Содержание статьи:
Лампами дневного света принято называть люминесцентные источники освещения. Они отличаются низким энергопотреблением, высоким сроком службы. Спектр излучения визуально близок к солнечному. Существенным недостатком ламп дневного света служит то, что их нельзя подключать непосредственно к сети. Необходимо использовать специальную пускорегулирующую аппаратуру (ПРА). Устройства ПРА создают возможность возникновения устойчивого газового разряда и равномерность светового потока во время работы.
Конструкция светильника
Причины перегорания ламп дневного света зависят от пускорегулирующего устройства
Лампы накаливания и люминесцентные подключаются по-разному, но сгорать могут любые, даже самые качественные источники света. Причин неработоспособности ламп дневного много. Чтобы их выявить, необходимо кратко ознакомиться с конструкцией и действием.
Принцип работы люминесцентных ламп заключается в электрическом разряде, который происходит в парах ртути. Излучаемый ультрафиолетовый свет преобразуется в видимый специальным веществом – люминофором, который нанесен на внутреннюю поверхность колбы светильника.
Чтобы возник газовый разряд, необходимо высокое напряжение, которое создается во время включения светильника за счет использования ПРА.
Существует два принципиально различных типа пускорегулирующей аппаратуры:
- электромагнитный, в котором используется дроссель и стартер;
- электронный, собранный на радиоэлектронных компонентах.
Любое несоответствие параметров или выход из строя одного из элементов приводит к полной неработоспособности светильника.
Электромагнитный балласт
Данный тип ПРА имеет наиболее простую конструкцию, в которую входит дроссель и стартер на основе неоновой лампы с подвижными контактами внутри.
Наличие механических контактов является самым слабым местом электромагнитного балласта. Стартеры выходят из строя наиболее часто, особенно если светильник часто включается. Причиной поломки дросселя является межвитковое замыкание. Кроме этого, дроссель – сильный источник электромагнитных помех и может издавать сильный гул.
Электронный балласт
Электронная пускорегулирующая аппаратура (ЭПРА) выполняет преобразование напряжения питающей сети с высокой частотой (порядка десятка и сотен килогерц) в сочетании с выпрямлением, поэтому при использовании такой аппаратуры мерцание отсутствует.
ЭПРА отличается малыми габаритами, массой и высокой надежностью. К сожалению, ряд производителей для снижения себестоимости использует в производстве низкокачественные компоненты, что приводит к выходу ЭПРА из строя.
Наиболее частая причина поломки электронных устройств – потеря емкости электролитических конденсаторов и пробой переходов высоковольтных ключевых транзисторов. Самостоятельное исправление работоспособности электронных блоков требует высокой квалификации и недоступен большинству потребителей.
С такими же трудностями сопряжено изготовление самодельных устройств для запуска светильников, хотя существует множество схем, использование которых позволяет увеличить срок службы люминесцентных ламп.
Кроме неисправностей, связанных с выходом из строя ПРА, отсутствие свечения может быть вызвано самой лампой. Люминесцентные светильники имеют в конструкции электроды, которые покрыты специальным составом для облегчения запуска. Со временем состав выгорает и кратковременный импульс высокого напряжения, снимаемый со стартера и дросселя, уже не в состоянии поджечь газовый разряд. В таком случае происходит повторный поджиг разряда. Со временем лампочка начинает моргать и перестает запускаться.
Выгорание люминофора приводит к постепенному снижению яркости свечения. Наиболее быстро этот процесс происходит вблизи электродов. При этом люминесцентная лампа не горит или ее яркость не равномерна по всей длине светильника.
Как отремонтировать люминесцентный светильник
Оптимальный способ ремонта – замена неисправного элемента
В большинстве случаев наиболее простой выход состоит в замене неисправных элементов. Проверить можно путем установки заведомо исправного элемента. Полноценный ремонт люминесцентного светильника сопряжен с рядом трудностей и требует наличия определенной квалификации и опыта. Перед тем как разобрать светильник дневного света, необходимо убедиться, что он отключен от сети и электричество на него не подано.
Проще всего найти замену неисправному стартеру. Заставить светильник включиться можно, установив вместо него кнопку. Данный способ опасен тем, что удержание кнопки сверх необходимого времени может вызвать перегорание нитей накаливания электродов.
Сложнее использование ламп без дросселя. Разработано несколько работоспособных вариантов такого включения. Большинство схем использует принцип умножения напряжения сети для устойчивого запуска. В данных схемах применяются выпрямительные диоды и батареи конденсаторов, что вызывает увеличение габаритов самодельной ПРА. В качестве дросселя для ограничения тока используется мощный резистор или лампа накаливания 25-40 Вт, в зависимости от мощности люминесцентного светильника.
Преимущество резисторов в малых габаритах, но проблема состоит в высоком тепловыделении на нем во время работы. Лампы накаливания создают дополнительный световой поток, но поскольку они работают при сниженном напряжении, срок их службы практически не ограничен.
Отдельные схемотехнические решения электронных балластов или схем с умножением позволяют использовать лампочки с перегоревшими нитями накаливания. Однако, за счет того, что во время запуска используется высокое напряжение, а ток после поджига слабо ограничен, время работы таких люминесцентных ламп довольно непродолжительное.
Продление срока службы
Срок службы ламп дневного света можно увеличить, если знать причины их перегорания:
- Работа при низкой температуре приводит к увеличению продолжительности нагрева нитей накаливания до начала возникновения устойчивого газового разряда, в результате осветительный прибор может сгореть быстрее заявленного срока службы.
- Частые включения также могут вызвать преждевременное старение и перегорание электродов, поскольку пусковые броски тока намного выше, чем в установившемся режиме.
- Низкокачественные ПРА используют упрощенную схемотехнику и, кроме низкой стоимости, не дают никаких преимуществ.
Рекомендации для увеличения срока службы:
- Не использовать люминесцентные лампы в помещениях с низкой температурой.
- Избегать частых включений. Рассматриваемые источники света потребляют малое количество электроэнергии, по сравнению с лампами накаливания, поэтому в некоторых случаях есть смысл оставлять их включенными постоянно.
- Использовать электронные ПРА с плавным пуском. Такие устройства несколько дороже и вызывают задержку включения (порядка 1-2 секунд), но зато снижают скорость старения электродов и допускают возможность частого включения.
- Приобретать светильники дневного света надежных производителей. Высокая стоимость оправдана продолжительностью безотказной работы.
Внутри колбы светильника содержится высокотоксичная ртуть. Утилизация неисправных ламп должна соответствовать требованиям законодательства.
При эксплуатации таких ламп могут появиться неисправности в схеме включения вспомогательной аппаратуры — стартера и дросселя. Если в данной схеме лампа не зажигается, необходимо проверить исправность электросети, а также отдельных элементов схемы включения лампы.
Нормальная эксплуатация лампы существенно зависит от внешних условий — от напряжения питающей сети и от температуры окружающего воздуха.
При исправности электросети и всех элементов схемы включенная лампа все же может не зажигаться, если температура окружающей среды меньше +10° С и если колебание напряжения питающей сети превосходит 6–7%. Зажигание лампы происходит обычно не сразу, а после нескольких срабатываний стартера. Полная длительность зажигания не должна превосходить 15 с. Если в течение этого времени лампа не загорится, то возможны неисправности, которые могут быть как в самой лампе, так и в отдельных элементах схемы включения.
Причинами могут быть неисправности:
- в электросети — наличие обрыва или плохого контакта
- стартера — не замыкает цепь накала электродов лампы
- дросселя — обрыв в обмотке дросселя
- патронов — отсутствие контактов
- лампы — обрыв электродов лампы
Проверка и устранение указанных неисправностей производятся в следующем порядке:
- проверить наличие напряжения на контактах патронов лампы и стартера
- заменить лампу. Если новая лампа зажигается, то замененная лампа была неисправной
При включении лампы свечение люминофора, обуславливаемое возникновением вспомогательного разряда, имеется только в одном конце лампы. Лампа мигает, но не зажигается. Причинами этой неисправности могут быть замыкания в проводке, в патроне, в выходах лампы, где свечение люминофора отсутствует.
Устранение неисправности проводится в следующем порядке:
- Лампу переставить так, чтобы неисправный и нормально светящиеся концы ее поменялись местами. Если при такой перестановке свечение будет отсутствовать, данная лампа является дефектной и должна быть заменена новой.
- Если при замене лампы нет свечения, необходимо проверить схему включения и патрон лампы, устранить их замыкания, в случае необходимости патрон сменить.
Свечение на концах лампы имеется и сохраняется длительное время, но лампа не зажигается. Причину нужно искать в неисправности стартера, патрона или проводки. Если стартер вынуть и свечение исчезнет, значит, данный стартер подлежит замене. Если и при отсутствии стартера на концах лампы будет свечение, необходимо проверить проводку, патрон стартера и устранить имеющиеся в них замыкания.
На концах включенной лампы появляется и исчезает тусклое оранжевое свечение, лампа не зажигается и через некоторое время свечение вообще исчезает. Такая лампа должна быть заменена, так как в нее попал воздух.
Если лампа зажигается нормально, но уже в первые часы горения наблюдается сильное потемнение ее концов и через некоторое время она перестает зажигаться, то неисправен дроссель, т.к. пусковой и рабочий токи имеют значения, не соответствующие вольтамперной характеристике.
Для этого надо проверить значение пускового и рабочего токов. В отдельных случаях преждевременное потемнение концов лампы может быть вызвано плохим качеством ее катодов.
Если лампа зажигается нормально, но при горении разряд не заполняет равномерно все пространство между электродами и на отдельных участках извивается в виде змейки, то неисправен дроссель — ток лампы слишком велик. Необходимо проверить значение пускового и рабочего токов лампы, и, если они выходят за пределы, указанные в вольтамперной характеристике, дроссель должен быть заменен новым. Если значение токов не выходит за пределы, то в отдельных случаях может быть неисправна сама лампа — ее катоды обработаны недостаточно хорошо. Лампу следует несколько раз погасить и зажечь, повернуть ее в патронах вокруг собственной оси на 120° и еще раз зажечь и погасить. Если и после этого разряд не заполнит все пространство между электродами, лампу нужно заменить.
Если лампа периодически зажигается и гаснет, то неисправна лампа и стартер. Лампа неисправна, т.к. падение напряжения на лампе во время ее горения превышает напряжение зажигания разряда в стартере. Необходимо проверить падение напряжения в лампе. Если оно превышает значения, указанные в таблице, то данная лампа должна быть заменена новой. Если напряжение зажигания разряда в стартере ниже минимально допустимого значения, значит неисправен стартер.
Лампа зажигается нормально, но горит очень тускло, световой поток, излучаемый лампой, недостаточен. Это объясняется тем, что дроссель не обеспечивает надлежащего режима работы лампы. Если рабочий ток лампы меньше, чем минимально допустимое значение, указанное в таблице, то следует сменить дроссель. Если ток лампы не выходит за нижний предел, значит, лампа должна быть заменена, поскольку в ней мало ртути.
Если при включении установки перегорают спирали лампы, то должен быть заменен дроссель, т.к. в его обмотке частично или полностью пробита изоляция.
При любой неисправности в установке с люминесцентными лампами установка должна быть немедленно отключена. Причина неисправности должна быть выяснена и устранена, поскольку неисправность одного элемента может привести к порче других.
Светильники с люминесцентными лампами широко распространены. Они используются для освещения офисов, магазинов, производственных помещений. В быту их используют не так часто, поскольку они имеют большие габаритные размеры и неуклюжий дизайн.
Люминесцентные светильники труднее поддаются ремонту, так как включают в себя ряд элементов, необходимых для запуска и поддержания в рабочем состоянии разряда в лампе. А чем больше деталей – тем ниже надежность.
Принцип работы и устройство люминесцентного светильника
Чтобы отыскать неисправность в люминесцентных светильниках, нужно знать принцип их работы. Источник света в них – лампы, представляющие собой колбу цилиндрической (или U-образной) формы, из которой выкачан воздух. Вместо него в лампе находятся пары ртути и инертный газ. По краям колбы расположены нити накаливания, каждая из них имеет два контакта.
Для запуска лампы служит стартер – газоразрядная лампа, последовательно с которой включен помехоподавляющий конденсатор. Контакты его замыкаются при подаче напряжения за счет возникновения тлеющего разряда между электродами, один из которых или оба выполнены биметаллическими. За счет разряда, который можно наблюдать через корпус стартера или смотровое окно в нем, электроды нагреваются и замыкаются между собой.
Ток протекает через последовательно соединенные нити накаливания лампы, замкнутые контакты стартера и дроссель. Нити, покрытые специальным составом, нагреваются, около них появляются свободные электроны. Этот процесс называется термоэлектронной эмиссией. Электроны нужны для того, чтобы в пространстве лампы появились свободные заряды, способные проводить электрический ток. В процессе разогрева нитей накала индуктивное сопротивление дросселя ограничивает ток через них.
Электроды стартера остывают и размыкаются. В этот момент в дросселе возникает ЭДС самоиндукции. Импульс высокого напряжения, складываясь с напряжением сети, мгновенно разгоняет электроны внутри лампы, они приходят в движение. Сталкиваясь на своем пути с молекулами инертного газа, они ионизируют их. Ионы движутся в противоположную сторону. В результате процесса ионизации в лампе возникает устойчивый разряд, ток которого ограничивается индуктивностью дросселя.
Загоревшаяся лампа шунтирует стартер, выводя его из работы. Если по каким-то причинам лампа не зажглась, процесс повторяется циклически, либо до ее запуска, либо до выхода из строя одного из компонентов.
В схеме светильника параллельно клеммам питающей сети устанавливается конденсатор, предназначенный для фильтрации помех при работе.
Ремонт люминесцентного светильника. Основные неисправности и их устранение. Инструкция
Если светильник не пытается зажечься, перед поиском неисправности в нем нужно измерить напряжение на его входных клеммах. Если оно есть, то последовательность поиска такова:
- Слегка покрутить лампы вокруг продольной оси. При правильной установке контакты ее должны располагаться параллельно плоскости светильника. Это положение определяется по максимуму усилия вращению или при повторной установке с запоминанием их положения в пространстве.
- Заменить стартер на заведомо исправный. Электрики, обслуживающие помещения с люминесцентными светильниками, всегда имеют под рукой запас стартеров для проверки. При его отсутствии можно временно снять стартер с работающего светильника. При этом можно его оставить в работе – стартер не влияет на работоспособность уже зажженной люминесцентной лампы.
- Проверить исправность лампы (ламп). В светильниках, имеющих две лампы, они включены последовательно. Стартер и дроссель для них общие. Четырехламповые светильники конструктивно представляют собой два двухламповых, объединенных в одном корпусе. Поэтому при выходе из строя одной лампы, вместе с ней гаснет и вторая.
- Исправность ламп проверяют методом замены на исправные. Можно измерить мультиметром сопротивление нитей накала – оно не превышает десятков Ом. Почернение изнутри колбы лампы в районе нитей не свидетельствует о неисправности, но проверке она подвергается в первую очередь.
- Если стартер и лампа исправны, проверяется дроссель. Его сопротивление, измеренное мультиметром, не превышает сотен Ом. Можно воспользоваться индикаторной отверткой, проверив прохождение «фазы» чер
Автор Исхаков Максим На чтение 6 мин. Просмотров 647 Опубликовано
С приходом электричества началась другая жизнь: появились электроплитки, холодильники, радиоприемники, телевизоры и другая техника, без которой трудно представить наше существование в окружающем мире. Для освещения придумано и придумываются различные средства. Одно из распространенных изобретений – люминесцентная лампа или лампа дневного света (ЛДС), имеющая различные формы и параметры. Она расходует во много раз меньше энергии по сравнению с лампой накаливания, давая столько же света. ЛДС имеет ряд преимуществ перед остальными светильниками:
- высокая степень светоотдачи;
- разнообразие оттенков света;
- большой срок эксплуатации;
- высокий КПД; рассеянный световой поток.
В силу некоторых причин ЛДС перестает светиться, не всегда имея видимых признаков неполадки. Пришла пора выяснить: как проверить лампу дневного света тестером (мультиметром).
Почему перегорают люминесцентные лампы
ЛДС имеют большой срок эксплуатации, но иногда перегорают. Случается такое чаще всего при включении светильника. Возникающая в колбе мощная дуга нагревает вольфрамовые спиральные электроды до высокой температуры, разрушающей металл и приводящей к перегоранию спиралей. Для увеличения сроков работоспособности нити на вольфрам наносят тонкий слой защитного металла. Он позволяет снизить температуру и продлить срок службы нити. При частом включении и выключении защитный слой выкрашивается, оголенные участки вольфрамовой нити перегорают, лампа перестает работать.
Другая причина перегорания дает о себе знать по появлению на изделии свечения, окрашенного в оранжевый цвет. Это значит, в колбу ЛДС проник воздух, светильник гореть не будет.
Выявление неполадок и их устранение
Все неисправности ЛДС сводятся к следующему:
- изделие не включается;
- светильник мерцает и выключается;
- мерцание длится долго, изделие не загорается;
- гудение без включения;
- ЛДС горит, но с мерцанием.
Эти проявления приводят к порче зрения, поэтому ремонтировать светильник следует немедленно. Для проверки люминесцентной лампы нужно иметь мультиметр для измерения сопротивления. Сначала меняют лампу на годную. Если она включается – дело в ней, не горит – применяем инструмент.
Распространенной причиной является ослабление контакта между электродами лампы и клеммами патрона. Их нужно почистить спиртосодержащим средством или ластиком, использовать для этого шкурку с мелким зерном или просто слегка подогнуть штырьки. Этот способ хорошо помогает при устранении неисправности в домашних условиях.
ЛДС не предназначена для работы при низких температурах окружающего воздуха и при больших скачках напряжения в сети (более 7%).
Целостность спиралей-электродов
При неполадках часто случаются причины, которые не всегда видны невооруженным глазом. В этом случае нужно прозвонить изделие мультиметром или проверить индикатором. Его переключатель нужно установить в положение, измеряющее сопротивление. Диапазон – самый малый из всех возможных. Щупами касаются штырьков и смотрят на табло. Если спираль порвана или сгоревшая – на табло светится 0, если она целая – цифры 3-16 Ом. Порванная или сгоревшая нихромовая нить не восстанавливаются, изделие требуется заменить.
Неисправности в электронном балласте
Часть светильников с ЛДС работают только с подключением электронного балласта ЭПРА (пускорегулирующая аппаратура). Ее тоже нужно проверить на исправность. Сначала желательно заменить балласт на рабочий и включить светильник. Свидетельством неисправности балласта будет свечение лампы. Неисправную аппаратуру можно привести в порядок своими руками в условиях дома.
Начинают ремонт с замены предохранителя. Если после этого нити начнут слабо светиться, это будет являться признаком пробоя конденсатора. Его заменяют на другой, рассчитанный на напряжение 2 кВ. Стандартные иногда устанавливаются на 250-400 В, при работе они сгорают.
Следующая часто выходящая из строя деталь балласта – транзистор. Он перегорает по причине скачков напряжения в сети. Эти скачки могут вызываться работой сварочных аппаратов, включенных в общую электросеть. Сгоревший транзистор меняется на подобранный из радиодеталей или снимается с подобного пускорегулирующего устройства. После выполнения всех ремонтных операций в светильник вставляется ЛДС мощностью 40 Вт и включается в сеть.
Как проверить дроссель люминесцентного светильника
ЛДС работает вместе с дросселем, который предназначен для регулировки тока и не дает возможности перегорания спиралей из-за перегрева. Это устройство представляет собой обмотку из проволоки с металлическим сердечником. Неисправность может находиться в дросселе, если:
- светильник сильно гудит;
- лампа загорается, но быстро гаснет с появлением темных пятен;
- ЛДС перегревается во время горения;
- внутри стеклянной колбы наблюдается сильное мерцание и бегающие змейки.
Неисправность чаще всего кроется в перегорании или обрыве обмотки, в потере изоляции. Для обнаружения причины нужно измерить сопротивление дросселя. Если оно бесконечное – есть обрыв обмотки. Малое сопротивление – потеря изоляции, приводящая к межвитковому замыканию.
Перед проверкой дросселя лампы дневного света мультиметром нужно вынуть стартер и закоротить контакты в патроне. На следующем этапе снять лампу и в каждом патроне замкнуть клеммы. Щупами прибора коснуться контактов. Сгоревший дроссель издает сильный характерный запах и имеет коричневые пятна на корпусе. Исправность дросселя свидетельствует о неисправности других деталей. Неисправный дроссель заменяется запасной деталью.
Как проверить стартер
ЛДС не горит, а мерцает – такое случается при неисправности стартера. Чтобы проверить его работоспособность, невозможно проводить тестирование мультиметром, так как контакты стартера при выключенном напряжении разомкнуты.
Проверить эту деталь можно лампой накаливания мощностью 40 Вт, которую подключают последовательно через стартер к сети. При исправном стартере лампа светится и через некоторые промежутки времени на мгновение гаснет. Процесс сопровождается щелчками контактов. При неисправном стартере ЛДС не горит или светится без моргания тусклым светом.
Как проверить емкость конденсатора тестером
При неисправности конденсатора в схеме КПД светильника снижается до 40%. Для изделий мощностью 36-40 Вт устанавливается конденсатор, имеющий емкость 4,5 мкФ. Если она ниже нормы – КПД снижается, при более высокой емкости лампа начинает мерцать. Для проведения измерений конденсатор должен прозваниваться тестером. При касании щупами выводов рабочей детали прибор показывает бесконечное сопротивление. Если оно меньше 2 Мом – это признак большой утечки тока.
Включение люминесцентной лампы без дросселя
Люминесцентные лампы имеют возможность подключения без применения стартера и балластного дросселя через выпрямитель, удваивающий напряжение. При этом могут гореть даже вышедшие из строя ЛДС. Со временем яркость свечения уменьшается. Для устранения этой причины лампа в патроне переворачивается, контакты меняются местами Схема простая, ее можно спаять самостоятельно из деталей, рассчитанных на напряжение 900 В.
Любая люминесцентная лампа наполнена парами ртути, наносящей большой вред человеческому организму и природе. Поэтому выбрасывать вышедшие из строя изделия вместе с бытовым мусором запрещено. При правильном уходе и своевременном ремонте срок их службы увеличивается.
Люминесцентные лампы являются одними из самых популярных источников света. Они показывают очень высокие технические характеристики и способны удовлетворить любые потребности пользователей и внешней среды. Широкий ассортимент позволяет сделать выбор очень качественно и легко. Но случаются и неприятные ситуации, тогда лампы не хотят работать либо проявляются другие неисправности.
Поможем разобраться с вопросом проверки мощности лампы и как проверить люминесцентную лампу, и расскажем для чего это делается. Но мощность не единый показатель, который следует проверить, необходимо убедиться также в общей работоспособности устройства и выявить неисправности, в этом мы вам также поможем.
Классификация люминесцентных ламп
Люминесцентные лампы существуют в ограниченном варианте исполнения. По большему счёту существуют только два варианта, линейные и компактные. Есть ещё кольцевые и U-образные, но их зачастую относят к разновидностям линейных. Они обладают той же структурой, размером и формой стеклянной трубки.
Люминесцентные источники света разделяют на устройства общего освещения и специализированные приборы. Для общего освещения обычно используют устройства с мощностью от пятнадцати до восьмидесяти ват. При этом могут присутствовать дополнительные характеристики света и различного спектра освещения.
Они могут имитировать обычное освещение различного цвета и оттенка. Критериями разделения таких ламп является мощность, тип разряда, по типу излучения, за формой колбы и по способу распределения света.
Различные формы
Каждый из представленных вариантов обладает отдельными подгруппами, которые более точно характеризуют устройство. Например, мощность может быть 15 ват, такая лампа будет маломощной. При использовании прибора на 80 ват, лампа называется сверхмощной.
Излучение света разделяется на такие типы:
- Естественный свет.
- Излучение цветного спектра света.
- Специальные типы излучения для особых случаев и условий.
Маркировка производится с помощью буквенных обозначений. Начинается она с буквы Л, это показывает что устройство люминесцентное. Следующая буква показывает спектр излучаемого света, например, Д – естественное дневное освещение, Б – белый свет и прочие варианты, где буква соответствует первой букве используемого цвета освещения.
Если источник света выдаёт тёплый свет, тогда перед обозначением цвета будет буква Б, соответственно холодный обозначается буквой Х.
Маркировка для отечественной продукции
Также дополнительные обозначения осуществляют помощью следующих букв:
- Ц – улучшенное качество передачи света.
- ЦЦ – сверх качественная передача.
- Р – показывает что тип рефлекторный.
- Б – устройство быстрого или мгновенного старта.
В самом конце указывают обозначение из цифр, которое отображает мощность прибора в ватах.
Зависимость рабочих характеристик от напряжения
Люминесцентные лампы работают от напряжения в 220 вольт, и при частоте пятьдесят герц, что вполне соответствует нашей стандартной домашней сети. Колебания этих показателей сказывается практически на всех технических характеристиках люминесцентного устройства. Таким образом, ухудшая его работоспособность и качество освещения.
Какие показатели изменяются и насколько это критично:
- Мощность устройства может как падать, так и повышаться при значительных колебаниях входящего напряжения. Таким образом, приобретая сверхмощную лампу для освещения вашего дворика, вы можете получить некачественное слабое освещение из-за низкого показателя входящего напряжения. Многие начинают наговаривать сразу на устройство и связывать падение мощности с браком конструкции, не разобравшись с корнем проблемы. Стоит измерять напряжение в вашей домашней сети, после чего делать выводы о неисправности.
- Качество светового потока. При слишком большой амплитуде изменения сетевого напряжения или при резких перепадах, качество света значительно снижается. Так, при смене частоты тока, коэффициент мерцания значительно увеличивается, лампа начинает излучать сильно мерцающий свет, который перенапрягает глаза и вредит зрению человека. Также свет может быть не насыщенным и тусклым, что тоже увеличивает напряжение глаз и может повредить зрение, если находится в таких условиях продолжительное время. Особенно это сказывается, если работать при таком освещении.
- Срок эксплуатационной службы прибора. Скачки и нестабильное напряжение способствует быстрому изнашиванию и ухудшению работоспособности прибора. Производители утверждают, что допустимой границей колебания тока, является десять процентов от номинального показателя. Превышение этой отметки может сократит срок службы изделия до пятидесяти процентов.
Проверка мощности
Измерение мощности лампочки позволяет создать для неё более подходящие условия и использовать по назначению. Вам ведь не нужна сверхмощная лампа для чтения книги или маломощная для выполнения мелких работ.
Благодаря измерению мощности можно распределить лампочки на необходимые места в соответствии с требованиями. Как правило, проверка производится на тех лампах, где маркировка стёрлась.
Проще всего осуществить измерение мультиметром. С его помощью измерение будет произведено быстро и с высокой точностью. Но если такого прибора нет под рукой, можно воспользоваться другим способом, который также довольно эффективный.
Вам понадобится иметь вольтметр и амперметр. Подключаются они к схеме включения лампы, амперметр последовательно, а вольтметр параллельно. После чего следует включить подачу тока на устройство. Затем снимаете показатели с обоих измерителей и записываете. Разделив полученную силу тока на напряжение, которое показал вольтметр, вы получите значение в ватах. Этот показатель и будет номинальной мощность вашей лампочки.
Тестируем работоспособность
Проверка работоспособности является очень лёгким проверочным процессом. Первое что следует сделать, это, конечно же, попробовать подключить лампу к сети напрямую или установить в соответствующий светильник. После чего можно сделать выводы про исправность и функционирование устройства.
Причины поломоки их ремонт
Более детальная проверка будет заключаться в тестировании каждого элемента по отдельности, но этой займёт значительно больше сил и потребует от вас определённых познаний в данной области.
Причины поломок и их ремонт
Существует множество вариантом неисправности люминесцентных ламп, мы подготовили для вас наиболее распространённые виды и способы их решения.
Разобравшись с причиной неисправности можно легко решить её, давайте приступим к изучению нашего списка:
- Устройство не включается – причина такое неисправности может заключаться в потере работоспособности лампы или обрыве проводов, схем и контактов. Необходимо заменить лампу, если это не помогло, следует искать причину в соединениях и проводах, возможно, где-то присутствует разрыв сх
3 шага к перегоранию люминесцентной лампы
То, что не пропускает свет,
Само лишает себя его.
Марк Аврелий
Заходите вы в квартиру, включаете свет… нет, где-то мы уже это слышали. На прошлой неделе мы с вами разобрались с причинами перегорания ламп накаливания. Теперь попробуем понять, почему перегорают энергосберегающие лампы.
Энергосберегающие люминесцентные лампы по своему устройству гораздо сложнее ламп накаливания. А значит и элементов, которые могут сломаться, больше. Давайте сначала все-таки разберемся, что собой представляет люминесцентная лампа, из чего она собрана, и каков принцип ее действия. На основе этих данных сможем понять все причины перегорания и прочих неисправностей и, самое главное, поймем, как их избежать.
Как ни странно, в энергосберегающей лампе тоже есть нити накаливания, точнее электроды и, кстати, тоже из вольфрама, только покрыты окислами дорогих металлов, таких как стронций, барий и цинк. Правда принцип действия этой конструкции другой, отсюда и в разы меньшее потребление энергии. Колба такой лампы изнутри покрыта люминофором. Стоит отметить, что, когда вы на работе в офисе, у вас над головой, как правило, длинные люминесцентные лампы, либо 60, либо 120 см. Такие лампы имеют тот же принцип действия, но в своей конструкции не имеют электронных компонентов, которые вынесены отдельно в светильник, и покрыты более дешевым люминофором, поэтому и стоят дешевле. Офисные лампы называют еще и лампами дневного света. Такие лампы имеют еще больше вредного излучения, чем домашние.
Итак, в темноте вы нащупали спасительный выключатель, щелкаете, и загорается свет. Что в этот момент происходит в лампе? Не замечали, что она разгорается постепенно? На этот раз все не совсем просто. В конструкции лампы есть электронный блок, который в момент переключения вами выключателя, генерирует повышенное напряжение, которое нужно для розжига лампы. Если лампа не загорелась, то он генерирует разряд еще и еще раз, и так пока не загорится, обычно это занимает на больше одной-двух секунд.
Колба покрыта изнутри люминофором и заполнена атомарными парами ртути. Когда подается резкий импульс на электроды, под воздействием тока возникает электрическая дуга. Электроны начинают двигаться по лампе и взаимодействовать с парами ртути. Следствием взаимодействия электронов с ртутью становится ультрафиолетовое излучение, которое, проходя через люминофор, преобразуется в свечение. Теперь вы знаете, почему лампа разгорается постепенно.
Дальше коротко рассмотрим остальные компоненты лампы. На входе в лампу стоит предохранитель, он же ограничительный резистор. Он выпрямляет напряжение. Вслед за ним идут дроссель (электронный блок, описанный выше) и конденсатор. Также в современных лампах есть диодный мост, который тоже входит в помехозащищенную цепь питания лампы. В лампах хорошего качества, и, соответственно, более дорогих, чаще всего ставят и плавкую вставку. Что это такое? Это элемент из легкоплавкого материала, который при перенапряжениях и коротких замыканиях, расплавится и разорвет цепь питания лампы, предотвратив ее воспламенение. Весь комплекс компонентов называется ЭПРА — электронная пускорегулирующая аппаратура.
Если вы следите за нашим блогом, то помните, что в одной из прошлых статей я описывал проблемы перегорания ламп накаливания из-за перенапряжения и некачественной проводки. Все эти причины так же опасны для энергосберегающей лампы. Выходить из строя могут любые компоненты цепи, а значит больше опасности и нужно быть внимательнее. Но есть и неординарные или неочевидные причины, о которых знают не все.
Следующая причина — перегрев. И происходит он, если вы ставите лампу в закрытые плафоны. Этого лучше не делать, так как в этом случае лампа иногда не успевает остывать или вообще не имеет возможности охладиться. Причиной перегрева может стать и частое включение и выключение лампы. Только помимо перегрева, в этом случае еще и сильная нагрузка на ЭПРА, что тоже не особенно-то хорошо.
Последняя основная причина – некачественные лампы. Не покупайте ни в коем случае дешевые китайские лампы. Русская поговорка гласит «скупой платит дважды». Дешевые лампы сделаны на непонятном заводе из заведомо некачественных комплектующих и без какого-либо контроля производства. Иногда доходит до того, что даже пластик некачественный и лампа начинает в плафоне плавиться и вонять. Иногда просто сгорают компоненты. Более дорогие проверенные бренды ведут контроль качества на всех этапах производства и отбраковывают лампы по мере их несоответствия нормам на том или ином этапе. Отбракованные лампы нередко продаются под каким-нибудь неизвестным брендом. Как поведет себя некачественная лампа, сказать вам не сможет никто, может просто перегореть, а может и пожар устроить. Остерегайтесь некачественных ламп!
Используя советы выше, вы продлите жизнь лампам, и обезопасите себя от непредвиденных ситуаций. Надеюсь, вам было интересно!
До новых встреч.
Как работает флуоресцентный стартер?
Флуоресцентный свет не имеет обычной светящейся нити накаливания, но вместо этого содержит паров ртути , который испускает ультрафиолетовый свет при ионизации. Ультрафиолетовый свет заставляет частицы, которые покрывают внутреннюю часть трубки, и эти частицы светятся или флуоресцируют (подробнее см. Как работают люминесцентные лампы).
Люминесцентные пускатели используются в нескольких типах люминесцентных ламп.Стартер поможет лампе зажечь. Когда на люминесцентную лампу подается напряжение, вот что происходит:
- Стартер (который является просто синхронизирующим переключателем) позволяет току течь через нити на концах трубки.
- Ток вызывает нагревание и размыкание контактов стартера, что прерывает протекание тока. Трубка горит.
- Поскольку освещенная люминесцентная лампа имеет низкое сопротивление, балласт теперь служит ограничителем тока.
При включении люминесцентной лампы стартером является замкнутого переключателя . Нити на концах трубки нагреваются электричеством, и они создают облако электронов внутри трубки. Флуоресцентный стартер – это переключатель задержки времени , который размыкается через секунду или две. Когда он открывается, напряжение на трубке позволяет потоку электронов течь через трубку и ионизировать пары ртути.
Без стартера постоянный поток электронов никогда не создается между двумя нитями, и лампа мигает.Без балласта дуга – это короткое замыкание между нитями, и это короткое замыкание содержит много тока. Ток либо испаряет нити, либо вызывает взрыв лампы.
В соответствии с часто задаваемыми вопросами F-лампы Сэма:
Наиболее распространенный люминесцентный стартер называется «стартер накаливания» (или просто стартер) и содержит небольшую заполненную газом (неон и т. Д.) Трубку и дополнительный конденсатор подавления радиочастотных помех (RFI) в цилиндрической алюминиевой банке с 2-контактная база.Хотя все пускатели являются физически взаимозаменяемыми, номинальная мощность пускового устройства должна соответствовать номинальной мощности люминесцентных ламп для надежной работы и длительного срока службы.
Трубка накаливания имеет выключатель, который нормально разомкнут. При подаче питания происходит тлеющий разряд, который нагревает биметаллический контакт. Примерно через секунду контакты замыкаются и подают ток на флуоресцентные нити. Поскольку свечение гаснет, биметалл больше не нагревается, и контакты размыкаются.Индуктивный удар, генерируемый в момент открытия, запускает основной разряд во флуоресцентной трубке. Если контакты открываются в неподходящее время, недостаточно индуктивного удара, и процесс повторяется.
,Запусти – Как работают люминесцентные лампы
Классическая конструкция люминесцентной лампы, которая в основном упала на обочину, использовала специальный механизм выключателя стартера для освещения трубки. Вы можете увидеть, как эта система работает на диаграмме ниже.
При первом включении лампы путь наименьшего сопротивления проходит через байпасную цепь и через пусковой выключатель . В этой цепи ток проходит через электроды на обоих концах трубки.Эти электроды представляют собой простые нитей , как в лампе накаливания. Когда ток проходит через байпасную цепь, электричество нагревает нити накала. Это испаряет электроны с поверхности металла, отправляя их в газовую трубку, ионизируя газ.
В то же время электрический ток вызывает интересную последовательность событий в переключателе стартера. Обычный выключатель стартера представляет собой небольшую газоразрядную лампу, содержащую неон или какой-либо другой газ.Лампа имеет два электрода, расположенных прямо рядом друг с другом. Когда электричество первоначально пропускается через байпасную цепь, электрическая дуга (по существу, поток заряженных частиц) прыгает между этими электродами, чтобы создать соединение. Эта дуга освещает лампу так же, как большая дуга освещает люминесцентную лампу.
Один из электродов представляет собой биметаллическую полосу , которая изгибается при нагревании. Небольшое количество тепла от освещенной колбы изгибает биметаллическую полосу, чтобы она соприкасалась с другим электродом.Поскольку два электрода касаются друг друга, ток больше не должен прыгать как дуга. Следовательно, в газе нет заряженных частиц, и свет гаснет. Без тепла от света биметаллическая полоса остывает, отгибаясь от другого электрода. Это открывает цепь.
К тому времени, когда это происходит, нити уже ионизировали газ во флуоресцентной трубке, создавая электропроводящую среду.Трубка просто нуждается в напряжении на электродах, чтобы создать электрическую дугу. Этот удар обеспечивается балластом лампы , специальным трансформатором, подключенным к цепи.
Когда ток протекает через байпасную цепь, он создает магнитное поле в части балласта. Это магнитное поле поддерживается текущим током. При размыкании пускового выключателя ток на короткое время отключается от балласта. Магнитное поле разрушается, что создает внезапный скачок тока – балласт высвобождает накопленную энергию.
Этот всплеск в токе помогает создать начальное напряжение, необходимое для установления электрической дуги в газе. Вместо того, чтобы течь через байпасную цепь и перепрыгивать через зазор в пусковом переключателе, электрический ток течет через трубку. Свободные электроны сталкиваются с атомами, сбивая другие электроны, в результате чего образуются ионы. В результате получается плазма , газ, состоящий в основном из ионов и свободных электронов, все они свободно движутся.Это создает путь для электрического тока.
Воздействие летящих электронов сохраняет две нити в тепле, поэтому они продолжают излучать новые электроны в плазму. Пока есть переменный ток, а нити не изношены, ток будет течь через трубку.
Проблема с лампами такого типа в том, что для их включения требуется несколько секунд. В наши дни большинство люминесцентных ламп предназначены для почти мгновенного включения. В следующем разделе мы увидим, как работают эти современные дизайны.
,Down the Tubes – Как работают люминесцентные лампы
Центральным элементом люминесцентной лампы является герметичная стеклянная трубка . Трубка содержит небольшое количество ртути и инертный газ, обычно аргона , который поддерживается под очень низким давлением. Трубка также содержит люминофорный порошок , нанесенный вдоль внутренней части стекла. Трубка имеет два электрода , по одному на каждом конце, которые подключены к электрической цепи. Электрическая цепь, которую мы рассмотрим позже, подключена к источнику переменного тока (AC).
Когда вы включаете лампу, ток протекает через электрическую цепь к электродам. На электроды подается значительное напряжение, поэтому электроны будут мигрировать через газ от одного конца трубки к другому. Эта энергия меняет часть ртути в трубе с жидкости на газ. Когда электроны и заряженные атомы движутся через трубку, некоторые из них столкнутся с газообразными атомами ртути. Эти столкновения возбуждают атомы, поднимая электроны до более высоких энергетических уровней.Когда электроны возвращаются к своему первоначальному уровню энергии, они выпускают световые фотоны.
Как мы видели в последнем разделе, длина волны фотона определяется конкретным расположением электронов в атоме. Электроны в атомах ртути расположены таким образом, что они в основном испускают световые фотоны в диапазоне длин волн ультрафиолета . Наши глаза не регистрируют ультрафиолетовые фотоны, поэтому этот вид света должен быть преобразован в видимый свет для освещения лампы.
Это то место, где появляется порошковое покрытие люминофора. Люминофоры – это вещества, которые испускают свет при воздействии света. Когда фотон попадает в атом люминофора, один из электронов люминофора переходит на более высокий энергетический уровень, и атом нагревается. Когда электрон возвращается к своему нормальному уровню, он выделяет энергию в виде другого фотона. Этот фотон имеет меньше энергии, чем исходный фотон, потому что некоторая энергия была потеряна в виде тепла. В люминесцентной лампе излучаемый свет находится в видимом спектре – люминофор излучает белого света , который мы можем видеть.Производители могут варьировать цвет света, используя различные комбинации люминофоров.
Этот контент не совместим с этим устройством.
Обычные лампы накаливания также излучают много ультрафиолетового света, но они не преобразуют его в видимый свет. Следовательно, много энергии, используемой для питания лампы накаливания, тратится впустую. Люминесцентная лампа заставляет этот невидимый свет работать, и эффективнее .Лампы накаливания также теряют больше энергии за счет тепловыделения, чем люминесцентные лампы. В целом, обычная люминесцентная лампа в четыре-шесть раз эффективнее лампы накаливания. Люди обычно используют лампы накаливания в домашних условиях, так как они излучают более теплый свет – более красный и менее синий.
Как мы уже видели, вся система люминесцентных ламп зависит от электрического тока, протекающего через газ в стеклянной трубке. В следующем разделе мы увидим, что флуоресцентная лампа должна сделать, чтобы установить этот ток.
,«Нормальная лампочка» также известна как лампа накаливания . Эти лампы имеют очень тонкую вольфрамовую нить, которая находится внутри стеклянной сферы. Они обычно бывают таких размеров, как «60 Вт», «75 Вт», «100 Вт» и так далее.
Основная идея этих ламп проста. Электричество проходит через нить накала. Поскольку нить накала настолько тонкая, она обладает хорошей устойчивостью к электричеству, и это сопротивление превращает электрическую энергию в в тепло .Тепла достаточно, чтобы нить накала стала горячей, а «белая» часть светлая. Нить накаливания из-за жары – это накаливания.
Проблема с лампами накаливания заключается в том, что тепло расходует много электроэнергии. Тепло – это не свет, а цель лампочки – свет, поэтому вся энергия, затрачиваемая на создание тепла, является пустой тратой. Поэтому лампы накаливания очень неэффективны. Они производят, возможно, 15 люмен на ватт входной мощности.
Люминесцентная лампа использует совершенно другой метод для получения света. На обоих концах флуоресцентной трубки находятся электроды, а внутри трубки находится газ, содержащий пары аргона и ртути. Поток электронов протекает через газ от одного электрода к другому (аналогично потоку электронов в электронно-лучевой трубке). Эти электроны сталкиваются с атомами ртути и возбуждают их. Когда атомы ртути перемещаются из возбужденного состояния обратно в невозбужденное состояние, они испускают ультрафиолетовых фотона .Эти фотоны попадают на люминофор, покрывающий внутреннюю часть флуоресцентной трубки, и этот люминофор создает видимый свет. Звучит сложно, поэтому давайте снова пройдемся в замедленном режиме:
- Между электродами на обоих концах люминесцентной лампы течет поток электронов.
- Электроны взаимодействуют с атомами паров ртути, плавающими внутри колбы.
- Атомы ртути становятся возбужденными, и когда они возвращаются в невозбужденное состояние, они выпускают фотоны света в ультрафиолетовой области спектра.
- Эти ультрафиолетовые фотоны сталкиваются с люминофором, покрывающим внутреннюю часть колбы, и люминофор создает видимый свет.
Люминофор флуоресцирует для производства света.
Люминесцентная лампа вырабатывает меньше тепла, поэтому она намного эффективнее. Люминесцентная лампа может производить от 50 до 100 люмен на ватт . Это делает люминесцентные лампы в четыре-шесть раз эффективнее , чем лампы накаливания.Вот почему вы можете купить 15-ваттную люминесцентную лампу, которая излучает столько же света, сколько и 60-ваттная лампа накаливания.
,