Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Генератор переменного тока: устройство, виды, выбор

Один из вариантов обеспечения электропитания — генератор переменного тока. Эта установка может быть как основным вариантом, так и только на время пропадания основного источника питания. 

Содержание статьи

  • 1 Что такое генератор тока
  • 2 Устройство и принцип работы
  • 3 Виды бытовых генераторов
    • 3.1 Синхронные и асинхронные
    • 3.2 Инверторный или нет
    • 3.3 Количество фаз и топливо для первичного двигателя
  • 4 Генератор переменного тока: бензин или дизель?
    • 4.1 Когда лучше выбрать бензиновый
    • 4.2 Чем хороши дизельные
  • 5 Опции и дополнительные возможности
  • 6 Особенности установки генератора

Что такое генератор тока

Устройство, преобразующее механическую энергию в электрическую, называют генератором тока. Они бывают переменного и постоянного тока. Устройства, вырабатывающие постоянный ток, более сложны в исполнении и менее надёжны.

Тоже как вариант))

С появлением полупроводниковых приборов, которые позволяют выпрямить переменный ток, по большей части всё равно использовался генератор переменного тока. Если необходим постоянный ток, на выходе источника переменного тока ставят выпрямитель, который формирует электропитание требуемого типа и уровня.

Устройство и принцип работы

Понять, как происходит такое преобразование, можно глядя на простейшую модель генератора. Его работа основана на принципе возникновения ЭДС — электродвижущей силы. Коротко сформулировать суть этого явления можно так, если замкнутая рамка пересекает магнитное поле, в ней возникает (наводится) электрический ток. Чтобы «снять» ток с рамки, используют специальное устройство ‒ щеточный узел. На концах рамки сделаны кольца, которые соприкасаются с токосъёмными контактами (щетками). Щетки, за счет силы упругости пружин, плотно прилегают к кольцам, обеспечивая контакт. К щеткам припаяны провода, по которым далее в устройство и передаётся ток.

Генератор переменного тока: устройство и принцип действия

Как получается переменное напряжение? Представьте себе, рамка вращается, то одной, то другой стороной приближаясь к полюсам (положительному S и отрицательному N). Чем ближе к полюсу, тем сильнее наводимое поле (больше сила тока), чем дальше ‒ тем меньше. Соответственно, на контактных кольцах имеем плавно изменяющуюся силу тока. Она то близка к нулю (когда рамка находится дальше всего), то подходит к максимуму. Таким образом, получаем на выходе ток синусоидальной формы.

Таким образом получаем на выходе генератора ток синусоидальной формы

Те же самые процессы происходят, если прямоугольную рамку закрепить неподвижно, а внутри нее вращать магнитное поле. Ток также имеет синусоидальную форму, просто имеем два типа установок ‒ с неподвижным статором и с неподвижным ротором.

Генератор постоянного тока устроен точно также и отличается только устройство снятия тока. К рамке прикреплены два полукольца, так что щетки снимают ток попеременно, то с одного конца рамки, то с другого. В результате на выходе имеем положительные полуволны, которые близки к постоянному току.

Виды бытовых генераторов

Это была теория, а теперь переходим к практике. Генераторы электрического тока нужны обычно для обеспечения питанием электрооборудования. Существуют две ситуации:

  • Электрогенератор нужен на случай пропадания сети.
  • Как основной источник питания.

Простейшие генераторы постоянного и переменного тока: устройство и принцип работы

Для обоих случаев логика выбора похожа, но имеет свои особенности. Если генератор нужен для постоянной работы, на первое место выходит расход топлива и надёжность. Также стоит обратить внимание на «громкость» работы, ёмкость бака для топлива.

Для кратковременного включения на случай пропадания питания, чаще всего стараются приобрести не слишком дорогую модель. Но в погоне за экономией, не стоит забывать о качественных характеристиках.

Синхронные и асинхронные

Сейчас не станем разбираться к конструктивных особенностях, а остановимся на достоинствах и недостатках. Синхронные генераторы отличаются тем, что на якоре имеют обмотки. Они выдают более стабильное напряжение и имеют меньшие отклонения по частоте. Это хорошо для требовательных к качеству питания. К плюсам синхронных генераторов тока относят также нормальную реакцию на пусковые токи, так что нормально работают они с индуктивной нагрузкой (с электродвигателями). Минусы ‒ более сложная конструкция и высокая цена. Ещё один момент, наличие щеток, которые, как известно снашиваются и искрят. Так что при более высокой цене синхронные генераторы имеют меньший рабочий ресурс.

Устройство асинхронных моделей проще

Асинхронные генераторы имеют более простую конструкцию и более низкие цены. При относительно невысокой цене отличаются значительно большим эксплуатационным сроком. Но стабильность тока желает быть лучше: погрешность до 10% по напряжению и 4% по частоте. Ещё один недостаток: плохо переносят пусковые токи. Потому, для обеспечения нормальной работы сложной техники желательно иметь стабилизатор, а для плавного пуска электромоторы подключать через преобразователь частоты.

Инверторный или нет

Есть ещё так называемые инверторные бытовые генераторы тока. Это те же генераторы, но на выходе которых стоит дополнительное устройство, стабилизирующее выходные показатели. С учётом того что техника у нас становится всё более дорогой и требовательной к качеству питания, использование инверторных генераторов почти необходимость.

Генератор переменного тока с инвертором: основные узлы и блоки

Единственное исключение, когда агрегат будет стоять на даче или в доме, а в период его работы, «капризная» техника работать не будет. К группе «капризных» однозначно относится вся компьютерная техника, а также та, которая управляется при помощи микропроцессоров. Также «капризными» являются автоматизированные котлы. Если котёл зависит от наличия напряжения и автоматика в нем не механическая, вам однозначно требуется инверторный генератор.

Инверторный генератор кроме двигателя и непосредственно генератора, имеет ещё выпрямитель и инвертор

Как работает инверторный генератор переменного тока? То напряжение, которое выработал генератор, попадает на блок инвертора. Он сначала выпрямляется, а потом из постоянного напряжения формируются полярные импульсы заданной частоты (50 Гц) и скважности. На выходе устройства импульсы превращаются в синусоиду. В результате на выходе имеем питание с идеальными (почти) характеристиками. Так что асинхронный инверторный генератор подходит для питания любой техники. Вот только пусковые нагрузки по-прежнему проблема.

Количество фаз и топливо для первичного двигателя

Чтобы выбрать генератор переменного тока, необходимо разобраться с классификацией, видами и типами, достоинствами и недостатками. В первую очередь стоит определиться с количеством фаз, которые должен выдавать агрегат, как понимаете, есть однофазные и трехфазные. Выбирать по этому признаку стоит учитывая имеющуюся проводку или нагрузку. Если генератор должен обеспечить работу трехфазного потребителя, на его выходе должно быть именно такое напряжение. Если подключаемые приборы только однофазные, покупать трехфазный генератор стоит только тогда, когда он будет работать на постоянной основе.

В качестве резервного обычно ставят однофазные агрегаты, обеспечивая питанием наиболее важные устройства.

Для начала необходимо определиться с количеством фаз вырабатываемого тока

Когда мы разбирались в принципе действия генераторов переменного тока, не рассматривался один момент: как и чем приводится в действие вращающаяся часть устройства. В бытовых моделях это двигатель внутреннего сгорания. Именно он приводит в движение ротор, а работать он может на следующих видах топлива:

  • бензин;
  • дизельное топливо;
  • газ.

Для бытового использования, чаще всего, используют дизельные и бензиновые генераторы. Так как оба вида топлива практически равнозначны по доступности, то выбор между ними основан на технических особенностях. О них подробнее немного ниже.

Генератор переменного тока: бензин или дизель?

Для бытовых целей обычно используют бензиновый или дизельный генератор тока. Сказать какой лучше однозначно невозможно, так как они отличаются по характеристикам. Потому для одних условий лучше бензиновый, для других ‒ оптимальный дизельный.

Выбор генератора тока зависит от многих моментов

Когда лучше выбрать бензиновый

Перечень свойств и особенностей бензинового генератора переменного тока:

Основное, что стоит помнить, бензиновый электрогенератор не рассчитан на длительную работу (сутками). Рекомендованная нагрузка, особенно у двухтактных моделей 2–3 часа в день и до 500 часов в год. Зато отличаются такие установки невысокой ценой и компактностью. Это отличный выбор, если надо питать совсем небольшую нагрузку непродолжительное время. Чаще всего такие генераторы берут с собой на природу, охоту, рыбалку и т. д.

Двухтактные бензиновые генераторы — лучший выбор для выезда на природу

Бензиновые генераторы тока с четырехтактными бензиновыми двигателями ресурс имеют существенно больше: до 3000–5000 тысяч часов. Но и его надолго не хватит при постоянной работе. Так что бензиновые генераторы имеет смысл ставить, если электричество отключается у вас редко и ненадолго.

Чем хороши дизельные

Дизельный генератор переменного тока ‒ установка гораздо боле мощная, но и настолько же более дорогостоящая. Бывают они двух типов: с воздушным и жидкостным охлаждением. Установки с воздушным охлаждением имеют средние габариты, среднюю мощность и вполне приемлемую цену. Вот они идеальны, если электричество отключается часто, но не постоянно. В то же время, маломощные дизельные генераторы (есть и такие) по характеристикам ненамного лучше бензиновых, а по цене раза в два выше. Так что если вам нужен генератор до 6 кВт мощности выбор, всё равно, имеет смысл остановить на бензиновой установке.

Дизельные ‒ более габаритные и мощные

Дизельный генератор с водяным (жидкостным) охлаждением ‒ это уже техника другого класса. Он может работать сутками и используются на предприятиях. На них применяются двигателя двух типов:

  • высокооборотистые – 3000 об/мин;
  • с низкими оборотами – 1500 об/мин.

Дизельный генератор с низкооборотистым двигателем отличается более низким уровнем шумов, более экономичны в плане расхода топлива на один киловатт. Но они же более дорогостоящие. имеют большие размеры и вес. Если дизельный генератор тока построен на основе высокооборотного движка, обойдётся один киловатт электроэнергии дешевле. Но шуметь дизель будет сильно.

Подобные модели могут обеспечивать предприятия

Итак, если вам нужна установка для выработки постоянного тока на продолжительный период или станция, которая будет снабжать электроэнергией постоянно, вам нужен дизельный генератор жидкостного охлаждения.

Опции и дополнительные возможности

Значительное влияние на цену оказывают опции. Хоть генераторы «с наворотами» стоят дороже, некоторые из дополнительных возможностей могут быть очень полезны. Например:

  • Защита от утечки. Встроенное УЗО, которое отслеживает наличие пробоя изоляции и отключает установку при появлении тока утечки.
  • Защита от перегрузки. Функция не даёт работать деталям «на износ».
  • Автоматический запуск. При пропадании электроэнергии генератор запускается сам.

Использование может быть разным

Есть ещё такие, без которых можно обойтись, но делающие эксплуатацию генератора тока более удобной. Например, контроль параметров с одновременным отображением на дисплее или передача данных о состоянии генератора на подключённый компьютер. Ещё, может быть, целый ряд конструктивных «добавок»: шумогасящий кожух, защитный кожух от низких температур, увеличенный топливный бак и т. д.

Особенности установки генератора

Речь пойдёт не о подключении, а об установке ‒ организации места, где генератор тока будет работать. Нужна просторная твёрдая и ровная площадка. При установке на неровной поверхности, повышается уровень вибрации, что угрожает целостности оборудования.  Если говорить о мощных дизельных установках, то для них желательно бетонное или асфальтовое покрытие, в общем, плотное и надёжное основание.

Площадка должна быть ровной

Подключение генератора проводят кабелем, в соответствии с рекомендациями производителей. Само подключение производится в шкафу, куда заводится кабель от генераторной установки. Он подключается после вводного автомата и счетчика.

Если генератор будет уставлен в помещении, в нем должна быть хорошая вентиляция. Планируя на время работы двигателя оставлять двери открытыми, нужна будет решётка, чтобы никто не попал внутрь во время работы станции.

Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinwt; e2 = -Blvsinwt; , где Bмагнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, tвремя, wt – угол, под которым рамка пересекает магнитный поток.  

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinwt, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Рис. 4. Двигатель постоянного тока

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные  показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5).  Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6).  Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

ЭДС

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

КПД

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Список использованной литературы

  • Вольдек А. И., Попов В. В. «Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы» 2008
  • О.А.Косарева «Шпаргалка по общей электротехники и электроники»
  • Китаев В. Е., Корхов Ю. М., Свирин В. К. «Электрические машины» Часть 1. Машины постоянного тока. 1978
  • Данилов И.А., Лотоцкий К.В. «Электрические машины» 1972

Различия между электродвигателями и генераторами

Электричество, когда-то являвшееся экспериментальной новинкой, теперь совершенно неотъемлемая часть современной жизни. Электричество обеспечивает освещение, климат-контроль, развлечения и многое другое. Чтобы обеспечить электроэнергию, энергия преобразуется из других форм в электричество, приводя в действие системы и устройства, которые люди склонны воспринимать как должное.

Преобразование энергии из одной формы в другую является ключом к пониманию различий между электродвигателями и генераторами. Электродвигатель преобразует электричество в механическую энергию, обеспечивая источник энергии для машин. Генератор делает обратное, преобразуя механическую энергию в электричество.

Несмотря на это существенное различие в функциях, электродвигатели и электрические генераторы тесно связаны лежащими в их основе механизмами и фундаментальной структурой. Оба основаны на важном законе физики: законе электромагнитной индукции Фарадея.

Закон электромагнитной индукции Фарадея: электричество и магнетизм

Сегодня хорошо известно, что электричество и магнетизм являются двумя проявлениями одной фундаментальной силы, называемой электромагнетизмом. Центральное место во вселенной, какой мы ее знаем, считается, что электромагнитная сила существовала в ее нынешней форме где-то между 10 12 и 10 6 секунд после Большого Взрыва.

В 1831 году физик Майкл Фарадей открыл электромагнитную индукцию, выявив тесную связь между наблюдаемыми явлениями магнетизма и электричества. Интересно, что в 1832 году ее независимо обнаружил другой исследователь, Джозеф Генри. Фарадей был первым, кто опубликовал свои открытия, и по сей день ему приписывают это открытие. Позже Джеймс Клерк Максвелл открыл способ математически сформулировать открытия Фарадея, что привело к разработке уравнения Максвелла-Фарадея.

Закон индукции Фарадея — это закон физики, разработанный для точного предсказания и измерения того, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС). ЭМП преобразуют другие формы энергии, такие как механическая энергия, в электрическую энергию. Именно этот закон физики позволяет нам создавать как электрические двигатели, так и электрические генераторы. Хотя эти два типа механизмов выполняют противоположные функции, они оба основаны на одних и тех же основных законах физики.

Электрические генераторы: Преобразование механической энергии в электрическую

Согласно закону индукции Фарадея, всякий раз, когда происходит изменение магнитного поля в проводнике, таком как проволочная катушка, электроны вынуждены двигаться перпендикулярно этому магнитному полю. Это создает электродвижущую силу, которая создает поток электронов в одном направлении. Это явление можно использовать для производства электроэнергии в электрогенераторе.

Чтобы создать этот магнитный поток, магниты и проводник перемещаются друг относительно друга. Провода наматываются в тугие катушки, увеличивая количество проводов и результирующую электродвижущую силу. Непрерывное вращение катушки или магнита при сохранении другого на месте дает постоянное изменение потока. Вращающийся компонент называется «ротором», а неподвижный компонент называется «статором».

Электрические генераторы делятся на две большие категории: «динамо-машины», которые генерируют постоянный ток, и «альтернаторы», которые генерируют переменный ток.

Динамо-машина была первой формой электрического генератора, которая использовалась в промышленности. Во время промышленной революции его изобрели независимо друг от друга несколько человек. Электрическая динамо-машина использует вращающиеся катушки проволоки и магнитные поля для преобразования механической энергии в постоянный ток (DC). Исторически динамо-машины использовались для выработки электроэнергии, часто используя пар в качестве источника для выработки необходимой механической энергии.

Сегодня электрическая динамо-машина практически не используется, за исключением нескольких приложений с низким энергопотреблением. Генераторы гораздо более распространены для производства электроэнергии. Этот тип генератора преобразует механическую энергию в переменный ток. Вращающийся магнит служит ротором, вращаясь внутри набора проводящих катушек на железном сердечнике, который служит статором. Когда магнитное поле вращается, оно генерирует переменное напряжение в статоре. Магнитное поле может создаваться либо постоянными магнитами, либо электромагнитом с катушкой возбуждения.

Автомобильный генератор переменного тока, а также центральные электростанции, обеспечивающие электричеством сеть, являются электрическими генераторами.

Электродвигатели: от электрической энергии к механической энергии

Электродвигатель действует противоположно электрическому генератору. Вместо того, чтобы превращать механическую энергию в электричество, электродвигатель берет электричество и преобразует его в механическую энергию. Электродвигатели можно найти в самых разных областях применения, от промышленного производственного оборудования до бытовых приборов. Ротор вращает вал для создания механической энергии. Статор состоит из обмоток катушки или постоянных магнитов с сердечником из тонких листов, уложенных друг на друга. Известные как ламинирование, эти слои создают меньшие потери энергии, чем твердая сердцевина. Между ротором и статором имеется небольшой воздушный зазор, который способствует увеличению тока намагничивания.

Хотя электродвигатели могут быть пьезоэлектрическими, электростатическими или магнитными, в подавляющем большинстве современных двигателей используются магниты. Некоторые предназначены для работы от постоянного тока, в то время как другие используют переменный ток. Вы можете найти электродвигатели всех размеров для впечатляюще широкого спектра применений. От крошечных двигателей в часах с батарейным питанием до массивных электродвигателей, приводящих в действие промышленное производственное оборудование, эта надежная, но элегантная технология занимает центральное место в современной жизни, какой мы ее знаем.

Как закон Фарадея изменил мир электродинамики

Хотя электрические двигатели и электрические генераторы выполняют противоположные функции, они оба основаны на одном и том же основном физическом принципе: законе индукции Фарадея. В начале 19 века вклад Майкла Фарадея в изучение электричества и магнетизма не имел себе равных. Несмотря на небольшое формальное образование и несмотря на то, что эмпирическое изучение физических явлений было относительно новой областью знаний, Фарадей, без сомнения, является одним из самых влиятельных ученых за всю историю человечества.

Грандиозное открытие Фарадея, заключающееся в том, что магнитные поля взаимодействуют с электрическими токами, создавая электродвижущую силу, открыло дверь современной электрической технологии. Закон индукции Фарадея лежит в основе трансформаторов, электродвигателей, электрических генераторов, катушек индуктивности и соленоидов. Без этих знаний было бы невозможно разработать надежное оборудование, которое вырабатывает электроэнергию для сети или электродвигатели для питания другого оборудования. На самом деле электродинамика, разработанная Фарадеем, а затем и Максвеллом, также стала главным катализатором специальной теории относительности Альберта Эйнштейна.

Электрические двигатели и электрические генераторы сильно отличаются друг от друга по своим функциям. Однако с точки зрения физики они иллюстрируют две стороны одной медали. Оба основаны на одних и тех же основных физических принципах, и понимание этих принципов сыграло важную роль в развитии даже самых распространенных современных технологий.

Дэвид Мэнни — администратор по маркетингу в L&S Electric. Первоначально эта статья появилась в новом блоге L&S Electric Watts. L&S Electric является контент-партнером CFE Media.

Исходный контент можно найти на сайте www.lselectric.com.

Есть ли у вас опыт и знания по темам, упомянутым в этом содержании? Вам следует подумать о том, чтобы внести свой вклад в нашу редакционную команду CFE Media и получить признание, которого вы и ваша компания заслуживаете. Нажмите здесь, чтобы начать этот процесс.

Определение коэффициента мощности генератора

Что такое определение коэффициента мощности генератора?

Когда вы ищете генератор или хотите лучше понять свою текущую машину, важно понять коэффициент мощности генератора.

При расчете коэффициента мощности учитываются детали работы генератора, чтобы вы могли максимально увеличить производительность с помощью имеющегося у вас генератора и выявить любые проблемы на ранней стадии.

Генераторы разных размеров имеют разные коэффициенты мощности, влияющие на нагрузку, на которую они рассчитаны. От определений и измерений до разницы между кажущейся мощностью и реальной мощностью — получение дополнительной информации о вашем генераторе — это первый шаг к более эффективной работе.

Объяснение коэффициента мощности генератора

Размышляя о дальнейших шагах для коммерческого генератора, вам может быть интересно, что означает коэффициент мощности генератора? Коэффициент мощности генератора или номинальная мощность генератора измеряет, насколько эффективно машина использует свою энергию. Обычно выражаемое в виде десятичной дроби или процента, это значение указывает общий ток, который ваш генератор может использовать для выполнения определенной работы.

В идеале вся мощность, потребляемая нагрузкой от энергосистемы, должна идти на полезную работу. Однако в действительности типичный коэффициент мощности системы обычно составляет менее 100%, поскольку другие электрические аспекты означают, что не вся мощность генератора может быть направлена ​​на работу нагрузки.

Вы можете посмотреть на коэффициент мощности через пару различных взаимосвязей переменных. Коэффициент мощности относится к взаимосвязи между напряжением и синусоидальными волнами тока. Это также относится к соотношению между активной мощностью, реактивной мощностью и полной мощностью.

Реальная мощность или рабочая мощность — это фактическая мощность, потребляемая генератором, измеряемая в ваттах (Вт). Реактивная мощность — это количество неиспользуемой мощности, вырабатываемой генератором, измеряемое с помощью вольт-ампер-реактивной (ВАР). Полная мощность, или полная мощность, представляет собой комбинацию реальной мощности и реактивной мощности, создаваемую напряжением и током цепи и измеряемую в вольт-амперах (ВА).

Хотя генератор является машиной, поставляющей энергию, нагрузка генератора, то есть любые устройства, на которые подается питание, создает коэффициент мощности. Стандартный отраслевой коэффициент мощности генератора составляет 0,8, или 80 %, что означает, что эти нагрузки могут потреблять 80 % мощности генератора. В большинстве случаев генераторы, которые используют коэффициент мощности (или сокращенно PF) с номинальным коэффициентом мощности 0,8, являются 3-фазными генераторами.

Чем выше коэффициент мощности, тем эффективнее нагрузка использует энергию генератора. Коэффициент мощности 1,0 означает, что нагрузка использует 100% мощности, что очень эффективно. Стандарты рейтинга коэффициента мощности зависят от фазы вашего генератора, что позволяет вам оптимизировать эффективность вашего генератора. Кроме того, в других странах действуют другие стандарты напряжения, поэтому важно понимать общие коэффициенты мощности в вашей стране. Большинство генераторов, использующих коэффициент мощности 1,0, являются однофазными генераторами.

Поскольку коэффициент мощности вашего генератора будет зависеть от его фазы, важно понимать разницу между однофазными и трехфазными генераторами. Оба типа генераторов используют переменные токи (AC), которые представляют собой электрические токи, которые текут в двух направлениях, а не по одному пути, для увеличения вырабатываемой мощности и универсальности. Однофазный генератор будет использовать один цикл переменного тока, а трехфазный генератор будет включать три.

Просмотреть бывшие в употреблении генераторы

Как рассчитать коэффициент мощности генератора

Расчет коэффициента мощности генератора поможет вам определить оптимальный размер генератора для ваших коммерческих нужд. Генераторы должны соответствовать требованиям нагрузки вашей компании, чтобы гарантировать, что ваши операции могут продолжаться во время неожиданных отключений.

Как и при любых электрических изменениях, всегда консультируйтесь с сертифицированным электриком, который поможет вам с расчетами и решениями.

Автоматические калькуляторы мощности — ценный инструмент для определения общих потребностей вашего генератора. Однако определение коэффициента мощности само по себе требует понимания того, как каждая переменная соотносится друг с другом для производства энергии и мощностных нагрузок.

Коэффициент мощности – это отношение активной мощности к полной мощности. Коэффициент мощности можно рассчитать по формуле:

PF = кВт/кВА

Где:

  • PF = коэффициент мощности
  • кВт = реальная мощность, измеренная в киловаттах
  • кВА = полная мощность, измеренная в киловольт-амперах

Треугольник мощности и коэффициент мощности генератора переменного тока

Треугольник власти указывает на то, как три типа власти соотносятся друг с другом. Он показывает, как общий коэффициент мощности влияет на потребляемый или потерянный переменный ток (AC).

Принципы тригонометрии диктуют правила треугольника мощности, поскольку каждое значение степени представляет собой сторону прямоугольного треугольника. Вы можете использовать теорему Пифагора, a 2 +b 2 =c 2 , чтобы определить одно значение, если у вас есть два других значения.

Как и при любом тригонометрическом вычислении, начните с размещения типов мощности по сторонам прямоугольного треугольника, с активной мощностью по оси x, реактивной мощностью по оси y и полной мощностью по гипотенузе. Затем найдите длину любой неизвестной стороны, используя длины двух других сторон.

Отставание по сравнению с опережающим коэффициентом мощности

При обсуждении коэффициента мощности два наиболее важных термина — опережение и запаздывание. Все генераторы имеют электрическую цепь, которая является путем передачи электрического тока. Электрическая нагрузка — это точка в цепи, где этот ток преобразуется в полезное тепло, движение или свет.

Все электрические нагрузки относятся к одной из трех категорий — емкостные, индуктивные или резистивные. Эти различные типы нагрузки потребляют мощность переменного тока по-разному. Все нагрузки влияют на характеристики цепи в прямой зависимости от тока, то есть скорости, с которой течет электрический заряд, и напряжения, которое представляет собой разницу в заряде между двумя точками цепи.

Резистивные нагрузки питают нагревательные элементы и потребляют ток в виде синусоидальной волны, которая соответствует напряжению. Любая чисто резистивная нагрузка имеет коэффициент мощности 1,0 или 100%. Полные коэффициенты мощности также называют факторами единичной мощности. Коэффициенты мощности, равные единице, могут встречаться в нагрузках, в которых преобладают электронные устройства, или резистивных нагрузках, таких как освещение и обогреватели.

Индуктивные нагрузки питают электродвигатели. Синусоидальные волны индуктивного тока достигают пика после пиков напряжения, в результате чего две волны не совпадают по фазе. Другими словами, ток нагрузки отстает от напряжения, создавая отстающий коэффициент мощности.

Емкостные нагрузки помогают контролировать энергопотребление в больших цепях. Емкостные синусоидальные волны достигают своего пика раньше пика волн напряжения, создавая опережающий коэффициент мощности.

Что вызывает отставание и опережение коэффициента мощности?

Асинхронные двигатели обычно вызывают отстающий коэффициент мощности. Для исправления запаздывания можно добавить к току емкостные нагрузки.

Конденсаторно-интенсивные нагрузки, синхронные двигатели с малой нагрузкой или асинхронные двигатели, приводимые в движение своими нагрузками, могут привести к опережающему коэффициенту мощности. Чтобы скорректировать опережение коэффициента мощности, добавьте к току индуктивные нагрузки.

Большинство промышленных нагрузок имеют несколько двигателей, поэтому признанным стандартом является отстающий коэффициент мощности 0,8. Сегодняшние нагрузки делают практически невозможным достижение опережающего коэффициента мощности.

Что происходит при низком коэффициенте мощности?

Низкие коэффициенты мощности неэффективны и затратны для вашего бизнеса, поэтому их следует по возможности избегать. Коэффициент мощности ниже 0,8, что является отраслевым стандартом, считается низким.

Многие проблемы могут вызвать низкий коэффициент мощности, в том числе:

  • Слишком много асинхронных двигателей с низким коэффициентом отстающей мощности
  • Переменная нагрузка энергосистемы, иногда высокая, а иногда низкая
  • Другие системы, работающие с низким коэффициентом отстающей мощности

Низкий коэффициент мощности и ток нагрузки обратно пропорциональны. Низкий коэффициент мощности снижает электрическую распределительную способность генератора за счет увеличения потока его тока, поэтому система теряет активную мощность.

Генераторы с низким коэффициентом мощности имеют такие недостатки как:

  • Большая мощность в кВА: Генераторы и другое электрическое оборудование оцениваются в единицах полной мощности, или кВА. Более низкий коэффициент мощности приводит к увеличению номинальной мощности в кВА, что часто делает это оборудование большим и дорогим.
  • Неэффективность: Большие токи при низком коэффициенте мощности означают, что оборудование должно работать больше, чтобы производить меньше энергии.
  • Снижение производительности оборудования: Низкий коэффициент мощности вызывает большие перепады напряжения, что означает меньшее напряжение на стороне генератора. Устройства с низким коэффициентом мощности имеют пониженную производительность и могут нуждаться в дополнительном оборудовании для регулирования напряжения для правильной работы.

Преимущества генераторов, работающих с более высоким коэффициентом мощности

Повышение коэффициента мощности вашего генератора может дать множество преимуществ для вашего бизнеса и оборудования. Работа вашего генератора с максимальным потреблением кВА приводит к более высоким затратам на электроэнергию. Улучшение коэффициента мощности помогает увеличить ежегодную чистую экономию энергии.

Более высокий коэффициент мощности также увеличивает производительность генератора. Количество блоков, поставляемых генератором, зависит от его коэффициента мощности. Более высокие коэффициенты мощности позволяют генераторам подавать больше энергии в свои системы, увеличивая общую доходность системы.

Как увеличить коэффициент мощности генератора

Ваша цель как оператора генератора должна состоять в том, чтобы достичь как можно более высокого коэффициента мощности. Самый эффективный способ повысить коэффициент мощности машины — это компенсировать ее отставание или опережение. Поскольку индуктивные силовые нагрузки вызывают наибольшее количество проблем с низким коэффициентом мощности, подключение устройств с опережающим коэффициентом мощности, таких как конденсатор, может нейтрализовать отставание и повысить общий коэффициент мощности нагрузки.

Нагрузки, превышающие коэффициент мощности

Современный генератор обычно может производить электричество с эффективностью около 93,5%. Ветровые нагрузки, трение в подшипниках и тепловые потери составляют 6,5% потерь. Кроме того, 1 л.с. равняется 0,746 кВт мощности, что равно кВА, умноженному на коэффициент мощности. Это означает, что если нагрузка вызывает увеличение коэффициента мощности выше 0,8, но фактическая номинальная мощность 600 кВт остается неизменной, номинальная полная мощность в кВА может быть увеличена, чтобы обеспечить более высокий коэффициент мощности.

Всегда знайте свои точные требования к нагрузке, чтобы выбрать подходящее оборудование. Если ваши нагрузки превышают коэффициент мощности 0,8, вы потенциально можете решить проблему, объединив несколько генераторов в сеть, чтобы создать нагрузку большей мощности для оптимизации энергоэффективности. Кроме того, понимание ваших потребностей в электроэнергии может помочь гарантировать, что вы платите только за то, что вам нужно для повышения экономической эффективности. Примером процесса такого типа является распределение нагрузки или параллельная работа генераторов.

Свяжитесь с Woodstock Power для полного аудита профиля нагрузки

Использование наилучшего генератора для ваших коммерческих нужд имеет решающее значение для эффективной работы бизнеса в любых условиях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *