Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Полная, активная и реактивная мощность

Полная, активная и реактивная мощность

Угол сдвига фаз напряжения и тока φ=0°

 В цепях переменного синусоидального тока, по причине постоянного изменения значения напряжения и тока, мощность нельзя вычислить путем простого перемножения напряжения на ток. Поэтому, выделяют сразу три вида электрической мощности: активную, реактивную и полную.
Активная мощность в цепях синусоидального тока
Единица измерения — ватт (обозначение: Вт; международное обозначение: W).


 где P – активная мощность, Вт;
  U – среднеквадратическое напряжение, В;
  I – среднеквадратический ток, А;
  φ – угол сдвига фаз напряжения и тока, град.
Активная мощность определяет ту часть электрической энергии, которая используется непосредственно на выполнение полезной работы.

Реактивная мощность в цепях синусоидального тока
Единица измерения — вольт-ампер реактивный (обозначение: вар; международное обозначение: var)


 где Q – реактивная мощность, вар;
  U – среднеквадратическое напряжение, В;
  I – среднеквадратический ток, А;
  φ – угол сдвига фаз напряжения и тока, град.
Реактивная мощность определяет ту часть электрической энергии, которая бесполезно расходуется в электрических сетях.

Полная мощность в цепях синусоидального тока
Единица полной электрической мощности — вольт-ампер (обозначение: ВА; международное обозначение: VA)


 где S – полная мощность, ВА;
  P – активная мощность, Вт;
  

Q – реактивная мощность, вар;
Полная мощность соответствует всей энергии, которая расходуется в электрических сетях.

Ниже приводится схема мониторинга работы мощных компрессоров с управлением на контроллерах Lic Control
Данная система постоянно производит измерение потребляемых компрессорами токов и электрической мощности. Также учитывается соотношение активной и реактивной мощности. На основании полученных данных и информации о давлении в главном ресивере осуществляется включение/выключение компрессоров в соответствии с программой оптимизации расходов электроэнергии и равномерности загрузки компрессоров.
Текущая информация о давлении, включенных компрессорах, полной, активной и реактивной мощности через WEB интерфейс отображается на компьютере в диспетчерской или любом другом компьютере, смартфоне или планшете, который подключен в одну сеть с контроллером.

Если вы не нашли ответ на свой вопрос, задайте его нам On-Line: здесь

активная, реактивная, полная (P, Q, S), коэффициент мощности (PF)

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

 

 

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

 

 

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок – см. приложения ниже.

 

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В. А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P, единица измерения: Ватт
  2. Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина

Эти параметры связаны соотношениями:  S*S=P*P+Q*Q,   cosФ=k=P/S

Также cosФ называется коэффициентом мощности (

Power FactorPF)

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) – в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

 

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. – М.: Издательский центр “Академия”, 2004.

2. Немцов М. В. Электротехника и электроника. – М.: Издательский центр “Академия”, 2007.

3. Частоедов Л. А. Электротехника. – М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

 


Приложение

 

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

Трансформаторы питания номинальной выходной мощностью 25-60 ВА
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП)

 

http://metz. by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

 


АОСН-2-220-82
Латр 1.25 АОСН-4-220-82
Латр 2.5 АОСН-8-220-82





АОСН-20-220



АОМН-40-220




http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

 

 

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www. elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)

 

http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

 

 

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. – в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности).

http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР)

 

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

 

Технические данные разрядных ламп содержат активную мощность (кВт) и cosФ
http://www. mscom.ru/katalog.php?num=38 (лампы ДРЛ)

 

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

 

 

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Если нагрузка имеет низкий коэффициент мощности (менее 0.8 … 1.0), то в линии питания циркулируют большие реактивные токи (и мощности). Это паразитное явление приводит к повышению потерь в проводах линии (нагрев и др.), нарушению режима работы источников (генераторов) и трансформаторов сети, а также др. проблемам.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

 

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др. ) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.

 

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

 

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.

 

Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

– (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

 

Дополнение 6

В различных областях техники мощность может быть либо полезной, либо паразитной НЕЗАВИСИМО от того активная она или реактивная. Например, необходимо различать активную полезную мощность рассеиваемую на рабочей нагрузке и активную паразитную мощность рассеиваемую в линии электропередачи. Так, например, в электротехнике при расчете активной и реактивной мощностей наиболее часто активная мощность является полезной мощностью, передаваемой в нагрузку и является реальной (не мнимой) величиной. А в электронике при расчёте конденсаторов или расчёте самих линий передач активная мощность является паразитной мощностью, теряемой на разогрев конденсатора (или линии) и является мнимой величиной. Причём, деление на мнимые и немнимые величины производится только для удобства рассчётов. На самом деле, все физические величины конечно реальные.

 

 

Дополнительные вопросы

 

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т. д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными [6].

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e’+ie”
  4. Магнитная проницаемость m=m’+im”
  5. и др.

 

 

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

 

 

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример [5] реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

 

 

 

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

 

 

 


См. дополнительную литературу, например:

 

[1]. Евдокимов Ф. Е. Теоретические основы электротехники. – М.: Издательский центр “Академия”, 2004.

[2]. Немцов М. В. Электротехника и электроника. – М.: Издательский центр “Академия”, 2007.

[3]. Частоедов Л. А. Электротехника. – М.: Высшая школа, 1989.

[4]. AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

[5]. Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

[6]. Международная система единиц, СИ, см напр. ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН

Активная, реактивная и кажущаяся мощность

Различные формы электрической мощности-

Активная мощность, реактивная мощность и кажущаяся мощность представляют собой различные формы электрической мощности, и они проявляются, когда электрическая мощность подается на индуктивную нагрузку. Происходит это из-за коэффициента мощности .

Сначала давайте разберемся в значении этих различных мощностей –

Активная мощность – Активная мощность – это мощность, которая фактически используется нагрузкой. Обозначается цифрой Вт или кВт.

Реактивная мощность – Реактивная мощность – это мощность, которая не используется (или теряется) нагрузкой, но добавляется к мощности, потребляемой нагрузкой. Обозначается ВАр или КВАр.

Полная мощность – Полная мощность – это мощность, подаваемая на нагрузку, которая включает как активную, так и реактивную мощность. Обозначается ВА или кВА.

На картинке выше изображен стакан жидкости с пеной (это может быть любой холодный напиток), где жидкость является основным напитком, который следует употреблять, а пена не является фактическим напитком, но она занимает место и образует стакан полный. Теперь, если мы сравним его с мощностью, подаваемой на индуктивную нагрузку, где жидкость представляет собой активную мощность, пена представляет собой реактивную мощность, а полное стекло (жидкость + пена) представляет собой полную мощность.

Следовательно, с точки зрения электрической мощности, мы можем сказать, что реактивная мощность – это потеря мощности, которая не используется нагрузкой, но является частью полной мощности (полной мощности), подаваемой на нагрузку. Поэтому очень важно избегать реактивной мощности в системе. Но при индуктивных нагрузках это практически невозможно, поэтому можно было бы избежать реактивной мощности, улучшив коэффициент мощности.

Технически это можно объяснить с помощью векторной диаграммы, приведенной ниже. Существует соотношение между активной, реактивной и полной мощностью, которое приведено ниже –

Примечание – Для опережающего тока треугольник мощности становится обратным. Эта характеристика тока помогает улучшить коэффициент мощности. Когда устройство с опережающим коэффициентом мощности подключается параллельно с нагрузкой, отстающий коэффициент мощности частично нейтрализуется, таким образом, коэффициент мощности улучшается.

Активная, реактивная и полная мощность в цепях переменного и постоянного тока

Мощность в цепи постоянного тока –

В цепи постоянного тока существует только один тип мощности, используемой нагрузкой, поскольку существует нет понятия коэффициента мощности (или разности фаз между напряжением и током). Мощность в цепи постоянного тока указана ниже-

P = V * I (где P = активная/реальная мощность, V = напряжение, I = ток). Мощность измеряется в ваттах (или Вт)

Мощность в цепи переменного тока –

В цепи переменного тока из-за коэффициента мощности – учитываются активная мощность, реактивная мощность, полная мощность.

Active Power

P = V * I COS Ø …… однофазная мощность

P = g3 * V * I COS Ø …0005

(где P = активная/реальная мощность, V = линейное напряжение, I = линейный ток, CosØ = коэффициент мощности). Мощность измеряется в ваттах (или W)

Реактивная мощность

Q = V * I SIN Ø …… мощность однофазной мощности

Q = g3 * В * I SIN Ø ……Трехфазная мощность

(где Q = реактивная мощность, V = линейное напряжение, I = линейный ток, SineØ = разность фаз между напряжением и током). Мощность измеряется в ВАр (или реактивных вольт-амперах)

Полная мощность

Полная мощность (включая активную и реактивную мощность), формула которой приведена ниже –

S = V * I ………….. Однофазная мощность

S =   Г3 * В * I  ………. Трехфазная мощность

(где S = полная мощность, V = линейное напряжение, I = линейный ток. Мощность измеряется в ВА (или вольтамперах).

Часто задаваемые вопросы (FAQ) по активной мощности, реактивной мощности и полная мощность –

В1) В чем разница между активной и реактивной мощностью?

Ответ) Активная мощность — это мощность, которая фактически используется нагрузкой, а реактивная мощность — это мощность, потребляемая нагрузкой (не используемая нагрузкой из-за индуктивной нагрузки).

Q2) Какие альтернативные слова используются для реактивной мощности?

Ответ) Альтернативные слова реактивной мощности: безваттная мощность, отработанная мощность, бесполезная мощность.

Q3) Какие альтернативные слова используются для активной мощности?

Ответ) Альтернативные слова реактивной мощности: Реальная мощность, Реальная мощность, Полная мощность в ваттах, Полная мощность.

Активная, реактивная и полная мощность

Многие практические схемы содержат комбинацию резистивных, индуктивных и емкостных элементов. Эти элементы вызывают фазовый сдвиг между параметрами электропитания, такими как напряжение и ток.

Из-за поведения напряжения и тока, особенно при воздействии этих компонентов, величина мощности принимает различные формы.

В цепях переменного тока амплитуды напряжения и тока постоянно изменяются с течением времени. Поскольку мощность представляет собой произведение напряжения на ток, она будет максимальной, когда токи и напряжения совпадают друг с другом.

Это означает, что нулевая и максимальная точки на кривых тока и напряжения возникают одновременно. Это можно назвать полезной мощностью.

В случае элементов катушки индуктивности или конденсатора существует 90 0 фазовый сдвиг между напряжением и током. Таким образом, мощность будет иметь нулевое значение каждый раз, когда либо напряжение, либо ток имеют нулевое значение.

Это нежелательное состояние, поскольку на нагрузке не выполняется работа, даже если источник вырабатывает энергию. Эта мощность называется реактивной мощностью. Кратко обсудим эти формы мощности в электрических цепях переменного тока.

Описание

Мощность в цепях переменного тока

Мощность в любой электрической цепи можно получить путем умножения значений напряжения и силы тока в этой цепи. Это применимо как для цепей постоянного, так и переменного тока.

т. е. мощность = (значение тока) x (значение напряжения)

P = V x I

Мощность измеряется в ваттах. В цепях постоянного тока и чистых цепях переменного тока без каких-либо нелинейных компонентов формы сигналов тока и напряжения находятся «в фазе».

Таким образом, мощность в любой момент времени в этой цепи получается путем умножения напряжения и тока. Однако в случае цепей переменного тока это будет не так (выше упоминалось о наличии фазового сдвига).

Рассмотрим описанную выше цепь, в которой переменный ток подается на нагрузку. Напряжения и токи в цепи даны как

v = Vm sin ωt ⇒ v = √2 V sin ωt

i = Im sin ωt ⇒ i = √2 I sin (ωt ± ϕ)

Где V (= Vm/√2) и I (= Im /√2) — среднеквадратичное значение приложенного напряжения и тока, протекающего по цепи соответственно. Φ – разность фаз между напряжением и током, где знак + указывает на опережающий фазовый угол, а отрицательный указывает на отстающий фазовый угол.

Тогда мгновенная мощность, отдаваемая в нагрузку источником, определяется выражением

p = vi = 2 VI sin wt sin (ωt ± ϕ)

= VI (cos ϕ – cos (2ωt ± ϕ)

p = VI cos ϕ (1 – cos 2wt) ± VI sin ϕ sin2wt

Приведенное выше уравнение мощности состоит из двух членов, а именно

  1. Член пропорциональный к VI cos ϕ, который пульсирует вокруг среднего значения VI cos ϕ
  2. Член, пропорциональный VI sin ϕ, пульсирующий с удвоенной частотой питания, дающий в среднем нулевое значение за период.

Итак, в цепях переменного тока есть 3 формы мощности. Это

  1. Активная мощность или Истинная мощность или Реальная мощность
  2. Реактивная мощность
  3. Полная мощность

Активная мощность

Фактическое количество мощности, рассеиваемой или выполняющей полезную работу в цепи, называется активной, истинной или реальной мощностью. Измеряется в ваттах, практически измеряется в кВ (киловаттах) и МВт (мегаваттах) в энергосистемах.

Обозначается буквой P (заглавная) и равен среднему значению p = VI cos ϕ. Это желаемый результат электрической системы, которая управляет цепью или нагрузкой.

P = VI cos ϕ

Реактивная мощность

Среднее значение второго члена в полученном выше выражении равно нулю, поэтому мощность, вносимая этим членом, равна нулю. Составляющая, пропорциональная VI sin ϕ, называется реактивной мощностью и обозначается буквой Q.

Хотя это и мощность, но не измеряемая в ваттах, так как это неактивная мощность и, следовательно, она измеряется в Вольт-ампер-реактивная (ВАР). Значение этой реактивной мощности может быть отрицательным или положительным в зависимости от коэффициента мощности нагрузки.

Это связано с тем, что индуктивная нагрузка потребляет реактивную мощность, а емкостная нагрузка генерирует реактивную мощность.

Q = VI sin ϕ

Значение реактивной мощности

Реактивная мощность является одной из составляющих общей мощности, которые перемещаются туда и обратно в цепи или линии. Его можно назвать скоростью изменения энергии во времени, которая продолжает течь от источника к реактивным компонентам в течение положительного полупериода и обратно к компонентам от источника во время отрицательного цикла. Поэтому он никогда не потребляется нагрузкой.

В обычном смысле эта фиктивная мощность вовсе не мощность, а лишь степенная мера реактивной составляющей тока. При наличии избыточной реактивной мощности коэффициент мощности значительно снижается. Такой низкий коэффициент мощности нежелателен с точки зрения эффективности работы и эксплуатационных расходов.

Кроме того, эта мощность вызывает потребление дополнительного тока от источника питания, что приводит к дополнительным потерям и увеличению мощности оборудования. Вот почему эту мощность в шутку называют холестерином линий электропередач.

Чтобы свести к минимуму потери и увеличить мощность имеющегося оборудования, коммунальные предприятия используют методы компенсации VAR или оборудование для коррекции коэффициента мощности. Как правило, эти методы реактивной компенсации реализуются на стороне нагрузки.

Однако эта реактивная мощность полезна для создания необходимых магнитных полей для работы индуктивных устройств, таких как трансформаторы, двигатели переменного тока и т. д. Она также помогает регулировать напряжение в мощных механизмах электропитания.

Полная мощность

Комплексная комбинация истинной или активной мощности и реактивной мощности называется полной мощностью. Без привязки к какому-либо фазовому углу произведение напряжения и тока дает полную мощность. Полная мощность полезна для оценки силового оборудования.

Его также можно выразить как квадрат тока, умноженный на импеданс цепи. Обозначается буквой S и измеряется в вольт-амперах (ВА), практические единицы включают кВА (киловольт-ампер) и МВА (мегавольт-ампер).

Полная мощность = среднеквадратичное напряжение × среднеквадратичное значение тока

Полная мощность, S = V × I

В комплексной форме, S = V I*

S = V ∠0 0 I ∠ ϕ (для тока отстающей нагрузки)

S = V I ∠ ϕ

S = V I cos ϕ + jV I sin ϕ

S = P + jQ

Или S = ​​I 2 Z

Мощный треугольник

Соотношение между активной и реактивной мощностью может быть выражен путем представления величин в виде векторов, что также называется методом треугольника мощности, как показано ниже. На этой векторной диаграмме напряжение рассматривается как опорный вектор. Диаграмма векторов напряжения и тока является основой для формирования треугольника мощности.

На рисунке (a) ток отстает от приложенного напряжения на угол ϕ. Горизонтальная составляющая тока равна I cos ϕ, а вертикальная составляющая тока равна I sin ϕ. Если каждый вектор тока умножить на напряжение V, получится треугольник мощности, как показано на рисунке (b).

В активную мощность входит составляющая I cos ϕ, совпадающая по фазе с напряжением, в то время как реактивная мощность создается квадратурной составляющей.

Таким образом, полная мощность или гипотенуза треугольника получается путем векторного объединения реальной и реактивной мощностей.

По теореме Пифагора сумма квадратов двух соседних сторон (активная мощность и реактивная мощность) равна квадрату диагонали (полной мощности). i.e.,

(Apparent power) 2 = (Real Power) 2

S 2 = P 2 + Q 2

S = √((Q 2 + P 2 ))

Где

S = полная мощность, измеренная в киловольт-амперах, кВА

Q = реактивная мощность, измеренная в киловольт-амперах реактивная, кВАр

P = активная мощность, измеренная в киловаттах, кВт

С точки зрения резистивных, индуктивных и импедансных элементов формы мощности могут быть выражены как

Активная мощность = P = I 2 R

Реактивная мощность = Q = I 2 X

Полная мощность = S = I 2 Z

Где

X — индуктивность,

 Z — импеданс.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *