Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Особенности применения ОУ при однополярном питании

Тенденции применения электронных компонентов направлены на снижение энергопотребления и стоимости, поэтому в современных изделиях используется однополярное питание, и с каждым годом значения питающих напряжений уменьшаются. В статье рассмотрены основные проблемы, с которыми сталкивается разработчик при использовании операционных усилителей в схемах с однополярным питанием.

Хотя симметричное двуполярное питание является оптимальным для операционных усилителей (ОУ), во многих случаях (жесткие требования к потреблению электроэнергии) необходимо или желательно использовать однополярное электропитание. Например, бортовая сеть в автомобильном и морском оборудовании — однополярная. Да и в оборудовании, где ранее традиционно использовалось двуполярное питание, все чаще применяется встроенный однополярный источник электроэнергии с питающим напряжением 5 или 12 В постоянного тока. Системы с однополярным электропитанием для обработки аналоговых сигналов имеют общие для таких решений дополнительные свойства, вызванные необходимостью использования компонентов для смещения аналогового сигнала на каждой стадии обработки. Если смещение аналогового сигнала не продумано, а тем более не выполнено, то возникает множество проблем, в том числе — нестабильность работы операционных усилителей.

 

Проблемы, возникающие при смещении с помощью резисторов

Применение ОУ с однополярным питанием связано с проблемами, которые обычно не встречаются при использовании двуполярного питания. Главная из них возникает тогда, когда входной сигнал является двуполярным относительно общего уровня («земли»). В системе с однополярным питанием этот уровень совпадает с уровнем отрицательного источника питания в традиционных решениях. Поэтому в этом случае нулевой уровень входного сигнала не может соответствовать «земле» и должен находиться между «землей» и уровнем питающего напряжения. Основное преимущество систем с двуполярным питанием состоит в том, что их общее соединение («земля») является устойчивым, низкоомным нулевым уровнем для входного сигнала. При этом положительное и отрицательное напряжения питания могут быть несимметричными. При однополярном питании с помощью схем смещения создается уровень нулевого сигнала, обычно лежащий в середине диапазона питающего напряжения.

Чтобы использовать усилитель эффективно, то есть получить с его выхода максимальный сигнал без ограничения, входной сигнал должен быть смещен на середину выходного диапазона, или, что одно и то же, на уровень половины питающего напряжения. Наиболее эффективный способ — использование линейного стабилизатора, как показано на рисунке 6. Однако наиболее популярная схема смещения — резистивный делитель напряжения питания. Хотя этот способ наиболее прост, при его использовании возникает ряд проблем.

потенциально нестабильная схема включния ОУ с однополярным питанием

Используя рисунок 1, рассмотрим некоторые из них. На этом рисунке изображена классическая схема неинвертирующего усилителя переменного тока. Входной сигнал с помощью емкостной связи подается на вход усилителя. Средний уровень входного сигнала смещен на величину VS/2 с помощью резисторного делителя RA—RB. В полосе пропускания данный усилитель имеет коэффициент усиления КУ = 1 + R2/R1. Паразитное усиление постоянного сигнала сведено к единице с помощью емкостной обратной связи цепочкой R1C1, соединенной с нулевым уровнем («землей»). Поэтому уровень постоянной составляющей равен напряжению смещения. Этим самым мы избегаем возникновения искажений из-за усиления напряжения смещения. Обратная связь обеспечивает коэффициент усиления, равный 1 + R2/R1 для высокочастотных сигналов и равный единице — для постоянной составляющей и низкочастотных сигналов с частотами подавления f = 1/(2πR1C1) и f = 1/[2π(R1 + R2)C1], а также вносит фазовый сдвиг во входную и выходную цепи.

Эта схема имеет серьезные ограни чения применения. Во-первых, невозможно использовать такое важное свойство операционных усилителей, как подавление синфазного сигнала. Поскольку любое изменение питающего напряжения моментально отразится на напряжении смещения, равном VS/2, установленным резисторным делителем, любой шум, присутствующий в шине питания, будет усилен наряду с сигналом (за исключением самых низких частот). Так, при КУ = 100 пульсации напряжением 20 мВ от электросети могут быть усилены до напряжения более 1 В (в зависимости от параметров компонентов схемы).

Еще хуже, что при мощной нагрузке усилитель становится нестабильным в работе. Плохие стабилизация и фильтрация в источнике питания приводят к тому, что на шинах питания появляется значительный уровень сигнала. При работе усилителя, включенного по неинвертирующей схеме, этот сигнал поступает на вход усилителя через схему смещения, как было рассмотрено ранее, и усилитель самовозбуждается.

Оптимизация расположения компонентов на печатной плате, установка большого количества блокирующих конденсаторов, правильная разводка заземляющих шин и соединение их в одной точке, соответствующее проектирование шин питания уменьшают наводки и повышают стабильность схемы, но не исключают рассмотренных проблем. Поэтому далее будет предложено несколько решений, помогающих избежать трудностей в использовании усилителей при включении по схеме с однополярным электропитанием.

 

Развязка схемы смещения

Чтобы снизить влияние нестабильности напряжения питания, можно зашунтировать схему смещения по переменному току и добавить отдельный резистор для входного сигнала, как показано на рисунке 2. Конденсатор C2 обеспечивает фильтрацию пульсаций шины питания, тем самым восстанавливая способность ОУ ослаблять синфазные сигналы и влияние напряжения питания. Резистор RIN, который заменяет в этой схеме входное сопротивление R

A/2 для сигналов переменного тока, обеспечивает передачу постоянного смещения на неинвертирующий вход усилителя.

нетнвертирующее включение ОК с однополярным питанием и развязанной схемой включения

Сопротивления резисторов RA и RB должно быть минимальными, насколько это позволяют ограничения по энергопотреблению. В данном случае выбрано значение 100 кОм, чтобы уменьшить потребляемый ток в схемах с батарейным питанием. Выбор величины шунтирующего конденсатора также требует внимания. С делителем напряжения RA/RB (100 кОм/100 кОм) и С2 = 0,1 мкФ частота среза по уровню –3 дБ фильтра высоких частот (ФВЧ), образованного параллельно соединенными резисторами RA и RB и конденсатором С2, равна 1/[2π(RA/2)C2] = 32 Гц. Хотя это усовершенствование схемы, приведенной на рисунке 1, позволило подавить синфазные помехи с частотами выше 32 Гц, более низкочастотные сигналы сохранили обратную связь по шине питания усилителя. Поэтому при реализации такой схемы необходимо использовать конденсаторы большой емкости.

На практике емкость конденсатора C2 требуется увеличить до таких значений, при которых резисторный делитель схемы смещения эффективно шунтировался бы для всех частот в полосе пропускания усилителя. Хорошим правилом для расчета частоты среза ФВЧ, образованного RA, RB и C2, является выбор значения, равного 1/10 от наименьшего из значений частот среза RC-цепочек RINCIN и R1C1.

Коэффициент усиления по постоянному току остается равным единице. Даже в этом случае должны учитываться входные токи. RIN с последовательно соединенным делителем напряжения RA/RB значительно повышают входное сопротивление на неинвертирующем входе операционного усилителя. Поддержание смещения выходного сигнала на уровне половины напряжения питания при использовании обычных усилителей с обратной связью по напряжению, которые имеют симметричные сбалансированные входы, достигается правильным выбором величины резистора обратной связи R2.

В зависимости от напряжения питания значения резисторов, которые обеспечивают разумный компромисс между увеличением тока потребления или увеличением зависимости параметров усилителя от изменений входного тока, должны быть порядка 100 кОм для питающего напряжения 12…15 В, снижены до 42 кОм для питания 5 В и до 27 кОм — для 3,3 В.

В высокочастотных усилителях (особенно с обратной связью по току) следует использовать низкоомный делитель и резистор обратной связи, для того чтобы сохранить широкую полосу пропускания при наличии паразитной емкости. Для операционных усилителей, таких как AD811, разработанных для обработки видеосигналов, оптимально подходит значение резистора R2, равное около 1 кОм. Поэтому схемы с такими ОУ требуют использования намного меньших значений резисторов RA

и RB в делителе напряжения (и большую емкость шунтирующего конденсатора C2).

Из-за малого входного тока необходимость согласования резисторов на входах современных усилителей с полевыми транзисторами во входных каскадах не так важна, если усилитель не будет работать в широком температурном диапазоне. Иначе такое согласование необходимо.

Схема на рисунке 3 показывает, как реализуется смещение и шунтирование цепи смещения для инвертирующего усилителя.

Смещение с помощью резисторного делителя дешево и обеспечивает постоянный средний уровень выходного сигнала, равный половине величины напряжения питания, но подавление синфазного сигнала операционным усилителем зависит от постоянной времени RC-цепочки, образованной делителем RA/RB и конденсатором C2. Необходимо использовать в качестве С2 конденсатор такой емкости, которая обеспечивает по крайней мере в 10 раз большее значение постоянной времени RC-цепи RA/RB – C2, чем у R

INCIN и R1C1. Это гарантирует достаточное подавление синфазного сигнала. С резисторами RA и RB, равными 100 кОм, величина конденсатора C2 может оставаться довольно небольшой, если не требуется работа усилителя на очень низких частотах.

 

Смещение при помощи стабилитрона

Более эффективный способ обеспечить необходимое смещение при однополярном питании — это использование стабилитрона, как показано на рисунке 4. В этой схеме резистор RZ обеспечивает необходимый рабочий ток стабилитрона. Конденсатор CN шунтирует вход операционного усилителя от шума стабилитрона.

Неинвертирующий усилитель с однополярным питанием, со смещением при помощи стабилитрона

Стабилитрон должен иметь напряжение стабилизации, близкое к половине напряжения питания. Резистор RZ должен обеспечивать достаточно большой ток, позволяющий стабилитрону работать в устойчивом режиме и, тем самым, обеспечивать минимальную погрешность стабилизации. С другой стороны, важно минимизировать энергопотребление (и тепловые потери). Поскольку входной ток операционного усилителя незначителен, то наиболее оптимален выбор стабилитрона малой мощности. Стабилитрон мощностью 250 мВт является оптимальным, но и наиболее распространенные 500-мВт стабилитроны также приемлемы. Оптимальный рабочий ток — около 0,5 мА для 250-мВт и около 5 мА — для 500-мВт стабилитронов.

Схема на рисунке 4 обеспечивает низкоомный опорный уровень и устраняет влияние нестабильности питающего напряжения на вход усилителя. Преимущества существенны, но стоимость и энергопотребление увеличиваются, да и средний уровень напряжения на выходе усилителя будет соответствовать выходному напряжению стабилитрона и может отличаться от VS/2. Если это отличие окажется существенным, то при больших выходных сигналах будет происходить асимметричное ограничение. Входные токи смещения также должны быть согласованы. Резисторы RIN и R2 должны быть равными, чтобы при прохождении через них входного тока разница падения напряжения на них не приводила к появлению ошибки смещения.

Рисунок 5 показывает схему инвертирующего усилителя со смещением уровня входного сигнала стабилитроном.

Инвертирующий усчилитель с однополярным питанием, со смещением при помощи стабилизатора

В таблице 1 перечислены стабилитроны нескольких типов, которые могут быть выбраны в зависимости от напряжения питания для обеспечения необходимого смещения. Значение RZ в таблице выбрано исходя из обеспечения стабилитронов током 5 или 0,5 мА для схем, показанных на рисунках 4 и 5. Для уменьшения шума (ошибки стабилизации) может быть выбран и больший ток; его максимальную величину следует выяснить в техническом описании стабилитрона.

 

Смещение с помощью линейного стабилизатора

Для операционных усилителей с однополярным питанием 3,3 В требуется смещение напряжения 1,65 В. Однако напряжение стабилизации выпускаемых стабилитронов — не ниже 2,4 В. Хотя существуют источники опорного напряжения AD589 и AD1580 с напряжением 1,225 В, которые могут использоваться подобно стабилитронам, но они не обеспечивают смещение на половину напряжения питания. Самый простой способ обеспечить смещение входного сигнала на произвольную величину — это использовать линейный стабилизатор напряжения, например ADP667 или ADP3367, как показано на рисунке 6. Выходное напряжение линейного стабилизатора может быть установлено в пределах от 1,3 В до 16 В, и это обеспечит низкоомное смещение для операционного усилителя с однополярным напряжением питания от 2,6 В до 16,5 В.

применение ОУ для создания "искусственной земли" при батарейном питании с прямой (по постоянному току) связью

 

Связь по постоянному току при однополярном питании

Пока была обсуждена только связь операционного усилителя по переменному току. Хотя при использовании входных и выходных конденсаторов связи большой емкости усилитель может работать с сигналами с частотами значительно ниже 1 Гц, в некоторых случаях требуется истинная связь по постоянному току. Схемные решения, которые обеспечивают низкоомное постоянное напряжение смещения, типа стабилитронов и линейных стабилизаторов, обсуждаемых выше, могут использоваться, чтобы создавать напряжение «среднего уровня».

Альтернативно схеме смещения, построенной на резистивном делителе, показанной на рисунках 1 и 3, для создания низкоомной искусственной «земли» может использоваться буферный операционный усилитель, как показано на рисунке 7. Если для питания используется низковольтная батарея, скажем 3,3 В, ОУ должен иметь возможность работать с сигналами, равными размаху напряжения питания — rail-to-rail. Кроме того, ОУ также должен быть способен обеспечить большой положительный или отрицательный выходной ток. Конденсатор C2 шунтирует делитель напряжения, чтобы уменьшить шумы резисторов. На эту схему не влияет нестабильность электропитания, потому что общий уровень («земля») всегда находится на уровне половины напряжения питания.

 

Проблемы задержки включения

В заключение необходимо рассмотреть еще одну проблему — время включения усилителя. Оно приблизительно будет зависеть от постоянной времени RC-цепочки, используемой в самом низкочастотном фильтре.

В пассивных схемах смещения, рассмотренных здесь, требуется, чтобы постоянная времени RC цепочки, состоящей из параллельно соединенных резисторов RA и RB и С2, была в 10 раз больше, чем постоянные времени входной и выходной цепей. Длительная постоянная времени помогает удерживать схему смещения во «включающемся» состоянии по отношению к входным и выходным цепям усилителя, обеспечивая постепенное нарастание среднего уровня выходного сигнала от 0 В до половины напряжения питания без скачков до уровня напряжения питания. Главное требование, чтобы частота среза схемы смещения на уровне 3 дБ была меньше в десять раз, чем наименьшая из частот среза R1C1 и RLOAD/COUT. Например, в схеме на рисунке 2 для полосы пропускания начиная с 10 Гц и коэффициента усиления, равного 10, емкость конденсатора C2 должна быть равна 3 мкФ, что обеспечит частоту среза по уровню 3 дБ, равную 1 Гц.

С резисторами RA и RB = 100 кОм сопротивление в RC-цепочке (параллельное соединение) будет равно 50 кОм, и при C2 = 3 мкФ постоянная времени будет равна 0,15 с. Таким образом, средний уровень выходного сигнала усилителя достигнет величины половины напряжения питания приблизительно за 0,2…0,3 с… Между тем, входные и выходные RC-цепи установятся в десять раз быстрее.

В устройствах, где время включения может оказаться чрезмерно длительным, предпочтительнее использовать схемы смещения на стабилитронах или линейных стабилизаторах.

Таблица. Стабилитроны и соотвествующие значения резистора

Однополярное питание ОУ » PRO-диод

Однополярное питание ОУ

Однополярное питание ОУ

11.11.2013 | Рубрика: Операционный усилитель

В предыдущих главах, например в этой, предполагалось, что ОУ имеет два напряжения питания — положительной и отрицательной полярности (рис. 1). При этом напряжения питания обычно выбираются равными по величине, а их средняя точка является землёй. Сигналы на входе и выходе при этом подаются и снимаются относительно земли. Однако…

Однако в современной портативной аппаратуре с батарейным питанием это неудобно.

Схема включения ОУ с двуполярным питанием.

Рис. 1. Схема включения ОУ с двуполярным питанием.

При однополярном питании ОУ необходимо использовать цепь смещения выходного напряжения так, чтобы выходные сигналы могли изменяться в максимально широком диапазоне, ограниченном нулём (землёй) и напряжением питания. Кроме того, входные сигналы изменяются относительно потенциала земли, что эквивалентно подаче входных сигналов относительно шины отрицательного питания в схеме применения ОУ с двуполярным питанием. Необходимость преодоления этих проблем влечёт за собой некоторое усложнение схем применения ОУ с однополярным питанием.

Когда входной сигнал имеет постоянное смещение относительно земли (рис. 2), напряжение смещения усиливается вместе с напряжением входного сигнала. За исключением случая, когда это напряжение смещения используется для установления нужного постоянного напряжения на выходе ОУ, его приходится исключать из усиливаемого сигнала.

Схема включения ОУ с двуполярным питанием и источником постоянного смещения на входе усилителя

Рис. 2. Схема включения ОУ с двуполярным питанием и источником постоянного смещения на входе усилителя

На рис. 3 приведена одна из схем, применяемых для исключения постоянного смещения из усиливаемых сигналов за счёт использования дифференциального усилителя. В нём одинаковые постоянные напряжения от источников KREF являются синфазными и вычитаются друг из друга благодаря свойствам дифференциального усилителя.

Схема включения ОУ с двуполярным питанием и синфазным напряжением на входах

Рис. 3. Схема включения ОУ с двуполярным питанием и синфазным напряжением на входах

Когда сигнал подаётся относительно земли, при однополярном питании ОУ, как правило, не удаётся использовать схему включения ОУ с двуполярным питанием. В схеме на рис. 4 усилитель совсем не может работать при положительной фазе входного сигнала, так как выходное напряжение при этом должно быть отрицательнее потенциала земли. Что касается отрицательной фазы входного напряжения, то только немногие ОУ могут работать при нулевом потенциале входа.

Схема включения ОУ с однополярным питанием и входным сигналом, подаваемым относительно земли

Рис. 4. Схема включения ОУ с однополярным питанием и входным сигналом, подаваемым относительно земли

Главную сложность при конструировании схем на ОУ с однополярным питанием представляет необходимость учёта того обстоятельства, что входные сигналы, как правило, подаются относительно земли или содержат различную постоянную составляющую. Если не указано иное, все схемы на ОУ в этой главе являются схемами с одним напряжением питания. Следует отметить, что с землёй может быть соединён как положительный, так и отрицательный полюс источника питания.

Использование одного напряжения питания ограничивает полярность выходных напряжений ОУ Например, при напряжении питания 10В выходное напряжение может быть только в диапазоне 0 <= VOUT <= 10В. Это обстоятельство не позволяет получать выходные напряжения отрицательной полярности. Вместе с тем инвертирующий усилитель может работать с отрицательными входными сигналами, когда выходные сигналы имеют положительную полярность.

Следует быть внимательным при работе с отрицательными (положительными) входными напряжениями при питании ОУ от источника положительной (отрицательной) полярности. Дело в том, что входы ОУ, как правило, очень чувствительны к пробою при обратном напряжении смещения. Особое внимание необходимо уделять условиям включения схем: необходимо, чтобы входы ОУ не оказались при этом под воздействием напряжения иной полярности, чем напряжение питания.

Метки:: Однополярное питание, Операционный усилитель

Схемы питания операционных усилителей | HomeElectronics

Всем доброго времени суток! Продолжаем тему операционных усилителей. В последних двух статьях я несколько отвлёкся от основной темы и рассказывал про обратную связь, но как я уже говорил в одной из предыдущих статей, что без обратной связи невозможно вести повествование про операционные усилители.

В данной статье я начну рассказывать о применении операционных усилителей в линейных схемах.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Работа ОУ от двухполярного источника питания

Как указывалось в одной из предыдущих статей, в основе операционного усилителя лежит дифференциальный каскад на транзисторах, для питания которого требуется источник питания с двумя напряжениями – положительным и отрицательным. Причем оба эти напряжения должны быт одинаковы: например, +5 и -5 В, +12 и -12 В. Типовая схема подключения ОУ к источнику питания приведена ниже

цепи питанияцепи питания
Типовая схема питания ОУ.

Типовая схема питания ОУ состоит из следующих элементов: конденсаторов С1, С2, защитный диодов VD1, VD2 и двухполярного источника питания +Uпит, -Uпит. Защитные диоды VD1 и VD2 являются необязательными элементами схемы, но рекомендуются для всех источников питания, где есть возможность случайно перепутать выводы питания.

Конденсаторы С1 и С2 обеспечивают развязку шин питания по переменному току и должны подключаться как можно ближе к выводам микросхемы. Данные конденсаторы должны иметь ёмкость порядка 0,001 – 0,1 мкФ.

Так как современные ОУ имеют достаточно большое усиление на высоких частотах, то довольно часто возникает паразитная обратная связь по цепям питания усилителя. Поэтому довольно часто в дополнение к развязывающим конденсаторам С1 и С2 в цепях питания ОУ часто подключают конденсаторы непосредственно к шинам питания, что улучшает стабильность усилителей.

Работа ОУ от однополярного источника питания

В обычных условиях схема включения ОУ предусматривает двухполярное питание, однако в современной портативной аппаратуре с батарейным питанием это представляется не совсем удобным. Вследствие этого применяют схемы однополярного питания ОУ с введение в схему цепи дополнительного смещения.

В линейном усилителе соотношение между входным UBX и выходным UBbIX напряжением имеет следующую функциональную зависимость, которая представляет собой уравнение прямой и называется передаточной характеристикой

12022016011202201601

где k – крутизна усилителя

b – смещение выходного напряжения.

Поэтому, в зависимости от коэффициентов k и b, возможно четыре варианта передаточных характеристик линейного усилителя

12022016021202201602

Для нахождения коэффициентов k и b в уравнении прямой линии необходимо задаться параметрами двух точек на этой прямой, в случае линейного усилителя – параметрами входного и выходного напряжения в двух точках, чаще всего крайних.

В качестве примера найдём коэффициенты k и b в следующем случае: на входе линейного усилителя сигнал от датчика может изменяться в пределах от 0,3 до 0,7 В, а с выхода усилителя на аналого-цифровой преобразователь должен поступать сигнал в диапазоне от 1 до 6 В. Для определения уравнения линейного усилителя мы имеем две точки А1(UBbIX1; UBX1) = (1; 0,3) и А2(6; 0,7), поэтому составим систему уравнений

12022016031202201603

Решив данную систему, получим следующие значения коэффициентов k = 7 и b = 1,1. В итоге передаточная характеристика линейного усилителя будет иметь следующий вид

12022016041202201604

Для каждого вида передаточной характеристики существует своя схема реализации цепей смещения, рассмотрим их подробнее.

Схема цепей смещения в усилителях типа UBbIX = kUBX + b

Схема, реализующая передаточную характеристику вида UBbIX = kUBX + b, представлена на рисунке ниже

Ubbix=kUbx+bUbbix=kUbx+b
Схема усилителя с передаточной характеристикой типа UBbIX = kUBX + b.

Данная схема представляет собой неинвертирующий сумматор и состоит из развязывающих конденсаторов С1 и С2 имеющих ёмкость порядка 0,001 – 0,1 мкФ, резисторов R1, R2, R3 и R4 и самого ОУ DA1 в неинвертирующей схеме. Передаточная характеристика данной схемы описывается следующим выражением

12022016051202201605

тогда коэффициенты k и b будут определяться следующими выражениями

12022016061202201606

Расчёт усилителя с характеристикой типа UBbIX = kUBX + b

Для примера рассчитаем элементы усилителя со следующими параметрами: входное напряжение UBX = 0,1…1 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.

  1. Определим тип передаточной характеристики. Определяем коэффициенты k и b

    12022016071202201607

    Решив данную систему, получим k = 4,44 и b = 0,556, тогда передаточная характеристика будет иметь следующий вид

    12022016081202201608

  2. Рассчитаем номиналы резисторов R1 и R2, решив следующую систему уравнений относительно (R3 + R4) / R3

    12022016091202201609

    Подставив значения коэффициентов k, b и UCM получим следующее уравнение

    12022016101202201610

    Величина резистора R1 обычно выбирается в пределах от 1 до 10 кОм, так как резистор R1 определяет входное сопротивление усилителя и его следует увеличивать, чтобы исключить перегрузку источника сигнала.

    Выберем R1 = 10 кОм, тогда R2 = 47,91 * 10 = 479,1 кОм. Примем R2 = 470 кОм.

  3. Рассчитаем величины сопротивлений R3 и R4

    12022016111202201611

    Величина резистора, также как и R1 выбирается в пределах 1 … 10 кОм, поэтому примем R3 = 10 кОм, R4 = 10 * 3,53 = 35,3 кОм. Примем R4 = 36 кОм.

Схема цепей смещения в усилителях типа UBbIX = kUBX – b

Схема усилителя передаточная характеристика, которого имеет вид UBbIX = kUBX – b представлена ниже

Схема усилителя с передаточной характеристикой типа UBbIX = kUBX – bСхема усилителя с передаточной характеристикой типа UBbIX = kUBX – b
Схема усилителя с передаточной характеристикой типа UBbIX = kUBX – b

Передаточная характеристика данной схемы представлена следующим выражением

12022016121202201612

В данном случае коэффициенты k и b будут определяться следующими выражениями

12022016131202201613

Расчёт усилителя с характеристикой типа UBbIX = kUBX — b

Для примера рассчитаем усилитель со следующими параметрами: входное напряжение UBX = 0,3…0,7 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.

  1. Рассчитаем коэффициенты передаточной характеристики

    12022016141202201614

    Решив данную систему уравнений, получим k = 10 и b = -2.

    Тогда переходная характеристика данного усилителя будет иметь вид

    12022016151202201615

  2. Рассчитаем сопротивление резисторов R3 и R В данной схеме сопротивление резистора R3 должно быть значительно больше эквивалентного сопротивления параллельных резисторов R1 || R2. Поэтому коэффициент k можно выразить следующим приближённым выражением

    12022016161202201616

    Примем сопротивление резистора R3 = 10 кОм, тогда R4 = 90 кОм.

  3. Рассчитаем сопротивление резисторов и R

    12022016171202201617

    Так как R3 >> R1 || R2 примем R2 = 0,75 кОм, тогда R1 = 26*0,75=19,5 кОм. Примет R1 = 20 кОм.

    Таким образом, передаточная характеристика усилителя будет иметь вид UBbIX = 10UBX — 2 при следующих номиналах элементов: R1 = 20 кОм, R2 = 0,75 кОм, R3 = 10 кОм, R4 = 90 кОм.

Схема цепей смещения в усилителях типа UBbIX = – kUBX + b

Третий случай питания ОУ от однополярного источника имеет передаточную характеристику вида UBbIX = – kUBX + b. Схемное решение для данного случая представлено ниже

UbbIx=-kUbx+bUbbIx=-kUbx+b
Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX + b.

Данная схема состоит из ОУ DA1, развязывающих конденсаторов C1 и C2, резисторов R1, R2, R3, R4 и представляет собой дифференциальный или разностный усилитель.

С учётом элементов схемы можно передаточная характеристика будет иметь вид

12022016181202201618

Тогда коэффициенты k и b можно представить следующими выражениями

12022016191202201619

Расчёт усилителя с характеристикой вида UBbIX = – kUBX + b

В качестве примера рассчитаем усилитель, который должен иметь следующие параметры: диапазон входного напряжения UBX = -0,1 … -1 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.

  1. Определим коэффициенты передаточной характеристики k и b, для этого составим и решим систему линейных уравнений

    12022016201202201620

    Решив данную систему, получаем k = — 4,44 и b = 0,556, тогда переходная характеристика данной схемы усилителя будет иметь вид

    12022016211202201621

  2. Определим сопротивление резисторов R1 и R4

    12022016221202201622

    Примем R1 = 10 кОм, тогда R4 = 4,44 * 10 = 44,4 кОм. Примем R4 = 43 кОм

  3. Рассчитаем сопротивление резисторов и R3

    12022016231202201623

    Примем R3 = 1кОм, тогда R2 = 56,19 * 1 = 56,19 кОм. Примем R2 = 56 кОм.

Схема цепей смещения в усилителях типа UBbIX = – kUBX – b

Последний, четвёртый случай ОУ с однополярным питанием и переходной характеристикой вида UBbIX = – kUBX – b имеет схему представленную на рисунке ниже

Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX - bСхема усилителя с передаточной характеристикой вида UBbIX = – kUBX - b
Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX — b

Данная схема представляет собой инвертирующий сумматор и состоит из ОУ DA1, развязывающего конденсатора С1, резисторов R1, R2 и R3. С учётом элементов схемы передаточная характеристика будет иметь вид

12022016241202201624

Тогда коэффициенты k и b можно представить в следующем виде

12022016251202201625

Расчёт усилителя с переходной характеристикой вида UBbIX = – kUBX – b

Для примера рассчитаем усилитель реализующий переходную характеристику вида UBbIX = – kUBX — b. В качестве начальных условий примем следующие параметры схемы: диапазон входного напряжения UBX = -0,2 … -0,8 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.

  1. Рассчитаем коэффициенты k и b, для этого решим систему линейных уравнений

    12022016261202201626

    Решив данную систему, получим k = – 6,67 и b = — 0,334. Тогда переходная характеристика будет иметь вид

    12022016271202201627

  2. Определим величину сопротивления R1 и R3

    12022016281202201628

    Примем R1 = 10 кОм, тогда R3 = 6,67 * 10 = 66,7 кОм. Примем R3 = 68 кОм.

  3. Определим величину сопротивления R2

    12022016291202201629

    Примем R2 = 200 кОм.

Вместо заключения

Разработка схем на ОУ с однополярным питанием несколько сложнее, чем при использовании двухполярного источника питания, однако воспользовавшись расчетами, приведёнными в данной статье, хорошие результаты не заставят себя ждать.

Довольно часто необходимо построить схемы с несколькими входами, дополнительными требованиями по подавлению помех и так далее, но описанные схемы расчёта могут быть использованы и здесь.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Инвертирующий усилитель на ОУ | Практическая электроника

Схема инвертирующего усилителя с двухполярным питанием

Базовая схема инвертирующего усилителя с двухполярным питанием выглядит вот так:

инвертирующий усилитель

Здесь мы видим два резистора и сам ОУ. На вход подаем сигнал, а с выхода уже снимаем усиленный сигнал. Как можно заметить, НЕинвертирующий вход ОУ заземлен. Как же работает схема? Здесь мы видим обратную связь. То есть с выхода сигнал подается обратно на вход через резистор R2. Наш усилитель является инвертирующим, так как сигнал на выходе на 180 градусов сдвинут по фазе относительно входного сигнала. Значит, в узле, где соединяются два резистора и инвертирующий вход, выходной сигнал будет приходить со знаком “минус”. Такая обратная связь называется отрицательной обратной связью (ООС). Она уменьшает высокий коэффициент усиления ОУ до нужных нам значений.

В НЕинвертирующем усилителе обратная связь идет по напряжению, а в инвертирующем усилителе – по току.

Если вы читали статью про ОУ, то, наверное, помните, что если один из входов ОУ соединен с землей, то и другой вход имеем точно такой же потенциал. В данном случае НЕинвентирующий вход у нас соединен с землей, следовательно, на инвертирующем входе будет точно такой же потенциал, то есть 0 Вольт. Такой вход еще называют мнимой (виртуальной) землей. Как говорит на Википедия, “мнимый – это фальшивый, поддельный, ложный”.

Инвертирующий усилитель на ОУ

Коэффициент усиления по напряжению любого усилителя выражается формулой

коэффициент усиления по напряжению формула

Итак, что получаем в итоге?

инвертирующий усилитель двухполярный

Инвертирующий усилитель на ОУ

Входное напряжение из формулы выше

Инвертирующий усилитель на ОУ

Но так как наш усилитель инвертирует входной сигнал, следовательно, на выходе у нас будет напряжение со знаком “минус”, то есть -Uвых.

В этом случае ток I2 будет выражаться формулой:

Инвертирующий усилитель на ОУ

Инвертирующий усилитель на ОУ

Отсюда находим коэффициент усиления

Инвертирующий усилитель на ОУ

Так как входное сопротивление инвертирующего входа бесконечно велико, следовательно, ток будет протекать только через цепь R1—>R2. Два разных тока в одной ветви быть не может, поэтому получается, что

Инвертирующий усилитель на ОУ

В итоге наша формула сокращается и получаем

Инвертирующий усилитель на ОУ

Пример работы инвертирующего усилителя

Давайте посмотрим, как работает наш усилитель в программе-симуляторе электронных схем Proteus. Здесь мы собираем базовую схему с двухполярным питанием

Инвертирующий усилитель на ОУ

В Proteus она будет выглядеть вот так:

инвертирующий усилитель принцип работы

Здесь мы взяли значение резисторов R2=10 кОм и R1=1 кОм, следовательно, коэффициент усиления такой схемы будет равен -10. Знак “минус” в данном случае просто инвертирует усиленный сигнал, что мы и видим на осциллограмме ниже. Входной сигнал – это розовая осциллограмма, а выходной – это желтая осциллограмма. Выходной сигнал находится в противофазе относительно входного, то есть инвертирует его. Отсюда и название “инвертирующий усилитель”.

инвертирующий усилитель осциллограмма

Насыщение выхода инвертирующего усилителя

Давайте представим себе такую ситуацию. У нас входное переменное напряжение амплитудой 1 В. Коэффициент усиления 50. По нашим расчетам на выходе мы должны получить сигнал амплитудой 50 В. Но как мы получим 50 В, если питание нашего усилителя, допустим, +-15 В? Усиленный сигнал, амплитудой больше чем 15 В, мы получить не сможем. Хотя типичное падение напряжения во внутренних цепях реальных ОУ составляет около 0,5-1,5 В. То есть максимальный размах сигнала, который мы можем получить в данном случае на выходе будет 27-29 Вольт.

Хотя в настоящее время есть ОУ, которые все-так позволяют получать на выходе +-Uпит. Такое свойство некоторых ОУ называется Rail-to-Rail. В дословном переводе “от рельса до рельса” или “от шины до шины”. Есть такие параметры, как Rail-to-Rail по входу (Rail-to-Rail input). Здесь на вход мы можем подавать сигналы вплоть до Uпит ОУ. Иногда в даташите оговаривается, с отрицательной или положительной шины питания можно подходить к этому параметру. Есть также есть Rail-to-Rail output. Здесь на выходе мы можем получить напряжение +-Uпит.  Если усиленный сигнал на выходе не вписывается в такой диапазон, то он будет срезаться. Такое свойство ОУ называется насыщением выхода. То есть надо всегда помнить, что  если амплитуда сигнала будет превышать +-Uпит усилителя, то такой сигнал на выходе будет срезан по этому уровню.

Продемонстрируем это в симуляторе Proteus. Итак, давайте на вход подадим синусоидальный сигнал амплитудой в 1 В, а коэффициент усиления сделаем 20, подобрав нужные резисторы. То есть по нашим расчетам мы должны получить синус с амплитудой в 20 Вольт. Смотрим осциллограмму

насыщение выхода инвертирующий усилитель

Подавали на вход синусоиду, а получили на выходе синусоиду с обрезанными верхушками и амплитудой в 14 В. Одна клеточка в данном случае – это 2 В. Как вы видите,сигнал, амплитудой более чем +-Uпит мы получить не сможем. Всегда помните об этом, особенно при конструировании радиоэлектронных устройств.

Ток смещения и смещение выхода

Входы реального ОУ потребляют небольшой ток, который называется током смещения.  В англоязычных даташитах он называется Input Bias Current. Если входные цепи ОУ построены на биполярных транзисторах, то такой ток смещения будет где-то  несколько десятков наноампер, в отличите от ОУ, где входные цепи построены на полевых транзисторах. Во входных цепях, построенных на полевых транзисторах, ток смещения оценивается десятыми долями пикоампер. Следовательно, ток смещения очень важен именно для ОУ, чьи входные цепи построены на биполярных транзисторах.

Почему же так важен ток смещения? Давайте еще раз рассмотрим схему

Инвертирующий усилитель на ОУ

Даже если мы не подаем никакого сигнала на вход, то на выходе у нас все равно будет какое-то маленькое постоянное напряжение. Почему так происходит? Во всем как раз и виноват ток смещения. Он создает падение напряжения на резисторе обратной связи. В данном случае – это резистор R2. А как вы знаете, на большем сопротивлении падает большее напряжение. То есть если номинал сопротивления R2 будет очень большим, то на нем будет падать большое напряжение, которое как раз и пойдет на выход нашего ОУ.

Допустим, ток смещения равен 0,1 мкА, а резистор R2= 1 МОм, то какое падение напряжения будет в этом случае на резисторе? Вспоминаем закон Ома: I=U/R, отсюда U=IR= 0,1 В. То есть на выходе у нас уже будет постоянное напряжение 0,1 В! Подавая на вход такого усилителя полезный сигнал с током смещения в 0,1 мкА , на выходе этот сигнал будет усиливаться и суммироваться с постоянной составляющей в 0,1 В.  В нашем случае происходит смещение нулевого уровня. Наглядно – на рисунке ниже.

ток смещения инвертирующего усилителя

Способы борьбы с током смещения

В некоторых случаях током смещения можно пренебречь, если он не оказывает сильного влияния на ваши требования по сигналу. Но если все-таки вы разрабатываете какое-либо точное устройство, где выходной сигнал должен строго вписываться в рамки ТЗ, то в этом случае можно прибегнуть к таким способам:

1) Ставить в цепь обратной связи резистор малого номинала.

На малом сопротивлении падает малое напряжение. Следовательно, на выходе уже будет меньшее постоянное напряжение. Стандартный диапазон резисторов от нескольких килоом и до 50 кОм.

2) Ввести в схему компенсирующий резистор

компенсационный резистор инвертирующий усилитель

В этом случае он будет определяться по формуле:

Инвертирующий усилитель на ОУ

Если все-таки выходной сигнал соответствует вашим ожиданиям и без RК , то лучше его не ставить, так как любой резистор вносит шумовые искажения в сигнал. Зачем лишний раз добавлять в схему шум?

3) Использовать ОУ с входными цепями, построенными на полевых транзисторах, либо подбирать ОУ с малыми токами смещения, благо сейчас технологии производства таких ОУ далеко шагнули вперед.

Инвертирующий усилитель с однополярным питанием

В некоторых случаях нам даже иногда нужно переместить нулевой уровень на более высокий “пьедестал”, чтобы мы могли полностью усиливать сигнал, если дело касается однополярного питания. Работать с однополярным питанием всегда проще и удобнее, чем с двухполярным. Поэтому, в этом случае надо поднять нулевой уровень на некоторый пьедестал, чтобы полностью усиливать переменный сигнал. То есть добавить постоянную составляющую в сигнал. В этом случае схема примет чуть-чуть другой вид:

инвертирующий усилитель с однополярным питанием

Как можно увидеть, сейчас мы питаем наш ОУ однополярным питанием. Что будет, если мы НЕинвертирующий выход посадим на землю?

Инвертирующий усилитель на ОУ

То есть мы получили базовую схему инвертирующего усилителя, но только с однополярным питанием. Давайте ппросимулируем такую схему. Коэффициент усиления в данном случае будет равен-10, так как мы взяли соотношение резисторов 10 килоом и 1 килоом. Загоняю на вход сигнал амплитудой в 1 В.

симуляция работы инвертирующий усилитель

Что имеем в итоге на виртуальном осциллографе?

срез полуволны

Как вы видите, в этом случае усиленная полуволна сигнала вырезается полностью. Оно и понятно, так как напряжение питания у нас однополярное и проломить “пол” нулевого потенциала невозможно. Но можно сделать одну хитрость: поднять “уровень пола” и дать сигналу место для размаха.

В этом случае нам надо добавить Uсм , для того, чтобы поднять сигнал над уровнем “пола”. Но не все так просто, дорогие друзья!

Инвертирующий усилитель на ОУ

Здесь уже будет использоваться более хитрая формула, а не просто вольтдобавка. Приблизительная формула выглядит вот так:

Инвертирующий усилитель на ОУ

Итак, мы хотим усилить наш сигнал полностью без среза. Какое же должно быть значение Uвых ? Оно должно иметь значение половины Uпит , чтобы сигнал ходил туда-сюда без срезов. Но также надо учитывать и коэффициент усиления, иначе получится насыщение выхода, о чем мы писали выше.

В нашем случае мы хотим увеличить сигнал амплитудой в 1 В в 10 раз. То есть Uпит должно быть как минимум 20 Вольт. Так как ОУ поддерживают однополярное питание до 32 В, то давайте для красоты выставим Uпит = 30 В. Рассчитываем Uсм :

Инвертирующий усилитель на ОУ

Инвертирующий усилитель на ОУ

Проверяем симуляцию, все ок!

инвертирующий усилитель с напряжением смещения

Как здесь можно увидеть, желтый выходной сигнал поднялся над нулевым уровнем и усилился без искажений. В данном случае желтый сигнал – это сумма постоянного напряжения и переменного синусоидального сигнала.

То есть получилось что-то типа вот этого:

постоянная составляющая сигнала

Хорошо это или плохо, когда в переменном сигнале есть постоянная составляющая, то есть постоянное напряжение? В некоторых случаях это плохо, потому как такой сигнал трудно использовать, и поэтому чаще всего его прогоняют через конденсатор, так как он пропускает через себя только переменный ток и блокирует прохождение постоянного тока. А еще лучше поставить фильтр из дифференцирующей цепи, с помощью которого можно отсекать лишние частоты.

RC дифференцирующая цепь

Свойства инвертирующего усилителя

Операционный усилитель с однополярным питанием

Чарльз Китчин, компания Analog Devices.

ОДНОПОЛЯРНОЕ ИЛИ ДВУПОЛЯРНОЕ ПИТАНИЕ?

Хотя симметричное двуполярное питание является оптимальным для операционных усилителей (ОУ), во многих случаях (жесткие требования к потреблению электроэнергии) необходимо или желательно использовать однополярное электропитание. Системы с однополярным электропитанием для обработки аналоговых сигналов имеют общие для таких решений дополнительные свойства, вызванные необходимостью использования компонентов для смещения аналогового сигнала на каждой стадии обработки. Если смещение аналогового сигнала не продумано, а тем более не выполнено, то возникает множество проблем, в том числе — нестабильность работы операционных усилителей.

ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ СМЕЩЕНИИ С ПОМОЩЬЮ РЕЗИСТОРОВ

Применение ОУ с однополярным питанием связано с проблемами, которые обычно не встречаются при использовании двуполярного питания. Главная из них возникает тогда, когда входной сигнал является двуполярным относительно общего уровня («земли»). В системе с однополярным питанием этот уровень совпадает с уровнем отрицательного источника питания в традиционных решениях. Поэтому в этом случае нулевой уровень входного сигнала не может соответствовать «земле» и должен находиться между «землей» и уровнем питающего напряжения.

Основное преимущество систем с двуполярным питанием состоит в том, что их общее соединение («земля») является устойчивым, низкоомным нулевым уровнем для входного сигнала. При этом положительное и отрицательное напряжения питания могут быть несимметричными. При однополярном питании с помощью схем смещения создается уровень нулевого сигнала, обычно лежащий в середине диапазона питающего напряжения.

Чтобы использовать усилитель эффективно, то есть получить с его выхода максимальный сигнал без ограничения, входной сигнал должен быть смещен на середину выходного диапазона, или, что одно и то же, на уровень половины питающего напряжения. Наиболее эффективный способ — использование линейного стабилизатора, как показано на рисунке 6. Однако наиболее популярная схема смещения — резистивный делитель напряжения питания. Хотя этот способ наиболее прост, при его использовании возникает ряд проблем.

Используя рисунок 1, рассмотрим некоторые из них. На этом рисунке изображена классическая схема неинвертирующего усилителя переменного тока. Входной сигнал с помощью емкостной связи подается на вход усилителя. Средний уровень входного сигнала смещен на величину VS/2 с помощью резисторного делителя RA—RB. В полосе пропускания данный усилитель имеет коэффициент усиления КУ = 1 + R2/R1. Паразитное усиление постоянного сигнала сведено к единице с помощью емкостной обратной связи цепочкой R1C1, соединенной с нулевым уровнем («землей»). Поэтому уровень постоянной составляющей равен напряжению смещения. Этим самым мы избегаем возникновения искажений из-за усиления напряжения смещения. Обратная связь обеспечивает коэффициент усиления, равный 1 + R2/R1 для высокочастотных сигналов и равный единице — для постоянной составляющей и низкочастотных сигналов с частотами подавления f = 1/(2πR1C1) и f = 1/[2π(R1 + + R2)C1], а также вносит фазовый сдвиг во входную и выходную цепи.

Эта схема имеет серьезные ограничения применения. Во-первых, невозможно использовать такое важное свойство операционных усилителей, как подавление синфазного сигнала. Поскольку любое изменение питающего напряжения моментально отразится на напряжении смещения, равном VS/2, установлен ным резисторным делителем, любой шум, присутствующий в шине питания, будет усилен наряду с сигналом (за исключением самых низких частот). Так, при КУ = 100 пульсации напряжением 20 мВ от электросети могут быть усилены до напряжения более 1 В (в зависимости от параметров компонентов схемы).

Еще хуже, что при мощной нагрузке усилитель становится нестабильным в работе. Плохие стабилизация и фильтрация в источнике питания приводят к тому, что на шинах питания появляется значительный уровень сигнала. При работе усилителя, включенного по неинвертирующей схеме, этот сигнал поступает на вход усилителя через схему смещения, как было рассмотрено ранее, и усилитель самовозбуждается.

Оптимизация расположения компонентов на печатной плате, установка большого количества блокирующих конденсаторов, правильная разводка заземляющих шин и соединение их в одной точке, соответствующее проектирование шин питания уменьшают наводки и повышают стабильность схемы, но не исключают рассмотренных проблем. Поэтому далее будет предложено несколько решений, помогающих избежать трудностей в использовании усилителей при включении по схеме с однополярным электро питанием.

РАЗВЯЗКА СХЕМЫ СМЕЩЕНИЯ

Чтобы снизить влияние нестабильности напряжения питания, можно зашунтировать схему смещения по переменному току и добавить отдельный резистор для входного сигнала, как показано на рисунке 2. Конденсатор C2 обеспечивает фильтрацию пульсаций шины питания, тем самым восстанавливая способность ОУ ослаблять синфазные сигналы и влияние напряжения питания. Резистор RIN, который заменяет в этой схеме входное сопротивление RA/2 для сигналов переменного тока, обеспечивает передачу постоянного смещения на неинвертирующий вход усилителя.

Сопротивления резисторов RA и RB должно быть минимальными, насколько это позволяют ограничения по энергопотреблению. В данном случае выбрано значение 100 кОм, чтобы уменьшить потребляемый ток в схемах с батарейным питанием. Выбор величины шунтирующего конденсатора также требует внимания. С делителем напряжения RA/RB (100 кОм/100 кОм) и С2 = 0,1 мкФ частота среза по уровню –3 дБ фильтра высоких частот (ФВЧ), образованного параллельно соединенными резисторами RA и RB и конденсатором С2, равна 1/[2π(RA/2)C2] = 32 Гц. Хотя это усовершенствование схемы, приведенной на рисунке 1, позволило подавить синфазные помехи с часто тами выше 32 Гц, более низкочастотные сигналы сохранили обратную связь по шине питания усилителя. Поэтому при реализации такой схемы необходимо использовать конденсаторы большой емкости.

На практике емкость конденсатора C2 требуется увеличить до таких значений, при которых резисторный делитель схемы смещения эффективно шунтировался бы для всех частот в полосе пропускания усилителя. Хорошим правилом для расчета частоты среза ФВЧ, образованного RA, RB и C2, является выбор значения, равного 1/10 от наименьшего из значений частот среза RC-цепочек RIN CIN и R1C1.

Коэффициент усиления по постоянному току остается равным единице. Даже в этом случае должны учитываться входные токи. RIN с последовательно соединенным делителем напряжения RA/RB значительно повышают входное сопротивление на неинвертирующем входе операционного усилителя. Поддержание смещения выходного сигнала на уровне половины напряжения питания при использовании обычных усилителей

с обратной связью по напряжению, которые имеют симметричные сбалансированные входы, достигается правильным выбором величины резистора обратной связи R2.

В зависимости от напряжения питания значения резисторов, которые обеспечивают разумный компромисс между увеличением тока потребления или увеличением зависимости параметров усилителя от изменений входного тока, должны быть порядка 100 кОм для питающего напряжения 12ѕ15 В, снижены до 42 кОм для питания 5 В и до 27 кОм — для 3,3 В.

В высокочастотных усилителях (особенно с обратной связью по току) следует использовать низкоомный делитель и резистор обратной связи, для того чтобы сохранить широкую полосу пропускания при наличии паразитной емкости. Для операционных усилителей, таких как AD811, разработанных для обработки видеосигналов, оптимально подходит значение резистора R2, равное около 1 кОм. Поэтому схемы с такими ОУ требуют использования намного меньших значений резисторов RA и RB в делителе напряжения (и большую емкость шунтирующего конденсатора C2).

Из-за малого входного тока необходимость согласования резисторов на входах современных усилителей с полевыми транзисторами во входных каскадах не так важна, если усилитель не будет работать в широком температурном диапазоне. Иначе такое согласование необходимо.

Схема на рисунке 3 показывает, как реализуется смещение и шунтирование цепи смещения для инвертирующего усилителя.

Смещение с помощью резисторного делителя дешево и обеспечивает пос тоянный средний уровень выходного сигнала, равный половине величины напряжения питания, но подавление синфазного сигнала операционным усилителем зависит от постоянной времени RC-цепочки, образованной делителем RA/RB и конденсатором C2. Необходимо использовать в качестве С2 конденсатор такой емкости, которая обеспечивает по крайней мере в 10 раз большее значение постоянной времени RC-цепи RA/RB – C2, чем у RINCIN и R1C1. Это гарантирует достаточное подавление синфазного сигнала. С резисторами RA и RB, равными 100 кОм, величина конденсатора C2 может оставаться довольно небольшой, если не требуется работа усилителя на очень низких частотах.

СМЕЩЕНИЕ ПРИ ПОМОЩИ СТАБИЛИТРОНА

Более эффективный способ обеспечить необходимое смещение при однополярном питании — это использование стабилитрона, как показано на рисунке 4. В этой схеме резистор RZ обеспечивает необходимый рабочий ток стабилитрона. Конденсатор CN шунтирует вход операционного усилителя от шума стабилитрона.

Стабилитрон должен иметь напряжение стабилизации, близкое к половине напряжения питания. Резистор RZ должен обеспечивать достаточно большой ток, позволяющий стабилитрону работать в устойчивом режиме и, тем самым, обеспечивать минимальную погрешность стабилизации. С другой стороны, важно минимизировать энергопотребление (и тепловые потери). Поскольку входной ток операционного усилителя незначителен, то

наиболее оптимален выбор стабилитрона малой мощности. Стабилитрон мощностью 250 мВт является оптимальным, но и наиболее распространенные 500-мВт стабилитроны также приемлемы. Оптимальный рабочий

ток — около 0,5 мА для 250-мВт и около 5 мА — для 500-мВт стабилитронов.

Схема на рисунке 4 обеспечивает низкоомный опорный уровень и устраняет влияние нестабильности питающего напряжения на вход усилителя. Преимущества существенны, но стоимость и энергопотребление увеличиваются, да и средний уровень напряжения на выходе усилителя будет соответствовать выходному напряжению стабилитрона и может отличаться от VS/2. Если это отличие окажется существенным, то при боль-

ших выходных сигналах будет происходить асимметричное ограничение. Входные токи смещения также должны быть согласованы. Резисторы RIN и R2 должны быть равными, чтобы при прохождении через них входного тока разница падения напряжения на них не приводила к появлению ошибки смещения.

Рисунок 5 показывает схему инвертирующего усилителя со смещением уровня входного сигнала стабилитроном.

В таблице 1 перечислены стабилитроны нескольких типов, которые могут быть выбраны в зависимости от напряжения питания для обеспе чения необходимого смещения. Значение RZ в таблице выбрано исходя из обеспечения стабилитронов током 5 или 0,5 мА для схем, показанных на рисунках 4 и 5. Для уменьшения шума (ошибки стабилизации) может быть выбран и больший ток; его максимальную величину следует выяснить в техническом описании стабилитрона.

СМЕЩЕНИЕ С ПОМОЩЬЮ ЛИНЕЙНОГО СТАБИЛИЗАТОРА

Для операционных усилителей с однополярным питанием 3,3 В требуется смещение напряжения 1,65 В. Однако напряжение стабилизации выпускаемых стабилитронов — не ниже 2,4 В. Хотя существуют источники опорного напряжения AD589 и AD1580 с напряжением 1,225 В, которые могут использоваться подобно стабилитронам, но они не обеспечивают смещение на половину напряжения питания. Самый простой способ

обеспечить смещение входного сигнала на произвольную величину — это использовать линейный стабилизатор напряжения, например ADP667 или ADP3367, как показано на рисунке 6.

Выходное напряжение линейного стабилизатора может быть установлено в пределах от 1,3 В до 16 В, и это обеспечит низкоомное смещение для операционного усилителя с однополярным напряжением питания от 2,6 В до 16,5 В.

СВЯЗЬ ПО ПОСТОЯННОМУ ТОКУ ПРИ ОДНОПОЛЯРНОМ ПИТАНИИ

Пока была обсуждена только связь операционного усилителя по переменному току. Хотя при использовании входных и выходных конденсаторов связи большой емкости усилитель может работать с сигналами с частотами значительно ниже 1 Гц, в некоторых случаях требуется истинная связь по постоянному току. Схемные решения, которые обеспечивают низкоомное постоянное напряжение смещения, типа стабилитронов

и линейных стабилизаторов, обсуждаемых выше, могут использоваться, чтобы создавать напряжение «среднего уровня».

Альтернативно схеме смещения, построенной на резистивном делителе, показанной на рисунках 1 и 3, для создания низкоомной искусственной «земли» может использоваться буферный операционный усилитель, как показано на рисунке 7. Если для питания используется низковольтная батарея, скажем 3,3 В, ОУ должен иметь возможность работать с сигналами, равными размаху напряжения питания — rail-to-rail. Кроме того,

ОУ также должен быть способен обеспечить большой положительный или отрицательный выходной ток. Конденсатор C2 шунтирует делитель напряжения, чтобы уменьшить шумы резисторов. На эту схему не влияет нестабильность электропитания, потому что общий уровень («земля») всегда находится на уровне половины напряжения питания.

ПРОБЛЕМЫ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ

В заключение необходимо рассмотреть еще одну проблему — время включения усилителя. Оно приблизительно будет зависеть от постоянной времени RC-цепочки, используемой в самом низкочастотном фильтре.

В пассивных схемах смещения, рассмотренных здесь, требуется, чтобы постоянная времени RC-цепочки, состоящей из параллельно соединенных резисторов RA и RB и С2, была в 10 раз больше, чем постоянные времени входной и выходной цепей. Длительная постоянная времени помогает удерживать схему смещения во «включающемся» состоянии по отношению к входным и выходным цепям усилителя, обеспечивая постепенное нарастание среднего уровня выходного сигнала от 0 В до половины напряжения питания без скачков до уровня напряжения питания. Главное требование, чтобы частота среза схемы смещения на уровне 3 дБ была меньше в десять раз, чем наименьшая из частот среза R1C1 и RLOAD/COUT. Например, в схеме на рисунке 2 для полосы пропускания начиная с 10 Гц и коэффициента усиления, равного 10, емкость конденсатора C2 должна быть равна 3 мкФ, что обеспечит частоту среза по уровню 3 дБ, равную 1 Гц.

С резисторами RA и RB = 100 кОм сопротивление в RC-цепочке (параллельное соединение) будет равно 50 кОм, и при C2 = 3 мкФ постоянная времени будет равна 0,15 с. Таким образом, средний уровень выходного сигнала усилителя достигнет величины половины напряжения питания приблизительно за 0,2ѕ0,3 с. Между тем, входные и выходные RC-цепи установятся в десять раз быстрее.

В устройствах, где время включения может оказаться чрезмерно длительным, предпочтительнее использовать схемы смещения на стабилитронах или линейных стабилизаторах.

Как это работает? — Однополярное питание ОУ и отрицательное напряжение

Обратились недавно ко мне с вопросом. Есть схема с операционным усилителем. ОУ питается однополярным положительным напряжением. Но в схеме присутствует отрицательное напряжение, которое через резисторы подается на на вход ОУ. Вопрос: как и почему оно работает? Разве для работы с отрицательными напряжениями не надо ли питать операционник от двуполярного источника напряжения?

Давайте разбираться вместе.

Вот те самые схемы:

Рис. 1. Схема №1

Рис. 2. Схема №2

Судя по всему, схемы с РадиоКота, но сами статьи не нашел.

Первая — источник высокого отрицательного напряжения для питания ФЭУ, вторая — предварительный усилитель того самого ФЭУ.

Рассмотрим первую. Интересующий нас участок выглядит так:

Рис. 3. Упрощенная обвязка ОУ из рис. 1

Здесь ОУ работает как инвертирующий усилитель с коэффициентом усиления меньше единицы. На вход -HV подается высокое отрицательное напряжение. На выходе OUT получаем положительный потенциал, по величине пропорциональный входному напряжению.

Работает схема следующим образом. На вход -HV подается высокое отрицательное напряжение. Через резистор R2 оно поступает на отрицательный вход ОУ. Так как положительный вход операционника подключен к земле, ОУ через резистор обратной связи R1 будет компенсировать отрицательное напряжение положительным, тем самым сохранять на отрицательном входе нулевой потенциал. То есть, как только на отрицательном входе напряжение провалится ниже нуля, ОУ его снова вернет в ноль через резистор R1. Таким образом, на обоих входах операционного усилителя напряжение всегда будет находиться в окрестности нуля вольт.

Вопрос только вызывает то, что для срабатывания обратной связи операционник должен зафиксировать небольшой провал в отрицательную область, а как он это сделает, если он питается только положительным напряжением?

На это можно ответить коротко: Да ни как! Схема в данном виде является нерабочей, уж не знаю как оно заработало у автора, но у человека, который ее собирал, ни чего не получилось. Выйти из положения можно внеся небольшое изменение в конструкцию:

Рис. 4. Модернизированная схема №1

Положительный вход ОУ с помощью делителя R3-R4 мы немного «приподнимаем» над потенциалом земли. В этом случае операционник следит за провалом напряжения на отрицательным входе уже не ниже уровня земли, а ниже небольшого смещения, которое всегда больше нуля. В таком виде схема уже является жизнеспособной.

Данный прием как раз и реализован во второй схеме (рис. 2). Вот ее часть:

Рис. 5. Зарядочувствительный усилитель ФЭУ

Это так называемый зарядочувствительный усилитель, или инверсный интегратор тока. Вход Anode подключается к аноду ФЭУ, который является источником отрицательного тока (не напряжения!!!). При регистрации кванта света, на выходе OUT получаем импульс напряжения положительной полярности.

Вот и все. Как видите, даже если схема работает с отрицательными напряжениями, в некоторых случаях совсем не обязательно операционные усилители в ней питать двуполярным напряжением.

 

Операционные усилители с однополярным питанием

РАЗДЕЛ 3: Усилители для нормирования сигналов

Унекоторых операционных усилителей, например, семейство ОР191/OP291/OP491

иОР279, порог переключения от одной пары транзисторов к другой находится при синфазном напряжении на 1 В ниже положительной шины питания. p-n-p дифференциальный входной каскад приблизительно активен от 200 мВ ниже отрицательной шины питания до 1 В ниже положительной шины. По данному диапазону синфазных сигналов напряжение смещения, входной ток, ОСС, шумы напряжения/тока ОУ определяются, главным образом, характеристиками p-n-p транзисторной пары. Однако, при переключении входное напряжение смещения может резко измениться, из-за того что оно представляет собой среднее значение напряжений смещения p-n-p и n-p-n транзисторных пар. Входные токи усилителя изменят полярность и величину в момент включения n-p-n пары.

Операционные усилители, например, ОР184/OP284/OP484, используют входной каскад с технологией «от питания до питания», в котором обе транзисторные пары n-p-n

иp-n-p активны во всем диапазоне синфазных сигналов, и порога переключения не существует. Входное напряжение смещения усилителя является средним из напряжений смещения p-n-p и n-p-n каскадов.

Усилитель дает плавное изменение входного напряжения смещения по всему диапазону входного синфазного напряжения, что достигается тщательной лазерной подгонкой резисторов входного каскада. Это же происходит и со входным током. Исключение составляют крайние точки (не доходя 1 В до уровней питания), где напряжение смещения и входной ток резко изменяются вследствие открытия паразитных p-n переходов.

Когда обе дифференциальные пары транзисторов активны по всему диапазону входного синфазного напряжения, переходная характеристика усилителя более быстра в области середины диапазона синфазного сигнала (в два раза выше для биполярных транзисторов и в √2 раз в случае JFET транзисторов). Переходная проводимость входного каскада определяет скорость нарастания выходного напряжения и частоту единичного усиления усилителя, следовательно, время отклика слегка уменьшится в крайних точках диапазона синфазного сигнала, когда, либо p-n-p каскад (сигнал приближается к положительной шине питания), либо n-p-n каскад (сигнал идет в сторону отрицательной шины) вводятся в режим отсечки. Пороги, при которых переходная проводимость изменяется, отстоят приблизительно на 1 В от каждой шины питания.

По этой причине для приложений, требующих действительных входов «от питания до питания», следует тщательно оценивать операционный усилитель с тем, чтобы отобранные усилители гарантировали нужные для работы: входное напряжение смещения, входной ток, ОСС и шумы (тока и напряжения).

Выходные каскады ОУ с однополярным питанием

Выходные каскады первых операционных усилителей представляли собой n-p-n эмиттерные повторители с источниками тока или резисторами на «землю», как показано в левой части Рис.3.21. В действительности, скорости нарастания получались выше для положительных перепадов сигналов, нежели для отрицательных. В то время как современные операционные усилители имеют пуш-пульные выходные каскады различного типа, многие из них обладают асимметричностью и имеют скорость нарастания выходного сигнала в одну сторону выше, чем в другую. Асимметрия вводит искажения в сигналы переменного тока и проистекает из технологического процесса, дающего более быстрые n-p-n транзисторы, чем p-n-p транзисторы. Асимметрия может также привести к тому, что выходной сигнал будет приближаться к одной из шин питания ближе, чем к другой.

©АВТЭКС Санкт-Петербург (812) 567-7202, http://www.autexspb.da.ru, E-mail: [email protected] Автор перевода: Горшков Б.Л.

Как избежать проблем с нестабильностью операционных усилителей в приложениях с однополярным питанием

Одинарное или двойное питание?

Несмотря на то, что выгодно реализовать схемы операционного усилителя со сбалансированным двойным источником питания, существует множество практических приложений, где из соображений экономии энергии или по другим причинам работа с однополярным питанием необходима или желательна. Например, аккумуляторная батарея в автомобильном и судовом оборудовании обеспечивает только одну полярность. Даже оборудование с питанием от сети, такое как компьютеры, может иметь только однополярный встроенный источник питания, обеспечивающий для системы +5 В или +12 В постоянного тока.При обработке аналоговых сигналов общей особенностью работы с однополярным питанием является необходимость в дополнительных компонентах на каждом этапе для соответствующего смещения сигнала. Если это не будет тщательно продумано и выполнено, могут возникнуть нестабильность и другие проблемы.

Распространенные проблемы с подмагничиванием резистора

Приложениям с ОУ с однополярным питанием присущи проблемы, которые обычно не встречаются в схемах с двойным питанием. Фундаментальная проблема состоит в том, если сигнал качаться как положительным, так и отрицательным по отношению к «общий», это опорное напряжение нулевой сигнал должен быть на фиксированном уровне между поставку рельсов.Основное преимущество двойных источников питания заключается в том, что их общее соединение обеспечивает стабильный нулевой опорный сигнал с низким сопротивлением. Два напряжения питания обычно равны и противоположны (и часто отслеживаются), но это не абсолютная необходимость. При одном источнике питания такой узел должен быть создан искусственно, путем введения дополнительных схем для обеспечения некоторой формы смещения, чтобы поддерживать общий сигнал при соответствующем среднем напряжении питания.

Поскольку обычно желательно, чтобы большие выходные значения ограничивались симметрично, смещение обычно устанавливается в средней точке номинального диапазона выходного сигнала усилителя или (для удобства) на половине напряжения питания.Самый эффективный способ добиться этого – использовать регулятор, как показано на рисунке 6; однако популярный метод заключается в снятии напряжения питания с помощью пары резисторов. Несмотря на кажущуюся простоту, с этим есть проблемы.

Для иллюстрации проблемы схема на рис. 1, имеющая несколько конструктивных недостатков, представляет собой неинвертирующий усилитель со связью по переменному току. Сигнал имеет емкостную связь на входе и выходе. Средний уровень входного сигнала со связью по переменному току смещен до V s /2 парой делителей R A -R B , а внутриполосное усиление составляет G = 1 + R2 / R1.«Шумовое усиление» постоянного тока уменьшается до единицы за счет емкостной связи обратной связи с нулем, установленным R1 и C1, так что уровень постоянного тока на выходе равен напряжению смещения. Это позволяет избежать искажений из-за чрезмерного усиления входного напряжения смещения усилителя. Коэффициент усиления усилителя с обратной связью снижается от (1 + R2 / R1) на высокой частоте до единицы при постоянном токе с частотами излома при f = 1 / [2π R1 C1] и f = 1 / [2π (R1 + R2) C1. ], вводя фазовые сдвиги, которые добавляют к сдвигам, связанным со схемами связи входов и выходов.

Рис. 1. Потенциально нестабильная схема операционного усилителя с однополярным питанием.

Эта простая схема имеет дополнительные потенциально серьезные ограничения. Во-первых, присущая операционному усилителю способность подавлять колебания напряжения питания бесполезна, поскольку любое изменение напряжения питания напрямую изменяет напряжение смещения V s /2, устанавливаемое резистивным делителем. Хотя это не представляет проблемы при постоянном токе, любой синфазный шум, появляющийся на клеммах источника питания, будет усилен вместе с входным сигналом (кроме самых низких частот).При усилении 100 20 милливольт пульсации 60 Гц и гул будут усилены до уровня 1 вольта на выходе.

Хуже того, нестабильность может возникать в схемах, где операционный усилитель должен обеспечивать большие выходные токи в нагрузке. Если источник питания не отрегулирован (и не обойден), на линии питания будут появляться значительные сигнальные напряжения. Поскольку неинвертирующий вход операционного усилителя напрямую связан с питающей линией, эти сигналы будут подаваться обратно в операционный усилитель, часто в фазовом соотношении, которое будет вызывать «мотор-лодку» или другие формы колебаний.

Хотя использование чрезвычайно тщательной компоновки, байпаса источника питания с несколькими конденсаторами, заземления по схеме звезды и печатной платы «силовой плоскости» – все это помогает снизить уровень шума и поддерживать стабильность схемы, лучше внести изменения в конструкцию схемы, которые улучшат отказ источника питания. Здесь предлагается несколько.

Отсоединение сети смещения от источника питания

Один из шагов к решению – обойти делитель напряжения смещения и предоставить отдельный входной возвратный резистор, модифицируя схему, как показано на рисунке 2.Теперь точка ответвления на делителе напряжения блокируется для сигналов переменного тока конденсатором C2, чтобы восстановить подавление подачи переменного тока. Резистор Rin, который заменяет Ra / 2 в качестве входного сопротивления схемы для сигналов переменного тока, также обеспечивает обратный путь постоянного тока для входа +.

Рис. 2. Изолированная схема смещения операционного усилителя с однополярным питанием.

Разумеется, значения R A и R B должны быть настолько низкими, насколько это возможно; Выбранные здесь значения 100 кОм предназначены для экономии тока питания, как это может быть желательно в приложении с батарейным питанием.Также следует тщательно выбирать номинал байпасного конденсатора. С делителем напряжения 100 кОм / 100 кОм для R A и R B и значением емкости 0,1 мкФ или аналогичным значением для C2, полоса пропускания -3 дБ импеданса этой сети устанавливается параллельной комбинацией R A , R B и C2, равно 1 / [2π (R A /2) C2] = 32 Гц. Хотя это улучшение по сравнению с рис. 1, подавление синфазного сигнала падает ниже 32 Гц, обеспечивая значительную обратную связь через источник питания на низких частотах сигнала.Для этого требуется конденсатор большего размера, чтобы избежать «катания на лодке» и других проявлений нестабильности.

Практический подход – увеличить емкость конденсатора C2. так что он достаточно велик, чтобы эффективно обходить делитель напряжения на всех частотах в полосе пропускания схемы. Хорошее практическое правило – установить этот полюс на одну десятую ширины входной полосы по уровню –3 дБ, установленной в R IN / C IN и R 1 / C 1 .

Коэффициент усиления усилителя на постоянном токе все еще равен единице.Даже в этом случае необходимо учитывать входные токи смещения операционного усилителя. R IN , последовательно с делителем напряжения R A / R B , добавляет значительное сопротивление последовательно с положительной входной клеммой операционного усилителя. Поддержание выхода операционного усилителя близко к среднему источнику питания с помощью обычных операционных усилителей с обратной связью по напряжению, которые имеют симметричные симметричные входы, можно достичь путем балансировки этого сопротивления путем выбора R2.

В зависимости от напряжения питания типичные значения, обеспечивающие разумный компромисс между повышенным током питания и повышенной чувствительностью к току смещения усилителя, варьируются от 100 кОм для одиночных источников питания + 15 В или + 12 В до 42 кОм для питание 5 В и 27 кОм для 3.3 В.

Усилители

, предназначенные для высокочастотных приложений (особенно типов с обратной связью по току), должны использовать низкое входное сопротивление и сопротивление обратной связи для сохранения полосы пропускания при наличии паразитной емкости. Операционный усилитель, такой как AD811, который был разработан для приложений скорости видео, обычно будет иметь оптимальную производительность при использовании резистора 1 кОм для R2. Следовательно, в этих типах приложений необходимо использовать резисторы гораздо меньшего номинала в делителе напряжения R A / R B (и более высокие байпасные емкости), чтобы минимизировать входной ток смещения и избежать низкочастотной нестабильности.

Из-за их низкого тока смещения потребность в балансировочных входных резисторах не так велика в приложениях с современными операционными усилителями на полевых транзисторах, если только схема не должна работать в очень широком диапазоне температур. В этом случае балансировка сопротивления на входных клеммах операционного усилителя по-прежнему является разумной мерой предосторожности.

На Рисунке 3 показано, как смещение и обход могут применяться в случае инвертирующего усилителя.

Рис. 3. Схема инвертирующего усилителя с развязкой и однополярным питанием.

Метод смещения резисторного делителя не требует больших затрат и поддерживает постоянное выходное напряжение операционного усилителя на уровне V S /2, но подавление синфазного сигнала операционного усилителя по-прежнему зависит от постоянной времени RC, формируемой R A || R B и конденсатор C2. Использование значения C2, которое обеспечивает, по крайней мере, 10-кратную постоянную времени RC входной цепи RC-связи (R1 / C1 и R в / C в ), поможет обеспечить разумный коэффициент подавления синфазного сигнала. С резисторами 100 кОм для R A и R B практические значения C2 могут быть довольно небольшими, если полоса пропускания схемы не слишком мала.

Смещение стабилитрона

Более эффективным способом обеспечения необходимого смещения V S /2 для работы с однополярным питанием является использование стабилизатора на стабилитроне, такого как показанный на рисунке 4. Здесь ток подается на стабилитрон через резистор R. Конденсатор. C N помогает уменьшить генерируемый стабилитроном шум на входе операционного усилителя.

Рисунок 4. Неинвертирующий усилитель с однополярным питанием и смещением на стабилитроне.

Следует выбрать стабилитрон с рабочим напряжением, близким к В S /2.Резистор R Z должен быть выбран так, чтобы обеспечить достаточно высокий ток для работы стабилитрона при его стабильном номинальном напряжении и поддерживать низкий уровень шума на выходе стабилитрона. Тем не менее, также важно минимизировать потребление энергии (и нагрев) и избежать повреждения стабилитрона. Поскольку вход операционного усилителя потребляет небольшой ток от эталона, рекомендуется выбрать маломощный диод. Лучше всего устройство с номинальной мощностью 250 мВт, но приемлемы и более распространенные типы мощностью 500 мВт. Идеальный ток стабилитрона варьируется от каждого производителя, но практические уровни I z от 500 мкА (устройство на 250 мВт) до 5 мА (устройство на 500 мВт) обычно являются хорошим компромиссом для этого приложения.

в рабочих пределах стабилитрона, схема на фиг.4 в основном обеспечивает низкий опорный уровень импеданс, который восстанавливает отказ источника питания операционного усилителя. Преимущества существенны, но есть цена: потребляется больше энергии, а выход постоянного тока операционного усилителя фиксируется напряжением стабилитрона, а не на уровне V S /2. Если напряжение источника питания существенно упадет, на больших сигналах может произойти асимметричное ограничение. Также необходимо учитывать входные токи смещения.Резисторы R , IN и R2 должны быть близки к одному и тому же значению, чтобы входные токи смещения не создавали существенную ошибку напряжения смещения.

На рисунке 5 представлена ​​схема инвертирующего усилителя, использующая тот же метод смещения стабилитрона.

Рис. 5. Инвертирующий усилитель с однополярным питанием и смещением на стабилитроне.

В таблице 1 показаны некоторые распространенные типы стабилитронов, которые можно выбрать для обеспечения половинного смещения питания для различных уровней напряжения питания. Для удобства предусмотрены практические значения R Z , обеспечивающие 5 мА и 0.Токи устройства 5 мА в цепях 4 и 5. Для снижения шума цепи можно выбрать оптимальный ток стабилитрона, обратившись к паспорту производителя.

Таблица 1. Предлагаемые номера деталей стабилитронов (типы Motorola) и значения Rz для использования на рисунках 4 и 5.

Напряжение питания
Ссылка
Напряжение
Диод
Тип
Стабилитрон
Ток
Rz
Значение Ом
+ 15В
7.5В
1N4100
0,5 мА
15к
+ 15В
7,5 В
1N4693
5 мА
1,5к
+ 12В
6,2 В
1N4627
0.5 мА
11,5 тыс.
+ 12В
6,2 В
1N4691
5 мА
1,15к
+ 9В
4,3 В
1N4623
0,5 мА
9.31k
+ 9В
4.3В
1N4687
5 мА
931
+ 5В
2,4 В
1N4617
0,5 мА
5.23k
+ 5В
2,7 В
1N4682
5 мА
464

Смещение операционного усилителя с использованием линейного регулятора напряжения

Для схем операционных усилителей, работающих от +3.Стандартно 3 В, требуется напряжение смещения + 1,65 В. Стабилитроны обычно доступны только с напряжением до +2,4 В, хотя шунтирующие регуляторы шириной запрещенной зоны AD589 и AD1580 на 1,225 В могут использоваться, как стабилитроны, для обеспечения фиксированного, но не центрированного напряжения при низком импедансе. Самый простой способ обеспечить произвольные значения напряжения смещения при низком импедансе (например, V S /2) – использовать линейный стабилизатор напряжения, такой как ADM663A или ADM666A, как показано на рисунке 6. Его выход можно регулировать. с 1.От 3 до 16 В и обеспечивает низкоомное смещение для однополярных напряжений от 2 В до 16,5 В.

Рисунок 6. Схема смещения ОУ с однополярным питанием и линейным стабилизатором напряжения.

Цепи одинарного питания со связью по постоянному току

До сих пор обсуждались только схемы операционных усилителей с переменным током. Хотя при использовании подходящих больших входных и выходных разделительных конденсаторов схема со связью по переменному току может работать на частотах значительно ниже 1 Гц, для некоторых приложений требуется настоящая связь по входу и выходу постоянного тока.Цепи, которые обеспечивают постоянное постоянное напряжение при низком импедансе, такие как стабилитроны и регуляторы, описанные выше, могут использоваться для обеспечения напряжения «нулевого уровня».

В качестве альтернативы резисторы смещения V S /2, показанные на рисунках 1–3, могут быть буферизованы операционным усилителем для создания низкоомной цепи «фантомного заземления», как показано на рисунке 7. Если источником питания является низковольтная батарея. источник, скажем + 3,3 В, операционный усилитель должен быть устройством типа “rail-to-rail”, способным эффективно работать во всем диапазоне напряжения питания.Операционный усилитель также должен иметь возможность подавать положительный или отрицательный выходной ток, достаточный для удовлетворения требований нагрузки главной цепи. Конденсатор C2 шунтирует делитель напряжения, чтобы уменьшить шум резистора. Эта схема не должна обеспечивать отказ от источника питания, потому что она всегда будет управлять общей клеммой («землей») при половине напряжения питания.

Рис. 7. Использование операционного усилителя для обеспечения «фантомного заземления» для приложений с прямым подключением с батарейным питанием.

Проблемы времени включения цепи

Еще один последний вопрос, который необходимо рассмотреть, – это время включения цепи.Приблизительное время включения будет зависеть от постоянной времени RC используемого фильтра с самой низкой полосой пропускания.

Все схемы с пассивным смещением, показанные здесь, должны требовать, чтобы цепь делителя напряжения R A || R B -C2 имела постоянную времени в 10 раз больше, чем постоянная времени входной или выходной цепи. Это сделано для упрощения конструкции схемы (поскольку входную полосу пропускания задают до трех разных полюсов RC). Эта длительная постоянная времени также помогает удерживать цепь смещения от «включения» до входных и выходных цепей операционного усилителя, тем самым позволяя выходному сигналу операционного усилителя постепенно повышаться от нуля вольт до V S /2, не приводя к положительная подающая шина.Требуемая частота излома 3 дБ составляет 1/10 от частоты R1C1 и R , нагрузка C на выходе . Например: на рисунке 2 для полосы пропускания цепи 10 Гц и коэффициента усиления 10 значение C2, равное 3 мкФ, обеспечивает полосу пропускания 3 дБ на уровне 1 Гц.

С R A || R B = 50 000 Ом, конденсатор емкостью 3 мкФ обеспечивает постоянную времени RC 0,15 секунды. Таким образом, выход операционного усилителя займет примерно 0,2–0,3 секунды, чтобы установить достаточно близкий к V S /2. Между тем, входные и выходные RC-цепи будут заряжаться в десять раз быстрее.

В приложениях, где время включения схемы может стать слишком большим, лучше выбрать стабилитрон или метод активного смещения.

,

ЭКСПЛУАТАЦИЯ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ НА ОДНОПОДЪЕМОМ ПИТАНИИ

БЮЛЛЕТЕНЬ ПРИМЕНЕНИЯ

APPLICATION BULLETIN БЮЛЛЕТЕНЬ ЗАЯВКИ Почтовый адрес: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706 Тел: (602 746-1111 Twx: 910-952-111 Телекс: 066-6491 ФАКС (602 889-1510 Немедленное сообщение

Дополнительная информация

БЮЛЛЕТЕНЬ ПРИМЕНЕНИЯ

APPLICATION BULLETIN БЮЛЛЕТЕНЬ ЗАЯВКИ Почтовый адрес: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S.Tucson Blvd., Tucson, AZ 85706 Тел .: (520) 746-1111 Телекс: 066-6491 Факс (520) 889-1510 Информация о продукте: (800) 548-6132

Дополнительная информация

Отчет по применению SLVA051

Application Report SLVA051 Отчет о применении, ноябрь 998 г. Продукты со смешанными сигналами SLVA05 Обратная связь по мощности и операционные усилители с обратной связью по току Отчет о применении Джеймс Карки Номер в литературе: SLVA05, ноябрь 1998 г. Напечатано на переработанной бумаге ВАЖНО

Дополнительная информация

ПОЛУЧЕНИЕ ДАННЫХ ИЗ DDC112

RETRIEVING DATA FROM THE DDC112 ПОЛУЧЕНИЕ ДАННЫХ ИЗ. Джим Тодсен В этом бюллетене по приложению объясняется, как получить данные из.Он развивает обсуждение, приведенное в таблице данных, и предоставляет дополнительную информацию, позволяющую

Дополнительная информация

Август 2001 PMP Low Power SLVU051

August 2001 PMP Low Power SLVU051 Руководство пользователя Август 2001 PMP Low Power SLVU051 ВАЖНОЕ ПРИМЕЧАНИЕ Texas Instruments и ее дочерние компании (TI) оставляют за собой право вносить изменения в свои продукты или прекращать выпуск любого продукта или услуги

Дополнительная информация

ПРОЕКТИРОВАНИЕ ФИКСИРОВАННЫХ ИСТОЧНИКОВ ТОКА

DESIGN OF FIXED CURRENT SOURCES БЮЛЛЕТЕНЬ ЗАЯВКИ Почтовый адрес: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S.Tucson Blvd. Tucson, AZ 85706 Тел .: (602) 746-1111 Twx: 910-952-111 Телекс: 066-6491 Факс (602) 889-1510 Срочная связь

Дополнительная информация

Отчет по применению SLOA030A

Application Report SLOA030A Отчет о применении, март 2001 г. Продукты со смешанными сигналами SLOA030A ВАЖНОЕ УВЕДОМЛЕНИЕ Компания Texas Instruments и ее дочерние компании (TI) оставляют за собой право вносить изменения в свои продукты или прекращать выпуск любого продукта

Дополнительная информация

Коллекция схем операционных усилителей

Op Amp Circuit Collection Сборник схем операционных усилителей Примечание: National Semiconductor рекомендует заменять согласованные пары 2N2920 и 2N3728 на LM394 во всех схемах применения.Раздел 1 Основные схемы Разница в инвертирующем усилителе

Дополнительная информация

MAS.836 КАК СДВИГАТЬ OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 КАК СДВИГАТЬ СДВИГ ЦЕПИ ОУ-УСИЛИТЕЛЯ: Смещение в электронной схеме описывает рабочие характеристики установившегося состояния без подачи сигнала. В схеме операционного усилителя рабочая характеристика

Дополнительная информация

Дизайн фильтра за тридцать секунд

Filter Design in Thirty Seconds Отчет о применении SLOA093, декабрь 2001 г. Разработка фильтра за тридцать секунд Брюс Картер Высокопроизводительный аналог РЕЗЮМЕ Нужен фильтр быстро? Нет теории, очень мало математики, просто рабочие конструкции фильтров, и в

Дополнительная информация

SDLS068A ДЕКАБРЬ 1972 ГОДА, ПЕРЕСМОТРЕНО, ОКТЯБРЬ 2001.Авторское право, 2001, Texas Instruments Incorporated.

SDLS068A DECEMBER 1972 REVISED OCTOBER 2001. Copyright 2001, Texas Instruments Incorporated SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 Информация о ПРОИЗВОДСТВЕННЫХ ДАННЫХ актуальна на дату публикации. Продукция соответствует

Дополнительная информация

Использование операционных усилителей в качестве компараторов

Using Op Amps As Comparators РУКОВОДСТВО Использование операционных усилителей в качестве компараторов Несмотря на то, что операционные усилители и компараторы на первый взгляд могут показаться взаимозаменяемыми, между ними есть некоторые важные различия.Компараторы предназначены для работы в разомкнутом контуре, они

Дополнительная информация

Операционный усилитель – IC 741

Operational Amplifier - IC 741 Операционный усилитель – IC 741 Tabish, декабрь 2005 г. Цель: изучить работу операционного усилителя 741 путем проведения следующих экспериментов: (a) Измерение входного тока смещения (b) Входное смещение

Дополнительная информация

Масштабирование и смещение аналоговых сигналов

Scaling and Biasing Analog Signals Масштабирование и смещение аналоговых сигналов Ноябрь 2007 г. Введение Масштабирование и смещение диапазона и смещения аналоговых сигналов – полезный навык для работы с разнообразной электроникой.Не только может интерфейс

Дополнительная информация

Описание. 5 тыс. (10 тыс.) – + 5 тыс. (10 тыс.)

Description. 5k (10k) - + 5k (10k) THAT Corporation Низкошумный, высокопроизводительный микрофонный предусилитель IC ХАРАКТЕРИСТИКИ Превосходные шумовые характеристики во всем диапазоне усиления Исключительно низкий коэффициент нелинейных искажений + шум во всей полосе звукового сигнала Низкое энергопотребление

Дополнительная информация

Глава 19 Операционные усилители

Chapter 19 Operational Amplifiers Глава 19 Операционные усилители Операционный усилитель, или операционный усилитель, является основным строительным блоком современной электроники.Операционные усилители появились на заре электронных ламп, но стали обычным явлением только

. Дополнительная информация

www.jameco.com 1-800-831-4242

www.jameco.com 1-800-831-4242 Распространяется по: www.jameco.com 1-800-831-4242. Содержание и авторские права на прилагаемый материал являются собственностью его владельца. LF411 Операционный усилитель на входе JFET с малым смещением и малым дрейфом Общее описание

Дополнительная информация

ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ

OPERATIONAL AMPLIFIER ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ MODULE3 Содержание 1.ВВЕДЕНИЕ … 3 2. Блок-схема операционного усилителя … 3 3. Рабочие характеристики усилителя … 3 4. Операционный усилитель … 4 4.1 Контакты операционного усилителя

Дополнительная информация

Больше дизайна фильтров при ограниченном бюджете

More Filter Design on a Budget Отчет о применении SLOA096, декабрь 2001 г. Подробнее о конструкции фильтра для бюджета Высокопроизводительные линейные продукты Брюса Картера РЕЗЮМЕ В этом документе описывается конструкция фильтра с точки зрения стоимости.Фильтр

Дополнительная информация

ДРАЙВЕРЫ АУДИОБАЛАНСИРОВАННОЙ ЛИНИИ

AUDIO BALANCED LINE DRIVERS DRV DRV DRV DRV DRV ДРАЙВЕРЫ АУДИОСБАЛАНСИРОВАННОЙ ЛИНИИ ХАРАКТЕРИСТИКИ СБАЛАНСИРОВАННОГО ВЫХОДА НИЗКОЕ ИСКАЖЕНИЕ:.% При f = khz ШИРОКИЙ ВЫХОД ПОВОРОТ: Vrms в Ω ВЫСОКАЯ ЕМКОСТЬ ПРИВОД НАГРУЗКИ ВЫСОКАЯ СКОРОСТЬ НАГРУЗКИ: В / мкс ШИРОКИЙ ДИАПАЗОН ПИТАНИЯ ± 6. Дополнительная информация

TSL213 64 1 ВСТРОЕННЫЙ ДАТЧИК ОПТОМ

TSL213 64 1 INTEGRATED OPTO SENSOR TSL 64 ВСТРОЕННЫЙ ОПТОМАТИЧЕСКИЙ ДАТЧИК SOES009A D4059, НОЯБРЬ 99 ПЕРЕСМОТРЕНО, АВГУСТ 99 Содержит 64-битный регистр статического сдвига Содержит аналоговый буфер с выборкой и удержанием для аналогового вывода в течение всего периода тактовой частоты Однополярное питание

Дополнительная информация

Тесты конструкции беспроводного сабвуфера TI

Wireless Subwoofer TI Design Tests Тесты конструкции беспроводного сабвуфера TI Эта конструкция системы была протестирована на THD + N vs.частота при 5 Вт и 30 Вт и THD + N по сравнению с мощностью при 00. Были протестированы как прямой аналоговый вход, так и беспроводные системы.

Дополнительная информация

Многоцелевой аналоговый ПИД-регулятор

Multipurpose Analog PID Controller Многоцелевой аналоговый ПИД-регулятор Тодд П. Мейрат Лаборатория атомной оптики Центр нелинейной динамики Техасский университет в Остине c 00 4 марта 00 г., пересмотрено 0 декабря 00 г. См. Отказ от ответственности Этот аналог

Дополнительная информация

Базовые схемы операционных усилителей

Basic Op Amp Circuits Базовые схемы операционных усилителей Мануэль Толедо INEL 5205 Instrumentation 3 августа 2008 г. Введение Операционный усилитель (для краткости ОУ или ОУ), возможно, является наиболее важным строительным блоком для конструкции

. Дополнительная информация

БЮЛЛЕТЕНЬ ПРИМЕНЕНИЯ

APPLICATION BULLETIN БЮЛЛЕТЕНЬ ЗАЯВКИ Почтовый адрес: PO Box 1100 Tucson, AZ 8 Street Address: 0 S.Tucson Blvd. Tucson, AZ 80 Тел .: (0) -1111 Twx: 910-9-111 Телекс: 0-91 Факс (0) 889-110 Немедленная информация о продукте: (800) 8-1

Дополнительная информация

Что такое делители мощности

Understanding Power Splitters Общие сведения о делителях мощности Как они работают, какие параметры критичны и как выбрать лучшее значение для вашего приложения. По сути, разветвитель 0 – это пассивное устройство, которое принимает входной сигнал

. Дополнительная информация

Описание.Таблица 1. Обзор устройства

Description. Table 1. Device summary 2-х положительный стабилизатор напряжения IC Описание Технический паспорт – производственные данные Характеристики TO-220 Выходной ток до 2 А Выходные напряжения 5; 7,5; 9; 10; 12; 15; 18; 24 В Тепловая защита Защита от короткого замыкания

Дополнительная информация ,

OP747 Лист данных и информация о продукте

Особенности и преимущества

  • Низкое напряжение смещения: 100 мкВ макс.
  • Низкий входной ток смещения: 10 нА макс.
  • Работа с однополярным питанием: от 3,0 В до 30 В
  • Работа с двумя источниками питания: от ± 1,5 В до ± 15 В
  • Низкий ток питания: 300 мкА / А макс.
  • Стабильный прирост единства
  • Без смены фаз

Подробнее о продукте

OP747 – это прецизионный четырехканальный усилитель с однополярным выходом, обеспечивающий микромощность и диапазон выходных сигналов Rail-to-Rail.Усилители OP777, OP727 и OP747 обеспечивают улучшенные характеристики по сравнению с промышленным стандартом OP07 с питанием ± 15 В и предлагают дополнительное преимущество истинного однополярного питания при напряжении до 3 В и меньших размеров корпуса, чем любые другие прецизионные биполярные устройства высокого напряжения. усилитель звука. Выходы стабильны при емкостной нагрузке более 500 пФ. Ток питания составляет менее 300 мкА на усилитель при 5 В. Последовательные резисторы 500 Ом защищают входы, позволяя уровни входного сигнала на несколько вольт выше положительного напряжения питания без изменения фазы.

Применения для этих усилителей включают как линейные, так и портативные приборы, преобразование сигналов удаленных датчиков и прецизионные фильтры.

OP777, OP727 и OP747 рассчитаны на работу в расширенном промышленном диапазоне температур (от –40 ° C до + 85 ° C). OP777, одиночный, доступен в 8-выводных корпусах MSOP и 8-выводных SOIC. OP747, quad, доступен в корпусах TSSOP с 14 выводами и узких корпусах SO с 14 выводами. Устройства для поверхностного монтажа в корпусах TSSOP и MSOP доступны только на ленте и катушке.

Двойной OP727 доступен в 8-выводных корпусах TSSOP и 8-выводных SOIC. Конфигурация 8-выводных выводов SOIC OP727 отличается от схемы выводов стандартного 8-выводного операционного усилителя.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *