одной точке, которая находится в пределах 50 ° C от окружающей среды.Если температура слишком высокая или низкая, термистор не будет работать. Хотя есть исключения, большинство термисторов лучше всего работают в диапазоне от -55 ° C до + 114 ° C.

Поскольку термисторы являются нелинейными, что означает, что зависимости температуры от сопротивления отображаются на графике в виде кривой, а не прямой линии, очень высокие или очень низкие температуры не регистрируются правильно. Например, при очень небольших изменениях очень высоких температур будут регистрироваться незначительные изменения сопротивления, что не приведет к точным изменениям напряжения.

Каков оптимальный диапазон термисторов?
В зависимости от тока смещения от контроллера каждый термистор имеет оптимальный полезный диапазон, то есть диапазон температур, в котором точно регистрируются небольшие изменения температуры.

В таблице ниже показаны наиболее эффективные диапазоны температур для термисторов с длиной волны при двух наиболее распространенных токах смещения.


Рисунок 7: Таблица выбора термистора

Лучше всего выбирать термистор, где заданная температура находится в середине диапазона.Чувствительность термистора зависит от температуры. Например, термистор может быть более чувствительным при более низких температурах, чем при более высоких температурах, как в случае с термистором 10 кОм TCS10K5 компании Wavelength. С TCS10K5 чувствительность составляет 162 мВ на градус Цельсия в диапазоне от 0 ° C до 1 ° C, и 43 мВ / ° C в диапазоне от 25 ° C до 26 ° C и 14 мВ ° C в диапазоне от 49 ° C до 50 °. С.

Каковы верхний и нижний пределы напряжения на входе датчика терморегулятора?
Пределы напряжения обратной связи датчика с регулятором температуры указываются производителем.В идеале следует выбрать комбинацию термистора и тока смещения, которая обеспечивает напряжение в пределах диапазона, разрешенного регулятором температуры.

Напряжение связано с сопротивлением по закону Ома. Это уравнение используется для определения необходимого тока смещения. Закон Ома гласит, что ток через проводник между двумя точками прямо пропорционален разности потенциалов между двумя точками и для этого тока смещения записывается как:

В = I Смещение x R

Где:
В – напряжение, в вольтах (В)
I BIAS – ток в амперах или амперах (A)
I BIAS означает, что ток фиксированный
R – сопротивление, в Ом (Ом)

Контроллер вырабатывает ток смещения для преобразования сопротивления термистора в измеряемое напряжение.Контроллер будет принимать только определенный диапазон напряжения. Например, если диапазон контроллера составляет от 0 до 5 В, напряжение термистора должно быть не ниже 0,25 В, чтобы электрические шумы нижнего уровня не мешали считыванию, и не выше 5 В для считывания.

Предположим, что используется вышеупомянутый контроллер и термистор 100 кОм, такой как TCS651 от Wavelength, а температура, которую устройство должно поддерживать, составляет 20 ° C. Согласно паспорту TCS651, сопротивление составляет 126700 Ом при 20 ° C.Чтобы определить, может ли термистор работать с контроллером, нам нужно знать полезный диапазон токов смещения. Используя закон Ома для определения I BIAS , мы знаем следующее:

V / R = I Смещение

0,25 / 126700 = 2 мкА – нижний предел диапазона
5,0 / 126700 = 39,5 мкА – верхний предел

Да, этот термистор будет работать, если ток смещения регулятора температуры может быть установлен в пределах от 2 мкА до 39,5 мкА.

При выборе термистора и тока смещения лучше всего выбирать такой, при котором развиваемое напряжение находится в середине диапазона.На входе обратной связи контроллера должно подаваться напряжение, которое определяется сопротивлением термистора.

Так как люди легче всего относятся к температуре, сопротивление часто нужно менять на температуру. Наиболее точная модель, используемая для преобразования сопротивления термистора в температуру, называется уравнением Стейнхарта-Харта.

Что такое уравнение Стейнхарта-Харта?

Уравнение Стейнхарта-Харта – это модель, которая была разработана в то время, когда компьютеры не были повсеместными и большинство математических вычислений выполнялось с использованием логарифмических правил и других математических средств, таких как таблицы трансцендентных функций.Уравнение было разработано как простой метод более простого и точного моделирования температур термисторов.

Уравнение Стейнхарта-Харта:

1 / T = A + B (lnR) + C (lnR) 2 + D (lnR) 3 + E (lnR) 4…

Где:
T – температура в Кельвинах (K, Кельвин = Цельсий + 273,15)
R – сопротивление при T, в Ом (Ом)
A, B, C, D и E – коэффициенты Стейнхарта-Харта, которые меняются в зависимости от типа используемого термистора и диапазона измеряемой температуры.
ln – натуральное бревно, или бревно до основания Нэпиера 2,7 1828

Члены могут продолжаться бесконечно, но, поскольку ошибка настолько мала, уравнение усекается после кубического члена, а квадратный член удаляется, поэтому используется стандартное уравнение Стейнхарта-Харта:

1 / Т = А + В (lnR) + C (lnR) 3

Одно из удовольствий компьютерных программ заключается в том, что уравнения, на решение которых потребовались бы дни, если не недели, выполняются за считанные секунды. Введите «Калькулятор уравнения Стейнхарта-Харта» в любой поисковой системе, и будут возвращены страницы со ссылками на онлайн-калькуляторы.

Как используется уравнение Стейнхарта-Харта?

Это уравнение вычисляет с большей точностью фактическое сопротивление термистора как функцию температуры. Чем более узкий диапазон температур, тем точнее будет расчет сопротивления. Большинство производителей термисторов предоставляют коэффициенты A, B и C для типичного диапазона температур.

Кто такие Стейнхарт и Харт?

Джон С. Стейнхарт и Стэнли Р. Харт впервые разработали и опубликовали уравнение Стейнхарта-Харта в статье под названием «Калибровочные кривые для термисторов» в 1968 году, когда они были исследователями в Вашингтонском институте Карнеги.Стейнхарт стал профессором геологии и геофизики и морских исследований в Университете Висконсин-Мэдисон, а Стэнли Р. Харт стал старшим научным сотрудником океанографического института Вудс-Хоул.

Заключение

Термисторы – это терморезисторы, сопротивление которых изменяется при изменении температуры. Они очень чувствительны и реагируют на очень небольшие изменения температуры. Их лучше всего использовать, когда необходимо поддерживать определенную температуру, а также при мониторинге температуры в пределах 50 ° C от окружающей среды.

Термисторы

, как часть системы контроля температуры, являются лучшим способом измерения и контроля нагрева и охлаждения устройства Пельтье. Их способность регулировать с минутными приращениями обеспечивает максимальную общую стабильность системы. Термисторы могут быть встроены или монтированы на поверхности устройства, требующего контроля температуры. В зависимости от типа они могут измерять жидкости, газы или твердые тела.

Wavelength поставляет различные термисторы с шариковыми и цилиндрическими головками. Чтобы просмотреть текущий выбор, щелкните здесь.

NTC Термистор (тип чипа) – Промышленные устройства и решения

Продукты, описанные на этом веб-сайте, были разработаны и изготовлены для стандартных приложений, таких как общая электроника, офисное оборудование, оборудование для передачи данных и связи, измерительные приборы, бытовая техника и аудио-видео оборудование. .

Для специальных применений, в которых требуется качество и надежность, или если отказ или неисправность продукции может напрямую угрожать жизни или вызвать угрозу травмы (например, для самолетов и аэрокосмического оборудования, дорожного и транспортного оборудования, оборудования для сжигания, медицинского оборудования , устройства для предотвращения несчастных случаев и защиты от кражи, а также защитное оборудование), пожалуйста, используйте только после того, как ваша компания проверит пригодность наших продуктов для этого применения.

Независимо от области применения, при использовании наших продуктов в оборудовании, для которого ожидается высокий уровень безопасности и надежности, убедитесь, что схемы защиты, схемы резервирования и другие устройства установлены для обеспечения безопасности оборудования при оценке области применения путем независимой проверки безопасности. тесты.

Обратите внимание, что продукты и технические характеристики, размещенные на этом веб-сайте, могут быть изменены без предварительного уведомления в целях улучшения.Независимо от области применения, пожалуйста, подтвердите последнюю информацию и спецификации до окончательного этапа проектирования, покупки или использования.

Техническая информация на этом веб-сайте содержит примеры типичных операций и схем применения продуктов. Он не предназначен для гарантии ненарушения или предоставления лицензии на права интеллектуальной собственности этой компании или любой третьей стороны.

Если какие-либо продукты, спецификации продуктов и техническая информация на этом веб-сайте подлежат экспорту или предоставлению нерезидентам, необходимо соблюдать законы и правила страны-экспортера, особенно те, которые касаются безопасного экспортного контроля.

Информация, содержащаяся на этом веб-сайте, не может быть перепечатана или воспроизведена полностью или частично без предварительного письменного разрешения Panasonic Corporation.

Инструменты и программы, представленные на этом веб-сайте, должны использоваться по вашему усмотрению. Panasonic не гарантирует каких-либо результатов от использования этих инструментов и программ и не несет ответственности за любые убытки, возникшие в результате использования вами.

<о письме для получения сертификата соответствия директиве ЕС RoHS>
Дата перехода на продукт, соответствующий требованиям RoHS, зависит от номера детали или серии.
При использовании инвентаря, в котором неясно соответствие требованиям RoHS, выберите «Запрос на продажу».
в форме веб-запроса.

Уведомление о передаче полупроводникового бизнеса


Полупроводниковый бизнес Panasonic Corporation (далее именуемой «Компания») будет передан 1 сентября 2020 года Nuvoton Technology Corporation (далее именуемой «Nuvoton»). Соответственно, Panasonic Semiconductor Solutions Co., Ltd., которая управляла полупроводниковым бизнесом Panasonic, войдет в состав Nuvoton Group с новым названием Nuvoton Technology Corporation Japan (далее именуемой «NTCJ»).
В соответствии с этой передачей, полупроводниковая продукция, размещенная на этом веб-сайте, после 1 сентября 2020 года будет считаться продукцией производства NTCJ. Однако такая продукция будет постоянно продаваться через Компанию.
Обратите внимание, что при запросе о полупроводниковой продукции, размещенной на этом веб-сайте, клиенты должны перейти на веб-сайт, управляемый NTCJ (далее «веб-сайт NTCJ»), и подтвердить, что NTCJ является компанией, ответственной за управление личной информацией, предоставляемой клиентами на ее веб-сайте.Мы ценим ваше понимание по этому поводу.

Термисторы / Измерение температуры с помощью термисторов NTC

Автор: Филип Кейн.

Термисторы (терморезисторы) – это переменные резисторы, зависящие от температуры. Существует два типа термисторов: положительный температурный коэффициент (PTC) и отрицательный температурный коэффициент (NTC). При повышении температуры сопротивление термистора PTC увеличится, а сопротивление термистора NTC уменьшится. Они показывают противоположную реакцию при понижении температуры.

Оба типа термисторов используются в различных областях применения. Однако здесь основное внимание будет уделено использованию термисторов NTC для измерения температуры в приложениях на основе микроконтроллеров.

Характеристики термистора
Следующие параметры термистора NTC можно найти в паспорте производителя.

  • Сопротивление
    Это сопротивление термистора при температуре, указанной производителем, часто 25 ° C.

  • Допуск
    Указывает, насколько сопротивление может отличаться от указанного значения.Обычно выражается в процентах (например, 1%, 10% и т. Д.). Например, если указанное сопротивление при 25 ° C для термистора с допуском 10% составляет 10000 Ом, то измеренное сопротивление при этой температуре может находиться в диапазоне от 9000 Ом до 11000 Ом.

  • Константа B (или бета)
    Значение, которое представляет соотношение между сопротивлением и температурой в заданном диапазоне температур. Например, «3380 25/50» означает постоянную бета 3380 в диапазоне температур от 25 ° C до 50 ° C.

  • Допуск на бета-константу
    Допуск на бета-константу в процентах.

  • Диапазон рабочих температур
    Минимальная и максимальная рабочая температура термистора.

  • Тепловая постоянная времени
    Когда температура изменяется, время, необходимое для достижения 63% разницы между старой и новой температурами.

  • Константа теплового рассеяния
    Термисторы подвержены самонагреву при прохождении тока. Это количество энергии, необходимое для повышения температуры термистора на 1 ° C.Он указывается в милливаттах на градус Цельсия (мВт / ° C). Обычно рассеиваемая мощность должна быть низкой, чтобы предотвратить самонагревание.

  • Максимально допустимая мощность
    Максимальная рассеиваемая мощность. Он указывается в ваттах (Вт). Превышение этой спецификации приведет к повреждению термистора.

  • Таблица температур сопротивления
    Таблица значений сопротивления и соответствующих температур в диапазоне рабочих температур термистора. Термисторы работают в относительно ограниченном диапазоне температур, обычно от -50 до 300 ° C в зависимости от типа конструкции и покрытия.

Реакция термистора на температуру

Как и в случае с любым резистором, вы можете использовать настройку омметра на мультиметре для измерения сопротивления термистора. Значение сопротивления, отображаемое на вашем мультиметре, должно соответствовать температуре окружающей среды рядом с термистором. Сопротивление изменится в ответ на изменение температуры.

Список деталей Полный комплект с Arduino

Список деталей без Arduino

Рис. 1. Сопротивление термистора изменяется в зависимости от температуры.

На рис. 2 показан отклик термистора NTC в диапазоне от -40 ° C до 60 ° C. Из рисунка видно, что термисторы обладают высокой чувствительностью. Небольшое изменение температуры вызывает большое изменение сопротивления. Также обратите внимание, что реакция этого термистора не линейна. То есть изменение сопротивления при заданном изменении температуры не является постоянным в диапазоне температур термистора.

Рисунок 2: Кривая температурного сопротивления термистора от -40 ° C до 60 ° C

Лист технических данных производителя включает список значений сопротивления термистора и соответствующих температур в его диапазоне.Одно из решений, позволяющих справиться с этой нелинейной реакцией, – это включить в код справочную таблицу, содержащую эти данные о термостойкости. После вычисления сопротивления (будет описано позже) ваш код ищет в таблице соответствующую температуру.

Линеаризация отклика термистора

На аппаратной стороне вы можете линеаризовать отклик термистора, разместив постоянный резистор параллельно или последовательно с ним. Это улучшение будет происходить за счет некоторой точности.Сопротивление резистора должно быть равно сопротивлению термистора в середине интересующего температурного диапазона.

Термистор – комбинация параллельных резисторов

На Рисунке 3 показана S-образная кривая температурного сопротивления, полученная путем размещения резистора 10 кОм параллельно с термистором, сопротивление которого составляет 10 кОм при 25 ° C. Это делает область кривой между 0 ° C и 50 ° C довольно линейной. Обратите внимание, что максимальная линейность составляет около средней точки, которая находится при 25 ° C.

Рис. 3. Кривая температурного сопротивления комбинации термистора и параллельного резистора.

Термистор – комбинация последовательных резисторов (делитель напряжения)

Обычно микроконтроллеры собирают аналоговые данные через аналого-цифровой преобразователь (АЦП). Вы не можете напрямую прочитать сопротивление термистора с помощью АЦП. Последовательная комбинация термистора и резистора, показанная на рисунке 4, представляет собой простое решение в виде делителя напряжения.

Рисунок 4: Термисторный делитель напряжения.

Для расчета выходного напряжения делителя напряжения используется следующая формула:

Vo = Vs * (R0 / (Rt + R0))

Линеаризованная кривая температура-напряжение на рисунке 5 показывает изменение выходного напряжения Vo делителя напряжения в ответ на изменение температуры. Напряжение источника Vs составляет 5 вольт, сопротивление термистора Rt составляет 10 кОм при 25 ° C, а сопротивление последовательного резистора R0 составляет 10 кОм. Подобно комбинации параллельного резистора и термистора, описанной выше, эта комбинация имеет максимальную линейность около средней точки кривой, которая находится при 25 ° C.

Рисунок 5: График зависимости температуры от напряжения.

Обратите внимание, что, поскольку Vs и R0 постоянны, выходное напряжение определяется Rt. Другими словами, делитель напряжения преобразует сопротивление термистора (и, следовательно, температуру) в напряжение. Идеально подходит для ввода в АЦП микроконтроллера.

Преобразование данных АЦП в температуру путем определения сначала сопротивления термистора.

Для преобразования данных АЦП в температуру необходимо сначала найти сопротивление термистора, а затем использовать его для определения температуры.

Вы можете изменить приведенное выше уравнение делителя напряжения, чтобы найти сопротивление термистора Rt:

Rt = R0 * ((Vs / Vo) – 1)

Если опорное напряжение АЦП (Vref) и напряжение источника делителя напряжения (Vs) одинаковы, то верно следующее:

adcMax / adcVal = Vs / Vo

То есть отношение входного напряжения делителя напряжения к выходному напряжению такое же, как отношение значения полного диапазона АЦП (adcMax) к значению, возвращаемому АЦП (adcVal).Если вы используете 10-битный АЦП, тогда adcMax равно 1023.

Рисунок 6: Схема делителя напряжения и АЦП с общим опорным напряжением.

Теперь вы можете заменить соотношение напряжений соотношением значений АЦП в уравнении, которое необходимо решить для Rt:

Rt = R0 * ((adcMax / adcVal) – 1)

Например, предположим, что термистор с сопротивлением 10 кОм при 25 ° C, 10-битный АЦП и adcVal = 366.

Rt = 10,000 * ((1023/366) – 1)
= 10,000 * (2,03)
= 17,951 Ом

После вычисления значения Rt вы можете использовать справочную таблицу, содержащую данные температурного сопротивления для вашего термистора, чтобы найти соответствующую температуру.Расчетное сопротивление термистора в приведенном выше примере соответствует температуре приблизительно 10 ° C.

9 18,670
10 17,926
11 17,214

Лист технических данных производителя может не включать все значения температурного сопротивления термистора или у вас может не хватить памяти для включения всех значений в справочную таблицу. В любом случае вам нужно будет включить код для интерполяции между перечисленными значениями.

Прямое вычисление температуры

В качестве альтернативы для расчета температуры можно использовать уравнение, которое аппроксимирует кривую температурной характеристики термистора.3

Производитель может или не может предоставить значения для коэффициентов A, B и C. В противном случае они могут быть получены с использованием данных измерения температурной устойчивости. Однако это выходит за рамки данной статьи. Вместо этого мы будем использовать более простое уравнение параметра бета (или B), показанное ниже. Хотя оно не так точно, как уравнение Стейнхарта-Харта, оно все же дает хорошие результаты в более узком температурном диапазоне.

1 / T = 1 / T0 + 1 / B * ln (R / R0)

Переменная T – это температура окружающей среды в Кельвинах, T0 – обычно комнатная температура, также в Кельвинах (25 ° C = 298.15K), B – бета-постоянная, R – сопротивление термистора при температуре окружающей среды (такое же, как Rt выше), а R0 – сопротивление термистора при температуре T0. Значения T0, B и R0 можно найти в паспорте производителя. Вы можете рассчитать значение R, как описано ранее для Rt.

Если напряжение источника делителя напряжения и Vref одинаковы, вам не нужно знать R0 или находить R для расчета температуры. Помните, что вы можете записать уравнение для сопротивления термистора через отношение значений АЦП:

R = R0 * ((adcMax / adcVal) – 1)

, тогда:

1 / T = 1 / T0 + 1 / B * ln (R0 * ((adcMax / adcVal) – 1) / R0)

R0 отменяет, что оставляет:

1 / T = 1 / T0 + 1 / B * ln ((adcMax / adcVal) – 1)

Возьмите результат, обратный результату, чтобы получить температуру в Кельвинах.

Например, предположим, что цепь термисторного делителя напряжения подключена к 10-битному АЦП. Константа бета для термистора составляет 3380, сопротивление термистора (R0) при 25 ° C составляет 10 кОм, а АЦП возвращает значение 366.

1 / T = 1 / 298,15 + 1/3380 * ln ((1023/366) – 1)
1 / T = 0,003527
T = 283,52K – 273,15K = 10,37 ° C

Пример: простой регистратор температуры на базе Arduino

На рисунке 7 показан простой регистратор температуры, состоящий из Arduino Uno SBC и термисторного делителя напряжения (справа).Выход делителя напряжения подключен к внутреннему 10-битному АЦП Arduino через один из аналоговых выводов. Arduino получает значение АЦП, вычисляет температуру и отправляет ее на последовательный монитор для отображения.

Рисунок 7: Схема регистратора температуры Arduino.

В следующем эскизе Arduino используется уравнение параметра B для расчета температуры. Функция getTemp выполняет большую часть работы. Он считывает аналоговый вывод несколько раз и усредняет значения АЦП. Затем он вычисляет температуру в градусах Кельвина, преобразует ее в градусы Цельсия и Фаренгейта и возвращает все три значения в основной цикл.Основной цикл многократно вызывает getTemp с двухсекундной задержкой между вызовами. Он отправляет значения температуры, возвращаемые getTemp, на последовательный монитор.

Рисунок 8: Снимок экрана с выходными данными регистратора температуры.

Загрузите пример кода здесь.

недействительным getTemp (float * t)
{

    // Преобразует входной сигнал термисторного делителя напряжения в значение температуры.
    // Делитель напряжения состоит из термистора Rt и последовательного резистора R0.
    // Значение R0 равно сопротивлению термистора при T0.// Вы должны установить следующие константы:
    // adcMax (значение полного диапазона АЦП)
    // analogPin (аналоговый входной контакт Arduino)
    // invBeta (инверсия значения бета термистора, предоставленного производителем).
    // Используйте с этим модулем эталонное напряжение Arduino по умолчанию (5 В или 3,3 В).
    //

  const int analogPin = 0; // заменяем 0 аналоговым выводом
  const float invBeta = 1.00 / 3380.00; // заменяем "Beta" на beta термистора

  const float adcMax = 1023.00;
  const float invT0 = 1,00 / 298,15; // комнатная температура в Кельвинах

  int adcVal, i, numSamples = 5;
  поплавок K, C, F;

  adcVal = 0;
  для (i = 0; i
  Ошибка измерения и разрешение АЦП  

Существует ряд факторов, которые могут способствовать ошибке измерения. Например, термистор и последовательные резисторы могут отличаться от своих номинальных значений (в указанных пределах допуска), или может быть ошибка из-за самонагрева термистора, или шумная электрическая среда может привести к колебаниям на входе АЦП [6].

Ниже приведены несколько предложений по уменьшению погрешности измерения. Это предполагает, что вы используете уравнение параметра B.

Разрешение АЦП

В лучшем случае температура в приведенном выше примере является точной с точностью до 0,1 ° C. Это связано с ограничением из-за разрешения АЦП.

АЦП не чувствителен к изменениям напряжения между шагами. Для 10-битного АЦП наименьшее изменение напряжения, которое можно измерить, составляет Vref / 1023. Это разрешение АЦП по напряжению.Если Vref составляет 5 В, разрешение по напряжению составляет 4,89 мВ. Предполагая, что T0 составляет 25 ° C, наименьшее изменение температуры, которое может быть обнаружено при 25 ° C, составляет ± 0,1 ° C. Это температурное разрешение при 25 ° C. Это означает, что изменение младшего бита вызовет скачок отображаемой температуры на 0,1 ° C. Этот скачок связан с разрешением АЦП, а не с ошибкой измерения.

АЦП Выход Температура
511
512
513
0111111111
1000000000
1000000001
24.95 ° C
25,05 ° C
25,15 ° C

Если вам нужно лучшее разрешение, существуют методы (например, передискретизация [1]), которые вы можете использовать для увеличения эффективного разрешения АЦП вашего микроконтроллера или вы можете использовать внешний АЦП. с более высоким разрешением.

Ссылки

  1. AVR121: Повышение разрешения АЦП за счет передискретизации
    http://www.atmel.com/Images/doc8003.pdf
  2. Как найти выражение для бета-версии
    http://www.zen22142.zen.co.uk / ronj / tyf.html
  3. Измерение температуры с помощью термистора и Arduino
    http://web.cecs.pdx.edu/~eas199/B/howto/thermistorArduino/thermistorArduino.pdf
  4. Термистор
    https://en.wikipedia.org/wiki/Термистор
  5. Учебное пособие по термистору
    http://www.radio-electronics.com/info/data/resistor/thermistor/thermistor.php
  6. Понимание и минимизация ошибок преобразования АЦП
    http://www.st.com/content/ccc/resource/technical/document/application_note/9d/56/66/74/4e/97/48/93/CD00004444.pdf / files / CD00004444.pdf / jcr: content / translations / en.CD00004444.pdf

Если у вас есть история об электронике, которой вы хотите поделиться, отправьте ее по адресу [адрес электронной почты защищен].
Почти два десятилетия Фил Кейн был техническим писателем в индустрии программного обеспечения и иногда писал статьи для журналов для любителей электроники. Он имеет степень бакалавра электронных технологий и информатику. Фил всю жизнь интересовался наукой, электроникой и исследованием космоса.Ему нравится конструировать и конструировать электронные устройства, и он очень хотел бы однажды увидеть хотя бы одно из этих устройств на пути к Луне или Марсу. Термисторы

NTC – радиальные выводы | Термометрия

Описание

Thermometrics предлагает согласованные по точкам термисторы с радиальными выводами и дисками с неизолированными выводами для широкого диапазона систем материалов.

Термисторы NTC с радиальным выводом Приложения Описание
Термометрия – тип термистора НТК радиальных выводов диска без покрытия РЛ10 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатных платах и ​​датчиках» Дисковый термистор с точечным согласованием и неизолированными выводами.
Термометрия – Диск без покрытия с радиальными выводами Термисторы NTC Тип RL14 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатных платах и ​​датчиках» Дисковый термистор с точечным согласованием и неизолированными выводами.
Термометрия – Диск без покрытия с радиальными выводами Термисторы NTC Тип RL20 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатных платах и ​​датчиках» Дисковый термистор с точечным согласованием и неизолированными выводами.
Термометрия – Диск без покрытия с радиальными выводами Термисторы NTC Тип RL30 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатных платах и ​​датчиках» Дисковый термистор с точечным согласованием и неизолированными выводами.
Термометрия – Диск без покрытия с радиальными выводами Термисторы NTC Тип RL35 / 40/45 «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатных платах и ​​датчиках» Дисковый термистор с точечным согласованием и неизолированными выводами.
Термометрия – Диск без покрытия с радиальными выводами Термисторы NTC типа SA «Подходит для измерения, контроля и компенсации температуры. Подходит для монтажа на печатных платах и ​​датчиках» Сменный термистор с неизолированными выводами.

От Amphenol Advanced Sensors | Thermometrics, Inc.

Термисторы: описание термисторов NTC и PTC

Термистор – это один из многих вариантов измерения и определения температуры, от транспортировки до производства, нет ничего нового в использовании термистора для сбора данных о температуре! Но задумывались ли вы, какие бывают варианты термисторов и их применение? Сегодня мы ответим на этот вопрос!

Прежде чем мы перейдем прямо к нашему основному блюду сегодня, вам рекомендуется прочитать эти статьи об основных понятиях, связанных с термисторами:


Оставив это в стороне, мы можем теперь поговорить о термисторах! Давайте посмотрим, что будет рассказано в этой статье:

  • Обзор термисторов
  • Термисторы NTC и PTC
  • Взаимосвязи и расчеты
  • Применение термисторов
  • Проекты с термисторами

Обзор термисторов

Что такое термистор?

Термистор – это сочетание двух слов: термический и резистор, что буквально делает его термочувствительным резистором! Это так просто, это, по сути, резистор, но это особый вид резисторов.

Как работает термистор?

Термисторы, как и его название, являются терморезисторами. Это означает, что он будет реагировать на малейшее изменение температуры. Так как он реагирует на температуру?

Термистор состоит из полупроводника и изолятора, причем сопротивление может быть найдено между изолятором и проводником. Обычно выбирают спеченную смесь оксидов металлов, таких как железо, уран, медь и т.д., вместе с изолятором, покрывающим полупроводник.Также он доступен в разных формах! Обычно в виде бусинки, диска и стержня.

Типы термисторов

Мы перечислили здесь довольно много типов термисторов, но чаще всего используются NTC и PTC:

Термистор с отрицательным температурным коэффициентом (NTC)

NTC – это наиболее часто используемый термистор, особенно термистор NTC 10 кОм. Он также популярен благодаря своей надежности и быстрому реагированию. Некоторые из характеристик, которыми он обладает:

  • Сопротивление уменьшается при повышении температуры.
  • Сопротивляется току с выделением тепла в качестве побочного продукта.
  • К измеренным значениям можно применить поправку для поддержания точности.
  • Обладает эффектом самонагрева при низких температурах.
Термистор с положительным температурным коэффициентом (PTC)

Использование PTC полностью противоположно NTC, хотя они не так широко используются, они обычно используются для саморегулирующихся нагревательных элементов / самовозврата. Некоторые из характеристик, которыми он обладает:

  • Сопротивление увеличивается с повышением температуры.
  • Действует как дроссель в цепи.
  • Показывает внезапное увеличение сопротивления выше определенной температуры.
Термопара

Термопара – это датчик температуры, который состоит из двух проводов из разных металлов, соединенных в двух точках. У них также самый широкий температурный диапазон среди всех датчиков температуры!

  • Низкая точность: от 0,5 ° C до 5 ° C
  • Нелинейная, требуется преобразование
  • Широкий диапазон температур: от -200 ° C до 1750 ° C
  • Используется в качестве датчиков температуры в термостатах, предохранительного устройства для газовых приборов

NTC против термисторов PTC

9060 Металл Оксиды , железо, марганец, титан, кобальт
Термисторы NTC PTC
Температурный коэффициент Отрицательный (-ve) Положительный (+ ve)
Титанат стронция, барий, свинец
Диапазон температур от -55 ° C до 200 ° C от 60 ° C до 120 ° C
Области применения Измерение и регулирование температуры, измерение расхода и т. Д. Защита от сверхтоков, саморегулирующийся нагреватель и т. Д.

Взаимосвязи и расчеты

Поскольку мы говорили о резисторах NTC и RTC ранее, давайте посмотрим на их взаимосвязь, используя график для представления:

Как видно из графика, у них есть противоположные кривые, которые показывают их температурный коэффициент. Для NTC сопротивление уменьшается при повышении температуры. Для PTC сопротивление увеличивается при повышении температуры.

Их соответствующие символы также могут быть представлены следующим образом:

Как измерить температуру с помощью термистора?

Как мы все знаем до сих пор, термисторы – это резистивные устройства и инструмент для измерения температуры. Так как же нам его использовать? Это довольно просто, вы действительно можете использовать термистор в схеме делителя напряжения!

Например, если вы используете стандартный термистор 10 кОм с последовательным резистором 10 кОм, выходное напряжение при базовой температуре 25 градусов Цельсия будет вдвое меньше напряжения питания, как 10 Ом / (10 Ом + 10 Ом) = 0.5.

Уравнение Стейнхарта-Харта

Уравнение Стейнхарта-Харта помогает легко и точно моделировать температуру термистора. Он обычно использовался в прошлом до появления компьютеров, в настоящее время он может быть рассчитан автоматически с помощью программного обеспечения!

Уравнение выглядит следующим образом:

Где,

  • T1 = Первая температурная точка в Кельвинах (единица измерения температуры в системе СИ)
  • T2 = Вторая температурная точка в Кельвинах
  • R1 = Сопротивление термисторов при T1 в Ом
  • R2 = Сопротивление термисторов при T2 в Ом

To поможет вам понять, как использовать его вручную, давайте рассмотрим пример!

Вопрос : Термистор NTC 10 кОм имеет значение B 3455 в диапазоне температур от 25 ° C до 100 ° C.Рассчитайте его значение сопротивления при 25 градусах Цельсия и снова при 100oC.

Теперь у нас есть информация: B = 3455, R1 = 10 кОм при 25 градусах Цельсия. Однако нам нужен кельвин вместо градуса Цельсия, поэтому добавляем 273,15 К к исходным 25 градусам Цельсия. Слот для всех значений, и он должен выглядеть так:

После ответа вы можете построить двухточечный график характеристик:

Примечание: хотя построены только две точки, но в реальных экспериментах, чем больше точек температуры вы нанесете, тем точнее будут ваши показания!


Применение термисторов

Хотя термисторы являются очень специфическим типом резисторов и в основном помогают регулировать температуру, некоторые из нас фактически используют их каждый день!

Микроволновая печь

Я уверен, что это очень распространенный домашний кандидат, и мы часто используем его для разогрева на ночь или для приготовления в микроволновой печи продуктов! Термисторы (или, в частности, PTC) используются в микроволновых печах для определения и поддержания внутренней температуры.Без этого возможен перегрев и опасность возгорания!

Цифровые термометры

Говоря о термисторах, как можно не говорить о термометрах? Ну конкретно цифровые. Другой тип термометра – это ртутные термометры, в которых вместо термистора используется ртуть. Цифровые термисторы используют NTC, которые измеряют температуру и точно отображают показания!


Проекты с термисторами

Теперь, когда мы знаем, как работают термисторы, мы можем перейти к интересным проектам по использованию ваших термисторов!

Цепь датчика холода

Заинтересованы в цепи термистора, чтобы помочь вам контролировать температуру вашего холодильника? Этот проект позволит вам узнать, как термисторы контролируют уровень температуры в контролируемой среде с помощью других электронных компонентов!

Что вам понадобится:

  • Термистор NTC
  • 2 светодиода (красный и желтый)
  • Зуммер
  • Батареи
  • 4 резистора
  • Провода

Для получения более подробной схемы и информации нажмите здесь!

Сделайте датчик температуры Arduino

Если у вас есть Arduino и вы хотите подключить термистор, этот базовый учебник по термистору прост и удобен для начинающих! Кроме того, в учебное пособие включены некоторые базовые знания о термисторах и расчетах!

Что вам понадобится:

Звучит интересно? Узнайте больше здесь!


Сводка

И все по термисторам! Вы узнали что-то новое? Мы говорили о термисторах PTC и NTC, их взаимосвязи и уравнении Стейнхарта-Харта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *