Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Полевой транзистор

Часть 2. Полевой транзистор с изолированным затвором MOSFET

Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 1017 Ом).

Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.

В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом

. В каждом из типов есть транзисторы с N–каналом и P-каналом.

Устройство МДП-транзистора (MOSFET) с индуцированным каналом.

На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N+-типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N+-типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком

Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N+ находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.

Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.

Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения U

си. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

Устройство МДП-транзистора (MOSFET) со встроенным каналом.

Физическое устройство МДП-транзистора со встроенным каналом отличается от типа с индуцированным каналом наличием между стоком и истоком проводящего канала.

Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.

Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи = 0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.

Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.

Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.

Как мы видим, МДП-транзистор со встроенным каналом способен работать в двух режимах — в режиме обеднения и в режиме обогащения.

Вольт-амперные характеристики (ВАХ) МДП-транзистора со встроенным каналом.

Преимущества и недостатки полевых транзисторов перед биполярными.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».
  • При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

    Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

  • Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

    Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

hightolow.ru

3. Принцип действия полевого транзистора. Вах полевого транзистора

В отличии от биполярных транзисторов, униполярные транзисторы относятся к классу полевых элементов, принцип действия которых основан на использовании носителей одного знака. Управление током производится за счет изменения проводимости канала, через который протекает ток, под действием электрического поля.

Общие свойства: 1) Высокая технологичность изготовления, 2) Хорошая воспроизводимость параметров, 3) Большая плотность упаковки 4) сравнительно невысокая стоимость.

Главная особенность высокое входное сопротивление.

  1. Устройство полевого транзистора.

Полевой транзистор - это полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал и управляемый электрическим полем. В отличие от биполярных  работа  полевых  транзисторов  основана  на  использовании  основных носителей заряда в полупроводнике.

По конструктивному исполнению и технологии изготовления  полевые транзисторы можно разделить на две группы: полевые транзисторы  с управляющим  р- п - переходом и полевые транзисторы с изолированным затвором.

   Полевой  транзистор с управляющим  р-п- переходом - это полевой транзистор, затвор которого отделен в электрическом отношении от канала р-п - переходом, смещенным в обратном направлении. Электрод , из  которого в канал входят носители заряда, называют истоком; электрод, через который  из  канала уходят носители заряда, - стоком; электрод, служащий для регулирования поперечного сечения канала, - затвором. При подключении к истоку отрицательного (для п-канала), а к стоку положительного напряжения (рис. 1 ) в канале возникает электрический ток, создаваемый движением электронов от истока к стоку, т.е. основными носителями заряда. В этом заключается существенное отличие полевого транзистора от биполярного. Движение носителей заряда вдоль электронно-дырочного перехода (а не через переходы, как в биполярном транзисторе) является второй характерной  особенностью полевого транзистора.

    Электрическое поле, создаваемое между затвором и каналом, изменяет плотность носителей заряда в канале, т.е. величину протекающего тока. Так как управление происходит через обратно смещенный р-п-переход, сопротивление между управляющим электродом и каналом велико, а потребляемая мощность от источника сигнала в цепи затвора ничтожно мала. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебаний как по мощности, так и по току и напряжению.

           Рис. 2. Структура  полевого транзистора с изолированным затвором: а - с индуцированным каналом ; б - со встроенным каналом.

    Полевой транзистор с изолированным затвором - это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Полевой транзистор с изолированным затвором  состоит из пластины полупроводника (подложки) с относительно высоким удельным сопротивлением, в которой созданы две области с противоположным типом электропроводности (рис. 2 ). На эти области нанесены металлические электроды - исток и сток. Поверхность полупроводника  между истоком и стоком покрыта тонким  слоем диэлектрика (обычно слоем оксида кремния). На слой диэлектрика  нанесен металлический  электрод - затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным  затвором часто называют МДП- транзисторами или МОП- транзисторами (металл - оксид- полупроводник).    

   Существуют две разновидности МДП-транзисторов  с индуцированным и со встроенным каналами.

   В МДП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока и, следовательно, заметный ток стока  появляются только при определенной полярности  и при определенном значении напряжения на затворе относительно истока (отрицательного при  р-канале и положительного при п-канале). Это напряжение называют пороговым  (UЗИ.пор ). Так как появление и рост проводимости индуцированного канала связаны с обогащением его основными носителями заряда, то считают, что канал работает в режиме обогащения.

   В МДП - транзисторах  со встроенным каналом проводящий канал, изготавливается технологическим путем, образуется при напряжении на затворе равном нулю. Током стока можно управлять, изменяя значение и полярность напряжения между затвором и истоком. При некотором положительном напряжении затвор - исток транзистора с р - каналом или отрицательном напряжении транзистора с n -каналом ток в цепи стока прекращается. Это напряжение  называют напряжением отсечки (UЗИ.отс ). МДП - транзистор со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала основными носителями заряда.

Схемы включения полевого транзистора.

  В зависимости от того, какой из электродов полевого транзистора подключен к общему выводу, различают схемы: с общим истоком и входом затвор; с общим стоком и входом на затвор; с общим затвором и входом на исток. Схемы включения полевого транзистора показаны на рис. 3.

    Параметры полевого транзистора.

  Входная проводимость определяется проводимостью участка затвор - исток уЗИ.  = у11 + у12 ; выходная проводимость - проводимость участка сток - исток уСИ   = у22  + у21 ; функции передачи - крутизной вольт-амперной характеристики  S = у21 - у12 ; функция обратной передачи - проходной проводимостью уЗС = у12 . Эти параметры применяются за первичные параметры полевого транзистора, используемого в качестве четырехполюсника. Если первичные параметры четырехполюсника для схем с общим истоком определены, то можно рассчитать параметры для любой другой схемы включения полевого транзистора.

    Начальный ток стока IС.нач - ток стока при напряжении между затвором и истоком, равном нулю и напряжении  на стоке, равном или превышающим напряжение насыщения. Остаточный ток стока IС.ост - ток стока при напряжении между затвором и истоком, превышающем напряжение отсечки. Ток утечки затвора IЗ.ут - ток затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой. Обратный ток перехода затвор - сток  IЗСО - ток, протекающий в цепи затвор - сток при заданном обратном напряжении между затвором и стоком и разомкнутыми остальными выводами. Обратный ток перехода затвор - исток  I ЗИО - ток, протекающий в цепи затвор - исток при заданном обратном  напряжении между затвором и истоком и разомкнутыми остальными выводами.

    Напряжение отсечки полевого транзистора UЗИ.отс - напряжение   между затвором и истоком транзистора с р -п переходом или изолированным затвором, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения. Пороговое напряжение полевого транзистора  UЗИ.пор   - напряжение между затвором  и истоком транзистора с изолированным затвором, работающего в режиме обогащения, при котором ток стока достигает заданного низкого значения.

    Крутизна характеристик полевого транзистора S - отношение изменения тока  стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора  в схеме с общим истоком.

    Коэффициент усиления по мощности  Кур - отношение мощности на выходе полевого транзистора к мощности на входе при определенной частоте и схеме включения.

    Частотные свойства.

    Частотные свойства полевых транзисторов определяются постоянной времени  RC -  цепи  затвора. Поскольку входная емкость  С11и у транзисторов с  р-п  переходом велика (десятки пикофарад), их применение в усилительных каскадах с большим входным сопротивлением возможно в диапазоне частот, ре превышающих сотен килогерц - единиц мегагерц.

Рис. 7. Вольт – амперные характеристики полевого транзистора со встроеным

каналом n- типа:  а – стоковые;  б – стоко – затворные.

    Вольт - амперные характеристики полевых транзисторов устанавливают зависимость тока стока  I C от одного из напряжений UСИ или UЗИ при фиксированной величине второго.

   В МДП - транзисторе с индуцированным каналом  с подложкой  р-типа при UЗИ = 0 канал п-типа может находиться в проводящем состоянии. При некотором пороговом напряжении UЗИ.ПОР < 0 за счет обеднения канала основными носителями проводимость его значительно уменьшается. Статические стоковые характеристики в этом случае будут иметь вид , изображенный на рис.  7 , а стоко - затворная характеристика пересекает ось ординат  в точке со значением  тока   IC.НАЧ.

    Особенностью МДП - транзистора с индуцированным каналом п - типа является возможность работы без постоянного напряжения смещения             ( U ЗИ = 0) в режиме как обеднения, так и  обогащения канала  основными носителями заряда. МДП - транзистор с встроенным  каналом имеет вольт-амперные характеристики , аналогичные изображенным  на рис.  7 .    

studfile.net

ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ ПОЛЕВЫХ ТРАНЗИСТОРОВ

Ток стока ПТ зависит как от значения, так и от полярности напряжений сток - исток и затвор - исток. При постоянном смещении на затворе увеличение напряжения на стоке от нуля вызывает резкое возрастание тока стока, которое продолжается до наступления насыщения тока стока. Затем ток устанавливается и остаётся относительно постоянным. Эта зависимость показана на рис. 3, а для типичного полевого прибора с p-n-переходом. Для сравнения на рис. 3, б приведены коллекторные характеристики биполярного транзистора.

Характеристики транзисторов обоих видов похожи друг на друга, за исключением того, что у биполярного транзистора перегиб характеристик происходит при значительно более низких напряжениях на коллекторе.

На выходной характеристике ПТ можно выделить две характерные области (рис. 4). При малых напряжениях сток - исток (область АВ) сопротивление канала имеет омический характер, и ток может протекать в обоих направлениях. В этом состоит отличие полевых транзисторов от электронных ламп, в которых поток электронов всегда имеет одно направление - от катода к аноду. Рабочая область АВ выходной характеристики ПТ используется в том случае, когда полевой транзистор применяется в схеме в качестве переменного сопротивления, управляемого напряжением (аттенюаторы, регуляторы АРУ).

Рис. 3. Выходные характеристики транзисторов, а - ПТ с p-n-переходом; б - биполярного транзистора.

В области насыщения тока (область ВС на рис. 4) часть канала обеднена носителями заряда из-за влияния электрического поля между затвором и каналом, благодаря чему сопротивление канала становится значительным. Дальнейшее увеличение напряжения между стоком и истоком в этой области вызывает относительно небольшое изменение тока стока, который практически будет зависеть только от напряжения на затворе [1].

Рис. 4. Выходная характеристика ПТ при Uз.и=0

Характерной особенностью полевых транзисторов является то, что напряжение, соответствующее точке B характеристики (точка перегиба характеристики на рис. 4, после которой идёт область насыщения), при напряжении на затворе, равном нулю, численно равно напряжению отсечки и называется напряжением насыщения.

Входные характеристики полевого транзистора существенно отличаются от характеристик биполярного транзистора. Входные характеристики последнего подобны характеристикам открытого полупроводникового диода, в то время как у полевого транзистора они подобны характеристикам запертого диода (смещённого в обратном направлении). Поэтому ток затвора очень мал. Он равен нескольким наноамперам (для ПТ с управляющим p-n-переходом) при температуре 25°С и экспоненциально зависит от температуры.

Рис. 5. Проходные характеристики ПТ при различной температуре.

Проходная характеристика, показывающая зависимость тока стока от напряжения на затворе, изображена на рис. 5. С достаточной для практических расчётов точностью проходная характеристика полевого транзистора определяется выражением (1), т. е. носит квадратичный характер. Эта особенность проходной характеристики используется в преобразователях частоты для уменьшения перекрёстной модуляции и помех от гармоник гетеродина.

PREV CONTEXT NEXT

zpostbox.ru

10. Полевые транзисторы. Изменение сечения канала проводимости от напряжения между затвором и истоком. Вах:

Полевой транзисторполупроводниковыйприбор, в которомтокизменяется в результате действия «перпендикулярного» токуэлектрического поля, создаваемого напряжением на затворе.

Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).

По способу создания канала различают полевые транзисторы с затвором в виде управляющего р-n- перехода и с изолированным затвором (МДП - или МОП - транзисторы): встроенным каналом и индуцированным каналом.

В зависимости от проводимости канала полевые транзисторы делятся на: полевые транзисторы с каналом р- типа и n- типа. Канал р- типа обладает дырочной проводимостью, а n- типа - электронной.

Изменение сечения канала проводимости от напряжения между затвором и истоком:

Управляющее напряжение прикладывается между затвором и ис-

током. От напряжения между затвором и истоком зависит проводимость кана-

ла, следовательно, и величина тока. Таким образом, полевой транзистор можно

рассматривать как источник тока, управляемый напряжением затвор-исток. Ес-

ли амплитуда изменения управляющего сигнала достаточно велика, сопротив-

ление канала может изменяться в очень больших пределах. В этом случае поле-

вой транзистор можно использовать в качестве электронного ключа.

Полевой транзистор с управляющим p-n переходом описывается тремя статическими характеристиками:

выходными (стоковые)характеристикамиIс=f(Uси) приUзи=const;

сток-затворнымихарактеристиками (характеристики передачи)Iс=f(Uзи) приUси=const;

входными (затворные)характеристикамиIз=f(Uзи) приUси=const;

При подаче на затвор обратного напряжения и при увеличении этого напряжения по абсолютному значению уменьшается начальное поперечное сечение канала. Это приводит к изменению наклона начальных участков стоковых характеристик, что соответствует большим начальным статическим сопротивлениям канала.

Геометрическое место точек, соответствующих условному перекрытию канала и наступлению режима насыщения.

В крутой области стоковых характеристик транзистор можно использовать как электрически управляемое сопротивление. Пологий участок характеристик является рабочим при применении транзистора в усилительных устройствах.

При увеличении обратного напряжения на p-n переходе уменьшается сечение канала, что приводит к уменьшению тока стока. При = через канал протекает обратный ток стока малой величины, и это может быть использовано для ориентировочного определения напряжения отсечки.

Характеристика передачи может быть получена экспериментально или с помощью перестройки стоковых характеристик.

Входная (затворная) характеристика полевого транзистора с управляющим p-n переходом представляет собой обратную ветвь вольтамперной характеристики p-n перехода. Изменение напряжения влияет на распределение поля в канале, что вызывает изменения тока затвора. Наибольшего своего значения, которое называется током утечки, ток затвора достигает при условии короткого замыкания выводов истока и стока, однако оно очень мало и им часто пренебрегают.

ВАХ:

Ток стока ПТ зависит как от значения, так и от полярности напряжений сток - исток и затвор - исток. При постоянном смещении на затворе увеличение напряжения на стоке от нуля вызывает резкое возрастание тока стока, которое продолжается до наступления насыщения тока стока. Затем ток устанавливается и остаётся относительно постоянным. Эта зависимость показана на рис. 3, а для типичного полевого прибора с p-n-переходом. Для сравнения на рис. 3, б приведены коллекторные характеристики биполярного транзистора.

Характеристики транзисторов обоих видов похожи друг на друга, за исключением того, что у биполярного транзистора перегиб характеристик происходит при значительно более низких напряжениях на коллекторе.

На выходной характеристике ПТ можно выделить две характерные области (рис. 4). При малых напряжениях сток - исток (область АВ) сопротивление канала имеет омический характер, и ток может протекать в обоих направлениях. В этом состоит отличие полевых транзисторов от электронных ламп, в которых поток электронов всегда имеет одно направление - от катода к аноду. Рабочая область АВ выходной характеристики ПТ используется в том случае, когда полевой транзистор применяется в схеме в качестве переменного сопротивления, управляемого напряжением (аттенюаторы, регуляторы АРУ).

Рис. 3. Выходные характеристики транзисторов, а - ПТ с p-n-переходом; б - биполярного транзистора.

В области насыщения тока (область ВС на рис. 4) часть канала обеднена носителями заряда из-за влияния электрического поля между затвором и каналом, благодаря чему сопротивление канала становится значительным. Дальнейшее увеличение напряжения между стоком и истоком в этой области вызывает относительно небольшое изменение тока стока, который практически будет зависеть только от напряжения на затворе [1].

Рис. 4. Выходная характеристика ПТ при Uз.и=0

Характерной особенностью полевых транзисторов является то, что напряжение, соответствующее точке B характеристики (точка перегиба характеристики на рис. 4, после которой идёт область насыщения), при напряжении на затворе, равном нулю, численно равно напряжению отсечки и называется напряжением насыщения.

Входные характеристики полевого транзистора существенно отличаются от характеристик биполярного транзистора. Входные характеристики последнего подобны характеристикам открытого полупроводникового диода, в то время как у полевого транзистора они подобны характеристикам запертого диода (смещённого в обратном направлении). Поэтому ток затвора очень мал. Он равен нескольким наноамперам (для ПТ с управляющим p-n-переходом) при температуре 25°С и экспоненциально зависит от температуры.

Рис. 5. Проходные характеристики ПТ при различной температуре.

Проходная характеристика, показывающая зависимость тока стока от напряжения на затворе, изображена на рис. 5. С достаточной для практических расчётов точностью проходная характеристика полевого транзистора определяется выражением (1), т. е. носит квадратичный характер. Эта особенность проходной характеристики используется в преобразователях частоты для уменьшения перекрёстной модуляции и помех от гармоник гетеродина.

studfile.net

Виды полевых транзисторов: МДП, схемы, характеристики ВАХ

рис. 1.97Полевые транзисторы с изолированным затвором.

В транзисторах этого типа затвор отделен от полупроводника слоем диэлектрика, в качестве которого в кремниевых приборах обычно используется двуокись кремния. Эти транзисторы обозначают аббревиатурой МОП (металл-окисел-полупроводник) и МДП (металл-диэлектрик-полупроводник). В англоязычной литературе их обычно обозначают аббревиатурой MOSFET или MISFET (Metal-Oxide (Insulator) —Semiconductor FET).

В свою очередь МДП-транзисторы делят на два типа.

В так называемых транзисторах со встроенным (собственным) каналом (транзистор обедненного типа) и до подачи напряжения на затвор имеется канал, соединяющий исток и сток.

В так называемых транзисторах с индуцированным каналом (транзистор обогащенного типа) указанный выше канал отсутствует.

МДП-транзисторы характеризуются очень большим входным сопротивлением. При работе с такими транзисторами надо предпринимать особые меры защиты от статического электричества. Например, при пайке все выводы необходимо закоротить.

МДП-транзистор со встроенным каналом.

Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p -типа. Дадим схематическое изображение структуры транзистора (рис. 1.97), условное графическое обозначение транзистора с каналом p-типа (рис. 1.98, а) и с каналом n-типа (рис. 1.98, б). Стрелка, как обычно, указывает направление от слоя p к слою n.

рис. 1.98

Рассматриваемый транзистор (см. рис. 1.97) может работать в двух режимах: обеднения и обогащения.

Режиму обеднения соответствует положительное напряжение uзи. При увеличении этого напряжения концентрация дырок в канале уменьшается (так как потенциал затвора больше потенциала истока), что приводит к уменьшению тока стока.

Если напряжение uзи больше напряжения отсечки, т. е. если u зи>uзиотс, то канал не существует и ток между истоком и стоком равен нулю. 

Режиму обогащения соответствует отрицательное напряжение uзи. При этом, чем больше модуль указанного напряжения, тем больше проводимость канала и тем больше ток стока.

Приведем схему включения транзистора (рис. 1.99). рис. 1.99

На ток стока влияет не только напряжение uзи, но и напряжение между подложкой и истоком uпи. Однако управление по затвору всегда предпочтительнее, так как при этом входные токи намного меньше. Кроме того, наличие напряжения на подложке уменьшает крутизну.

Подложка образует с истоком, стоком и каналом p-n-переход. При использовании транзистора необходимо следить за тем, чтобы напряжение на этом переходе не смещало его в прямом направлении. На практике подложку подключают к истоку (как показано на схеме) или к точке схемы, имеющей потенциал, больший потенциала истока (потенциал стока в приведенной выше схеме меньше потенциала истока).

Изобразим выходные характеристики МДП-транзистора (встроенный p-канал) типа КП201Л (рис. 1.100) и его стокозатворную характеристику (рис. 1.101). рис. 1.100 рис. 1.101

МДП-транзистор с индуцированным (наведенным) каналом.

Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p-типа. Дадим схематическое изображение структуры транзистора (рис. 1.102), условное графическое обозначение транзистора с индуцированным каналом p -типа (рис. 1.103, а) и каналом n-типа (рис. 1.103, б). рис. 1.102 рис. 1.103

При нулевом напряжении uзи канал отсутствует (рис. 1.102) и ток стока равен нулю. Транзистор может работать только в режиме обогащения, которому соответствует отрицательное напряжение uзи. При этом uиз > 0.Если выполняется неравенство uиз>u из порог, где u из порог — так называемое пороговое напряжение, то между истоком и стоком возникает канал p-типа, по которому может протекать ток.

Канал p-типа возникает из-за того, что концентрация дырок под затвором увеличивается, а концентрация электронов уменьшается, в результате чего концентрация дырок оказывается больше концентрации электронов.

Описанное явление изменения типа проводимости называют инверсией типа проводимости, а слой полупроводника, в котором оно имеет место (и который является каналом), — инверсным (инверсионным). Непосредственно под инверсным слоем образуется слой, обедненный подвижными носителями заряда. Инверсный слой значительно тоньше обедненного (толщина инверсного слоя 1 · 10 – 9…5 · 10– 9 м, а толщина обедненного слоя больше в 10 и более раз).

Изобразим схему включения транзистора (рис. 1.104), выходные характеристики (рис. 1.105) и стокозатворную характеристику (рис. 1.106) для МДП-транзистора с индуцированным p-каналом КП301Б. рис. 1.104 рис. 1.105

рис. 1.106Полезно отметить, что в пакете программ Micro-Cap II для моделирования полевых транзисторов всех типов используется одна и та же математическая модель (но, естественно, с различными параметрами).

pue8.ru

Характеристики и параметры полевого транзистора: схемы, вольт-амперные кривые

рис. 1.89Кратко охарактеризуем различные схемы включения полевого транзистора и рассмотрим его характеристики и параметры.

Схемы включения транзистора.

Для полевого транзистора, как и для биполярного, выделяют три схемы включения. Для полевого транзистора это схемы с общим затвором (ОЗ), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используются схемы с общим истоком.

Для понимания особенностей работы некоторого электронного устройства очень полезно уметь относить конкретное решение к той или иной схеме включения (если схема такова, что это в принципе возможно).

Моделирующие программы при замене транзистора математической моделью никак не учитывают способ включения транзистора. Важно понять, что если даже на стадии разработки математической модели имеет место ориентация на конкретную схему включения, то на стадии использования эта модель должна правильно моделировать транзистор во всех самых различных ситуациях.

При объяснении влияния напряжения uис на ширину p-n-перехода фактически использовалась схема с общим истоком (см. рис. 1.87) (Статья 1 Устройство и основные физические процессы). Рассмотрим характеристики, соответствующие этой схеме (что общепринято).

Так как в рабочем режиме iз = 0, iu ~ iс, входными характеристиками обычно не пользуются. Например, для транзистора КП10ЗЛ, подробно рассматриваемого ниже, для тока утечки затвора iз ут при t < 85°С выполняется условие iз ут< 2 мкА.

Изобразим схему с общим истоком (рис. 1.89).

Выходные (стоковые) характеристики.

Выходной характеристикой называют зависимость вида iс=f(uис)|uзи =const где f — некоторая функция.

Изобразим выходные характеристики для кремниевого транзистора типа КП10ЗЛ с p-n-переходом и каналом p-типа (рис. 1.90). рис. 1.90

Обратимся к характеристике, соответствующей условию uзи = 0. В так называемой линейной области (uис< 4 В) характеристика почти линейна (все характеристики этой области представляют собой почти прямые линии, веерообразно выходящие из начала координат). Она определяется сопротивлением канала. Транзистор, работающий в линейной области, можно использовать в качестве линейного управляемого сопротивления.

При uис = 3 В канал в области стока перекрывается. Дальнейшее увеличение напряжения приводит к очень незначительному росту тока ic, так как с увеличением напряжения область, в которой канал перекрыт (характеризующаяся очень большим удельным сопротивлением), расширяется. При этом сопротивление на постоянном токе промежутка исток-сток увеличивается, а ток ic практически не изменяется.

Ток стока в области насыщения при uзи= 0 и при заданном напряжении uис называют начальным током стока и обозначают через iс нач. Для рассматриваемых характеристик iс нач = 5 мА при uис= 10 В. Для транзистора типа КП10ЗЛ минимальное значение тока iс начравно 1,8 мА, а максимальное — 6,6 мА. При uис > 22 В возникает пробой p-n-перехода и начинается быстрый рост тока.

Теперь кратко опишем работу транзистора при различных напряжениях uзи. Чем больше заданное напряжение uзи , тем тоньше канал до подачи напряжения uис и тем ниже располагается характеристика.

Как легко заметить, в области стока напряжение на p-n-переходе равно сумме uзи+uис. Поэтому чем больше напряжение uзи , тем меньше напряжение uис, соответствующее началу пробоя.

Когда uзи= 3 В, канал оказывается перекрыт областью p-n-перехода уже до подачи напряжения uис . При этом до пробоя выполняется условие ic = 0. Таким образом,uзи отс = 3 В.Для рассматриваемого типа транзистора минимальное напряжение отсечки +2 В, а максимальное +5 В. Эти величины соответствуют условию ic = 10 мкА. Это так называемый остаточный ток стока, который обозначают через ic отс. Полевой транзистор характеризуется следующими предельными параметрами (смысл которых понятен из обозначений):uис макс,uзсмакс, Pмакc.

Для транзистора КП10ЗЛ uисмакс = 10 В,uзсмакс = 15 В, Pмакc = 120 мВт (все при t = 85°С).

Графический анализ схем с полевыми транзисторами.

Для лучшего уяснения принципа работы схем с полевыми транзисторами полезно провести графический анализ одной из них (рис. 1.91). рис. 1.91

Пусть Ес = 4 В; определим, в каких пределах будет изменяться напряжение uиспри изменении напряжения uзи от 0 до 2 В.

При графическом анализе используется тот же подход, который был использован при анализе схем с диодами и биполярными транзисторами. Для рассматриваемой схемы, в которой напряжение между затвором и истоком равно напряжению источника напряжения uзи, нет необходимости строить линию нагрузки для входной цепи. Линия нагрузки для выходной цепи задается выражением Ес =iс·Rс+uис Построим линию нагрузки на выходных характеристиках транзистора, представленных на рис. 1.92. рис. 1.92

Из рисунка следует, что при указанном выше изменении напряжения uзинапряжение uис будет изменяться в пределах от 1 до 2,6 В, что соответствует перемещению начальной рабочей точки от точки А до точки В. При этом ток стока будет изменяться от 1,5 до 0,7 мА.

Стокозатворные характеристики (характеристики передачи, передаточные, переходные, проходные характеристики). Стокозатворной характеристикой называют зависимость вида iс=f(uзи) |uис =const где f — некоторая функция.

Такие характеристики не дают принципиально новой информации по сравнению с выходными, но иногда более удобны для использования. Изобразим стокозатворные характеристики для транзистора КП10ЗЛ (рис. 1.93). рис. 1.93

Для некоторых транзисторов задается максимальное (по модулю) допустимое отрицательное напряжение uзи, например, для транзистора 2П103Д это напряжение не должно быть по одулю больше чем 0,5 В.

Параметры, характеризующие свойства транзистора усиливать напряжение.

Крутизна стокозатворной характеристики S (крутизна характеристики полевого транзистора):

S= |diс/duзи|uзи – заданное, uис =const Обычно задается u зи= 0. При этом для транзисторов рассматриваемого типа крутизна максимальная. Для КП10ЗЛS = 1,8…3,8 мА/В при u ис= 0 В, uзи= 0, t = 20°С.

Внутреннее дифференциальное сопротивление Rис диф (внутреннее сопротивление)

Rисдиф= (duис/ diс) |uис–заданное,uзи= const

Для КП10ЗЛ Rис диф = 25 кОм при u ис= 10 В,uзи=0. 

● Коэффициент усиления

M = (duис/ duзи) |uзи–заданное,iс= const

Можно заметить, что M =S· Rис диф

Для КП10ЗЛ при S = 2 мA/B и Rис диф = 25 кОм М = 2 (мА/В) · 25 кОм = 50.

 ● Инверсное включение транзистора.

Полевой транзистор, как и биполярный, может работать в инверсном режиме. При этом роль истока играет сток, а роль стока — исток.

Прямые (нормальные) характеристики могут отличаться от инверсных, так как области стока и истока различаются конструктивно и технологически.

 ● Частотные (динамические) свойства транзистора.

В полевом транзисторе в отличие от биполярного отсутствуют инжекция неосновных носителей и их перемещение по каналу, и поэтому не эти явления определяют динамические свойства. Инерционность полевого транзистора определяется в основном процессами перезаряда барьерной емкости p-n-перехода. Свое влияние оказывают также паразитные емкости между выводами и паразитные индуктивности выводов.

В справочных данных часто указывают значения следующих дифференциальных емкостей, которые перечислим ниже:

  • входная емкость Сзи — это емкость между затвором и истоком при коротком замыкании по переменному току выходной цепи;
  • проходная емкость Сзс — это емкость между затвором и стоком при разомкнутой по переменному току входной цепи;
  • выходная емкость Сис — это емкость между истоком и стоком при коротком замыкании по переменному току входной цепи.

Для транзистора КП10ЗЛ Сзи < 20 пФ, Сзс << 8 пФ при uис= 10 В и uзи= 0.

Крутизну S, как и коэффициент B биполярного транзистора, в ряде случаев представляют в форме комплексного числа S. При этом, как и для коэффициента B, определяют предельную частоту fпpед. Это та частота, на которой выполняется условие:

| Ś | = 1 / √2 ·Sпт где Sпт — значение S на постоянном токе.

Для транзистора КП103Л данные по fпpед в использованных справочниках отсутствуют, но известно, что его относят к транзисторам низкой частоты (предназначенным для работы на частотах до 3 МГц).

pue8.ru

Мощные полевые транзисторы-принцип работы, применение

Существует два главных основополагающих типа полевых (униполярных, управляемых напряжением) транзисторов, являющихся активными полупроводниковыми элементами, обладающими высокой мощностью – это n-канальные иp-канальные.

Первые из них применяются более часто и отличаются наибольшим диапазоном токов и напряжений. Кроме этих моделей производятся полевые транзисторы, управляемые сигналом логического уровня, они обладают ограничением по току и защелкой по напряжению.

Определение полевого транзистора

Транзистор полевого типа считается полупроводниковым прибором, в конструкции которого регулировка осуществляется измерением проводимости проводящего канала, благодаря использованию поперечного электрического поля.

Другими словами, он является источником тока, который управляется Uз-и. От параметра напряжения между затвором и истоком зависит проводимость канала. Помимо p–n – канальных транзисторов существует их разновидность с затвором из металла, который изолирован от канала кремниевым диэлектриком. Это МДП-транзисторы (металл – диэлектрик, (окисел) – проводник). Транзисторы с использованием окисела называются МОП-транзисторы.

Параметры, характеризующие полевой транзистор

  1. Ширина канала – расстояние между p-n-переходами W.
  2. Напряжение отсечки — напряжение на затворе при исчезновении каналов.
  3. Напряжение насыщения – с него начинается формирование пологой части ВАХ.
  4. Стоко-затворная ВАХ (вольт-амперная характеристика).

Мощный полевой транзистор

Рис. №1. Стоко-затворная ВАХ n-канального транзистора с

Ic= Icmax (IUзи / U0)2 , здесь Icmax стока.

  1. Крутизна определяется по формуле S = dIc / dUзи(мА/В),что является следствием увеличенияU рабочего стока, при этом крутизна полевого транзистора становится меньше.
  2. Внутреннее сопротивление транзистора (дифференциальное сопротивление) rcсоставляет в пологой части характеристики несколько МОм.
  3. Лавинный пробой p-n-переходов возможен после повышения напряжения области стока и истока, что считается причиной ограничения применения полевого транзистора относительноUc.
  4. Коэффициент усиления относительно напряжения µu= srспри уменьшении величины тока стока коэффициент µuповышается.
  5. Инерционность полевого транзистора обуславливается временем,отводимым на заряд барьерной емкости переходов затвора.
  6. Полевой транзистор обладает граничной частотой для улучшения своих качественных частотных свойств.

Проводимость транзистора

Существует две разновидности проводимости – электронная и дырочная, это означает, что в основе работы лежит использование электронов и дырок. Транзистор с электронной проводимостью относится к n-канальным устройствам, p-канальные транзисторы обладают дырочной проводимостью.

Отличие полевых униполярных транзисторов от биполярных заключается в наличии значительно высокого значения величины входного сопротивления. Потребление электроэнергии полевыми транзисторами отличается значительной экономией.

Небольшие габаритные размеры МОП-транзисторах позволяет занимать очень малую площадь в конструкции интегральной схемы, в противоположность биполярным аналогам. Благодаря этому достигается значительно уплотненная компоновка элементов в интегральных схемах. Технология производства интегральной схемы на МОП-транзисторах затрачивает намного меньшее количество операций, чем технология производства ИС с применением биполярного транзистора.

Структура полевого транзистора

Основополагающий принцип работы, на котором осуществляется действие полевого транзистора с использованием управляющего p-n-перехода основывается на изменении проводимости канала, которая возможна благодаря изменению поперечного сечения. Сток и исток включают напряжение полярности, при котором главные носители заряда (ими являются электроны в канале n-типа) движутся от истока к стоку. В свою очередь, между затвором и истоком включается отрицательное напряжение, управляющее запиранием p – n–переходом.

Мощный полевой транзистор

Рис. №2. Структуры (а) полевых транзисторов с управляющим pn-перехода и (б) структура транзистора с изолированным затвором.

При большем значении напряжения расширяется запирающий активный слой и канал становится уже. С уменьшением поперечного размера канала происходит увеличение сопротивления и уменьшение величины тока между стоком и истоком. Это действие позволяет управлять протеканием тока. При невысоком значении напряжения затвор  — исток происходит перекрытие канала запирающим слоем, что снижает проводимость канала. Ширина канала варьируется от нулевого значения  до отрицательных величин, иначе говоря, p-n-переходы затвора сдвигаются в обратном направлении, сопротивление увеличивается.

Напряжение на затворе после исчезновения канала и смыкании  p-n-перехода, определяется, как напряжение отсечки U0– это величина считается одной из основополагающих для всех  разновидностей полевых транзисторов.

Мощный полевой транзистор

Рис. №3. Структура полевого транзистора. Канал, расположенный между электродами стоком и истоком сформирован из слабообогащенного полупроводника n-типа.

 

Сфера использования полевых транзисторов

Полевой транзистор является устройством, рассчитанным на большую мощность, характерным в конструкции регуляторов, конвертеров, драйверов, электродвигателей, реле и мощных биполярных транзисторов. Они применяются в конструкции зарядных устройств, автоэлектроники, устройствах управления температурным режимом, широкополосных и малошумящих усилителях в схемах зарядочувствительных предусилителей и прочее.  Для полевых транзисторов характерно наличие высокого входного сопротивления. Управление полевым транзистором производится непосредственно от микросхемы, без применения добавочных усиливающих каскадов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

elektronchic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о