8.1. Первые электрические машины – Энергетика: история, настоящее и будущее
8.1. Первые электрические машины
К концу первой половины XIX века были доказаны взаимосвязь между различными явлениями природы и взаимопревращение различных форм движения материи: установлена связь тепловой и механической, электрической и тепловой, электрической и химической, электрической и магнитной форм энергии.
Начало практическому использованию электричества положили те области применения, которые не требовали значительных затрат электроэнергии, – телеграфия, телефония, военное дело (воспламенение пороховых зарядов, электрическое взрывание мин), дистанционное управление и др. В процессе создания различных устройств при этом использовании электричества важно было решить ряд практических и теоретических проблем: совершенствовать источники тока, создавать разнообразные приборы и приспособления, в том числе автоматические, изготовлять изолированные проводники, исследовать свойства различных материалов, разрабатывать методы измерений, устанавливать единицы измерения величин.
Практически расширение области применения электричества тормозило отсутствие хорошего, экономичного источника электрического тока. Примерно до 1870 г. наиболее распространенными источниками электрического тока были электрохимические (гальванические) элементы и аккумуляторы (в 1854 г. немецкий врач В.И. Зинстеден открыл способ аккумулирования, а в 1859 г. француз Г. Планте построил свинцовый аккумулятор). Проблема экономичного источника электрической энергии была решена только созданием совершенной конструкции электромашинного генератора, в развитии которого можно отметить три основных этапа. Первый этап (1831–1851) характеризуется созданием магнитоэлектрических машин.
Как отмечалось ранее, опыты Эрстеда по отклонению магнитной стрелки током стали той искрой прометеева огня, которую исследователи и изобретатели превратили в громадное пламя…
Открытие Фарадеем в 1831 году явления электромагнитной индукции указало новый способ получения электрического тока. Уже вскоре после этого открытия ученые и изобретатели стали стремиться к тому, чтобы применить данное явление к получению электричества при помощи энергии движения.
Магнитоэлектрическая машина основана на том, что электрический ток может быть вызван без всякой батареи одним передвижением магнита относительно замкнутых проводников.
Первый изобретатель электрического генератора, основанного на явлении электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие явления электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное латинскими буквами Р. М., и приложенный к нему чертёж. Оно содержало описание первого в мире синхронного генератора с возбуждением от постоянных магнитов. Внимательно разобравшись в этом проекте, Фарадей направил письмо и чертёж в тот же журнал, в котором был напечатан его доклад. Он надеялся, что неизвестный автор, следя за журналом, увидит опубликованным свой проект и сопровождавшее его письмо Фарадея, исключительно высоко оценивающее это изобретение.
Машина Р.М. была первым генератором переменного тока и не имела устройства для выпрямления тока. С помощью этого генератора удалось разложить воду (поскольку ток был переменным, то при электролизе получилась смесь водорода и кислорода – гремучий газ). Необходимо было создать машину, в которой можно было бы получать ток, постоянный по величине и направлению.
Почти одновременно с неизвестным автором конструированием генераторов занимались в Париже братья Пиксии и профессор физики Лондонского университета, член Королевского общества В. Риччи. Созданные ими машины имели специальное устройство для выпрямления переменного тока в постоянный – так называемый коллектор. Первая магнитоэлектрическая машина братьев Пиксии (рис. 8.1) была построена в 1832 году. Она явилась предшественницей всех динамо-машин в широком смысле слова, т.е. всех машин, служащих для превращения энергии движения в электрическую энергию. Ее следует считать родоначальницей целого поколения разнообразных машин, предназначенных для получения электрического тока. Мимо неподвижных катушек Е и Е ‘, снабженных сердечниками, движутся посредством кривошипа и зубчатой передачи лежащие против них полюсы подковообразного магнита А, В, вследствие чего в катушках вызываются токи переменного направления. В генераторе братьев Пиксии нужно было вращать тяжелые постоянные магниты, что затрудняло пользование им. Со временем поняли, что целесообразнее сделать неподвижными постоянные магниты, а вращать более легкие катушки между полюсами магнитов. Магнитоэлектрические генераторы такого типа оказались значительно удобнее и именно в такой конструктивной форме впервые вошли в практику.
Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Сильный толчок к построению более мощных магнитоэлектрических генераторов дали дуговые лампы с регуляторами, получившие применение на маяках в связи с развитием морского транспорта. В 1854 году в Париже была открыта первая фабрика «Compagnie L’Alliance» по изготовлению крупных магнитоэлектрических машин (рис. 8.2). В генераторе
«Альянс» на чугунной станине были укреплены в несколько рядов подковообразные постоянные магниты, расположенные по окружности и радиально по отношению к валу. Различные варианты таких генераторов имели разное число рядов магнитов (3,5,7). В промежутках между рядами магнитов устанавливались на валу кольца с большим числом катушек-якорей. На валу был укреплен коллектор с изолированными друг от друга и от вала машины металлическими пластинами. Коллекторными щетками служили специальные ролики. В машине было предусмотрено устройство для смещения роликов в зависимости от нагрузки.
Рис. 8.1. Первая магнитоэлектрическая машина братьев Пиксии
Рис. 8.2. Генератор «Альянс»
В генераторе «Альянс» можно было изменять соединение обмоток катушек, в результате чего менялась э.д.с. в цепи. Поэтому генератор мог давать или большой ток низкого напряжения и служить, например, для целей гальванопластики и электролиза, или ток меньшей силы, но более высокого напряжения (40–250 В) для питания дуговых ламп.
постоянных магнитов электромагнитами, возбуждаемыми током от магнитоэлектрической машины, высказал в 1851 году В. Зинстеден. Так начался второй этап развития электрогенераторов, занявший сравнительно небольшой отрезок времени.
Рис. 8.3. Магнитоэлектрическая машина Сименса
Рис. 8.4. Первая динамо-машина постоянного тока Сименса
В 1856 г. важнейшее усовершенствование в конструкцию магнитоэлектрической машины, а именно в конструкцию движущихся магнитных катушек и их железных сердечников, внес Вернер Сименс. Такие катушки с железом внутри называются якорем. Сименс придал якорю более удобную форму в виде «двойного Т». Якорь вращается между полюсами плотно обхватывающих его магнитов, причем количество магнитов может быть легко увеличено при соответствующем увеличении длины якоря. Якорь Сименса позволил в дальнейшем усовершенствовать конструкцию магнитоэлектрической машины (рис. 8.3). В конце того же года Сименс обратил внимание на то, что железо сердечника электромагнита сохраняет следы магнетизма и после выключения тока. Этот остаточный магнетизм оказался достаточным для начала процесса самовозбуждения. Отпала необходимость в отдельном генераторе для питания обмотки электромагнита. Таким образом, Вернер Сименс установил принцип создания и построил первую динамоэлектрическую машину постоянного тока (рис. 8.4) для взрывания мин, которую и продемонстрировал в конце 1866 г. перед несколькими выдающимися физиками. 17 января 1867 г. Сименс выступил в Берлинской академии наук с докладом «О превращении рабочей силы в электрический ток без применения постоянных магнитов».
Большим шагом вперед в развитии электрических генераторов было открытие принципа самовозбуждения, который получил широкую известность после 1867 года. Именно после 1867 года, когда почти одновременно в разных странах были построены генераторы с самовозбуждением, начался третий этап в развитии электрического генератора.
Бельгиец Теофил Грамм в 1869 г. создал генератор, получивший широкое применение в промышленности. В своей динамо-машине Грамм использовал принцип самовозбуждения, а также усовершенствовал якорь Сименса, придав ему форму кольца. Он обвил железное кольцо непрерывной проволокой, концы которой соединил вместе, и таким образом получил спираль. Обороты спирали в каждой половине кольца соединены последовательно, но обе половины обмотки кольца соединены противоположно друг другу. Токи с обеих сторон направляются к верхней точке кольца, образуя положительный полюс. Подобным же образом в нижней точке, откуда берут свое направление токи, будет находиться отрицательный полюс. Кольцевая машина Грамма (рис. 8.5) явилась первой практической динамо-машиной с барабанным якорем. Такая весьма сложная конструкция якоря с незначительными усовершенствованиями используется и в настоящее время. Барабанный якорь позволяет достичь кругового пути прохождения максимального количества линий сил, возбуждающих ток в обмотке электромагнитов. Грамм дал несколько конструкций своей машины. В одной из первых его машин кольцевой якорь был укреплен на горизонтальном валу. Он вращался между охватывавшими его полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводный шкив. Обмотка электромагнита была включена последовательно с обмоткой. Генератор Грамма давал постоянный ток, который отводился с помощью металлических щеток, скользивших по поверхности коллектора.
Вернер Сименс (1816–1892) – немецкий электротехник и предприниматель, член Берлинской академии наук, основатель и главный владелец электротехнических концернов «Сименс и Гальске», «Сименс и Шуккерт» и др. В 1834 году Вернер Сименс с отличием окончил Любекскую гимназию и, успешно выдержав экзамены, поступил в Артиллерийское инженерное училище в Мальденбурге. Счастливым чувствовал себя молодой В. Сименс, когда его командировали на три года в Берлин для получения технического образования в Объединенной инженерноартиллерийской школе. Это полностью отвечало его склонностям к учебе. Здесь под руководством опытных учителей, преподававших также в Берлинском университете, он начал изучать математику, физику, химию и, конечно, баллистику – основу артиллерии. Это дало ему возможность удовлетворить жажду знаний и проявить изобретательский талант, получив фундаментальное образование в военном учебном заведении. В 1841 году Вернер Сименс получил патент на способ гальванического серебрения и золочения. Это было первое изобретение Сименса в области электротехники. Он занимался изобретательством и научными опытами по применению взрывчатой хлопчатой бумаги. Уже в 1845 году Вернер становится одним из наиболее заметных молодых ученых в недавно образованном Физическом обществе. В это время он делает ряд изобретений по телеграфной части, а также изобретает стрелочный телеграф, поскольку оптический телеграф в то время воспринимался как не соответствующий уровню технического развития. В 1846 году Сименс вошел в состав комиссии Политехнического общества Берлина по введению электрических телеграфов в Пруссии. В это время он изобрел специальную машину для покрывания медной проволоки гуттаперчей; машина эта вошла во всеобщее употребление при производстве изолированных проводников для подземных и подводных телеграфных кабелей.17 января 1867 г. в Берлинской академии наук Вернер Сименс изложил теорию, являющуюся исходным моментом всей современной электротехники, и представил совершенную конструкцию генератора постоянного тока с самовозбуждением. Он же предложил ртутную единицу сопротивления, впоследствии преобразованную в Ом, а единице электрической проводимости было присвоено наименование сименс.Сименс много сделал для развития немецкой и европейской электротехники. Он был инициатором образования Берлинского электротехнического союза (1879), основателем и председателем Общества патентов в Берлине, меценатом в области науки и культуры. На своих предприятиях он проводил обдуманную социальную политику. Удивительные слова принадлежат ему: «Мои капиталы будут жечь мне руки подобно раскаленному железу, если я не поделюсь с теми, кто помог мне получить этот доход, причитающейся им долей». Сименс был новатором во всем, чего касался его гений. В конце жизни Сименс написал: «Я считаю свою жизнь удавшейся, так как она была заполнена усилиями, которые почти всегда были успешными, и работой, приносящей пользу людям».
Рис. 8.5. Кольцевая машина Грамма
Машина Грамма в сравнении с магнитоэлектрической машиной такого же веса развивала в шесть раз большую мощность. Этот генератор быстро вытеснил генераторы других типов и получил очень широкое распространение. В начале 70-х годов XIX века был уже хорошо известен принцип обратимости и машина Грамма использовалась как в режиме генератора, так и в режиме двигателя.
В течение 70–80-х годов XIX века машина постоянного тока приобрела все основные черты современной машины. Дальнейшие усовершенствования не затрагивали основных принципов и конструктивных узлов машины, а были направлены на повышение качества, улучшение использования активных материалов и усовершенствование изоляции, повышение качества щеток и пр.
Очень важное усовершенствование заключалось в значительном снижении скорости вращения якоря. Высокая скорость вращения была необходима для получения достаточной электродвижущей силы. Но такой же результат может быть получен и путем увеличения диаметра кольца. При этом электромагнит был помещен внутрь кольца. Такая многополюсная динамо-машина была установлена на центральной электрической станции и питала до 2000 осветительных электроламп накаливания постоянного тока.
В процессе эволюции конструкции динамомашины было подмечено, что для некоторых целей, а главным образом для питания дуговых осветительных ламп, можно пользоваться невыпрямленным током переменного направления. При этом конструкция машины значительно упрощается, так как коллектор становится лишним и заменяется двумя кольцами.
Первой побудительной причиной развития динамо-машин переменного тока (так называемых «альтернаторов») послужило изобретение Яблочковым его «электрической свечи».
На рис. 8.6 представлен альтернатор Ганца, конструкция которого состоит из насаженного на вал лучеобразного индуктора Е, против каждого из десяти лучей (полюсов) которого расположено 10 катушек якоря, закрепленных на внутренней поверхности кольцеобразной железной рамы. При вращении индуктора в обмотках катушек возникают токи, постоянно меняющие направления. Обмотки же этих катушек соединены так, что при каждом положении индуктора в них одновременно возникают токи одного направления.
Рис. 8.6. Альтернатор Ганца
Вскоре берлинская фирма Сименса предложила свою конструкцию динамо-машины переменного тока (рис.8.7), конструкция которой интересна тем, что в индукторах не имеется железных сердечников, а для возбуждения используется дополнительная маленькая машина постоянного тока. Такая динамо-машина позволяла получать переменный ток значительно более высоких напряжений для питания нескольких независимых электрических цепей со многими последовательно включенными дуговыми лампами.
Второй побудительной причиной широкого распространения динамо-машин переменного тока явилась легкость трансформации переменного тока. Эта замечательная способность преобразования (трансформации) переменного тока была впервые использована Голардом в 1883 г. и усовершенствована Ганцем.
Рис. 8.7. Динамо-машина переменного тока Сименса
Первые динамо-машины были предназначены в основном для питания различных осветительных устройств. Однако широкое промышленное применение системы электрического освещения получили с совершенствованием конструкции и технологии строительства мощных центральных городских электрических станций и систем распределения электрической энергии.
Для приведения в действие динамо-машин в первое время применялись три вида двигателей: паровые, газовые и гидравлические.
Паровые двигатели состояли из парового котла, паропроводной трубы и собственно паровой машины. Из-за специфических условий сооружения генераторных станций (ограниченное помещение и относительная близость жилых зданий) преимущественное распространение получили водотрубные котлы, в которых испаряющаяся вода помещается во многих узких сообщающихся между собой трубках, охватываемых пламенем. Паровые двигатели, используемые в качестве привода динамо-машин, должны были отвечать определенным требованиям. В частности, динамо-машина требует от парового двигателя очень равномерного хода
не только относительно числа оборотов в минуту, но и в отношении скорости вращения в течение отдельных оборотов. Если эта равномерность не достигается, то напряжение на выходе динамо-машины колеблется в значительном диапазоне, к чему очень чувствительны осветительные лампы накаливания: они мигают, например, когда по шкиву проходит слишком толстый шов на ремне или когда ремень слишком слабо натянут (рис. 8.8). Подобные случайности заставили машиностроителей и электротехников полностью отказаться от ненадежных ремней. Однако сделать это было нелегко еще и потому, что у паровых машин и динамо-машин была различная угловая скорость вращения валов – соответственно 200 и 1000 оборотов в минуту. Чтобы уравнять угловую скорость шкивы машин приходилось делать различного диаметра, что обуславливало необходимость соединения их ремнем. Первые быстроходные паровые машины, соединенные с динамо-машиной без помощи ремня, были построены на заводах Вестингауза. Сущность устройства заключается в применении паровых цилиндров с кривошипно-шатунным механизмом, приводимым в движение паром. При этом весь механизм заключен в оболочку, так что из движущихся частей наружу выдаются лишь оба конца вала (рис. 8.9).
Рис. 8.8. Паровой двигатель и динамо-машина, соединенные ремнем
Рис. 8.9. Быстроходная паро-динамическая машина Вестингауза
Рис. 8.10. Газомотор Кертинга
Кроме паровых машин, для вращения динамо-машин в тех местах, где имелся газопровод, применялись газомоторы. Преимущество газомоторов заключалось в том, что они требуют сравнительно мало места и могут быть приведены в действие за нескольких минут. Самое широкое распространение получили газомоторы Отто, которых к концу 1894 г. для получения электрического освещения было установлено около 3000. Газомоторный завод в Дейтце (Германия) занимался специально разработкой газового двигателя для целей электрического освещения. Такой двигатель обеспечивал достаточно равномерное вращение и, соответственно, совершенно ровный свет. На заводах в Кергтиндорфе близ Ганновера известная в то время фирма братьев Кертинг организовала массовое производство газомоторов для целей электрического освещения (рис. 8.10).
Наиболее экономичными с точки зрения стоимости производства электроэнергии являются гидравлические двигатели, использующие энергию падающей воды. В качестве водяных двигателей применялись гидротурбины как с вертикальной, так и с горизонтальной осью. Динамо-машина с приводом от гидротурбины (рис. 8. 11) была построена фирмой «Эсслинген» для завода Терни в Италии. Вода подавалась на лопатки гидротурбин с высоты 280 м при давлении в 18 атмосфер. Благодаря возможности пользования несколькими турбинами в работу вводилось столько динамо-машин, сколько было необходимо в данный момент времени.
Рис. 8.11. Динамо-машина с приводом от гидротурбины
Динамо-машина. Первые генераторы постоянного тока
Динамо-машина. Первые генераторы постоянного тока
Динамо-машина или динамо (иногда в просторечии “динамка”)— устаревшее название генератора постоянного тока.
Динамо-машинами в позапрошлом веке стали называть генераторы постоянного тока, – первые промышленные генераторы, которые позже были вытеснены генераторами переменного тока, пригодного для преобразования посредством трансформаторов, и крайне удобного для передачи на большие расстояния с незначительными потерями.
Сегодня под словом «динамо», как правило, подразумевают маленькие велосипедные генераторы (для фар) или ручные генераторы (для туристических фонариков). Что касается промышленных генераторов, то на сегодняшний день все это – генераторы переменного тока. Давайте, однако, вспомним, как развивались и совершенствовались первые «динамо».
Первый образец генератора постоянного тока, или униполярного динамо, был предложен в далеком 1832 году Майклом Фарадеем, когда он только открыл явление электромагнитной индукции. Это был так называемый «диск Фарадея» – простейший генератор постоянного тока. Статором в нем служил подковообразный магнит, а в качестве ротора выступал вращаемый вручную медный диск, ось и край которого пребывали в контакте с токосъемными щетками.
Когда диск вращали, то в той части диска, которая пересекала магнитный поток между полюсами магнита статора, наводилась ЭДС, приводящая, в случае если цепь между щетками была замкнута на нагрузку, к появлению радиального тока в диске. Подобные униполярные генераторы по сей день используются там, где требуются большие постоянные токи без выпрямления.
Генератор переменного тока впервые построил француз Ипполит Пикси, это произошло в том же 1832 году. Статор динамо-машины содержал включенные последовательно пару катушек, ротор представлял собой подковообразный постоянный магнит, кроме того в конструкции имелся щеточный коммутатор.
Магнит вращался, пересекал магнитным потоком сердечники катушек, наводил в них гармоническую ЭДС. А автоматический коммутатор служил для выпрямления и получения в нагрузке постоянного пульсирующего тока.
Позже, в 1842 году, Якоби предложит разместить магниты на статоре, а обмотку – на роторе, который также вращался бы через редуктор. Это сделает генератор более компактным.
В 1856 году, для питания серийных дуговых ламп Фредерика Холмса, (эти лампы использовали в прожекторах маяков), самим Фредериком Холмсом была предложена конструкция генератора, похожая на генератор Якоби, но дополненная центробежным регулятором Уатта для поддержания напряжения на лампе постоянным при разном токе нагрузки, что достигалось путем автоматического сдвига щеток.
Статор содержал 50 магнитов, а конструкция в общем весила 4 тонны, и развивала мощность чуть больше 7 кВт. Было выпущено примерно 100 таких генераторов под маркой «Альянс».
Между тем, машины с постоянными магнитами отличались одним существенным недостатком — магниты теряли со временем намагниченность и портились от вибрации, в итоге генерируемое машиной напряжение становилось со временем все ниже и ниже. При этом намагниченностью нельзя было управлять, чтобы стабилизировать напряжение.
В качестве решения пришла идея электромагнитного возбуждения. Идея пришла в голову английского изобретателя Генри Уайльда, который в 1864 году запатентовал генератор с возбудителем на постоянном магните, – магнит возбуждения просто монтировался на валу генератора.
Позже настоящую революцию в генераторах совершит немецкий инженер Вернер Сименс, который откроет подлинный динамоэлектрический принцип, и поставит производство новых генераторов постоянного тока на поток.
Принцип самовозбуждения заключается в том, чтобы использовать остаточную намагниченность сердечника ротора для пускового возбуждения, а затем, когда генератор возбудится, использовать в качестве намагничивающего тока ток нагрузки, или включить в работу специальную обмотку возбуждения, питаемую генерируемым током параллельно нагрузке. В результате, положительная обратная связь приведет к увеличению магнитного потока возбуждения генерируемым током.
В числе первых принцип самовозбуждения, или динамоэлектрический принцип, отметит инженер из Дании Сорен Хиорт. Он упомянет в своем патенте от 1854 года возможность использования остаточной намагниченности с целью реализации явления электромагнитной индукции для получения генерации, однако, опасаясь того, что остаточного магнитного потока будет недостаточно, Хиорт предложит дополнить конструкцию динамо постоянными магнитами. Этот генератор так и не будет воплощен.
Позже, в 1856 году, аналогичную идею выскажет Аньеш Йедлик — член Венгерской академии наук, но ничего так и не запатентует. Только спустя 10 лет Самюэль Варлей, ученик Фарадея, реализует на практике принцип самовозбуждающегося динамо. Его заявка на патент (в 1866 году) содержала описание устройства очень похожего на генератор Якоби, только постоянные магниты уже были заменены обмоткой возбуждения — электромагнитами возбуждения. Перед стартом сердечники намагничивались постоянным током.
В начале 1867 года в Берлинской Академии наук с докладам выступал изобретатель Вернер Сименс. Он представил публике генератор похожий на генератор Варлея, названный «динамо-машиной». Старт машины осуществлялся в режиме двигателя, для того чтобы обмотки возбуждения намагнитились. Затем машина превращалась в генератор.
Это была настоящая революция в понимании и проектировании электрических машин. В Германии начался широкий выпуск динамо-машин Сименса — генераторов постоянного тока с самовозбуждением — первых промышленных динамо-машин.
Конструкция динамо-машин с течением времени менялась: Теофил Грамм, в том же 1867 году, предложил кольцевой якорь, а в 1872 году главный конструктор компании Сименс-Гальске, Гефнер Альтенек, предложит барабанную намотку.
Так генераторы постоянного тока примут свой окончательный облик. В 19 веке, с переходом на переменный ток, гидроэлектростанции и тепловые электростанции станут вырабатывать уже переменный ток на генераторах переменного тока. Но это уже совсем другая история…
Ранее ЭлектроВести писали, что Натан Шарпс, инженер-механик армейского Центра C5ISR в Мэриленде, разработал стельку для обуви, которая может генерировать энергию при ходьбе, помогая питать электронные устройства. Армия США выделила более 16 миллионов долларов на производство этих стелек.
По материалам: electrik.info.
Выработка электроэнергии при помощи линейных генераторов – Энергетика и промышленность России – № 23-24 (235-236) декабрь 2013 года – WWW.EPRUSSIA.RU
Газета “Энергетика и промышленность России” | № 23-24 (235-236) декабрь 2013 года
Для некоторых ситуаций предлагается использовать эффективные, с точки зрения автора, способы преобразования поступательных движений во вращательные – с целью применения вместе с обычными динамо-машинами.Соленоид с магнитом
Первые линейные преобразователи энергии были созданы еще в начале девятнадцатого века (в работах Фарадея и Ленца) и представляли собой соленоиды с движущимися внутри них постоянными магнитами. Но использовались эти устройства только в физических лабораториях для формулирования законов электромагнетизма.
Впоследствии серьезное применение получили лишь генераторы, работающие от вращательных движений. Но теперь человечество «вспоминает давно забытое старое». Так, недавно были созданы «вечные» или «индукционные фонарики Фарадея», работающие от встряски и имеющие в своей основе «поступательный генератор» – это тот же соленоид, с колеблющимся внутри него постоянным магнитом, плюс – выпрямительная система, сглаживающий элемент и накопитель. (Необходимо отметить, что для появления тока в соленоиде необязательно вдвигать и выдвигать внутрь него магнит – достаточно, и не менее эффективно, приближать и удалять магнит от электрической катушки, если в нее вставить сердечник, лучше ферритовый).
В интернете можно найти описание того, как сделать генератор, питающий велосипедные фары, работающий на том же принципе – от движения магнита внутри соленоида (встряску здесь уже обеспечивает не человеческая рука, а само транспортное средство – велосипед).
Появились и проектируются поступательные генераторы, использующие «пьезоэлектрический эффект» – способность некоторых кристаллов при деформации продуцировать электрические заряды.
Это, например, всем известные пьезоэлектрические зажигалки. Французские ученые (в частности этим занимается Жан Жак Шелло в Гренобле) решили подставить пьезокристаллические модули под дождевые капли и таким образом получать электроэнергию. В Израиле фирмой «Innowatech» разрабатывается способ получения электроэнергии от давления машин на дорожное полотно – пьезокристаллы будут подложены под шоссе. А в Голландии подобным же образом планируют «собирать» электроэнергию из-под пола танцевального зала.
Все вышеперечисленные примеры, кроме использования энергии дождя, касаются «снятия» энергии с результатов деятельности человека. Здесь можно предложить еще размещение поступательных генераторов в амортизаторах автомобилей и поездов, а также снабжение этих транспортных средств увеличенными копиями вышеописанных генераторов велосипедов, работающих от встряски, и, кроме того, расположение поступательных генераторов под рельсами железных дорог.
Новый способ использования ветра
Рассмотрим теперь, как полнее использовать энергию ветра. Известны ветроэлектрогенераторы, в которых ветер вращает воздушные винты, а они, в свою очередь, – валы динамо-машин. Но не всегда воздушные винты удобны в использовании. Если они применяются в жилых районах, то требуют дополнительного места, и их, для безопасности, надо заключать в сетки. Они могут портить внешний вид, заслонять солнце и ухудшать обзор. Вращающиеся генераторы сложны в изготовлении: требуются хорошие подшипники и балансировка вращающихся частей. А размещенные на припаркованных электромобилях ветроэлектрогенераторы могут быть похищены или повреждены.
Автор предлагает использовать более удобные рабочие тела, на которые будет воздействовать ветер: щиты, пластины, паруса, надувные формы. А вместо привычных динамо-машин – специальные крепления в виде поступательных генераторов, в которых от механических перемещений и давлений, производимых рабочими телами, будет вырабатываться электроэнергия. В таких креплениях могут быть использованы как пьезокристаллы, так и соленоиды с подвижными магнитными сердечниками. Токи, созданные этими креплениями, будут проходить через выпрямители, сглаживающие элементы и заряжать аккумуляторы для дальнейшего использования выработанной электроэнергии. Все части таких поступательных генераторов просты в изготовлении.
Щиты с подобными креплениями, размещенные на стенах зданий, балконов и т. п., будут приносить вместо неудобств только выгоду: звуко- и теплоизоляцию, тень. Они практически не требуют дополнительного пространства. Рекламные щиты, навесы от солнца или дождя, снабженные такими креплениями и «дождевыми» пьезокристаллическими модулями, будут кроме своей основной функции еще и вырабатывать электроэнергию. По такому же принципу можно заставить работать и любой забор.
Энергопроизводящие окна и столбы
Есть возможность использовать прочные стекла в окнах в качестве «ветрозаборников», а электровырабатывающие крепления расположить в раме.
Если взять случай с электромобилями, то крепления можно переключать: на стоянке, где позволительна вибрация стекол от ветра, будут использоваться электрогенерирующие крепления, а при движении, чтобы не нарушать аэродинамические свойства электромобиля – обычные. Хотя при использовании пьезокристаллов можно добиться совсем небольшого люфта и переключения не потребуются.
В более простом (непрозрачном варианте выполнения щитов) на стоянке обычные стекла опускаются и вместо них вставляются щитовые ветроэлектрогенераторы, креплениями опирающиеся на рамы окон. То же можно сделать и в доме ночью, когда окна не должны пропускать свет: вместо стекол или внешних ставень устанавливать подобные ветроэлектрогенераторы.
Опора в виде треноги для фонарного столба или сотовой антенны будет вырабатывать электроэнергию, если мы в каждой «ноге», разделив их поперек на две части, в стыке разместим вышеописанное электрогенерирующее крепление. Столб фонаря или антенны можно поместить в зарытый в землю и укрепленный полый цилиндр с подобными электрогенераторами, размещенными по внешнему ободу, – это еще один вариант.
Фонари на столбах, оснащенных такой «поддержкой», могут работать самостоятельно, без подвода к ним кабелей электропитания – ведь их раскачивание от ветра или от колебаний дорожного полотна всегда имеет место. Такие фонари должны быть очень востребованы там, где либо нет электростанций, либо местность еще не «охвачена» проводкой.
Кроме того, поступательные генераторы позволяют нам задействовать еще и такие «природные ветрозаборники», как деревья: ведь их ветви раскачиваются от ветра. С деревьями лучше использовать генераторы соленоидного типа, а не на пьезокристаллах. Соленоиды с магнитами и пружинами будут обеспечивать мягкую «упряжку».
Вот один из возможных вариантов использования качания ветки. Одну веревку, идущую от бобины электрической катушки, закрепляем на стволе или прикрепляем к «якорю» (типа морского), зарытому в землю, а вторую, соединенную с магнитом, закрепляем за качающуюся ветвь. Закрепление бобины можно и не производить – оставить только связь с веткой. Тогда генератор будет работать от встряски, которую ему обеспечит раскачивание ветки от ветра (катушке не даст упасть пружина).
«Летящее» электричество
Что же касается надувных «рабочих тел» для поступательных ветроэлектрогенераторов, то многие видели рекламные надувные фигуры на бензоколонках, которые качаются от ветра.
Такие надувные формы (их можно выполнять в виде шаров, эллипсоидов, надувных матрацев и т.д.) также могут поработать на экологически чистую электроэнергию. Их преимущество в том, что они, «отвязавшись» и движимые ветром, никого из людей серьезно не травмируют.
Так, например, можно использовать воздушный шар как рабочее тело для поступательного ветроэлектрогенератора соленоидного типа. Магнит привязывается к шару, а катушка «якорится», причем лучше использовать упругие соединения, чтобы не порвать шар и не повредить катушку и электронику (упомянутые выше выпрямительную, сглаживающую и накопительную системы).
Энергию ветра можно задействовать для выработки электричества еще и на парусных судах в местах крепления парусов (тут больше подойдут электрогенерирующие крепления на пьезокристаллах, чтобы не создавать больших перемещений). Выработанное электричество пойдет на зарядку аккумулятора как дополнительной энергетической возможности в случае штиля, для движения на электромоторе и для внутренних нужд судна, скажем, для освещения и холодильных агрегатов.
Энергия волн
Теперь посмотрим, как использовать энергию морских и речных волн. Можно сделать такие генераторы поступательного действия, где рабочими телами будут служить не большие щиты или другие крупные геометрические формы, а небольшие пластины.
Электрогенерирующие крепления останутся такими же (на соленоидах или же на пьезокристаллах), но только меньших размеров. Наборы из таких пластинчатых электрогенераторов установим на плавучих средствах на уровне их ватерлиний. Они (генераторы), в силу их небольших размеров, не будут слишком сильно портить обвод судна. Следует позаботиться и о гидроизоляции генераторов, поместив их под водонепроницаемую эластичную оболочку. Волны, бьющие по судну (по пластинам), будут вырабатывать электроэнергию для двигателя (ходовая часть) и для внутренних нужд судна, что позволит избавиться от громоздкого и опасного (переворачивающего плавучее средство) паруса, с которым, кроме того, сложно идти против ветра, и загрязняющих окружающую среду моторов и генераторов внутреннего сгорания.
Использовать энергию волн у берега – еще проще, закрепив соленоиды к пирсу, дебаркадеру или другому сооружению. Здесь возьмем щиты и крепления побольше: в этом случае обтекаемость только повредит.
Генератор в виде плота
Для этой же цели (использования энергии волн) предназначен «плот-электрогенератор». Здесь волны будут обеспечивать движение поплавков друг относительно друга, что при помощи стоек на шарнирах вызовет движение магнитов относительно соленоидов.
Напомним, что магниты, соленоиды и пружины составляют поступательные генераторы, прикрепленные к стойкам на шарнирах. Аккумулятор и электронный блок заключены в общий жесткий кожух, подвешенный на канатах к стойкам.
Система стоек, шарниров и пружин, не ограничивая полностью взаимные перемещения поплавков, в то же время не даст плоту распасться. А относительное движение магнитов и соленоидов обеспечит выработку тока в соленоидных обмотках, который будет передаваться по проводам в электронный блок. Там он пройдет выпрямитель и сглаживающий элемент, после чего поступит в аккумулятор плота или по кабелям будет передаваться на берег или на судно, буксирующее плот для своих энергетических нужд.
Для более полного использования всех направлений воздействия волн можно из таких плотов составить конгломерат, разместив их под оптимальным углом друг относительно друга, или же на одном плоту сделать комплексную (учитывающую все возможные относительные перемещения поплавков), более сложную систему стоек шарниров и пружин.
Использование перепадов уровней воды
Поступательные генераторы подходят также и для использования энергии перепадов уровней воды у рек, водопадов, приливов и отливов. Они будут работать вместо гидротурбин. Эффективность их, по предварительным оценкам, меньше, но зато поступательные генераторы вместе с сопутствующими устройствами здесь проще построить: ведь гидротурбинные генераторы, в силу их принадлежности к вращающимся, нуждаются в точности изготовления, балансировке и хороших подшипниках.
Самой простой для выполнения является следующая схема. Соленоид закрепляется на берегу (очень хорошо к мосту) речки или водопада, а к магниту привязывается поплавок, опущенный в воду. Если течение турбулентное, а это мы наблюдаем в быстрых речках и водопадах, то поплавок будет колебаться и передаст колебания магниту, что и требуется для выработки электроэнергии. Магнит вместе с поплавком не уплывет из‑за того, что магнит закреплен к днищу бобины соленоида пружиной. Эта схема очень напоминает вышеприведенную поплавковую схему для использования энергии волн.
Есть еще одна достаточно хорошо известная система. Сверху в накопительную чашу идет непрерывный поток воды, например из отводного канала от речки. Чаша заполняется. Когда гидростатическое давление на конец трубки, находящейся в этой емкости, превысит определенный «порог запирания» (ведь в трубке пока воздух), вода начнет через нее проходить и выльется на поступательный генератор, находящийся внизу. Уровень воды в чаше спустится ниже изогнутого конца трубки, и воздух опять «запрет» ее.
За счет поступления воды сверху снова произойдет заполнение емкости до максимального уровня. А при нем гидростатическое давление способно «отпереть» трубку (и т. д.). Тем самым обеспечивается прерывистое падение воды на поступательный генератор, что и требуется для выработки электроэнергии. После совершения «работы» вода стечет вниз на водосборник, откуда по соответствующему каналу поступит опять в речку, но уже на более низком уровне.
Поступательные генераторы, предназначенные для использования прерывистых падений на них жидкости, выглядят так. Соленоидного типа – здесь наклонная кювета для сбора и слива воды жестко крепится к магниту, находящемуся внутри закрепленного соленоида. А сам магнит снизу подпирает пружина, закрепленная к днищу бобины соленоида. Пьезоэлектрического типа – здесь такая же кювета опирается на пьезокристалл.
Есть устройство такого же предназначения, но другого типа – это поворачивающаяся (в вертикальной плоскости) на шарнире чаша. Она имеет разные центры тяжести в ненаполненном и наполненном состояниях. В ненаполненном состоянии чаша находится в устойчивом равновесии: она опирается на шарнир и подставку. Вертикаль, опущенная из ее центра тяжести, проходит через площадь опоры. Но по мере заполнения чаши водой, например из отводного канала от речки, ее центр тяжести смещается. И когда вертикаль, опущенная из нового центра тяжести выйдет за площадь опоры, чаша начнет переворачиваться.
По мере переворачивания вертикаль из центра тяжести все больше и больше будет выходить за площадь опоры. В конце концов жидкость из чаши выльется на поступательный генератор, а затем в водосборник и в возвращающий к речке канал. Пустая же чаша возвратится в свое исходное положение устойчивого равновесия, снова начнет заполняться водой, и цикл повторится.
Совершенствование конструкций
Можно придумать еще много возможностей для использования электрогенераторов поступательного действия, вариантов их конструктивного выполнения и сопутствующих им устройств. Автор надеется, что эти генераторы займут свою «нишу» в области выработки экологически чистой электроэнергии.
Если по каким‑то причинам электрогенераторы поступательного действия не могут быть построены и применены или уже имеются обычные генераторы, действующие от вращательных движений, то некоторые поступательные движения, имеющие достаточную амплитуду (например, качания веток деревьев от ветра, движения поплавка или воздушного шара), все равно могут быть использованы, так как существуют механические передачи, преобразующие поступательные движения во вращательные.
Можно назвать, например, реечную передачу, винтовую (как у детской игрушки – юлы) и ременную с катушкой: на катушку наматываем ремешок, леску или кабель и присоединяем к ней возвратную пружину, например спиральную. А для еще большей эффективности выработки электроэнергии таким способом надо в качестве мультипликатора поставить коробку передач, как в автомобиле или велосипеде, и переключать скорости (передаточное число) в зависимости от силы ветра или волн на текущий день или час.
Если мы оценим, какая часть «приземной» воздушной поверхности, подверженной воздействию ветров, еще не «задействована» для выработки электричества, какая водная поверхность с волнами и сколько рек и водопадов пока не «работают» (это еще не говоря о солнечных лучах и геотермальных источниках), то мы увидим, что у экологически чистой энергетики есть большое будущее.
2.10.2. ЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ. История электротехники
2.10.2. ЭЛЕКТРИЧЕСКИЕ ГЕНЕРАТОРЫ
Как уже отмечалось, гальванические батареи существенно тормозили практическое применение электродвигателей. Развитие электрических машин наглядно иллюстрирует характерную закономерность в развитии техники вообще. Эта закономерность проявляется в следующем: если развитие какой-либо отрасли техники тормозится недостаточным уровнем другой отрасли техники или области науки, то развитие последней ускоряется требованиями первой. Так, если отсутствие экономичного генератора тока сдерживало расширение практических применений электричества, то последние стимулировали, ускоряли работы по созданию более совершенной конструкции генератора.
В развитии электрического генератора постоянного тока можно выделить четыре этапа [1.6; 2.15; 2.16].
Первый этап (1831–1851 гг.) характеризуется созданием электрических генераторов с возбуждением от постоянных магнитов. Такие генераторы получили в то время название магнитоэлектрических машин. Открытие в 1831 г. явления электромагнитной индукции указало новый способ получения электрического тока, который нашел свое практическое воплощение в первом униполярном генераторе — диске Фарадея. Один из первых шагов в истории генератора несет в себе тайну, оставшуюся неразгаданной. Дело в том, что имя изобретателя, сделавшего этот шаг, осталось неизвестным. Дадим слово М. Фарадею: «Вчера, по возвращении в город, — писал ученый в редакцию известного лондонского научного журнала 27 июля 1832 г., — я нашел закрытое письмо, оно анонимное, и я не имею возможности назвать его автора. Но ввиду того, что он описывает опыт, при котором впервые удалось получить химическое разложение магнитоэлектрическим током, я посылаю Вам это письмо для опубликования…»
Письмо было подписано двумя латинскими буквами P. M. Так и вошел в историю техники «генератор P.M.». Эта машина представляла собой синхронный многополюсный генератор, т.е. была генератором переменного тока. Письмо P.M. привлекло к проблеме генератора внимание многих ученых. Прочел публикацию и сам P.M.; в марте 1833 г. он обратился в редакцию журнала с благодарностью М. Фарадею за публикацию письма и описанием усовершенствований в машине. Главное из них — добавочное стальное кольцо (ярмо), замыкавшее магнитную цепь сердечников электромагнитов. И снова та же подпись P.M.
На рис. 2.18 представлен усовершенствованный вариант генератора.
Однако переменный ток в то время не мог еще найти себе потребителя, так как для всех практических применений электричества (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.
Впервые приспособление для выпрямления тока в попеременно-полюсной машине (в отличие от униполярной машины М. Фарадея, которая не нуждалась в устройстве для выпрямления тока, так как давала непосредственно постоянный ток) было применено в 1832 г. в генераторе французских изобретателей братьев Пиксии. Изобретение представлялось тогда настолько важным, что сообщения о нем были дважды сделаны в Парижской академии наук. В первых конструкциях генераторов для получения тока неизменного направления (но резко пульсирующего) применялось так называемое коромысло Ампера. A.M. Ампер отмечал пластинчатый барабанный коммутатор в машине Пиксии с прижимающимися к амальгамированным поверхностям пластин подпружиненными медными или бронзовыми пластинами — щетками. Позднее он стал основой коммутирующих устройств для всех последующих конструкций генераторов постоянного тока. С машиной Пиксии работал Э.Х. Ленц, и именно на этой машине в 1838 г. он демонстрировал принцип обратимости.
Рис. 2.18. Генератор P.M.
1 — деревянный диск, укрепленный на оси 2, приводимый в движение рукояткой 3; 4 — подвижные постоянные магниты; 5 — железные сердечники катушек 7; б — стальное кольцо с добавочными обмотками, замыкающее магнитную цепь сердечников; 8 — подставка
Недостатком машин P.M. и братьев Пиксии явилось то, что в них приходилось вращать более или менее тяжелые постоянные магниты. Целесообразнее оказалось сделать магниты неподвижными, а заставить вращаться более легкие катушки. При этом проще было выполнить и коммутирующее устройство, вращающаяся часть которого была закреплена на валу вместе с якорем. Магнитоэлектрические генераторы такого типа оказались значительно удобнее и именно в такой конструктивной форме впервые вошли в практику.
Первым генератором, как уже отмечалось, получившим практическое применение, был магнитоэлектрический генератор Б.С. Якоби. Занимаясь усовершенствованием методов электрического взрывания мин, Б. С. Якоби построил в 1842 г. генератор, названный им «магнитоэлектрической батареей» (рис. 2.19). При вращении катушек 3 зубчатой передачей 5 в поле постоянных магнитов 1 в них наводилась ЭДС; на валу 2 имелось коммутирующее устройство 4 в виде двух полуцилиндров, представляющее собой простейший двухпластинчатый коллектор. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов.
Стремление повысить мощность магнитоэлектрических генераторов привело к увеличению количества постоянных магнитов. Этот путь отражал уже знакомую из истории развития электродвигателей тенденцию: для увеличения мощности соединять несколько элементарных машин в одну. Наибольшее распространение в лабораторной практике 40–50-х годов XIX в. получил магнитоэлектрический генератор немецкого электротехника Э. Штерера (1813–1890 гг.) с тремя вращающимися постоянными магнитами (1843 г.). Этот генератор использовался учеными (в том числе Э. Х. Ленцем и Б.С. Якоби) для исследования процессов в магнитоэлектрических машинах.
Известный толчок к построению более мощных магнитоэлектрических генераторов дали дуговые лампы с регуляторами, получившие применение на маяках в связи с развитием морского транспорта. Еще в 1849 г. профессор физики Брюссельской военной школы Нолле принялся за построение мощного магнитоэлектрического генератора для установки на маяках, избрав уже проторенный путь комбинирования в одном агрегате большого числа машин. Работы Нолле были продолжены другими учеными, и к 1856 г. машина получила свое конструктивное завершение. Для производства таких генераторов в Париже была организована электропромышленная компания «Альянс» (отсюда произошло и название новой машины). Первая такая машина была установлена на маяке близ г. Гавра.
Рис. 2.19. Магнитоэлектрический генератор Якоби
В генераторе «Альянс» на чугунной станине были укреплены в несколько рядов подковообразные постоянные магниты, расположенные по окружности и радиально по отношению к валу. В промежутках между рядами магнитов на валу устанавливались диски с большим числом катушек-якорей (рис. 2.20). В изображенной на рис. 2.20 машине было 40 магнитов и 64 стержня (явнополюсных якоря). Различные варианты машины «Альянс» имели разное количество рядов магнитов (три, пять, семь). На валу генератора укреплен коллектор с 16 металлическими пластинами, изолированными друг от друга и от вала машины. В качестве коллекторных щеток служили специальные ролики. В машине впервые было предусмотрено устройство для смещения роликов в зависимости от нагрузки. Перемещение роликов происходило под действием тяг, идущих от центробежного регулятора, который был связан с валом машины.
Рис. 2.20. Общий вид генератора «Альянс»
1 — ряды неподвижных магнитов; 2 — несущие диски с катушками-якорями; 3, 4 — коллектор; 5–7 — устройство для смещения роликовых токоприемников 8, 9 — центробежный регулятор
В течение 1857–1865 гг. в эксплуатации было около 100 машин «Альянс». Для привода одной такой машины требовался паровой двигатель мощностью 6–10 л.с. Масса шестидисковой машины «Альянс» доходила до 4 т. Есть сведения, что машина «Альянс» получила одобрение М. Фарадея.
Генератор «Альянс» нагляднее, чем другие, меньшие по размерам машины, показал недостатки, присущие вообще магнитоэлектрическим машинам. Материалы и технология производства постоянных магнитов были еще несовершенными. Под действием реакции якоря, в результате естественного старения и возможных вибраций магниты быстро размагничивались, в связи с чем ЭДС генератора уменьшалась и его мощность снижалась. Во всех этих машинах применялись стержневые якоря, имевшие многослойную обмотку. При работе они быстро нагревались вследствие плохого отвода теплоты, что приводило к разрушению изоляции. Масса и габариты магнитоэлектрических генераторов, несмотря на их небольшую мощность, были весьма значительными, и крупные машины были сравнительно дорогими. Принципиальным недостатком машин с явнополюсными якорями явилось то, что они давали резко пульсирующий ток.
Рис. 2.21. Генератор Уайльда
Второй этап в развитии электрического генератора постоянного тока условно можно обозначить промежутком времени между 1851 и 1867 гг. Этот этап характеризуется преимущественным конструированием генераторов с независимым возбуждением, т.е. с возбуждением электромагнитов от постороннего, независимого источника. Это способствовало значительному улучшению работы генераторов и уменьшению их относительной массы.
Впервые обоснованное указание на целесообразность замены постоянных магнитов электромагнитами дали в начале 50-х годов XIX в. немецкий ученый Вильгельм Зинстеден (1803–1891 гг.) и датский изобретатель Серено Хиорт (1801–1870 гг.), но их идеи и конструкции были настолько необычны и неожиданны, что вначале не привлекли к себе должного внимания.
В качестве характерного примера генератора с электромагнитами, обмотки которых питались токами от независимого источника, может быть указан генератор англичанина Генри Уайльда (1863 г. ). Этот генератор (рис. 2.21) имел П-образный электромагнит 7, для питания которого был приспособлен отдельный возбудитель — небольшой магнитоэлектрический генератор 2. Вместо обычно применявшегося стержневого якоря Г. Уайльд использовал предложенный в 1856 г. крупным немецким электротехником и предпринимателем Вернером Сименсом (1816–1892 гг.) якорь с сердечником двутаврового сечения (так называемый двухТ-образный якорь), который является разновидностью явно-полюсного якоря. Этот якорь имел форму вала с продольными выточками, в которые укладывалась обмотка. Машина с двухТ-образным якорем обладала меньшим магнитным рассеянием, чем со стержневым, но в то же время этот якорь, как и стержневой, имея многослойную обмотку с плохим теплоотводом, сильно нагревался и тем самым ограничивал мощность установки.
Машина Г. Уайльда подготовила конструкторскую мысль к созданию генераторов с самовозбуждением.
Началом третьего этапа в развитии генераторов постоянного тока условно можно считать 1867 г. , когда почти одновременно в разных странах был установлен принцип самовозбуждения. Мы пишем «условно» потому, что одну какую-то дату назвать невозможно; вокруг этого важнейшего в истории электрических машин изобретения разгорелся большой спор о приоритете. На первенство претендовали очень известные ученые и изобретатели. Дело обстояло так.
В январе 1867 г. В. Сименс представил в Берлинскую академию наук доклад, в котором изложил сущность принципа самовозбуждения. В докладе были такие слова: «Однако того небольшого количества магнетизма, которое остается даже в самом мягком железе, достаточно, чтобы при возобновлении вращения снова получить в замкнутой цепи непрерывное возрастание тока. Следовательно, достаточно один раз пропустить ток в цепь обмотки неподвижного магнита, чтобы сделать прибор способным давать ток при каждом возобновлении вращения».
В. Сименс назвал принцип самовозбуждения динамоэлектрическим, а самовозбуждающийся генератор стал с тех пор называться динамомашиной. Впрочем, динамомашиной постепенно стали называть любой машинный генератор постоянного тока. Почти одновременно с В. Сименсом с идеей самовозбуждения выступили и даже получили патенты английские изобретатели Чарльз Уитстон, а также братья Кромвель и Семьюэль Варлей. Но еще задолго до В. Сименса в 1856 г. венгерский физик, профессор Будапештского университета Аньош Йедлик (1800–1895. гг.) [2.17] пришел к выводу о том, что если обмотки возбуждения присоединить к зажимам якоря того же генератора, то при пуске машины развивается процесс самоусиления магнитного поля. Вместе с тем А. Йедлик заметил, что для возникновения этого процесса нет необходимости в установке постоянных магнитов, а вполне достаточно остаточного магнетизма. Так А. Йедлик совершенно сознательно сформулировал не только принцип самоусиления магнитного поля, но и принцип самовозбуждения генератора. В 1861 г. он уже построил самовозбуждающийся генератор.
Работы А. Йедлика были, по-видимому, несколько преждевременными, и, кроме того, он не располагал необходимыми средствами для промышленного изготовления машин в больших масштабах. Иное положение было у В. Сименса: являясь главой фирмы, со временем завоевавшей позиции ведущего мирового электротехнического концерна, он открыл широкую дорогу для производства динамомашин.
Существенным недостатком первых генераторов с самовозбуждением являлась весьма несовершенная конструкция якоря. Так, двухТ-образный якорь В. Сименса не только ограничивал мощность машин из-за быстрого нагрева, вызывал сильное искрение на коллекторе, но и давал резко пульсирующий ток. Этот ток, в свою очередь, вызывал резкую пульсацию магнитного потока и, следовательно, большие потери в стальных сердечниках. В этом отношении двухТ-образный якорь ничем не отличался от стрежневого, поскольку и тот и другой были только разновидностями неудачного явнополюсного исполнения якорей машин постоянного тока. Этот недостаток позднее сумел устранить Фридрих Гефнер-Альтенек.
Событием, революционизировавшим развитие электрической машины и положившим начало промышленной электротехнике, явилось объединение принципа самовозбуждения с конструкцией кольцевого якоря.
Разработка самовозбуждающихся генераторов с кольцевыми и барабанными якорями и развитыми магнитными системами составила основное содержание четвертого этапа в развитии электрических генераторов.
З.Т. Грамм, занимаясь изготовлением электрических машин, стал одним из самых известных французских специалистов в области электромашиностроения и электрического освещения. В июне 1870 г. он получил патент, в котором содержалось описание самовозбуждающегося (в общем случае многополюсного) генератора с кольцевым якорем. На гладкий железный кольцеобразный сердечник наматывалась замкнутая сама на себя обмотка (позднее такую обмотку стали называть граммовской). От равноудаленных точек этой обмотки шли отпайки к коллекторным пластинам. Общий вид одной из конструкций генератора Грамма изображен на рис. 2.22, а.
На станине 1 укреплены электромагниты 2 с полюсными наконечниками 3, между которыми вращается якорь 4; в специальных держателях укреплены щетки, соприкасающиеся с почти современного типа коллектором 5. Якорь приводится во вращение через приводной шкив. Обмотка возбуждения включена последовательно с обмоткой якоря.
Рис. 2.22. Самовозбуждающийся генератор Грамма для питания осветительных установок
На рис. 2.22, б показана принципиальная схема генератора, а на рис. 2.22, в — конструкция кольцевого якоря. З.Т. Грамм указывал, что сердечник якоря может быть сплошным, а может быть изготовлен из пучка стальных проволок 7, как показано на рисунке; здесь же 2 — катушки обмотки, 3 — коллекторные пластины.
Позднее З.Т. Грамм предложил еще несколько конструкций самовозбуждающихся машин, различных по внешнему виду и мощности, но принципиальных изменений в свою машину он больше не вносил.
Генератор Грамма оказался весьма экономичным источником электрической энергии, позволявшим получать значительные мощности при высоком КПД и сравнительно малых габаритах и массе. Сравнение машины Грамма, например, с машиной «Альянс» показывает, что самовозбуждающийся генератор с кольцевым якорем имел массу на 1 кВт примерно в 6 раз меньшую, чем генератор с постоянными магнитами.
Очевидные преимущества генератора Грамма способствовали тому, что этот генератор быстро вытеснил другие типы и получил очень широкое распространение. В начале 70-х годов принцип обратимости электрических машин был уже хорошо известен, а машина Грамма использовалась как в режиме генератора, так и в режиме двигателя. Таким образом, в начале 70-х годов обе линии развития электрических машин (генератора и двигателя) объединились.
Машина Грамма представляла собой машину постоянного тока современного типа. Однако она нуждалась в определенных усовершенствованиях, которые последовали в 70–80-х годах XIX в.
В 80-х годах XIX в. продолжались исследования процессов в электрических машинах и совершенствование их конструкций. В 1880 г. американский изобретатель Хайрем Максим (1840–1916 гг.) вновь (после А. Пачинотти) предложил зубчатый якорь, а также внутренние каналы для вентиляции. Знаменитый американский электротехник Томас Альва Эдисон (1847–1931 гг.) в 1880 г. получил патент на шихтованный якорь, в котором пластины изолировались листами тонкой бумаги, позднее она была заменена лаком.
С 1885 г. стали применяться шаблонная и компенсационная обмотки, устанавливаться дополнительные полюса.
Огромное значение в совершенствовании проектирования электрических машин сыграли работы Александра Григорьевича Столетова (1839–1896 гг.) по исследованию магнитных свойств «мягкого железа», доказавшего связь магнитной восприимчивости железа с напряженностью магнитного поля.
В 1880 г. немецким физиком Эмилем Варбургом (1846–1931 гг.) было открыто явление гистерезиса и начались исследования магнитных потерь в стали. Английский ученый Джеймс Э. Юинг (1855–1935 гг.) пришел к выводу о «гистерезисном цикле» и предложил прибор для вычерчивания кривых намагничивания. Выдающийся американский электротехник Чарльз Протеус Штейнмец (1865–1923 гг.) предложил эмпирическую формулу для определения потерь на гистерезис. В 1885 г. английский электротехник Джон Гопкинсон сформулировал закон магнитной цепи. Таким образом, к концу 80-х годов электрическая машина постоянного тока приобрела современные конструктивные черты.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРесИстория создания электродвигателя
Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.
1800, Вольта
Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.
1820, Эрстед
Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.
1821, Фарадей
Первый электродвигатель Фарадея, 1821 г.
Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат “О некоторых новых электромагнитных движениях и о теории магнетизма”, где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем в истории.
1822, Ампер
Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.
1822, Барлоу
Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.
1825, Араго
Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.
1825, Стёрджен
Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.
Вращающееся устройство Йедлика, 1827/28 гг.
1827, Йедлик
Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.
1831, Фарадей
Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.
1831, Генри
Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.
1832, Пикси
Генератор постоянного тока Пикси
Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.
Электродвигатель Стёрджена
Strurgejn’s Annals of Electricity, 1836/37, vol. 1
1833, Стёрджен
Британский физик, Уильям Стёрджен, публично продемонстрировал электродвигатель на постоянном токе в Марте 1833 года в Аделаидской галерее практической науки в Лондоне. Данное изобретение считается первым электродвигателем, который можно было использовать.
1833, Ленц
В начале в электромеханике разграничивали магнито-электрические машины (электрические генераторы) и электро-магнитные машины (электрические двигатели). Российский физик (немецкого происхождения), Эмилий Христианович Ленц, опубликовал статью о законе взаимности магнито-электрических явлений, то есть о взаимозаменяемости электрического двигателя и генератора.
Май 1834, Якоби
Первый вращающийся электродвигатель. Якоби, 1834
Немецкий и русский физик, академик Императорской Санкт-Петербургской Академии Наук, Борис Семенович (Мориц Герман фон) Якоби, изобрел первый в мире электродвигатель с непосредственным вращением рабочего вала. Мощность двигателя составляла около 15 Вт, частота вращения ротора 80-120 оборотов в минуту. До этого изобретения существовали только устройства с возвратно-поступательным или качательным движением якоря.
1836 – 1837, Дэвенпорт
Проводя эксперименты с магнитами, американский кузнец и изобретатель, Томас Дэвенпорт, создает свой первый электромотор в июле 1834 года. В декабре этого же года он впервые продемонстрировал свое изобретение. В 1837 году Дэвенпорт получил первый патент (патент США №132) на электрическую машину.
1839, Якоби
Используя электродвигатель питающийся от 69 гальванических элементов Грове и развивающий 1 лошадиную силу, в 1839 г. Якоби построил лодку способную двигаться с 14 пассажирами по Неве против течения. Это было первое практическое применение электродвигателя.
1837 – 1842, Дэвидсон
Шотландский изобретатель, Роберт Дэвидсон, занимался разработкой электродвигателя с 1837 года. Он сделал несколько приводов для токарного станка и моделей транспортного средства. Дэвидсон изобрел первый электрический локомотив.
1856, Сименс
Немецкий инженер, изобретатель, ученый, промышленник, основатель фирмы Siemens, Вернер фон Сименс изобрел электрический генератор с двойным T-образным якорем. Он первый разместил обмотки в пазах.
1861-1864, Максвелл
Британский физик, математик и механик, Джеймс Клерк Максвелл, обобщил знания об электромагнетизме в четырех фундаментальных уравнениях. Вместе с выражением для силы Лоренца уравнения Максвелла образуют полную систему уравнений классической электродинамики.
1871-1873, Грамм
Бельгийский изобретатель, Зеноб Теофил Грамм, устранил недостаток электрических машин с двух-Т-образным якорем Сименса, который заключался в сильных пульсациях вырабатываемого тока и быстром перегреве. Грамм предложил конструкцию генератора с самовозбуждением, который имел кольцевой якорь.
1885, Феррарис
Итальянский физик и инженер, Галилео Феррарис, изобрел первый двухфазный асинхронный электродвигатель. Однако Феррарис думал, что такой двигатель не сможет иметь КПД выше 50%, поэтому он потерял интерес и не продолжал улучшать асинхронный электродвигатель. Считается, что Феррарис первым объяснил явление вращающегося магнитного поля.
1887, Тесла
Американец сербского происхождения, изобретатель, Никола Тесла, работая независимо от Феррариса, изобрел и запатентовал двухфазный асинхронный электродвигатель с явно выраженными полюсами статора (сосредоточенными обмотками). Тесла ошибачно считал что двухфазная система токов оптимальна с экономической точки зрения среди всех многофазных систем.
1889-1891, Доливо-Добровольский
Русский электротехник польского происхождения, Михаил Осипович Доливо-Добровольский, прочитав доклад Феррариса о вращающемся магнитном поле изобрел ротор в виде “беличьей клетки”. Дальнейшая работа в этом направлении привела к разработке трехфазной системы переменных токов и трехфазного асинхронного электродвигателя, получившего широкое применение в промышленности и практически не изменившегося до нашего времени.
Широкое внедрение электромеханических устройств в России начинается после Октябрьской революции 1917 г., когда электрификация всей страны стала основой технической политики нового государства. Можно сказать, что XX век стал веком становления и широкого распространения электромеханики.
Выбор между двухфазной и трехфазной системой
Доливо-Добровольский справедливо считал, что увеличение числа фаз в двигателе улучшает распределение намагничивающей силы по окружности статора. Переход к трехфазной системы от двухфазной уже дает большой выигрыш в этом отношении. Дальнейшее увеличение числа фаз нецелесообразно, так как приводит к значительному увеличению расходов металла на провода.
Для Теслы же казалось очевидным, что чем меньше число фаз, тем меньше требуется проводов, и следовательно тем дешевле устройство электропередачи. При этом двухфазная система передачи требовала применения четырех проводов, что представлялось не желательным в сравнении с двух проводными системами постоянного или однофазного переменного токов. Поэтому Тесла предлагал применять трех проводную линию для двухфазной системы, делая один провод общим. Но это не сильно уменьшало количество затрачиваемого на систему металла, так как общий провод должен был быть большего сечения.
Таким образом трехфазная система токов предложенная Доливо-Добровольским была оптимальной для передачи энергии. Она практически сразу нашла широкое применение в промышленности и до наших дней является основной системой передачи электрической энергии во всем мире.
Получение переменного тока: теория, основные способы
Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.
Теория
С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.
Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.
Далее вам необходимо:
- взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
- подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
- поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
- сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
- обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.
Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.
Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.
Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.
Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.
Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:
где n – это количество витков обмоток
а соотношение dФB/dt – это скорость изменения электромагнитной индукции во времени.
Способы получения
Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.
Рамка с магнитами
Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.
Рис. 1. Рамкой и магнитамиКак видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.
При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.
Асинхронный и синхронный генератор
Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.
По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.
Рис. 2. Устройство асинхронного генератораБлагодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.
Рис. 3. Напряжение в трехфазной сетиОднако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:
- большие пусковые токи;
- отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
- меньшая степень контроля за системой.
Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.
Рис. 4. Схема синхронного генератораИнвертор
За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.
Рис. 5. Схема инвертораНа рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.
Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.
Независимая энергия. Почему применяют и как подразделяют – Рынок
На российском рынке существует большое количество предложений мобильных электростанций: дизель-генераторов, бензо-генераторов, газогенераторов.
Дизельный генератор или дизельная электростанция – установка для выработки переменного тока, т.е. электрической энергии в случае её отсутствия, отключения или недостаточной подачи от основной электросети. Это технически сложное устройство представляет собой автономный агрегат, который преобразует один вид энергии в другой, вырабатывая электрический ток. Дизельные электростанции, цена которых выше бензиновых генераторов, обеспечивают оптимальную стоимость расходов за выработку электроэнергии, и как следствие этого, скорую окупаемость дизель-электростанции.
Исторически сложилось так, что большая часть территории России располагается вне зоны действия централизованных электрических сетей. Удел неохваченных регионов – использование автономных электростанций. Другая причина, уязвимость «большой» энергетики, вызванная крайней изношенностью оборудования электростанций и энергетических сетей. Поэтому, отсутствие централизованного электроснабжения можно считать одной из первых причин использования автономных источников энергии.
В качестве второй причины широкого распространения применения дизель-генераторов можно назвать безопасность. Современные тенденции развития мирового рынка электроэнергетики свидетельствуют о неуклонном росте доли автономных источников электроэнергии. За рубежом, как правило, создание автономных источников электроэнергии диктуется законодательными предписаниями обеспечения энергетической безопасности различных объектов, таких как аэропорты, государственные учреждения, опасные производства и т. п.
И третья причина – экономичность. Довольно часто интересы энергетической безопасности совпадают с экономической целесообразностью оснащения предприятий различных отраслей резервными источниками электроснабжения.
Дизельные электрогенераторы занимают особое место в автономной электроэнергетике России. Специалисты отрасли утверждают, что в настоящее время, как, и в обозримой перспективе, энергетические установки с дизельными двигателями останутся самыми экономичными в диапазоне мощностей от 5 до 2500 кВт в одном агрегате, и им нет альтернативы в наиболее важных секторах экономики. При этом наиболее востребованными по-прежнему являются ДЭУ мощностью от 100 до 500 кВт. В настоящее время выпускаются однофазные и трёхфазные дизель-генераторы. Первые – бытовые, вторые – оптимальны для энергоснабжения промышленных потребителей.
В качестве резервных источников питания чаще используются дизель-генераторные установки с воздушным охлаждением, а более мощные дизельные генераторы (ДГУ), имеют жидкостное охлаждение. Дизельные генераторы жидкостного охлаждения — это стационарные установки мощностью от двух до нескольких тысяч киловатт. Они вполне могут служить основным источником электроэнергии.
Маломощные дизель-генераторные установки, как правило, используют двигатели воздушного охлаждения, сильно шумят, к тому же им необходимо охлаждаться воздухом, поэтому устанавливать их желательно на открытом пространстве или обеспечивать необходимую приточно-вытяжную вентиляцию. Тем не менее, резервные дизельные генераторы, благодаря своей мобильности и простоте в эксплуатации, пользуются большой популярностью.
Все генераторы можно разделить на несколько основных групп:
по назначению – бытовые или профессиональные генераторы (до 15 кВА),
по виду топлива – бензин (бензо-генераторы), дизель (дизель-генераторы), газ (газогенераторы),
по применению – основные или резервные электростанции,
по исполнению – открытые, в шумопоглощающем корпусе, в контейнере, в кунге и т.п.
по виду пуска – ручной (для малогабаритных генераторов и мини электростанций), электро-стартерный или автоматический.
по производителю.
Игроки и рынки
На отечественном рынке бензиновых электро-генераторных установок российские производители занимают весьма скромное место, но на рынке дизельных электростанций есть возможность конкурировать.
За последнее время спрос на рынке ДЭУ заметно сместился в сторону более мощных агрегатов. По крайней мере, это отмечается в центральных регионах. Можно также отметить расслоение потребителей дизельных электро-агрегатов. Традиционными потребителями электро-генераторных установок мощностью от 100 до 200 кВт являются банки и другие коммерческие структуры, компьютеризированная работа которых сильно зависит от сохранности базы данных и постоянного доступа к информации.
Такие организации отдают предпочтение импортным агрегатам европейских компаний, таких, как «F.G. Wilson», «Caterpillar», «Atlas Copco», «SDMO», «Rkraft». Этих потребителей интересует высокое качество установок, и они имеют возможность платить за это качество и за его техническое обслуживание.
Предпочтение отечественным производителям, как правило, отдают по двум причинам. Во-первых, ограниченность в средствах (как правило, отечественные производители дизельных генераторов составляют более низкий ценовой сегмент), и во-вторых, верность традициям в работе с отечественным оборудованием.
При этом, следует отметить, что использование отечественного оборудования имеет ряд плюсов. Их использование в отдаленных районах делает эти генераторы более удобными при эксплуатации и ремонте, ведь запчасти к импортному оборудованию не всегда легко найти в труднодоступных районах, а это риск остаться без электроснабжения на длительное время.
Импортные ДЭУ требуют от специалистов навыков обращения с этой техникой при ремонте и обслуживании, она не рассчитана на то, что ее будут ремонтировать люди специально не обученные. В этом смысле отечественные установки более ремонтопригодны.
Наиболее крупными отечественными производителями дизельных двигателей и дизельных установок в России являются ОАО «ХК «Барнаултрансмаш», ЗАО «Волжский дизель имени Маминых», АО «Курский электроагрегат», АО «Новосибирский электроагрегат», ОАО «Пенздизельмаш», «Энергетический Центр «Президент-Нева»«, ЗАО «НТЦ РАСЭЛ» и др.
Специалисты утверждают, что без целенаправленной работы над улучшением удельных технических характеристик, снижения материалоемкости за счет использования более совершенных конструкционных материалов, повышения уровня автоматизации и др. отечественные производители рискуют увеличить качественный разрыв между импортным и отечественным дизель-электрогенераторным оборудованием.
Прежде всего, необходимо разделить производителей электростанций на бытовые бензиновые генераторы и дизельные электростанции воздушного охлаждения и производителей промышленных профессиональных дизель-генераторных установок для беспрерывной работы.
Производители бензиновых генераторных установок в основном занимаются сборкой электростанций из двигателей и генераторов ведущих производителей. Производители производят только сборку электростанций на базе надежно зарекомендовавших себя двигателей Honda (Япония), BriggsandStratton (США), Robin (Япония) и генераторов MeccAlte (Италия), Sincro (Италия). Линейка данных двигателей практически идентична друг другу по техническим и эксплуатационным характеристикам,
Также в данном ряду присутствуют качественные заводские китайские бренды, которые производят двигатели и электростанции по лицензии завода Honda, такие станции не хуже по качеству и продолжительности моторесурса своих оригиналов, но отличить качественный фабричный лицензионный китайский агрегат от электростанции кустарного китайского производства не знающему покупателю крайне сложно.
Сегодня на российском рынке работают ведущие мировые производители электростанций:
Gesan, Onis Visa , Cummins, SDMO, FG Wilson, Yanmar, Geko, Caterpillar, Lister Petter, AKSA, Pramac, FPT (Iveco), Energo,
а также производители двигателей электростанций:
Yanmar, Caterpillar, Cummins, Deutz, Iveco, John Deere, Lombardini, Mitsubishi, MTU, Perkins, Scania, Volvo.
В последнее время российский рынка дизель-генераторов и дизельных электростанций столкнулся с серьезным вызовом в лице компаний, предлагающих по демпинговым ценам генераторы, якобы изготовленные из первоклассных европейских комплектующих. В действительности эти дизель-генераторы оказываются низкокачественной продукцией китайского производства, а продающие их компании, стремясь к легкой «наживе», сознательно вводят потребителей в заблуждение.
Несовершенство закона № 94-ФЗ «О размещении заказов на поставку товаров, выполнение работ, оказание услуг для государственных и муниципальных нужд» предоставляют широкие возможности для фактического подлога.
Кроме того, в России не существует профессиональных организаций или объединений производителей и поставщиков дизель-генераторов, способных регулировать ситуацию на рынке.
К «экзотическим» китайским брендам специалисты компании ПСМ относят двигатели Bearford, Ricardo, Styer, Lester, Mitsudiesel. Данные двигатели не являются аналогами двигателей ЯМЗ или ММЗ, а тем более двигателей Volvo Penta, Caterpillar, John Deere, Mitsubishi и не могут поставляться с подобной формулировкой.
Еще одной проблемой для производителей дизельных электрогенераторов стало то, что в основных районах, где они пользовались наибольшим спросом, т.е. труднодоступных, не электрифицированных территориях Сибири стали добывать газ. Это стало основной причиной перехода на газовые генераторы.
Подробно о производителях
ELEMAX (Япония) – один из наиболее надежных бензо-генераторов на российском рынке. Обновленный в 2005 году модельный ряд электростанций японского завода Honda Motor Co. SawaFuji Corp. под маркой ELEMAX – один из лидеров премиум класса. Усовершенствованные технические характеристики нового модельного ряда с префиксом EX по сравнению с предыдущим модельным рядом с префиксом DX существенно повысили выходные показатели. Высоконадёжные, экономичные 4-х тактные двигатели HONDA японской сборки, адаптированные к работе с использованием топлива и масел отечественного производства оснащены аварийной системой защиты по уровню масла, оборудованы глушителями увеличенного объёма, что обеспечивает значительное снижение уровня шума.
Рис. 1
GESAN ELECTRÓGENOS GRUPOS (Испания) была создана в 1986 году и за четверть века своего существования превратилась в современную высокотехнологичную компанию, продукция которой поставляется более чем в 90 стран мира.
На российском рынке электростанции GESAN представляет компания «Абитех», с 2000-ного года являющаяся официальным дистрибьютором GESAN ELECTRÓGENOS GRUPOS . Благодаря стараниям ООО «Абитех» эти испанские ДГУ прочно заняли нишу надежного интеллектуального оборудования небольшой и средней мощности, легко адаптируемого под требования конкретной задачи потребителя.
Продукции GESAN принадлежит более 5% российского рынка автономных электростанций, а в диапазоне номинальных мощностей 60-500кВА занимаемая доля рынка составляет 8%.
Абитех работает как c конечными потребителями – такими известными российскими компаниями как ФСК ЕС, Яндекс, РосАвиаКосмос и другими, так и с крупными инжиниринговыми компаниями, что позволяет максимально охватить рынок.
Абитех растет и динамично развивается, за последние 2 года темпы роста оборота превысили 15% в год, и в компании уверены, что положительная динамика сохранится. Вся линейка мощностей имеет модели с автоматическим запуском при пропадании напряжения в питающей сети. Бензиновые электростанции Gesan имеют расширенную сервисную службу: 26 Сервисных центров по России и 3 по Москве, что не вызывает в дальнейшем проблем с обслуживанием.
Они дизельными двигателями Perkins, Cummins, Volvo с жидкостным охлаждением. В качестве генераторов переменного тока используются бесконтактные синхронные машины Mecc Alte Spa и Newage Stamford, обеспечивающие хорошие показатели выходного напряжения и высокие регулировочные свойства. Имеют низкую шумность и выхлоп, соответствующие европейским и российским стандартам, минимальный в своем классе расход топлива и хорошую способность «подхвата» нагрузки. Способны работать в условиях низких температур, высокой влажности и в присутствии агрессивных сред.
Номинальные мощности ДГУ GESAN охватывают диапазон от 3кВА до 2000кВА (5.6кВт — 1600кВт). Все генераторы трёхфазные, выходное напряжение 220/380, частота 50Гц, степень защиты IP23, диапазон рабочих температур -15°С…+40°С, при установке дополнительного подогревателя охлаждающей жидкости до -30°С, в контейнерном исполнении до -50°С.
Рис. 2
YANMAR (Япония) была создана в 1912 г. и на данный момент успешно функционирует по всему мира, предлагая своим клиентам различную технику на основе собственных двигателей, в том числе экономичные, долговечные, компактные и малошумные дизельные и газовые генераторы. В России представительство компании YANMAR открылось в 2007 г. До настоящего времени основной задачей являлось исследование российского рынка, поэтому говорить о полноценном присутствии не приходится. Активные действия, направленные на продвижение бренда и продукции YANMAR в России, начнутся со следующего года Учитывая традиционные сильные стороны японских производителей (надежность, простота в обслуживании, пониженный уровень шума и вибрации, гарантийное и послегарантийное обслуживание и т.д.) в течение ближайших 5 лет по прогнозам компании генераторы YANMAR увеличат свое присутствие на российском рынке генераторов сопоставимых мощностей до 15%. В настоящее время компания находится в стадии формирования дилерской сети.
Рис. 3
MobilStromGmbH (Германия).
– мировое имя и известность марки в 114 странах с положительными отзывами о продукции, немаловажный аспект, что производителем является Германия, которая занимает лидирующие позиции в мировом автомобилестроении и так называемое «немецкое качество» было и остается на самом высоком уровне,
– 35-ти летний опыт производства, проверенное временем качество и надежность,
– безотказная, технически простая и недорогая эксплуатация в непрерывных режимах,
– техническую поддержку, сервис и ремонт двигателей Iveco и генераторов MeccAlte, используемых на установках можно произвести не только на нашем сервисном центре, но и на всей территории России,
– Генераторы MobilStrom хорошо подготовлены для эксплуатации в российских условиях, а также к использованию российского топлива,
– проверенная временем работа двигателей Iveco на базе которых спроектированы электростанции, и которые также установлены на большинстве грузовых автомобилей, дорожной, сельскохозяйственной технике не только по всему миру, но и в России, что гарантирует проверенную безотказную работу именно в российских условиях и соответственно наличие запчастей и расходных материалов к данным двигателям в магазинах,
– объемы производства электростанций в год составляют около 100 000 штук, и поставляются в 114 стран мира,
– электростанции MobilStrom соответствуют всем экологическим требованиям России, имеют самый экономичный расход топлива и недорогую стоимость обслуживания и расходных материалов, а также большую наработку на отказ и ремонтопригодность всех составных узлов,
– на сегодняшний день электростанции MobilStrom имеют самую богатую и полную комплектацию по сравнению со своими конкурентами, а также широкую линейку моделей и их исполнения, и возможность заказа большого количества дополнительных опций по желанию заказчика,
– короткие сроки изготовления до 2-х недель и наличие большого склада готовых установок в Раквице,
– диапазон производимых мощностей от 5 до 2500 кВт,
– адекватная и конкурентная стоимость оборудования здесь в России,
– и самый важный критерий, который дополняет приведенные выше характеристики производителя и самое главное подтверждает их: сравнение работы электростанций MobilStrom с другими производителями при сдаче в аренду дизельгенераторов на длительные сроки в непрерывном режиме.
Mobil-Strom GmbH специализируется на производстве электрических агрегатов: дизельные электростанции от 2 до 2500 кВА для продажи и сдачи в аренду; встраиваемые электрические агрегаты до 20 кВА для мобильных магазинов, автобусов и так далее; насосные агрегаты с дизельными моторами для системы пожарной безопасности; агрегаты, бывшие в эксплуатации, предоставляются для сдачи в аренду; осветительные опоры, высота которых до 15 м и до 9000 Вт осветительной мощности, как с электрогенераторами, так и без них.
Рис. 4
13 лет назад была образована компания Хайтед, которая специализируется на реализации комплексных проектов «под ключ» по созданию систем электроснабжения. За время с момента основания компания выросла до ведущего поставщика решений в области энергоснабжения и энергоэффективных технологий на территории России, Украины и Казахстана. Компания проектирует и поставляет оборудование, выполняет строительно-монтажные и пусконаладочные работы, обеспечивает гарантийное и послегарантийное сервисное сопровождение – то есть решает все вопросы, связанные с качественным энергоснабжением объектов заказчика. За годы работы было реализовано более 1000 проектов по созданию систем энергоснабжения.
Собственный производственно-складской комплекс площадью более 10 000м2 позволяет производить качественные контейнеры для энергетического оборудования, которые используются для обеспечения надежной работы оборудования даже в самых суровых климатических условиях.
Услуга аренды электростанций особенно востребована при проведении геологоразведочных, строительных работ, а также при организации массовых мероприятий.Для решения задач по временному электроснабжению объектов Хайтед располагает арендным парком дизельных электростанций суммарной мощностью около 100 МВт. С момента основания компания открыла 7 региональных офисов: пять в России (Санкт-Петербург, Екатеринбург, Краснодар, Новосибирск, Самара) и 2 офиса в странах СНГ (Киев на Украине, Алматы в Казахстане). В следующем году планируется открыть филиал в Хабаровске.
По итогам 2011года компания занимает около 5% российского рынка продаж дизель-генераторов (ДГУ) и являемся вторым по величине поставщиком ДГУ по суммарной поставленной мощности. Большими темпами наращивает присутствие на рынке электростанций работающих на газовом топливе. Хайтед – эксклюзивный представитель на территории России таких компаний как Perkins и FW Murphy, продукция которых находит применение в том числе и в нефтегазовой промышленности. Компания реализует проекты по энергоснабжению таких сложных и ответственных объектов, как буровые установки, нефте- и газо- проводы, центры обработки данных, промышленные предприятия, и др. Среди клиентов компании такие мейджеры рынка, как Газпром, Лукойл, BP, ТНК-BP, Транснефть, Сбербанк России, Данфосс, Самсунг, Мегафон, Вымпелком, МТС.
TALON (США)
Имеют большие баки, расширенная панель приборов с вольтметром, розетки на панели приборов, увеличенные глушитель. В России развитая сервисная сеть и налаженная поставка комплектующих и запасных частей.
KUBOTA (Япония)
Имеют богатую комплектацию, высокое качество сборки и выгодную стоимость. В основном предназначены для резервирования сети с возможностью продолжительной работы без остановки и подключения профессионального строительного инструмента.
SDMO Industries (Франция).
Компания предлагает широкий выбор генераторных установок – от портативных, до мощных стационарных агрегатов, вполне способных обеспечить электроэнергией большой дом или предприятие мощностью от 0,9 кВА до 3300 кВА.
Годовой объем производства на трех заводах концерна (производство полностью автоматизированное; серийное производство было начато в 1966 году) сейчас составляет более 100 тысяч электростанций в год. При этом доля экспорта электрогенераторов французского производства достигает 80%, годовой оборот компании – более 400 млн. евро, 150 представительств компании по всему миру. Дизель-генераторы SDMO спроектированы на базе технически сложных в обслуживании двигателей Mitsubishi и John Deer и генераторов Mecc Alte, стоимость на 20 % дороже, чем их основные немецкие конкуренты Mobil Strom.
Рис 5
GEKO (Германия)
Бензо-генераторы Geko в своей линейке моделей имеют как «робусты» – бытовые агрегаты, так и профессиональные электростанции. В основе своей они построены на двигателях Honda и генераторах собственного производства, имеют расширенную сервисную сеть. Генераторы асинхронные и асинхронные со стартовым усилением. Такие генераторы в основном используются для сварочных работ и идеально для них подходят, т.к. синхронные генераторы не предназначены для сварки. Этим и обусловлена высокая стоимость.
Рис. 6
KIPOR (Россия) – концерн WUXI KIPOR POWER CO., Ltd., Китае. К основным характеристикам относятся: расширенная сервисная поддержка, гарантийный и послегарантийный ремонт, японская разработка завода HONDA MOTOR CO., двигатель по лицензии Honda OHV, высокое качество выходного напряжения, низкий расход топлива, бесшумная работа, профессиональное исполнение, четыре степени защиты, соотношение цена/качество.
Рис. 7
Компания «Fogo» работает на российском рынке с 2009г. В 2011- 2012гг произведена модернизация завода, что позволило увеличить количество производимых станций в 2,5 раза (по сравнению с 2010г). Польская компания «Agregaty Fogo», представляющая на мировом рынке современное энергогенерирующее оборудование под маркой Fogo. Разработкой и производством электростанций бытового и полупромышленного назначения начала заниматься в 2002 году, и в настоящее время выпускает более 30000 единиц техники ежегодно, активно поставляя высококлассные генераторы не только на внутренний рынок, но и на экспорт, в том числе и за пределы ЕС, включая Россию. В нашей стране компания реализует продукцию только через дилерскую сеть. Вся линейка моделей дизельных электростанций Fogo строится на основе двигателей ведущих мировых производителей, таких как Volvo, Mitsubishi, Iveco, Doosan и других.
Приведенные выше производители бензо-генераторов являются надежными и качественными, имеют все соответствия, сертификаты качества и разрешения на эксплуатацию на территории Российской федерации, а также имеют сервисные центры по всей России и обеспечиваются гарантийным и послегарантийным обслуживанием и ремонтом, что крайне важно при приобретении технически сложного оборудования.
Как выбрать дизель-генератор
Мощность
Для того чтобы подобрать автономный дизель генератор нужной мощности, нужно заранее суммировать мощность всех электроприборов, которые планируется при помощи него запитывать. Чтобы обезопасить оборудование от перегрузок, к полученному значению прибавляется еще 30% от общей суммы. Таким образом, резервный дизель генератор приобретается с параметром, максимально приближенным к вычисленному значению.
Емкость топливного бака
От емкости топливного бака и расхода топлива (количество литров в час) зависит время работы оборудования между заправками. Для вычисления этого промежутка времени емкость бака разделяется на расход топлива, поэтому дизель генератор с емкостью 40 л при расходе 2 л в час способен проработать 20 часов.
Фазы
Портативные бытовые дизель генераторы применяются в качестве аварийных источников энергии и вырабатывают однофазный переменный ток (220 В, подходят для дачи), трехфазные установки предназначены для питания более сложного промышленного оборудования (380 В).
Масса
Дизель генераторы малой мощности для дома обычно имеют небольшие массогабаритные показатели с учетом того, что их размещение предполагается в жилом помещении. Промышленные установки для удобства их перемещения обычно оснащаются передвижной платформой.
Электрический генератор Фарадея – Эпоха революции
К 1800-м годам промышленная революция набирала обороты с появлением новых захватывающих машин, приводимых в движение паром. Но сила пара имела свои пределы и была доступна далеко не каждому. В 1820-х годах Майкл Фарадей (1791–1867), ученый, работавший в Королевском обществе в Лондоне, понял, что необходима более полезная форма власти. Он начал проводить эксперименты, опираясь на работы Алесандро Вольта и Ганса Христиана Эрстеда и их работы с ранними батареями, магнетизмом и движением.
В 1831 году Фарадей сделал новаторское открытие. Он обмотал трубку медной проволокой и изолировал ее тканью. Затем он подключил медный провод к гальвонометру, который мог измерять электрический ток. Когда он проводил магнитом вперед и назад через середину трубки, стрелка гальвонометра двигалась. Он создал первый в истории генератор электричества.
Генератор по существу преобразует движущую силу (механическую энергию) – в данном случае движение магнита, движущегося вперед и назад, – и преобразует ее в электричество.Будь источником энергии вода, пар, ветер, нефть, уголь или ядерная реакция, почти вся электроэнергия сегодня вырабатывается генераторами (или турбинами) с использованием принципов Фарадея.
Знаете ли вы ..?Майкл Фарадей также «изобрел» «Рождественские лекции», лекции, разработанные специально для молодых людей, чтобы помочь им понять научные принципы и открытия. Захватывающие интерактивные беседы и шоу для молодежи по-прежнему проводятся каждый год в виде «Рождественских лекций» Королевским институтом, университетами и организациями по всей стране.
Дополнительная информация об этом объекте в Королевском институте:
Генераторная катушка Фарадея. Он был изготовлен Майклом Фарадеем в 1831 году и представляет собой катушку из медной проволоки, намотанную на полый сердечник. Перемещение намагниченного железного стержня через катушку вызывает в катушке ток. Фарадей показал, что магнит должен двигаться, чтобы вызвать ток, что было ранней демонстрацией преобразования механической энергии в электрическую. Это было основой современных динамо-машин.Этот предмет сейчас выставлен в Королевском институте в Лондоне.
Engineering Timelines – Майкл Фарадей
Работа Майкла Фарадея
Изучение электричества
Майкл Фарадей открыл электромагнитную индукцию в августе 1831 года.
Он доказал, что электромагнетизм может производить электричество, и попутно изобрел электрический трансформатор.
Вскоре Фарадей развил эту работу и исследовал электромагнитную индукцию…
| Фотография оригинального генератора Майкла Фарадея, любезно предоставленная Королевским институтом, где Фарадей проводил свои эксперименты.Фотография гальванометра 1800 года, любезно предоставленная Королевским институтом. Это больше похоже на гальванометр, который использовал бы Фарадей. Когда он используется, стеклянный колпак надевается на механизм.
Работа Фарадея – электрогенератор
Фарадей открыл электромагнитную индукцию в августе 1831 года. Всего несколько месяцев спустя он успешно провел эксперимент, продемонстрировавший связь между магнетизмом и движением. Он пропустил магнит внутрь и наружу цилиндрической спирали, намотанной проволокой, и показал, что электричество было произведено.
Вот диаграмма, показывающая базовую схему его эксперимента.
Иллюстрация: Пол Уэстон Трубка из любого достаточно нейтрального материала – подойдет картон – намотана катушкой из медной проволоки примерно так же, как это было в эксперименте с трансформатором. То есть обмотки не соприкасаются, и они обертываются хлопковой ватой для их изоляции.
Через трубку проходит магнит в форме стержня – для удобства показанный на иллюстрации имеет деревянную ручку. Пунктирные серые линии обозначают (невидимое) магнитное поле магнита.Это научная конвенция для отображения линий магнитного действия (силовых линий). У всех магнитов есть магнитное поле. Также указаны северный и южный полюса магнита.
Каждый конец медного провода подсоединен к гальванометру – прибору, измеряющему ток. Теперь провод представляет собой непрерывную петлю, и если в ней вырабатывается электричество, стрелка гальванометра будет двигаться, указывая на ее наличие.Следующая диаграмма показывает эксперимент в действии.
Иллюстрация: Пол Уэстон
Когда магнитный стержень перемещается вперед и назад внутри трубки, которая остается неподвижной, стрелка гальванометра начинает действовать, регистрируя ток.Если вы замените гальванометр какой-либо лампой, вы можете использовать этот прибор, чтобы зажечь его.
Что происходит?
По мере движения магнита силовые линии магнитного поля постоянно пересекаются с проводом. Это возбуждает электроны в проводе, генерируя электрический ток.
Почему это открытие важно?
Изобретение Фарадея – это простая динамо-машина (динамо-электрическая машина) и первый электрический генератор. Практически вся электроэнергия производится с использованием этого принципа, независимо от того, является ли основным источником энергии уголь, нефть, газ, атомная энергия, гидроэнергетика, ветер и т. Д.Топливо используется для привода генератора (или турбины), вырабатывающего электрический ток. Для получения дополнительной информации о крупномасштабном производстве электроэнергии см. Электроснабжение и электрический разговор.Эксперимент также показал, что для магнитной индукции необходимо, чтобы проводящая цепь пересекала силовые линии магнита. То есть катушка с проволокой в эксперименте должна была находиться внутри магнитного поля магнитного стержня. Во время эксперимента Фаради использовал слово поле в чисто описательном смысле, но он продолжил изучение магнетизма и в конечном итоге показал, что это универсальное свойство материи, и заложил основы того, что мы сегодня называем электромагнитным полем. теория.
Воссоздание эксперимента Фарадея
Аппарат, который мы использовали для наших иллюстраций, показан выше. Это воссоздание устройства Фарадея, созданного Королевским институтом. Вы можете ясно видеть магнит, трубку и ватный тампон, хотя катушка из медной проволоки скрыта. Два конца катушки соединяются на поверхности ваты с включенными в цепь маленькими лампочками. Когда магнит толкают вперед и назад, загораются лампы.
Институт
– История – Изобретение электродвигателя 1800-1854
Univ.-Проф. Д-р инж. Мартин Доппельбауэр
СводкаС изобретением батареи (Алессандро Вольта, 1800 г.), генерации магнитного поля из электрического тока (Ганс Кристиан Эрстед, 1820 г.) и электромагнита (Уильям Стерджен, 1825 г.) был заложен фундамент для создания электродвигателей. В то время еще оставалось открытым вопрос, должны ли электродвигатели быть вращающимися или возвратно-поступательными машинами, то есть имитировать шток плунжера паровой машины.
Во всем мире многие изобретатели работали параллельно над этой задачей – это была проблема «моды». Новые явления открывались почти ежедневно. Изобретения в области электротехники и ее приложений витали в воздухе.
Часто изобретатели ничего не знали друг о друге и самостоятельно разрабатывали подобные решения. Соответствующим образом формируются национальные истории до наших дней. Ниже приводится попытка дать исчерпывающую и нейтральную картину.
Первое вращающееся устройство, приводимое в движение электромагнетизмом, было построено англичанином Питером Барлоу в 1822 году (Колесо Барлоу).
После многих других более или менее успешных попыток с относительно слабым вращающимся и возвратно-поступательным устройством немецкоязычный прусский Мориц Якоби в мае 1834 года создал первый настоящий вращающийся электродвигатель , который на самом деле развил замечательную механическую выходную мощность. Его мотор установил мировой рекорд, который был улучшен только четыре года спустя, в сентябре 1838 года, самим Якоби. Его второй двигатель был достаточно мощным, чтобы переправить лодку с 14 людьми через широкую реку.Только в 1839/40 году другим разработчикам во всем мире удалось создать двигатели с аналогичными, а затем и с более высокими характеристиками.
Уже в 1833 году немец Генрих Фридрих Эмиль Ленц опубликовал статью о законе взаимности магнитоэлектрических и электромагнитных явлений, то есть о обратимости электрогенератора и двигателя . В 1838 году он дал подробное описание своих экспериментов с генератором Pixii, который он использовал в качестве двигателя.
В 1835 году двое голландцев Сибрандус Стратинг и Кристофер Беккер построили электродвигатель, который приводил в движение небольшую модель автомобиля.Это первое известное практическое применение электродвигателя. В феврале 1837 года первый патент на электродвигатель был выдан американцу Томасу Дэвенпорту.
Однако все ранние разработки Якоби, Стратинга, Давенпорта и других в конечном итоге не привели к электродвигателям, которые мы знаем сегодня.
Двигатель постоянного тока был создан не на основе этих двигателей, а в результате разработки генераторов энергии (динамометров). Основы были заложены Уильямом Ричи и Ипполитом Пикси в 1832 году с изобретением коммутатора и, что наиболее важно, Вернером Сименсом в 1856 году с двойным Т-образным якорем и его главным инженером Фридрихом Хефнер-Альтенеком в 1872 году с помощью барабанная арматура.Двигатели постоянного тока по-прежнему занимают доминирующее положение на рынке в диапазоне малой мощности (ниже 1 кВт) и низкого напряжения (ниже 60 В).
В период с 1885 по 1889 год была изобретена трехфазная электрическая система , которая является основой для современной передачи электроэнергии и современных электродвигателей. Единого изобретателя трехфазной системы питания назвать нельзя. Есть несколько более или менее известных имен, которые принимали активное участие в изобретениях (Брэдли, Доливо-Добровольский, Феррарис, Хазельвандер, Тесла и Венстрём).Сегодня трехфазный синхронный двигатель используется в основном в высокодинамичных приложениях (например, в роботах) и в электромобилях. Впервые он был разработан Фридрихом Августом Хазельвандером в 1887 году.Очень успешный трехфазный асинхронный двигатель был построен Михаилом Доливо-Добровольским в 1889 году. Сегодня это наиболее часто производимая машина в диапазоне мощностей от 1 кВт и выше.
Расписание 1800 – 1834: Первые эксперименты с электромагнитными устройствами1800 | Впервые Allessandro Volta (итальянский) производит непрерывную электрическую энергию (в отличие от искры или статического электричества) из набора серебряных и цинковых пластин. |
1820 | Ганс Христиан Эрстед (Дениш) обнаруживает генерацию магнитного поля электрическими токами, наблюдая за отклонением стрелки компаса. Это был первый случай, когда механическое движение было вызвано электрическим током. |
1820 | Андре-Мари Ампер (французский язык) изобретает цилиндрическую катушку (соленоид). |
1821 | Майкл Фарадей (британский) создает два эксперимента для демонстрации электромагнитного вращения. Вертикально подвешенный провод движется по круговой орбите вокруг магнита. | Вращающийся провод Фарадея, 1821 Фотография любезно предоставлена Отделом труда и промышленности, Национальный музей американской истории, Смитсоновский институт |
1822 | Питер Барлоу (Великобритания) изобретает прялку (колесо Барлоу = униполярная машина). | Колесо Барлоу, 1822 Philosophical Magazine, 1822, vol. 59 |
1825-1826 | William Sturgeon (Великобритания) изобретает электромагнит , катушку проводов с железным сердечником для усиления магнитного поля. | Первый электромагнит Стерджена, 1825 г. Труды Общества поощрения художеств, мануфактур и торговли, 1824 г., т.43, пл. 3 |
1827-1828 | Istvan (Ányos) Jedlik (венгерский) изобретает первую роторную машину с электромагнитами и коммутатором. Однако Джедлик публично сообщил о своем изобретении только десятилетия спустя, и фактическая дата изобретения неизвестна. До сих пор многие венгры считают, что Едлик изобрел электродвигатели. Функциональная модель его аппарата выставлена в художественном музее в Будапеште. Хотя на самом деле это может быть первый электродвигатель, следует понимать, что это устройство не оказало влияния на дальнейшее развитие электрических машин. Изобретение Джедлика долгое время оставалось скрытым, и изобретатель не преследовал его. Электротехника ничем не обязана Джедлику. | Поворотное устройство Jedlik, 1827/28 Фото: Wikipedia Электромобиль Jedlik, 1827/28 Фото: Wikipedia |
перед 1830 | Иоганн Михаэль Эклинг, механик из Вены, строит двигатель по планам и идеям проф.Андреас фон Баумгартнер (австрийский физик; с 1823 г. профессор физики и прикладной математики в Вене). Этот аппарат был приобретен в 1830 году Инсбрукским университетом по цене 50 жидких кубометров. Год постройки неизвестен, но должно быть до 1830 года, поскольку дата покупки подтверждена. | Двигатель Баумгартнера, построенный Эклингом до 1830 г. Фотография любезно предоставлена Университетом Инсбрука, Музей экспериментальной физики, Ao.Univ. Проф. Маг. Доктор Армин Денот. |
1831 | Майкл Фарадей (Великобритания) обнаруживает и исследует электромагнитную индукцию, то есть генерацию электрического тока из-за переменного магнитного поля (инверсия открытия Эрстеда). Фарадей закладывает основы развития электрогенератора. |
1831 | Джозеф Генри (американец) находит закон индукции независимым от Фарадея и строит небольшой магнитный рокер.Он описывает это как «философскую игрушку». В статье для английского журнала Philosophical Magazine, в 1838 году англичанин Ф. Уоткинс подробно описывает устройство Генри и называет его первым электродвигателем, когда-либо известным. Этот взгляд распространяется и по сей день в основном на британскую литературу. | Магнитный рокер Генри, 1831 Американский журнал науки, 1831, т. 20, стр. 342 |
Апрель 1832 | Savatore dal Negro (итальянский) создает устройство, которое может поднять 60 граммов за одну секунду на 5 сантиметров и, следовательно, развивает механическую мощность почти 30 мВт. Вероятно, он был вдохновлен магнитным рокером Генри и создал аналогичную возвратно-поступательную машину. Однако устройство Даль Негро может производить движение с помощью специальной передачи. Даль Негро описывает свои эксперименты в письме от апреля 1832 года, а затем в научной статье « Nuova Macchina élettro-Magnetica » в марте 1834 года. | Электромагнитный маятник Даль Негро, 1832 Annali delle Scienze de Regno Lombardo-Veneto, März 1834, pl. 4 |
июль 1832 | Первое публичное описание вращающейся электрической машины . Автор – анонимный писатель с инициалами П.М. Теперь его с большой вероятностью опознали как ирландца Фредерика Мак-Клинтока из Дублина. Майкл Фарадей, получатель письма 26 июля 1832 г., немедленно его публикует. Впервые публично описана вращающаяся электрическая машина. | Первое описание вращающейся электрической машины П.М., 1832 г. Philosophical Magazine, 1832, стр. 161–162 |
июль 1832 | Hippolyte Pixii (французский язык) создает первое устройство для генерации переменного тока из вращения. Устройство было публично представлено в сентябре 1832 года на заседании Académie des Sciences . Его описание напечатано уже в июльском выпуске Annales de Chimie . Pixii улучшил свое устройство в том же году, добавив переключающее устройство. Теперь он может производить пульсирующий постоянный ток. | Первый генератор постоянного тока Pixii, 1832/33 F.Niethammer, Ein- und Mehrphasen-Wechsel-strom-Erzeuger, Verlag S. Hirzel, Leipzig 1906 |
1832 | Уильям Ритчи (британский) сообщил в марте 1833 года об устройстве, которое, как он утверждал, было построено девятью месяцами ранее летом 1832 года. Это вращающийся электромагнитный генератор с четырьмя катушками ротора, коммутатором и щетками. Ричи считается изобретателем коммутатора. В конце своей статьи Ричи описывает, как он смог вращать электрический магнит, используя магнитное поле Земли. Он мог поднять вес на несколько унций (50-100 грамм). Коммутация производилась двумя концами провода, которые входили в два полукруглых желоба с ртутью. | Первый генератор постоянного тока с коммутатором, 1832/33 Вращающаяся катушка Ричи, 1833 Philosophical Trans.Лондонского королевского общества, 1833, Vol. 132, стр.316, пл.7 |
Янв 1833 | A Доктор Шультесс читает лекцию в Обществе инженеров в Цюрихе в 1832 году, в которой описывает свои идеи электродвигателя. В январе 1833 года он успешно продемонстрировал машину перед тем же цюрихским обществом. Никаких подробностей не известно. | |
Март 1833 | Осенью 1832 года William Sturgeon строит вращающееся электрическое устройство, которое он публично демонстрирует в марте 1833 года в Лондоне. Как и в случае с Джедликом, нет никаких определенных доказательств даты и деталей его строительства. Осетр сообщил об этом изобретении в 1836 году в первом выпуске своего собственного журнала. | Вращающее устройство Осетровых, 1832 Осетровые Летопись Электричества, 1836/37, т. 1 |
декабрь 1833 | В первые годы развития электротехники проводилось строгое различие между магнитно-электрическими машинами, т.е.е. электрические генераторы и электромагнитные машины, то есть электродвигатели. Генрих Фридрих Эмиль Ленц (немецкий) обнаружил « закон взаимности магнитоэлектрических и электромагнитных явлений », то есть обратимость электрического генератора и двигателя. Его научный текст читается в конце 1833 года в Санкт-Петербургской Академии наук и опубликован в 1834 году в «Annalen der Physik und Chemie » Поггендорфа.Его идеи постепенно становятся обычным явлением, особенно в 1838 году после нескольких сообщений об успешных экспериментах по обращению. Иногда утверждают, что принцип обращения был открыт в 1861 году итальянцем Пачинотти или даже только в 1873 году случайно на Всемирной выставке в Вене. Оба утверждения ложны. Эмиль Ленц широко сообщил еще в 1838 году в Annalen der Physik und Chemie Поггендорфа , как он использовал генератор Pixii в качестве двигателя. |
июль 1834 | Джузеппе Доменико Ботто (итальянец), профессор физики из Турина, в июле 1834 года публикует в женевском журнале Bibliotheque Universelle описание электродвигателя, на котором он работает. Его устройство соответствует метроному (похожему на конструкции Генри и Даль Негро), действующему на маятник с помощью двух электромагнитов.Вращательное движение создается штоком поршня. Реплика устройства сейчас выставлена в Museo Galileo во Флоренции. | Роторная машина Ботто, июль 1834 г. (реконструкция) Фото любезно предоставлено Museo Galileo, Флоренция |
Май 1834 | Moritz Hermann Jacobi (немецкоязычный прусский, натурализованный русский) начинается с экспериментов с подковообразным электромагнитом в начале 1833 года в Кенигсберге (тогда Пруссия, ныне Россия).В январе 1834 года он пишет в письме к Поггендорфу, редактору журнала Annalen der Physik und Chemie , о своих успехах. Он переходит к созданию электродвигателя, которое он завершает в мае 1834 года. Его двигатель поднимает вес от 10 до 12 фунтов со скоростью один фут в секунду, что эквивалентно примерно 15 ваттам механической мощности. Якоби прямо заявил в меморандуме 1835 года, что он не единственный изобретатель электромагнитного двигателя. Он указывает на приоритет изобретений Ботто и Даль Негро. Однако Якоби, несомненно, был первым, кто создал пригодный для использования вращающийся электродвигатель. Полнофункциональная копия его двигателя выставлена в Институте электротехники (ETI) Технологического института Карлсруэ (KIT) по адресу Engelbert-Arnold-Strasse 5 (Building 11.10) в Карлсруэ, Германия. | Первый настоящий электродвигатель Мориц Якоби, Кенигсберг, май 1834 г. |
Октябрь 1834 | Американец Т. Edmundson создает электромагнитное вращающееся устройство, напоминающее водяное колесо. | Электромагнитное колесо Эдмундсона Американский журнал науки, 1834, т. 26, стр. 205 |
1834-1835 | В декабре 1833 года кузнец Томас Дэвенпорт (американец) покупает соленоид непосредственно у Джозефа Генри и начинает эксперименты вместе с Orange Smalley (американец) в мастерской в Форестдейле, штат Вермонт. В июле 1834 года двое мужчин создают свою первую роторную машину. Они улучшают устройство в несколько этапов, прежде чем впервые публично продемонстрировать его в декабре 1834 года. В следующем году Давенпорт отделяется от Смолли. Летом 1835 года Давенпорт едет в Вашингтон, округ Колумбия, чтобы продемонстрировать свою машину в патентном бюро и зарегистрировать ее. Однако из-за отсутствия денег ему приходится безуспешно возвращаться домой. | Первый двигатель Давенпорта из его первой заявки на патент в июне 1835 года |
Август 1835 | Фрэнсис Уоткинс (британец) создает электрическую «игрушку», с помощью которой он может приводить во вращение несколько магнитных игл. Он описывает устройство в статье для Philosophical Magazine . Он признается, что его вдохновила электромагнитная машина (генератор) Джозефа Сакстона, которая выставлена в публичной галерее в Лондоне с августа 1833 года. Watkins можно считать одним из первых, кто понял принцип реверсирования двигателя и генератора. | Игрушка Уоткина, 1835 г. Philosophical Magazine , 1835 г., т. 7, стр. 112 |
1835 | Sibrandus Stratingh и Christopher Becker (голландский) создают небольшой (30 x 25 см) трехколесный автомобиль с электрическим приводом и весом около 3 кг.Он может проехать по столу от 15 до 20 минут, пока батарея не разрядится. Stratingh и Becker публикуют отчет о своем успехе в том же году. Стратинг знал работы Якоби и в 1840 году хотел построить настоящий электромобиль, но ему это так и не удалось. | Электромодель Стрейтинга и Беккера, 1835 г. |
Май 1836 | Johann Philipp Wagner (немецкий) представляет электродвигатель на Stiftungsfest из Sencken-bergischen naturforschenden Gesellschaft .Его аппарат похож на устройство, созданное Стратингом и Беккером. Он может работать около 10 минут, пока батарея не разрядится. Вагнер хранит свою конструкцию в секрете, поэтому есть отчеты о демонстрации, но нет чертежей машины. В последующие годы Вагнер продолжает развивать свой двигатель и публично демонстрирует улучшенные версии. |
1836 1837 | Davenport продолжает совершенствовать свои устройства.В 1836 году он находит нового партнера в лице Ransom Cook и переезжает в Саратога-Спрингс, штат Нью-Йорк, для дальнейшего развития своих двигателей. С помощью Кука он строит модель патентного бюро. 24 января 1837 года Давенпорт подает в Вашингтон свое предостережение, а 5 февраля 1837 года он получает первый в США патент на электродвигатель: « Улучшение движущей силы с помощью магнетизма и электромагнетизма ». Его модель двигателя сейчас выставлена в Смитсоновском институте в Вашингтоне, округ Колумбия. В запатентованной конструкцииDavenport используются четыре вращающихся электромагнита, которые переключаются с помощью коммутатора, и постоянные постоянные магниты в форме кольца, сделанные из мягкого железа. Усовершенствованный двигатель, который он представляет в августе 1837 года, имеет диаметр 6 дюймов, вращается со скоростью около 1000 оборотов в минуту и может поднять 200-фунтовый груз на один фут за одну минуту. Это соответствует мощности 4,5 Вт. Давенпорт в последующие годы постоянно совершенствовал свои конструкции. Вместе с Эдвином Вильямсом из Нью-Йорка и его партнером Рэнсомом Куком Дэвенпорт 3 марта 1837 года формирует объединенную акционерную ассоциацию. Однако Уильямс не может продать достаточное количество акций, и все предприятие рушится всего через год. . | Запатентованный двигатель Давенпорта, февраль 1837 г. |
Томас Дэвенпорт – Изобретатель электродвигателя?
Есть несколько текстов пафоса в американо-американской литературе, в которых Томас Дэвенпорт прославляется как изобретатель электродвигателя.Это утверждение основано на бесспорном факте, что Давенпорт был первым американцем, который создал пригодный для использования электродвигатель, а также первым, кто получил патент на такое устройство в начале 1837 года.
ОднакоDavenport был далеко не первым, кто построил электродвигатель. В Европе (особенно в Англии, Италии и Пруссии) технологии были уже значительно продвинуты. Уже летом 1834 года, за три года до патента, Мориц Якоби представил двигатель, который был в три раза мощнее усовершенствованной машины, которую Давенпорт разработал через несколько месяцев после подачи заявки на патент.Вдобавок мотор Давенпорта работал быстрее, чем у Якоби. Таким образом, выходной крутящий момент двигателя Давенпорта, решающий фактор при сравнении электрических машин, составлял лишь около одной десятой от конструкции Якоби, разработанной тремя годами ранее.
В 1835 году, вскоре после появления двигателя Якоби, двое голландцев Стрейтинг и Беккер уже представили первое практическое применение, управляя небольшой электромобилем.
За годы, прошедшие после патента Давенпорта, продвижение Якоби практически не уменьшилось.В то же время, когда Якоби продемонстрировал свою следующую машину осенью 1838 года, двигатель, который имел выходную мощность 300 Вт и мог вести лодку с 14 людьми через широкую реку, Давенпорт показал крошечную модель поезда.
МоторДавенпорта не примечателен в историческом контексте. Его конструкция не является существенным улучшением других современных конструкций.
За прошедшие годы Давенпорт произвел большое количество машин.Но в отличие от Вернера Сименса, Джорджа Вестингауза и Томаса Эдисона он не был основателем важной компании. И в отличие от Николы Теслы, например, Томас Давенпорт никогда не мог продать или лицензировать свой патент.
Davenport не получил патент на электродвигатель как таковой, а только на его особые конструктивные особенности. В период с 1837 по 1866 год только в Англии другим изобретателям было выдано около 100 патентов на электродвигатели. После того, как Давенпорт модернизировал свой двигатель уже в 1837 году, его патент стал практически бесполезным.
Davenport – это честь быть первым из тысяч инженеров, получивших патент на электродвигатель. Но он не является их изобретателем, и его разработки не оказали сколько-нибудь значительного влияния на дальнейшее развитие электродвигателей.
Расписание 1838 – 1854 гг .: более мощные двигатели, новые применения
февр. 1838 | Уоткинс публикует обширную статью в Philosophical Magazine , где он представляет свой двигатель. | Двигатель Уоткина, февраль 1838 г. Philosophical Magazine, 1838 г., т. 12, пл. 4 |
Август 1838 | В августе 1838 года в Лондоне выставлена крошечная модель поезда с одним из двигателей Davenport . Он движется со скоростью 3 мили в час. | Модель поезда Давенпорта, 1838 Фото любезно предоставлено Отделом труда и промышленности Национального музея американской истории Смитсоновского института. |
сен. 1838 | Якоби переезжает в Санкт-Петербург в августе 1838 года по просьбе русского царя. Он был принят в Петербургскую Академию наук и щедро поддержан царем в его дальнейшей работе над электродвигателями. 13 сентября 1838 года Якоби впервые демонстрирует на Неве лодку с электрическим приводом и гребными колесами длиной около 8 м. Цинковые батареи имеют 320 пар пластин и весят 200 кг.Они размещены вдоль двух боковых стенок сосуда. Мотор развивает мощность от 1/5 до 1/4 л.с. (300 Вт), лодка движется со скоростью 2,5 км / ч по маршруту длиной 7,5 км. Он может перевозить более десятка пассажиров. Якоби целыми днями разъезжает по Неве. В современных газетных статьях говорится, что после двух-трех месяцев работы потребление цинка составило 24 фунта. | Улучшенный мотор Якоби, 1838 |
1838 | Чарльз Г. Page (американец) начинает всю жизнь заниматься электромоторами. В течение следующих 20 лет Пейдж будет искать лучшие и более мощные машины. Его двигатели продавались по каталогам в США и достигли высокого уровня осведомленности общественности. В первые годы многие изобретатели электродвигателей имитировали паровые двигатели с качающимся (возвратно-поступательным) поршнем. Пейдж тоже строит такую машину (см. Справа), но затем обращается к вращающимся устройствам. | Первый двигатель Пейджа, 1838 Американский журнал науки , 1838, т. 35, стр. 264 |
Август 1839 | 8 августа г. Якоби испытывает усовершенствованный электродвигатель, механические характеристики которого в три-четыре раза превосходят его вторую машину 1838 года (около 1 кВт).Его лодка сейчас развивает скорость 4 км / ч. По словам Уильяма Роберта Гроува, ключевым фактором его успеха является улучшенная цинк-платиновая батарея, которую он сделал сам. В октябре 1841 года Якоби снова демонстрирует усовершенствованный двигатель, который, однако, лишь немного превосходит модель 1839 года. Это последний электродвигатель, построенный Якоби. Теперь он обращается к теории электродвигателей, а затем переходит к другим электрическим явлениям. |
1837- 1842 | Роберт Дэвидсон (Шотландия) также занимается разработкой электродвигателей с 1837 года.Сделал несколько приводов для токарного станка и модельных машин. В 1839 году Дэвидсон руководит постройкой первого автомобиля с электрическим приводом. В сентябре 1842 года он совершает пробные пробеги с 5-тонным локомотивом длиной 4,8 м на железнодорожной линии Эдинбург – Глазго. Его двигатель развивает около 1 л.с. (0,74 кВт) и развивает скорость 4 мили в час (6,4 км / ч). | Первый электровоз Дэвидсона, 1839 От Т.du Moncel, Электричество как движущая сила , Лондон, 1883 г., рис. 32 |
В последующие годы начинается поток патентов на электромагнитные машины – около 100 в одной только Англии с 1837 по 1866 год.
Среди изобретателей, занимающихся электродвигателями: Джеймс Джоуль (англ., 1838 г.), Уильям Тейлор (англ., 1838 г.), Урайа Кларк (1840 г.), Томас Райт (1840 г.), Уитстон (англ., 1841 г.) , де Гарлем (ab 1841), П.Элиас (американец, ab 1842), Дж. Фромент (французский, ab 1844), Моисей Г. Фармер (американец, ab 1846), GQ Colton (американец, ab 1847), Hjorth (ab 1849), Томас Холл (американец в США, около 1850 г.), Т. К. Эйвери (около 1851 г.), Серен Хьорт (датчанин, около 1851 г.), Дю Монсель (француз, около 1851 г.), Мари Дэви (франц. 1861)
и другие.
Изначально идет соревнование между колебательными (возвратно-поступательными) и вращательными машинами. Позже колебательные машины полностью исчезают из поля зрения.
Фундаментальная проблема первых электродвигателей заключалась в том, что электрический ток от гальванических элементов (цинковых батарей) был слишком дорогим, чтобы конкурировать с паровыми двигателями. Р. Хант сообщил в 1850 году в журнале British Philosophical Magazine , что электроэнергия даже в самых лучших условиях в 25 раз дороже, чем паровая машина. Только с продолжающейся разработкой электрогенератора (динамо-машины) ситуация начинает меняться.
1840 | 18 января 1840 года выходит первое издание новой газеты Давенпорта, Electro Magnet and Mechanics Intelligencer . Печатный станок приводится в движение двумя собственными моторами. Моторы выдают якобы около 2 л.с., что составляет около 1,5 кВт. |
1841- 1844 | По инициативе Wagner, Германская Конфедерация под руководством Пруссии, Баварии и Австрии устанавливает в 1841 году приз в размере 100000 гульденов за создание электрической машины, мощность которой дешевле, чем мощность лошади, пара или человека. мощность. Конечно, эта цена привлекает других изобретателей, которые параллельно с Вагнером начинают работать над электродвигателем. Среди них господин Карл Людвиг Althans из Бюккебурга недалеко от Миндена, Эмиль Stöhrer из Лейпцига, Эмиль Groos из Карлсруэ и Петер Bauer из Нюрнберга. В частности, в 1843 году Штёрер конструирует замечательную машину. При исследовании последней машины Вагнера в мае и июне 1844 г. во Франкфурте-на-Майне федеральная комиссия определила мощность всего в 50 Вт.Потребление цинка настолько велико, что лошадь, пар и рабочая сила значительно дешевле. Из-за этой неудачи Вагнеру отказывают в цене, и он впадает в немилость. Без мощного электрогенератора это соревнование невозможно было бы выиграть, и человечеству пришлось ждать еще 25 лет. |
1851 | Page увеличивает мощность двигателей с 8 до 20 л.с. С двумя двигателями он ведет 10-тонный локомотив с максимальной скоростью 30 км / ч. Он путешествует по маршруту из Вашингтона в Бладенбург за 19 минут. |
1854 | Другой, 12-тонный локомотив Пейджа едет по маршруту Балтимор – Огайо. |
История магнетизма и электричества
600 до н.э. – магнитный камень
Магнитные свойства природных ферритовых ферритовых (Fe 3 O 4 ) камней (магнитов) были описаны греческими философами.
600 до н.э. – Электрический заряд
Янтарь – желтоватый полупрозрачный минерал. Еще в 600 г. до н.э. греческий философ Аристофан знал об его особенном свойстве: при натирании куска меха янтарь развивает способность притягивать мелкие кусочки материала, например, перья. На протяжении веков это странное, необъяснимое свойство считалось уникальным для янтаря. Этот странный эффект оставался загадкой более 2000 лет, пока примерно в 1600 году нашей эры доктор Уильям Гилберт не исследовал реакции янтаря и магнитов и впервые записал слово «электрический» в отчете по теории магнетизма.
Позже, в 1895 г., Х.А. Лоренц разработал теорию электронов. Теперь мы знаем, что есть три способа производства электричества: статическая, электрохимическая и электромагнитная индукция.
1175 – Первое упоминание о компасе
Александр Некем, английский монах из Сент-Олбанса, описывает работу компаса.
1269 – Первое подробное описание компаса
Петрус Перегринус де Маринкур, французский крестоносец, описывает плавающий компас и компас с точкой поворота.
1600 – Статическое электричество (De Magnete)
В 16 веке Уильям Гилберт (1544–1603), придворный врач королевы Елизаветы I, доказал, что многие другие вещества являются электрическими (от греческого слова янтарь, электрон) и что они обладают двумя электрическими эффектами. При натирании мехом янтарь приобретает смолистое электричество; однако стекло, натираемое шелком, приобретает стекловидное электричество. Электричество отталкивает одно и то же и притягивает противоположный вид электричества. Ученые думали, что трение действительно создало электричество (их слово для обозначения заряда).Они не осознавали, что на мехе или шелке остается равное количество противоположного электричества. Доктор Уильям Гилберт понял, что сила создается, когда кусок янтаря (смолы) натирается шерстью и притягивает легкие предметы. Сегодня, описывая это свойство, мы говорим, что янтарь «наэлектризован» или обладает «электрическим зарядом». Эти термины произошли от греческого слова «электрон», означающего янтарь, и отсюда и возник термин «электричество». Только в конце 19 века это «нечто» было обнаружено как отрицательное электричество, известное сегодня как электроны.
Гилберт также изучал магнетизм и в 1600 году написал «De magnete», который дал первое рациональное объяснение таинственной способности стрелки компаса указывать север-юг: сама Земля была магнитной . «Де Магнет» открыл эру современной физики и астрономии и положил начало веку, отмеченному великими достижениями Галилея, Кеплера, Ньютона и других.
Гилберт записал три способа намагничивания стальной иглы: прикосновением к грузоподъемному камню; холодным волочением в направлении Север-Юг; и при длительном воздействии магнитного поля Земли при ориентации Север-Юг.
1660 – Генератор статического электричества
Отто фон Герике изобретает грубую машину для производства статического электричества.
1729 – Проводники и непроводники
Стивен Грей описывает, что мощность, которой обладает одно наэлектризованное тело, может передаваться другому путем их соединения.
1734 – Электрическое притяжение и отталкивание
Шарль Франсуа де Систерне Дю Фай первым распознал два вида электричества.
1730 – Составной магнит
Servigton Savery производит первый составной магнит, связывая вместе несколько искусственных магнитов с общим полюсным наконечником на каждом конце.
1740 – Первый коммерческий магнит
Gowen Knight производит первые искусственные магниты для продажи научным исследователям и наземным мореплавателям.
1745 – Electric Force, Capacitor
Leyden Jar – одна из самых ранних и простых форм электрического конденсатора, независимо изобретенная около 1745 года голландским физиком Питером ван Мушенбруком из Лейденского университета и Эвальдом Георгом фон Клейстом из Померании. Первоначальная лейденская банка представляла собой стеклянную банку с водой с закрытой пробкой, через которую в воду выходила проволока или гвоздь.Банку заряжали, держа ее в одной руке и приводя оголенный конец провода в контакт с электрическим устройством. Если контакт между проводом и источником электричества был прерван, а провод касался другой рукой, происходил разряд, который воспринимался как сильный ток.
Если заряд Q помещается на металлические пластины, напряжение повышается до величины V. Показателем способности конденсатора накапливать заряд является емкость C, где C = Q / V. Заряд проходит от конденсатора так же, как от аккумулятора, но с одним существенным отличием.Когда заряд покидает пластины конденсатора, без подзарядки ничего нельзя получить. Это происходит потому, что электрическая сила консервативна. Выделяемая энергия не может превышать запасенную. Способность выполнять работу называется электрическим потенциалом .
Тип сохранения энергии также связан с ЭДС. Электрическая энергия, получаемая от батареи, ограничена энергией, хранящейся в химических молекулярных связях. И ЭДС, и электрический потенциал измеряются в вольтах, и, к сожалению, термины напряжение, потенциал и ЭДС используются довольно свободно.Например, термин потенциал батареи часто используется вместо ЭДС.
1747 – Стекловидное электричество, сохранение заряда
Бенджамин Франклин (1706-90) был американским печатником, писателем, философом, дипломатом, ученым и изобретателем.
После открытия Гилбертом того факта, что сила электрического заряда создается трением различных материалов, Бенджамин Франклин в 1747 году улучшил это, объявив, что этот электрический заряд существует двух типов электрических сил, силы притяжения и силы отталкивания .(Уильям Уотсон (1715-87) в Англии независимо пришел к такому же выводу.) Чтобы идентифицировать эти две силы, он дал названия, положительный и отрицательный заряды, и чтобы их символизировать, он использовал знаки + и -, обозначающие положительный и отрицательный заряды. the – для отрицательного. Бенджамин Франклин понял, что все материалы обладают одним видом электрической «жидкости», которая может свободно проникать в материю, но не может быть ни создана, ни разрушена. Действие трения просто передает жидкость от одного тела к другому, электризуя оба.Франклин и Ватсон разработали принцип сохранения заряда: общее количество электричества в изолированной системе постоянно. Франклин определил жидкость, которая соответствует электричеству стекловидного тела, как положительное, а отсутствие жидкости как отрицательное. Следовательно, согласно Франклину, направление потока было от положительного к отрицательному, – противоположное тому, что сейчас считается истинным. В дальнейшем была разработана теория двух жидкостей, согласно которой образцы одного типа притягиваются, а образцы противоположных типов – отталкиваются.
Франклин был знаком с лейденской банкой (стеклянной банкой, покрытой изнутри и снаружи оловянной фольгой), как она может хранить заряд и как она вызывала электрический ток при разрядке. Франклин задался вопросом, были ли молния и гром также результатом электрических разрядов. Во время грозы 1752 года Франклин запустил воздушного змея с металлическим наконечником. В конце влажной проводящей веревки из конопли, по которой летел змей, он прикрепил металлический ключ, к которому привязал непроводящую шелковую веревку, которую держал в руке.Эксперимент был чрезвычайно опасным, но результаты были безошибочными: когда он подносил костяшки пальцев к ключу, он мог черпать из него искры. Следующие двое, пытавшиеся провести этот чрезвычайно опасный эксперимент, были убиты.
1750 – Первая книга по изготовлению магнитов
Джон Митчелл издает первую книгу по изготовлению стальных магнитов.
1757 – Мощность, паровой двигатель
Джеймс Ватт (1736-1819) не проводил электрических экспериментов. Он был мастером по профессии и в 1757 году основал ремонтную мастерскую в Глазго.Ватт измерил скорость работы, выполняемой лошадью, поднимающей мусор в старую шахту, и обнаружил, что она составляет около 22 000 фут-фунтов в минуту. Он добавил, что маржа в 50% составляет , 33000 фут-фунтов равняются одной лошадиных сил.
Джеймс Ватт, также изобрел пароконденсатный двигатель. Его усовершенствования паровых двигателей были запатентованы в течение 15 лет, начиная с 1769 года, и его именем была названа электрическая единица мощности – Ватт. Когда генератор Эдисона был соединен с паровой машиной Ватта, производство электроэнергии в больших масштабах стало практическим предложением.
1767 – Электрическая сила
Еще в 1600 году было известно, что сила притяжения или отталкивания уменьшается по мере разделения зарядов . Эта взаимосвязь была впервые поставлена на числовую или количественную основу Джозефом Пристли, другом Бенджамина Франклина. В 1767 году Пристли косвенно вывел, что когда расстояние между двумя маленькими заряженными телами увеличивается в какой-то раз, силы между телами уменьшаются на квадрат множителя.Например, если расстояние между зарядами увеличивается втрое, сила уменьшается до одной девятой своего прежнего значения. Доказательство Пристли, хотя и строгое, было настолько простым, что он не стал его настойчиво защищать. Этот вопрос не считался решенным до 18 лет спустя, когда Джон Робинсон из Шотландии провел более прямые измерения задействованной электрической силы.
1780 – Электрический ток
Из-за несчастного случая итальянский ученый 18-го века Луиджи Гальвани начал цепочку событий, которая завершилась разработкой концепции напряжения и изобретением батареи.В 1780 году один из помощников Гальвани заметил, что рассеченная лягушачья лапа дергалась, когда он касался ее нерва скальпелем. Другой помощник подумал, что в это же время он видел искру от ближайшего заряженного электрогенератора. Гальвани предположил, что электричество было причиной мышечных сокращений. Однако он ошибочно полагал, что этот эффект был вызван переносом особой жидкости или «животного электричества», а не обычным электричеством.
Подобные эксперименты, в которых лапы лягушки или птицы стимулировались контактом с различными типами металлов, привели Луиджи Гальвани в 1791 году к выдвижению теории о том, что ткани животных генерируют электричество.Экспериментируя с тем, что он назвал атмосферным электричеством, Гальвани обнаружил, что мышца лягушки будет подергиваться, когда ее подвешивают за медный крючок на железной решетке.
1792 – Электрохимия, гальваническая ячейка
К 1792 году другой итальянский ученый, Алессандро Вольта, не согласился: он понял, что главными факторами открытия Гальвани были два разных металла – стальной нож и оловянная пластина, на которых лежала лягушка. . различные металлы, разделенные влажной тканью лягушки, производили электричество.Нога лягушки была просто детектором.
В 1800 году Вольта показал, что когда влага проникает между двумя разными металлами, возникает электричество. Это побудило его изобрести первую электрическую батарею, гальваническую батарею, которую он сделал из тонких листов меди и цинка, разделенных влажным картоном (войлок, пропитанный рассолом).
Таким образом, был открыт новый вид электричества – электричество, которое непрерывно текло, как водяной поток, а не разряжалось одной искрой или ударом.Вольта показал, что электричество можно заставить перемещаться из одного места в другое по проводам, тем самым сделав важный вклад в науку об электричестве.
1820 – Электромагнетизм, ток
В 1820 году физик Ганс Кристиан Эрстед узнал, что ток, протекающий по проводу, перемещает стрелку компаса, расположенную рядом с ним. Это показало, что электрический ток создает магнитное поле.
Андре Мари Ампер, французский математик, посвятивший себя изучению электричества и магнетизма, был первым, кто объяснил электродинамическую теорию.Он показал, что два параллельных провода, по которым протекает ток, притягиваются друг к другу, если токи текут в одном направлении, и противодействуют друг другу, если токи текут в противоположных направлениях. Он сформулировал в математических терминах законы, которые управляют взаимодействием токов с магнитными полями в цепи, и в результате этого от его имени была получена единица измерения электрического тока , усилитель. Электрический заряд в движении называется электрическим током. Сила тока – это количество заряда, проходящего через данную точку в секунду, или I = Q / t, где Q кулонов заряда проходит за t секунд.Единица измерения тока – это ампер или ампер, где 1 ампер = 1 кулон / сек. Поскольку ток также является источником магнетизма, он является связующим звеном между электричеством и магнетизмом.
1822 – Преобразования Фурье
Барон Жозеф Фурье (1768-1830) был французским математиком. Его метод анализа волн, опубликованный в 1822 году, был результатом его работы о потоке тепла. Он показывает, как любую волну можно построить из более простых волн. Этот мощный раздел математики, преобразования Фурье, внес свой вклад в важные современные разработки, такие как распознавание электронной речи.
1826 – Сопротивление – токи, вызывающие нагрев
В 1826 году немецкий физик Георг Симон Ом исследовал принцип Вольта для электрической батареи и соотношение токов в цепи Ампера. Он отметил, что, когда в цепи был ток, время от времени возникало тепло, и количество тепла было связано с разными металлами. Он обнаружил, что существует связь между током и теплом, существует некое «сопротивление» протеканию тока в цепи.Обнаружив это, он обнаружил, что если разность потенциалов (вольт) остается постоянной, ток пропорционален сопротивлению. Эта единица электрического сопротивления – ом – была названа в его честь. Он также сформулировал закон, показывающий соотношение между вольт, ампер и сопротивлением , и этот закон был назван «законом Ома», также названным в его честь. Этот закон, каким мы его знаем сегодня, лежит в основе электричества.
1830 – Индуктивность
В 1830 году Джозеф Генри (1797-1878) обнаружил, что изменение магнетизма может заставить токи течь, но он не смог опубликовать это.В 1832 году он описал самоиндукцию – основное свойство индуктора. В знак признания его работы индуктивность измеряется в генри. Затем была подготовлена почва для всеобъемлющей электромагнитной теории Джеймса Клерка Максвелла. Разброс реальных токов огромен. Современный электрометр может обнаруживать токи величиной до 1/10000000000000000 ампер, что составляет всего 63 электрона в секунду. Ток в нервном импульсе составляет примерно 1/100 000 ампер; 100-ваттная лампочка рассчитана на 1 ампер; разряд молнии достигает пика примерно 20 000 ампер; А атомная электростанция мощностью 1200 мегаватт может выдавать 10 миллионов ампер при напряжении 115 В.
1836 – Ячейка Даниэля
В 1836 году Джон Даниэлл (1790-1845) предложил усовершенствованную электрическую ячейку, которая обеспечивала равномерный ток во время непрерывной работы. Ячейка Даниэля дала новый импульс исследованиям в области электричества и нашла множество коммерческих применений. В 1837 году Даниэлю была вручена высшая награда Королевского общества – медаль Копли за изобретение ячейки Даниэля.
1837 – Телеграф, электромагнит
После открытия электрической батареи и электромагнита Сэмюэл Морс (1791-1872) представил электрический телеграф.Закодированные сообщения отправлялись по проводам с помощью электрических импульсов (обозначенных точками и тире), известных как азбука Морзе. Это действительно было началом использования электроэнергии в коммерческих целях. Электрический телеграф известен как первое практическое применение электричества и первая система электрической связи. Здесь интересно отметить, что в то время почтовое отделение в Австралии играло важную роль в организации связи.
1840 – Механический компьютер
Чарльз Бэббидж (1791–1871), британский математик, сконструировал несколько машин для создания безошибочных таблиц для навигации.Механические устройства будут служить моделями для более поздних электронных компьютеров.
1850 – Термоэлектричество
Томас Зеебек Немецкий физик открыл «эффект Зеебека». Он скрутил два провода, сделанных из разных металлов, и нагрел соединение в месте их пересечения, создав небольшой ток. Ток – это результат перетекания тепла от горячего спая к холодному. Это называется термоэлектричеством. Термо – это греческое слово, означающее тепло.
1854 – Булева алгебра
Джордж Буль был полностью самоучкой.Он опубликовал способ использования символов, который идеально выражает правила логики. Используя эту систему, можно четко и часто упрощать сложные правила.
1855 – Электромагнитная индукция
Майкл Фарадей (1791-1867) англичанин, сделал одно из самых значительных открытий в истории электричества: электромагнитную индукцию. Его новаторская работа касалась того, как работают электрические токи. Многие изобретения явились результатом его экспериментов, но они появились на пятьдесят или сто лет спустя.Неудачи никогда не разочаровывали Фарадея. Он бы сказал; «неудачи так же важны, как и успехи». Он чувствовал, что неудачи тоже учат. Фарад, единица емкости названа в честь Майкла Фарадея.
Фарадей очень интересовался изобретением электромагнита, но его блестящий ум продвинул предыдущие эксперименты еще дальше. Если электричество может производить магнетизм, почему магнетизм не может производить электричество . В 1831 году Фарадей нашел решение.Электричество могло быть произведено посредством магнетизма движением. Он обнаружил, что когда магнит перемещается внутри катушки с медной проволокой, через нее течет крошечный электрический ток. H.C. Эрстед в 1820 году продемонстрировал, что электрические токи создают магнитное поле. Фарадей заметил это и в 1821 году экспериментировал с теорией, согласно которой, если электрические токи в проводе могут создавать магнитные поля, то магнитные поля должны производить электричество. К 1831 году он смог доказать это и с помощью своего эксперимента смог объяснить, что эти магнитные поля представляют собой силовые линии.Эти силовые линии заставят ток течь в катушке с проволокой, когда катушка вращается между полюсами магнита. Затем это действие показывает, что катушки проволоки, перерезанные магнитными силовыми линиями, каким-то странным образом производят электричество. Эти эксперименты убедительно продемонстрировали открытие электромагнитной индукции при производстве электрического тока путем изменения напряженности магнитного поля.
1860 – Arc Lights
Когда практическое использование электричества стало очевидным и электрический телеграф начал работать, вскоре ученые начали искать пути дальнейшего использования этого электричества.Следующим очень важным достижением было внедрение электрической угольной дуги, которая была продемонстрирована в экспериментальной форме в 1808 году сэром Хамфри Дэви. Он использовал большую батарею, чтобы обеспечить ток для своей демонстрации, поскольку эти дуговые лампы требуют сильного тока, и никаких средств механической генерации электричества еще не было разработано. Принцип этих дуговых ламп заключается в том, что когда два углеродных стержня в цепи соединяются, возникает дуга. Эта дуга, которая излучает блестящее накаливание, сохраняется до тех пор, пока стержни просто разъединены и механически подаются таким образом, чтобы поддерживать дугу.Поскольку дуговые лампы потребляли сильный ток от этих батарей, практическое применение они получили только в 1860 году. К этому времени были разработаны адекватные источники генерации, которые затем использовались в основном только для уличного освещения и в кинотеатрах. Хотя дуговое освещение все еще использовалось до начала 1900-х годов, в конечном итоге они были вытеснены лампами накаливания, за исключением того, что большинство кинотеатров используют их в своих проекторах даже сегодня.
1860 – Двигатель постоянного тока
История электродвигателя начинается с Ганса Христиана Эрстеда, который в 1820 году обнаружил, что электричество создает магнитное поле, как упоминалось ранее.Фарадей продолжил это в 1821 году, разработав принцип электродвигателя собственной конструкции. Среди них стоит упомянуть Якоби в 1834 году, Элиас в 1842 году, Фромент в 1844 году и Пачинотти в 1860 году. Пачинотти использовал кольцевую арматуру, которая использовалась в 1860 году и была выдающимся достижением по сравнению с любыми предыдущими попытками. Большинство этих двигателей находились на экспериментальной стадии, но только в 1871 году Зеноб Теофиль Грамм представил свой двигатель, который на самом деле был развитием машины Пачинотти.Этот двигатель был назван первым электродвигателем, имеющим коммерческое значение. В этот период ученые сосредоточились на «двигателе», но тем временем эксперименты с машинами, производящими электричество динамически, продолжались.
1866 – LeClanche Cell
Лекланш (1839–1882) – французский инженер, который примерно в 1866 году изобрел батарею, носящую его имя. В слегка измененном виде батарея Leclanché, теперь называемая сухим элементом, производится в больших количествах и широко используется в таких устройствах, как фонарики и портативные радиоприемники.Эта ячейка состоит из цинкового корпуса, заполненного влажной пастой, содержащей сульфат аммония. В центре этой электролитной пасты находится угольный стержень, покрытый диоксидом марганца, который является сильным окислителем.
1871 – Генератор постоянного тока
С разработкой Эдисоном в 1879 году угольной лампы накаливания, генератор постоянного тока стал одним из основных компонентов систем освещения с постоянным потенциалом. Раньше для уличного освещения использовались только дуговые лампы. Затем коммерческое и жилое освещение, к чему стремились изобретатели, стало практичным, и так родилась электроэнергетика и электроэнергетика.Когда Х. К. Эрстед в 1820 году обнаружил, что электрический ток создает магнитные поля, был разработан двигатель постоянного тока. В 1831 году Майкл Фарадей открыл принцип электромагнитной индукции. Он обнаружил, что перемещение магнита через катушку с проволокой вызывает электрический ток, протекающий по проволоке, поэтому теперь можно разработать электрический генератор. Но только в 1871 году, когда Грамм представил свой двигатель и генератор, электрический генератор стал использоваться в коммерческих целях. К 1872 году Сименс и Хальске из Берлина усовершенствовали генератор Грамма, изготовив якорь барабана.Были внесены и другие улучшения, такие как якорь с прорезями в 1880 году, но к 1882 году Эдисон завершил разработку системы, которую мы все еще используем для распределения электроэнергии от электростанций.
1876 – Телефон
С тех пор, как телеграф был изобретен Самуэлем Морсом в 1837 году, в его использовании были достигнуты большие успехи, но он продолжал работать как телеграфная система, использующая азбуку Морзе для связи. Александр Грэм Белл в 1875 году интересовался телеграфией и понял, что при использовании кода Морзе по телеграфным проводам должны быть другие способы связи с использованием электричества.Он также интересовался акустикой и звуком и работал по принципу, что если азбука Морзе создает электрические импульсы в электрической цепи, некоторые звуковые средства, вызывающие вибрацию в воздухе, могут также создавать электрические импульсы в цепи. В эксперименте он использовал «диафрагму», связанную с электрической цепью, и любой звук, достигающий диафрагмы, вызывал электрические импульсы, которые передавались на другой конец цепи. Тогда они вызовут вибрацию другой диафрагмы на этом конце и будут находиться по отношению к первой диафрагме, следовательно, звук будет электрически передаваться от одного конца цепи к другому.Он продолжал работать над этими экспериментами, и 7 марта 1876 года его телефон был официально запатентован, и его успешная демонстрация была проведена в выставочном зале в Филадельфии. Грэм Белл как раз успел запатентовать свой телефон, поскольку другой изобретатель Элиша Грей также экспериментировал с аналогичным изобретением. Позже Эдисон усовершенствовал диафрагму, которую тогда называли передатчиками, но Белл победил, удостоившись чести изобрести «телефон».
Александр Грэм Белл (1847-1922) родился в Шотландии, вырос в семье, которая интересовалась наукой о звуке и занималась ею.Отец и дед Белла учили глухих речи. Аппарат уровня звука назван в его честь белом. Уровни звука измеряются в десятых бел , или децибелах. Аббревиатура децибела – дБ.
1879 – Генерация постоянного тока, лампа накаливания
Томас Альва Эдисон (1847–1931) был одним из самых известных изобретателей всех времен с 1093 патентами. Самоучка, Эдисон интересовался химией и электроникой. За всю свою жизнь Эдисон получил только три месяца формального обучения и был исключен из школы как отсталый, хотя на самом деле из-за приступа скарлатины в детстве он был частично глухим.
Прошло почти 40 лет, прежде чем Томас Эдисон построил действительно практичный генератор постоянного тока. Многие изобретения Эдисона включали фонограф и улучшенный печатный телеграф. В 1878 году британский ученый Джозеф Свон изобрел лампу накаливания, а через двенадцать месяцев Эдисон сделал аналогичное открытие в Америке. Позже Свон и Эдисон создали совместную компанию по производству первой практичной лампы накаливания. До этого электрическое освещение было моими примитивными дуговыми лампами.
Эдисон использовал свой генератор постоянного тока, чтобы обеспечить электричеством свою лабораторию, а затем осветить первую улицу Нью-Йорка, освещенную электрическими лампами, в сентябре 1882 года. Однако успехи Эдисона не были бесспорными, хотя он был убежден в достоинствах постоянного тока для выработки электроэнергии, другие ученые в Европе и Америке признали, что постоянный ток имеет серьезные недостатки.
1880 – Слой Хевисайда
Оливер Хевисайд (1850-1925) Британский математик понял, что информация распространяется по кабелю в виде волны в пространстве между проводниками, а не через сами проводники.Его концепции позволили проектировать междугородные телефонные кабели. Он также обнаружил, почему радиоволны огибают Землю. Это привело к дальнему радиоприему.
1880 – Абсолютные температуры, законы Кирхгофа, законы Кулона, магнитный поток, микрофон
Уильям Томсон, лорд Кельвин (1824–1907) был наиболее известен своим изобретением новой температурной шкалы, основанной на концепции абсолютного нуля температуры. при -273 ° C (-460 ° F). До конца своей жизни Томсон яростно сопротивлялся идее о том, что энергия, излучаемая радиоактивностью, исходит изнутри атома.Одно из величайших научных открытий XIX века, Томсон умер, выступая против одного из самых важных нововведений в истории науки.
Московиц, Л. Р .: Руководство по проектированию и применению постоянных магнитов , Cahners Books International, Inc. (1976)
электромагнетизм | Определение, уравнения и факты
Электромагнетизм , наука о заряде, а также о силах и полях, связанных с зарядом. Электричество и магнетизм – два аспекта электромагнетизма.
Британская викторина
Викторина “Все о физике”
Кто был первым ученым, проведшим эксперимент по управляемой цепной ядерной реакции? Какая единица измерения для циклов в секунду? Проверьте свою физическую хватку с помощью этой викторины.
Электричество и магнетизм долгое время считались отдельными силами.Только в 19 веке они стали рассматриваться как взаимосвязанные явления. В 1905 году специальная теория относительности Альберта Эйнштейна без всяких сомнений установила, что оба аспекта являются аспектами одного общего явления. Однако на практике электрические и магнитные силы ведут себя по-разному и описываются разными уравнениями. Электрические силы создаются электрическими зарядами, находящимися в состоянии покоя или в движении. С другой стороны, магнитные силы создаются только движущимися зарядами и действуют исключительно на движущиеся заряды.
Электрические явления происходят даже в нейтральной материи, потому что силы действуют на отдельные заряженные составляющие. В частности, электрическая сила отвечает за большинство физических и химических свойств атомов и молекул. Он невероятно силен по сравнению с гравитацией. Например, отсутствие только одного электрона на каждый миллиард молекул у двух 70-килограммовых (154-фунтовых) людей, стоящих на расстоянии двух метров (двух ярдов) друг от друга, оттолкнет их с силой в 30 000 тонн. В более привычном масштабе электрические явления ответственны за молнии и гром, сопровождающие определенные штормы.
Электрические и магнитные силы могут быть обнаружены в областях, называемых электрическими и магнитными полями. Эти поля имеют фундаментальную природу и могут существовать в космосе вдали от заряда или тока, которые их породили. Примечательно, что электрические поля могут создавать магнитные поля и наоборот, независимо от внешнего заряда. Как обнаружил в своей работе английский физик Майкл Фарадей, изменяющееся магнитное поле создает электрическое поле, лежащее в основе производства электроэнергии. Напротив, изменяющееся электрическое поле создает магнитное поле, как пришел к выводу шотландский физик Джеймс Клерк Максвелл.Математические уравнения, сформулированные Максвеллом, включают световые и волновые явления в электромагнетизм. Он показал, что электрические и магнитные поля путешествуют вместе в пространстве как волны электромагнитного излучения, при этом изменяющиеся поля взаимно поддерживают друг друга. Примерами электромагнитных волн, распространяющихся в пространстве независимо от материи, являются радио- и телевизионные волны, микроволны, инфракрасные лучи, видимый свет, ультрафиолетовый свет, рентгеновские лучи и гамма-лучи. Все эти волны движутся с одинаковой скоростью, а именно скоростью света (примерно 300 000 километров или 186 000 миль в секунду).Они отличаются друг от друга только частотой, с которой колеблются их электрическое и магнитное поля.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасУравнения Максвелла по-прежнему обеспечивают полное и элегантное описание электромагнетизма вплоть до субатомного масштаба, но не включая его. Однако интерпретация его работ в 20 веке расширилась. Специальная теория относительности Эйнштейна объединила электрические и магнитные поля в одно общее поле и ограничила скорость всей материи скоростью электромагнитного излучения.В конце 1960-х физики обнаружили, что у других сил в природе есть поля с математической структурой, подобной структуре электромагнитного поля. Эти другие силы – сильное взаимодействие, ответственное за энергию, выделяемую при ядерном синтезе, и слабое взаимодействие, наблюдаемое при радиоактивном распаде нестабильных атомных ядер. В частности, слабые и электромагнитные силы были объединены в общую силу, называемую электрослабой силой. Цель многих физиков объединить все фундаментальные силы, включая гравитацию, в одну великую единую теорию, до сих пор не достигнута.
Важным аспектом электромагнетизма является наука об электричестве, которая занимается поведением агрегатов заряда, включая распределение заряда в материи и движение заряда с места на место. Различные типы материалов классифицируются как проводники или изоляторы в зависимости от того, могут ли заряды свободно перемещаться через составляющие их вещества. Электрический ток – это мера потока зарядов; законы, управляющие токами в материи, важны в технологиях, особенно в производстве, распределении и контроле энергии.
Понятие напряжения, как и понятия заряда и тока, является фундаментальным в науке об электричестве. Напряжение – это мера склонности заряда перетекать из одного места в другое; положительные заряды обычно имеют тенденцию перемещаться из области высокого напряжения в область более низкого напряжения. Распространенная проблема в электричестве – это определение взаимосвязи между напряжением и током или зарядом в данной физической ситуации.
Эта статья стремится дать качественное понимание электромагнетизма, а также количественную оценку величин, связанных с электромагнитными явлениями.
Освещение революции: предпосылки XIX века
Предпосылки для Эдисона Лампа
“Если я видел дальше [чем другие], то это стоя на плечах
Гиганты ».
Исаак Ньютон, в письме Роберту Гуку, 1675 г.
Спустя почти семьдесят лет после своей смерти Томас Эдисон остается иконой изобретения. Его рекорд в 1093 патента по-прежнему остается самым выдающимся любому физическому лицу. Три основные книги, телефильм, а только в 90-е годы вышло 4 тома его статей.А Публикация Time-Life 1999 г. даже назвала Эдисона самым важным лицом мимо 1000 лет. Тем не менее, несмотря на все свои достижения, Эдисон не начинал с нуля.
К 1869 году, когда Эдисон объявил о своем намерении стать профессиональным изобретателем, электротехническая промышленность уже была создана. Телеграфия обеспечила работой Эдисон и возможность узнать об электрических технологиях. Новаторская работа Франклин, Фарадей, Вольта, Морс и многие другие заложили фундамент, на котором Эдисон построен.Некоторые из наиболее важных предшествующих разработок показаны ниже.
Аккумуляторы
|
Самым захватывающим изобретением в области электричества начала XIX века был аккумулятор. Он производил постоянный электрический ток, открывая путь многим другим открытия и изобретения; он также обеспечивал питание телеграфа и телефона отрасли.
В 1800 году Алессандро Вольта объявил о своем изобретении батареи, подобной той. показано справа.«Гальваническая куча» работала путем размещения кусков ткани, смоченных в соленой воде. между чередующимися цинковыми и медными дисками. Контакт между двумя металлами произведен электрический ток. К 1870-м годам было внесено множество усовершенствований, которые удлинили время автономной работы и решены проблемы типа “поляризации”.
Двигатели
|
В течение года после Ханса К.Эрстед обнаружил связь между электричеством и
Магнетизм, Майкл Фарадей использовал эти знания для создания простого двигателя. Больше, чем
Однако пройдет 50 лет, прежде чем моторы станут полезными – в основном из-за необходимости
для сильного источника тока.
В 1847 году Гардинер Колтон, врач из Нью-Йорка, построил этот двигатель, чтобы проиллюстрировать его научные лекции. Он двигался по небольшой круговой дорожке.
Генераторы
|
В 1831 году Майкл Фарадей обнаружил, что перемещение магнита рядом с проволочной петлей произвел электрический ток в проводе. Это основной принцип работы генератор. Ипполит Пиксий построил этот «магнитогенератор» вскоре после Фарадея. объявление. Термин «магнето» означает, что магнитная сила создается постоянный магнит. В машине Pixii магнит вращается под катушками проволоки.
Критический прорыв, «самовозбуждающаяся динамо-машина», возник в результате работы Чарльз Уитстона и Вернера Сименса в 1867 году.Работая независимо, оба изобретателя разработали генераторы, в которых катушка из проволоки вращается между полюсами электромагнит, который получает электричество от самой машины. Динамо-машина могла производят гораздо больше электроэнергии, чем магнето, и, таким образом, делают возможным эффективное использование двигателей и систем освещения.
Метров
|
Ученые, изучающие электричество, быстро осознали необходимость в точных и надежных счетчиках.Позже телеграфисты и другие потребители электроэнергии сочли необходимым разработать счетчики для их особые потребности.
В 1825 году Леопольдо Нобили сконструировал первый прецизионный прибор для измерения электрический Текущий. Ток в катушке создает магнитное поле, которое заставляет иглу внутри катушку крутить. Величина скручивания – это мера силы тока. Вставлена вторая игла вне катушки позволяет устройству учитывать магнитное поле земли.
Электромагниты
|
Электромагнит оказался важным элементом в большинстве крупных изобретений в области электротехники. то 19 век. Моторы, генераторы, телеграфы и телефоны были главными примерами. Любой электрический ток производит магнитный эффект. Уильям Стерджен сделал электромагнита в 1825 году, пропуская ток через оголенный провод, намотанный на Железный стержень.
Джозеф Генри сконструировал мощные электромагниты, используя множество обмоток изолированные провода.Показанный здесь железный сердечник взят из экспериментов Генри 1827 года. Позже Генри стал первым секретарем Смитсоновского института, главным образом благодаря его международная научная репутация.
Дуговые лампы
|
Хамфри Дэви продемонстрировал Королевскому обществу в 1806 году, что мощный свет может быть производится путем создания электрической дуги между двумя угольными стержнями.Его эксперименты, питание от батарей батарей не привело к практическим осветительным приборам. Но появление хороших генераторов в 1860-х и 1870-х годах способствовало изобретению и применение самых разнообразных дуговых ламп.
Дуговые лампы, подобные этой запатентованной модели Brush 1870-х годов, предоставили многим городам свои первые электрические уличные фонари. Работа с дуговой лампой была трудоемкой, поскольку угольные стержни расходились по мере того, как лампа горела, и их приходилось часто заменять. Свет был таким ярким Однако мощные дуговые лампы продолжали использоваться и в 20 веке.
Эдисон поставил перед собой цель «разделить свет» дуговой лампы, то есть разработать фонарь который дает небольшое количество света, подходящего для использования в помещении. В идеале много маленьких фонариков будет работать от того же тока, что и одна дуговая лампа, и может включаться и выключаться при будут.
|