Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Шаговое напряжение – это… Что такое Шаговое напряжение?

У этого термина существуют и другие значения, см. Напряжение. Распределение электрического потенциала вокруг упавшего провода; US1−US2 — шаговое напряжение. Поваленные столбы электропередачи могут стать источником шагового напряжения.

Шаговое напряжение — напряжение, обусловленное электрическим током, протекающим в земле или токопроводящем полу, и равное разности потенциалов между двумя точками поверхности земли (пола), находящимися на расстоянии одного шага человека. Шаговое напряжение зависит от длины шага, удельного сопротивления грунта и силы протекающего через него тока. Опасное шаговое напряжение может возникнуть, например, около упавшего на землю провода под напряжением или вблизи заземлителей электроустановок при аварийном коротком замыкании на землю (допустимые значения сопротивления заземлителей и удельное сопротивление грунта нормируются для того, чтобы избежать подобной ситуации).[1]

При попадании под шаговое напряжение возникают непроизвольные судорожные сокращения мышц ног и, как следствие, падение человека на землю. Ток начинает проходить между новыми точками опоры — например, от рук к ногам, что чревато смертельным поражением. При подозрении на шаговое напряжение надо покинуть опасную зону минимальными шажками («гусиным шагом») или прыжками.

Особо опасно шаговое напряжение для крупного рогатого скота, так как расстояние между передними и задними ногами у этих животных очень велико и, соответственно, велико напряжение, под которое они попадают. Нередки случаи гибели скота от шагового напряжения.

Расчёт

Шаговое напряжение зависит от сопротивления разных слоёв почвы[2] — тем не менее, поддаётся прикидочным расчётам[3]. Для примера рассмотрим однофазное замыкание на землю в одной точке. Сначала надо вычислить ток однофазного замыкания.

,

где Isc — ток короткого замыкания, Uphase — напряжение фазы,

R0 — сопротивление рабочего заземления нейтрали (единицы ом), Rcont — сопротивление растеканию тока в месте контакта (обычно оценивают в 12 Ом). После этого можно вычислить шаговое напряжение:

,

где ρ — удельное сопротивление земли (сотни ом-метров), x — расстояние от проводника, a — длина шага.

При определённых условиях (вспотевший человек, промокшая обувь) сопротивление между ногами может быть меньше 1 кОм — так что даже низкие (несколько десятков вольт) напряжения не всегда безопасны! На производстве имелось немало несчастных случаев от удара напряжением в 36 и менее вольт[4].

Лошадиная авария

В 1928 году в Ленинграде произошла авария, вошедшая в учебники под названием «лошадиной»[5].

Посреди площади, вымощенной деревянными шестиугольниками, стоял чугунный колодец с разъединителем на 2000 вольт. Однажды в колодце растрескался изолятор, и разъединитель повис на проводе в нескольких сантиметрах от стенки. Прошёл дождь, и мостовая стала проводящей и податливой. Когда рядом с колодцем проехала гружёная телега, мостовая прогнулась — и провод замкнуло на колодец.

Людей, чья длина шага не превышала метра, просто било током. А лошадь, с её двухметровым корпусом и железными подковами, убило насмерть. Мостовая была под напряжением в течение двух секунд, после чего на подстанции сработал «автомат».

Неожиданная гибель лошади вызвала интерес людей, прибыл конный патруль. Телегу оттащили, и короткое замыкание прекратилось. В это время дежурный по подстанции проверил сопротивление изоляции и, посчитав отключение ложным, подал ток. Разъединитель с колодцем образовали электрическую дугу, и на мостовой снова возникло шаговое напряжение, погибли две милицейские лошади.

Примечания

Что такое шаговое напряжение и как защитить себя от непреднамеренного попадания под действие электрического тока? | ЭлектроАС

Дата: 3 сентября, 2009 | Рубрика: Статьи
Метки: Техника безопасности, Электробезопасность

Этот материал подготовлен специалистами компании “ЭлектроАС”.
Нужен электромонтаж или электроизмерения? Звоните нам!

Электричество имеет такую особенность, как отсутствие привычных для человека факторов вызывающих тревогу или опасения у человека о возможной опасности. Если приближающийся транспорт, падающий предмет, наличие запаха газа или другие осязаемые опасности могут «предупредить» человека о возможности получения травмы, то электричество никаких признаков присутствия опасности не проявляет – нет ни запаха, ни видимых причин для беспокойства, ни каких-либо других проявлений, которые могли бы вызвать тревогу или беспокойство. Поэтому человек узнает о том, что попал в зону воздействия электрического тока только тогда, когда уже слишком поздно. Электрический ток поражает внезапно, когда человек оказывается включенным в электрическую цепь прохождения тока. Возможностью прохождения электрического тока через тело человека могут послужить непреднамеренное прикосновение к неизолированному проводу (или с поврежденной изоляцией), корпуса устройства или прибора с неисправной изоляцией и любого металлического предмета, случайно оказавшегося под напряжением, а с другой стороны – прикосновении к заземленным предметам, земли и т.д.

Кроме того существует опасность поражения током при попадании под «шаговое напряжение» — это напряжение возникающее при обрыве и падении провода на землю действующей линии электропередач 0,4 кВ и выше. Путь протекания тока не прекращается, если линия электропередач не была отключена. Земля является проводником электрического тока и становится как бы продолжением провода электропередачи. Любая точка на поверхности земли, находящаяся в точке растекания получает определенный потенциал, который уменьшается по мере удаления от точки соприкосновения провода с землей. Попадание под действие электрического тока происходит в момент, когда ноги человека касаются двух точек земли, имеющих разные электрические потенциалы. Поэтому шаговое напряжение – это разница потенциалов между двумя точками соприкосновения с землей, чем шире шаг – тем больше разница потенциалов и тем вероятнее поражение электрическим током.

Если вы увидите лежащий на земле провод – ни в коем случае нельзя к нему приближаться, опасная зона может быть от 5-8 метров вокруг точки соприкосновения провода с землей и больше, в зависимости от класса напряжения линии и состояния земли (мокрая земля увеличивает пространство растекания электрического тока).

В энергетике существует такой термин как «Техника безопасности» — он появился не просто так, каждая строчка этого свода правил безопасности на действующих и отключенных электроустановках имеет свою историю, которая закончилась плачевно. Поэтому не стоит пренебрегать этими простыми советами, чтобы не попасть под действие электрического тока совершенно неожиданно для себя.

Прочая и полезная информация

Прочая и полезная информация

Шаговое напряжение, электрическое напряжение шага — что это такое и почему оно опасно.

Шаговое напряжение (или ещё его называют напряжением шага) — это опасное напряжение, возникающее между двух точек цепи электрического тока, расстояние между этих двух точек равно длине шага. Шаговое напряжение в первую очередь зависит от удельного электрического сопротивления поверхности и силы тока, что протекает через него. Шаговое напряжение может возникать на местах защитных заземляющих устройств — зануление, заземления и др. Также на местах аварий, где токоведущие части касаются поверхности грунта.

Напряжение шага определяется расстоянием, длина которого напрямую зависит от непосредственной формы кривой напряжения, то есть от конкретного типа заземлителя, и меняется от определённого значения максимальной величины до нуля с изменением промежутка от электрического заземлителя. Предположим, что на грунте в точке «О» установлен один заземлитель (металлический электрод) и через него проходит электрический ток замыкания на землю. Около этого защитного заземлителя создается некоторая зона рассеивания электрического тока в почве. То есть, зона поверхности, за пределами которой потенциал, что обусловлен токами защитного заземления на грунт, может быть принят условно за ноль.

Основная причина подобного явления лежит в том, что объем грунта, через который течёт электрический ток замыкания на почву, по мере удаления от защитного электрического заземлителя увеличивается, при этом происходит рассеивание тока по грунту. На расстоянии 20 метров и более от защитного заземлителя объем грунта так увеличивается, что действительная плотность электрического тока становится довольно малой, а электрическое напряжение между точками поверхности грунта и точками более удаленными не проявляет себя ощутимо.

Если мы с Вами измерим электрическое напряжение между точками, которые располагаются на некотором расстоянии в любом векторном направлении от защитного заземлителя, а после построим наглядный график прямой зависимости этих электрических напряжений от имеющегося расстояния до защитного заземлителя, то в результате появиться потенциальная кривая. Если поделить линию на промежутки по 0.8 метров, что будет соответствовать расстоянию человеческого шага, то его ноги могут оказаться в непосредственных точках различного электрического потенциала. Чем ближе к защитному заземлителю, тем электрическое напряжение между данными точками на поверхности грунта будет больше.

Слишком опасное шаговое напряжение может появиться неподалёку упавшего на поверхность земли и находящегося под небезопасным для жизни электрическим напряжением провода. В таком случае категорически запрещается приближаться к электрическому проводу, который лежит на поверхности земли, на расстояние ближе 8-10 метров. Напряжение шага отсутствует, если человек стоит, либо вне зоны растекания тока, либо на линии равного потенциала.

Наиболее опасные значения напряжения шага будут при малом расстоянии от защитного заземлителя, в том случае, когда человек своей одной ногой касается заземлителя, а другой ногой стоит на расстоянии шага от него. Это объясняется тем, что электрические потенциал вокруг защитного заземлителя равномерно распределяется по определённым вогнутым кривым, и значит, максимальный перепад разности потенциалов оказывается в начале этой кривой. Минимальные значения шагового напряжения будут при бесконечно дальнем удалении от электрического защитного заземлителя, то есть за пределами территории растекания электрического тока, примерно дальше 20 метров от центра электрического заземлителя. На территории, где располагаются электроды группового защитного заземлителя, шаговое напряжение будет немного меньше, по сравнению с применением одиночного заземлителя.

В случае попадании под шаговое напряжение появляются судорожные непроизвольные сокращения мышц ног человека (или животного). В данный момент заканчивается воздействие шагового напряжения на человека и появляется другая, более тяжелая ситуация: образуется новый путь протекания электрического тока — от рук к ногам, что порождает смертельную угрозу для жизни. Если Вы вдруг попали в зону действия шагового напряжения, в первую очередь следует выйти из этой зоны маленькими шажками (гусиным шагом).

P.S. Хуже всего то, что данное явление нельзя обнаружить сразу, если заранее не знаешь. Просто нужно быть достаточно внимательным, когда проходишь возле высоковольтных линий электропередач. Любой оборванный провод, лежащий на земле, должен сразу же насторожить и повысить ваше внимание. Лучше не испытывать судьбу, и не подходить близко к такому месту. Шаговое напряжение невидимо, но оно способно в считанные секунды забрать вашу жизнь! Будьте внимательны и осторожны с электричеством. Это опасно!

Электробезопасность / Электроэнергия / ЕНЕРГОПОСТАЧАЛЬНИК

Памятка по электробезопасности!

Электрическая энергия является верным помощником современного человека, но она может принести большой вред здоровью, если при пользовании ею не соблюдать строгие меры предосторожности и не выполнять соответствующие Правила безопасности.

Важнейшим требованием электробезопасности в личном хозяйстве является исправное состояние изоляции бытовых электросетей и электроприемников. В домашнем хозяйстве применяются телевизоры, стиральные машины, электроинструмент, электроплиты, утюги и т.д., которые питаются от сети 220 В, ошибочно считающейся безопасной. Неумелое или неосторожное применение бытовой электротехники несет угрозу здоровью и жизни людей и может привести к электротравме или несчастному случаю.

Особенность электрической энергии заключается в том, что она не видима, не имеет запаха и цвета, поэтому выявить электрический ток человек не может. Электрический ток поражает внезапно, когда человек попадает в цепь прохождения тока, а именно когда человек с одной стороны касается неизолированного провода, металлического корпуса электроприбора с неисправной изоляцией или металлического предмета, который находится под напряжением, а с другой стороны – земли, заземленных предметов, труб и т.д.. Поражение электрическим током может наступить и через другие проводники, при приближении на недопустимо близкое расстояние к проводу шины распределительного устройства, действующей электроустановки, воздушной линии электропередачи и т.д.. Опасность поражения электрическим током в таких случаях значительно возрастает в сырую и дождливую погоду.

Электротравма может возникнуть при попадании под «шаговое напряжение», которое возникает при обрыве и падении на землю проводов воздушных линий электропередачи. Степень опасности поражения электрическим током во многом зависит от характера помещений, где находится человек.

К помещениям с повышенной опасностью и особо опасным в отношении поражения электрическим током относятся балконы, ванные комнаты, кухни, подвалы, жилые помещения с земляным полом, бани, металлические гаражи, парники, помещения для скота и т.д..

Чтобы избежать смертельных электротравм, необходимо знать следующие правила электробезопасности и соблюдать их:

  • Не приближаться к оборванным проводам ближе, чем на 8 метров;
  • Не залезать на опоры воздушных линий электропередач, тем более не пытаться снять электропровод;
  • Не открывать двери трансформаторных подстанций и не проникать в них;
  • Не позволять детям залезать на деревья, растущие на близком расстоянии от линий электропередач;
  • Не возводить любые строения, не складывать дрова, солому, не разжигать костер и т.д. под проводами линий электропередач и воздушными вводами в помещения или дома;
  • Не бросать провод или любые другие предметы на провода воздушных линий электропередач;
  • Не устанавливать металлические стойки для телевизионных антенн вблизи линий электропередач;
  • Не располагать игровые площадки, а также не проводить игры под воздушными линиями электропередачи, не запускать воздушные змеи вблизи них и не играть возле электрических установок;
  • Запрещено пользоваться во влажных помещениях переносными лампами и электроприборами напряжением выше 36 В;
  • Не наполнять водой из водопроводного крана включенные в электросеть чайники, кофеварки, поскольку при одновременном прикосновении к включенному прибору и водопроводному крану человек может быть поражен электрическим током;
  • Не заменять электролампы без их отключения, не вытирать влажной тряпкой электрические провода, штепсельные розетки, выключатели, другие электроприборы, включенные в электросеть;
  • Не выносить во двор включенные электрические приборы, так как в случае повреждения изоляции, человек, стоящий на земле и касающийся любой металлической части такого прибора может получить электротравму;
  • Не допускать неквалифицированных лиц к монтажу новых или ремонту имеющихся электроустановок. Небрежно выполненные ремонтные работы могут привести к травмированию людей, которые пользуются данными электроустановками;
  • Переносной электроинструмент – источник повышенной опасности. Прежде чем использовать электроинструмент, изучите требования Правил безопасности и инструкцию по эксплуатации от производителя;
  • Помните, что неумелое установление радио, телеантенны или проведение различных работ вблизи воздушных линий электропередачи с приближением к металлическим частям ВЛ вызывает электротравмы;
  • В связи с возможным преждевременным повреждением или высыханием изоляции электропроводки, что может привести к пожару или несчастным случаям с людьми, запрещается защемление электропроводов дверью, оконными рамами, закрепление их гвоздями, закрашивание или забеливание;
  • Не позволяйте детям играть со штепсельными розетками;
  • Не подвешивайте любые вещи на провода, выключатели и розетки;
  • Помните, что бытовые электроприборы (чайники, утюги, электроплитки и т.д.), а также переносные светильники (торшеры, настольные лампы) напряжением 220 В, предназначены для использования в помещениях с непроводящими для электротока полами.

Первая помощь при поражении электротоком!

Если человек попал под напряжение, необходимо немедленно выключить электроприбор или электроустановку. Это можно сделать как с помощью выключателя или рубильника, так и перерубив провод топором или лопатой с сухой деревянной рукояткой. Другой вариант – оттащить пострадавшего из опасной зоны с помощью сухой веревки, палки, доски, и т. п. При отсутствии указанных предметов человека можно вытягивать за одежду (если она сухая и отстает от тела), например, полы пиджака или куртки, избегая при этом контактов с металлическими элементами одежды и открытыми участками тела потерпевшего. После этого нужно безотлагательно вызвать врача.

В случае невозможности быстрого отключения электроустановки необходимо принять меры по отделению пострадавшего от токоведущих частей, к которым он прикасается. При этом в любых случаях тот, кто оказывает помощь, не должен прикасаться к пострадавшему и к токоведущим частям без надлежащих средств защиты, и должен следить за тем, чтобы не попасть под действие «шагового напряжения».

ПОМНИТЕ!

При освобождении пострадавшего от действия электрического тока и оказании ему первой помощи важна каждая минута.

В случае если Вы стали свидетелем поражения человека электрическим током или заметили потенциальную опасность от действующих электроустановок, немедленно сообщите об этом местному оператору распределительных сетей.

Правила устройства электроустановок. Скачать

Правила безопасной эксплуатации электроустановок потребителей

Правила технической эксплуатации электроустановок потребителей

Факторы, влияющие на исход поражения электрическим током — урок. Физика, 8 класс.

Тело человека проводит электрический ток.

 

Обрати внимание!

Воздействие электрического тока на организм человека зависит от многих факторов: от силы тока, от длительности контакта, от вида тока и его частоты, от индивидуальных особенностей тела человека, от места прохождения тока.

 

1) Длительность протекания тока.

Чем дольше проходит ток через тело человека, тем больше снижается сопротивление организма, тем сильнее последствия, вызванные током.

 

2) Вид тока и его частота.

Переменный и постоянный токи по-разному воздействуют на человека.

При прикосновении к токоведущим частям, находящимся под напряжением, переменный ток, протекающий через человека, приводит к судорожным сокращениям мышц руки, в которой зажат проводник, при этом пострадавший самостоятельно не может освободиться от действия тока.

Постоянный ток приводит к отбросу пострадавшего от токоведущих частей, что может привести к механическим повреждениям (вывихи, ушибы, переломы и т.п.).

Если напряжение протекающего тока не превышает \(500\) В, то воздействие постоянного тока на организм человека меньше, чем переменного тока. А если напряжение выше \(500\) В, то постоянный ток становится опаснее переменного.

Чем больше частота переменного тока превышает \(50\) Гц, тем меньше последствия электротравмы.

 

3) Особенности человеческого тела.

Имеют значение также индивидуальные особенности тела человека. Полностью здоровые люди во много раз выносливее, чем больные.

 

4) Путь протекания тока.

Существенное значение имеет и путь протекания тока через тело человека. Наиболее часто встречающиеся пути протекания тока через организм человека: «правая рука — ноги», «левая рука — ноги», «рука — рука», «нога — нога» (рис. 1).

 

 

Рис. \(1\). Схема, пути протекания тока


Наибольшая опасность возникает при непосредственном прохождении тока через жизненно важные органы (сердце, лёгкие, головной мозг). Поэтому наиболее опасными следует признать пути протекания: «левая рука — ноги», «рука — рука», а также «голова — рука», «голова — ноги».

Наименее опасным путём тока (из наиболее часто встречающихся) является путь «нога — нога», когда человек попадает под шаговое напряжение.

Опасность поражения электрическим током зависит также от места контакта тела человека с токоведущей частью, то есть от места «входа тока» в организм. Например, при касании человека токоведущей части рукой, ток может входить через ладонь или тыльную часть руки, через пальцы или всю поверхность руки и т.д.

Наиболее опасными местами входа тока являются: тыльная сторона ладони, шея, голень, виски, грудь. Следует отметить, что данные места на теле человека обладают повышенной электропроводностью.

 

5) Сила тока.

Ниже рассмотрены реакции человеческого организма, вызванные электрическим током различного вида и различной силы при прохождении тока в направлении «рука — рука» или «рука — нога».

 

Обычно человек начинает ощущать раздражающее действие переменного тока промышленной частоты \(50\) Гц при величине \(0,6—1,5\) мА и постоянного тока \(5—7\) мА.

Эти токи называются ощутимыми пороговыми токами. Они не представляют опасности для человека, и человек может самостоятельно отключиться от цепи.

 

При переменных токах \(5—10\) мА раздражающее действие электрического тока становится более сильным, появляется боль в мышцах и непроизвольное их сокращение.

При токах \(10—15 \)мА боль в мышцах становится такой сильной, что человек уже не в состоянии самостоятельно освободиться от действия тока (не может разжать руку, отбросить от себя провод и т.д.).

Переменные токи \(10—15\) мА и выше и постоянные токи \(50—80\) мА и выше называются неотпускающими токами.

 

Переменный ток \(25\) мА и выше (в зависимости от пути прохождения тока) воздействует на мышцы грудной клетки, что может привести к параличу дыхания и вызвать смерть человека.

 

Электрический ток около \(100\) мА и более при частоте \(50\) Гц и \(300\) мА и более при постоянном напряжении за короткое время (\(1—2\) с) поражает мышцу сердца человека и вызывает его фибрилляцию. Эти токи называются фибрилляционными.

 

Токи более \(5\) А вызывают паралич сердца и дыхания, минуя стадию фибрилляции сердца.

При длительном протекании тока (несколько секунд) — тяжёлые ожоги, разрушение тканей организма человека.

Источники:

Рис. 1. Схема, пути протекания тока. © ЯКласс.

Что такое шаговое напряжение и как защитить себя от непреднамеренного попадания под действие электрического тока? – Советы на все случаи жизни – Каталог статей

Электричество имеет такую особенность, как отсутствие привычных для человека факторов вызывающих тревогу или опасения у человека о возможной опасности. Если приближающийся транспорт, падающий предмет, наличие запаха газа или другие осязаемые опасности могут «предупредить» человека о возможности получения травмы, то электричество никаких признаков присутствия опасности не проявляет – нет ни запаха, ни видимых причин для беспокойства, ни каких-либо других проявлений, которые могли бы вызвать тревогу или беспокойство. Поэтому человек узнает о том, что попал в зону воздействия электрического тока только тогда, когда уже слишком поздно. Электрический ток поражает внезапно, когда человек оказывается включенным в электрическую цепь прохождения тока. Возможностью прохождения электрического тока через тело человека могут послужить непреднамеренное прикосновение к неизолированному проводу (или с поврежденной изоляцией), корпуса устройства или прибора с неисправной изоляцией и любого металлического предмета, случайно оказавшегося под напряжением, а с другой стороны – прикосновении к заземленным предметам, земли и т.д.


Кроме того существует опасность поражения током при попадании под «шаговое напряжение» – это напряжение возникающее при обрыве и падении провода на землю действующей линии электропередач 0,4 кВ и выше. Путь протекания тока не прекращается, если линия электропередач не была отключена. Земля является проводником электрического тока и становится как бы продолжением провода электропередачи. Любая точка на поверхности земли, находящаяся в точке растекания получает определенный потенциал, который уменьшается по мере удаления от точки соприкосновения провода с землей. Попадание под действие электрического тока происходит в момент, когда ноги человека касаются двух точек земли, имеющих разные электрические потенциалы. Поэтому шаговое напряжение – это разница потенциалов между двумя точками соприкосновения с землей, чем шире шаг – тем больше разница потенциалов и тем вероятнее поражение электрическим током.


Если вы увидите лежащий на земле провод – ни в коем случае нельзя к нему приближаться, опасная зона может быть от 5-8 метров вокруг точки соприкосновения провода с землей и больше, в зависимости от класса напряжения линии и состояния земли (мокрая земля увеличивает пространство растекания электрического тока).


В энергетике существует такой термин как «Техника безопасности» – он появился не просто так, каждая строчка этого свода правил безопасности на действующих и отключенных электроустановках имеет свою историю, которая закончилась плачевно. Поэтому не стоит пренебрегать этими простыми советами, чтобы не попасть под действие электрического тока совершенно неожиданно для себя.

Шаговое напряжениеСам Себе Электрик | Сам Себе Электрик

Перемещение в зоне шагового напряжения

 

Что такое шаговое напряжение
Возможно вам неизвестно, но поваленные столбы линии  электропередачи, либо просто оборванные провода лежащие на земле, могут стать источником шагового напряжения.

В двух словах… шаговое напряжение это -напряжение, обусловленное электрическим током, протекающим в земле или токопроводящем полу, и равное разности потенциалов между двумя точками поверхности земли (пола), находящимися на расстоянии одного шага человека. По крайней мере такое определение дается термину шаговое напряжение в правилах…. От чего же  зависит это шаговое напряжение?

 

Вот факторы влияющие на его величину:

  • удельное сопротивление грунта и силы протекающего через него тока.

Опасное шаговое напряжение способно появиться, например, около упавшего на землю провода находящегося под напряжением (о чем уже писалось) или вблизи заземленных электроустановок при аварийном коротком замыкании на землю (если заземление выполнено с нарушением). Необходимо помнить, что протекание тока по поверхности земли не прекращается до тех пор, пока линия электропередач не будет отключена автоматической защитой, либо электротехническим персоналом.

Знайте, что земля является не плохим проводником электрического тока и является как бы продолжением провода электропередачи. Любая точка на поверхности земли в близи упавшего провода, получает определенный потенциал, который уменьшается по мере удаления от точки соприкосновения провода с землей.

Для сведения могу сказать, что при обрыве провода напряжением 0,4 кВ (0,22 кВ), провод лежащий на земле и находящийся под напряжением, создает опасную зону шагового напряжения для человека на расстоянии до 8 метров (погодные условия и класс линии также влияют на эту величину).

Здесь необходимо понимать, что человек или животное получает электротравму (порой смертельную) не только из за того, что он попал под шаговое напряжение, а потому, что это шаговое напряжение создает электрический ток проходящий через тело человека. Именно этот ток и может привести к смертельному исходу. Величина же самого тока зависит не только от разности потенциалов и удельного сопротивления грунта, но и от физического состояния самого человека и других факторов.

Не факт, что гуляя в зоне шагового напряжения вы будете поражены током…, одевайте диэлектрические боты и будет вам счастье! Конечно же в таких специальных ботах ни кто просто так не гуляет, поэтому следует знать, как от этого шагового напряжения защититься в экстренных случаях.

Следует знать, что при попадании под шаговое напряжение у вас возникают непроизвольные судорожные сокращения мышц ног и в такой ситуации вы можете просто упасть на землю. Ток при таком положении тела значительно больше, поскольку (так называемая) ширина шага увеличивается (при попытке встать). Разность потенциалов образуется уже между ногой и рукой.

При увеличении этой разности потенциалов (вспоминайте школу…) увеличивается и ток проходящий через ваше тело. Считается что ток величиной всего лишь 0,1 Ампера способен убить человека. По этому  при опасности шагового напряжения необходимо выйти из  опасной зоны очень маленькими шажками («гусиным шагом»), но в первую очередь поставьте обе ноги вместе, а затем не отрывая подошвы от земли передвигайте их по полступни (это и называется “гусиный шаг”). Некоторые специалисты рекомендуют выходить из опасной зоны прыжками, но этот прием думаю подходит больше для спортсменов (прыгунов на длинные дистанции, шутка), мы же прыгуны любители можем так и голову повредить! Из положения лежа рекомендуется по возможности из опасной зоны выкатываться, не пытаясь вставать. И главное, выходить и выкатываться следует из опасной зоны, а не в неё, надеюсь это понятно.

И ещё некоторые предостережения…. Если вы случайно увидите лежащий на земле провод – ни в коем случае к нему не приближайтесь, напоминаю, опасная зона до 8 метров. Совет: в данной ситуации постарайтесь сообщить об обрыве провода диспетчеру электрических сетей, это позволит в какой то мере предотвратить возможные несчастные случаи.

Понимание шага и потенциала касания

Приближается сезон летних штормов, и вместе с ними приходят оборванные провода, сломанные столбы, деревья и ветви, которые иногда соприкасаются с находящимися под напряжением воздушными проводниками. Эта задняя дверь покрывает некоторые из основных опасностей при работе с обесточенными проводниками под напряжением или рядом с ними, а также невидимую опасность ступенчатого и касательного потенциала.

Что такое потенциал шага и касания?
Чтобы понять потенциал шага и касания, нам сначала нужно понять, как энергия рассеивается через проводящие объекты.В условиях обрыва полюса или обрыва провода существуют действительно хорошие проводники, которые обеспечивают путь к земле, включая металлические ограждения, влажную почву и лужи. Существуют и другие проводники, которые могут быть не такими хорошими, но все же позволяют току проходить на землю, например, деревья, деревянные заборы и опоры электроснабжения. Древесина обычно рассматривается как изолятор, но мокрая древесина будет проводить электрический ток.

Когда находящийся под напряжением провод падает через сетчатый забор или прямо на землю, объект и непосредственная область находятся под напряжением, создавая зону высокого напряжения по отношению к земле.Фактическое напряжение зависит от источника, сопротивления объекта и условий почвы, включая материал и влажность.

Рассеяние напряжения от заземленного проводника – или от заземленного конца заземленного объекта под напряжением – называется градиентом потенциала земли. Падения напряжения, связанные с этим рассеянием напряжения, называются потенциалами земли. Напряжение быстро падает с увеличением расстояния от заземленного конца.

Другой способ описать это – пример камня, брошенного в пруд.Камень создает рябь, которая постепенно исчезает по мере продвижения от центра. Напряжение является самым высоким у источника и спадает, когда энергия движется по земле.

Шаговый потенциал
Когда ток течет от электрического проводника через сетчатый забор к земле, создается состояние высокого напряжения, и возникает градиент напряжения в зависимости от удельного сопротивления почвы, что приводит к разнице напряжений. – также известная как разность потенциалов – между двумя точками на земле.Это называется ступенчатым потенциалом, так как он может вызвать разницу в напряжении между ногами человека.

Потенциал прикосновения
Потенциал прикосновения – это напряжение между любыми двумя точками на теле человека – рука к руке, плечо к спине, локоть к бедру, рука к ноге и так далее. Например, если электрический провод падает на автомобиль, и человек касается этого автомобиля, ток может пройти от автомобиля под напряжением через человека к земле.

Как защитить себя
Во время шторма первое, что нужно помнить, это то, что линии электропередач могут быть в неправильной конфигурации.Для вашей защиты помните об этих основных правилах безопасности при урагане, приведенных в Информационном бюллетене OSHA «Безопасная работа с поврежденными электрическими проводами» (www.osha.gov/OshDoc/data_General_Facts/downed_electrical_wires.pdf):
• Не предполагайте, что сбитый проводник безопасен просто потому, что он находится на земле или не искрит.
• Не думайте, что весь провод с покрытием, атмосферостойкий или изолированный провод – это просто телефонный, телевизионный или оптоволоконный кабель.
• Низко висящие провода все еще имеют потенциал напряжения, даже если они не касаются земли, поэтому не прикасайтесь к ним.Все находится под напряжением, пока не будет проверено обесточивание.
• Никогда не приближайтесь к вышедшей из строя или упавшей линии электропередачи. Всегда предполагайте, что он находится под напряжением. Прикосновение к нему могло быть фатальным.
• Электричество может распространяться через землю по кругу от точки контакта. По мере удаления от центра могут возникнуть большие перепады напряжений.
• Никогда не проезжайте по вышедшим из строя линиям электропередач. Предположим, что они находятся под напряжением. И даже если это не так, сбитые стропы могут запутаться в вашем оборудовании или транспортном средстве.
• При контакте с линией электропередачи, находящейся под напряжением, когда вы находитесь в автомобиле, сохраняйте спокойствие и не выходите, пока автомобиль не горит. Если возможно, обратитесь за помощью.
• Если вам необходимо выйти из любого оборудования из-за пожара или по другим причинам безопасности, постарайтесь полностью отпрыгнуть, убедившись, что вы не касаетесь оборудования и земли одновременно. Приземлитесь обеими ногами вместе и покачивайтесь небольшими шагами, чтобы минимизировать путь электрического тока и избежать поражения электрическим током. Будьте осторожны, чтобы сохранить равновесие.

Используя свои знания и несколько основных правил безопасности при шторме, вы можете уберечь свою команду и себя от опасности.

Об авторе: Джон Бойл – вице-президент по безопасности и качеству INTREN, строительной компании в области электроэнергетики, газа и электросвязи, расположенной в Юнионе, штат Иллинойс. Имеет более чем 28-летний опыт работы в ядерной и ветроэнергетической отраслях. производство электроэнергии и распределение электроэнергии и газа.

ЭЛЕКТРИЧЕСКАЯ БЕЗОПАСНОСТЬ – прикладное промышленное электричество

Важность электробезопасности

С помощью этого урока я надеюсь избежать распространенной ошибки, обнаруживаемой в учебниках по электронике, состоящей в игнорировании или недостаточном освещении темы электробезопасности.Я предполагаю, что тот, кто читает эту книгу, хотя бы вскользь заинтересован в реальной работе с электричеством, и поэтому тема безопасности имеет первостепенное значение.

Еще одно преимущество включения подробного урока по электробезопасности – это практический контекст, который он устанавливает для основных понятий напряжения, тока, сопротивления и проектирования схем. Чем более актуальной будет техническая тема, тем больше вероятность того, что студент обратит внимание и поймет. А что может быть важнее приложения для личной безопасности? Кроме того, поскольку электрическая энергия является повседневным явлением в современной жизни, почти любой может ознакомиться с иллюстрациями, приведенными на таком уроке.Вы когда-нибудь задумывались, почему птиц не шокирует, когда они отдыхают на линиях электропередач? Читайте и узнайте!

Физиологические эффекты электричества

Большинство из нас испытали ту или иную форму электрического «шока», когда электричество заставляет наше тело испытывать боль или травму. Если нам повезет, степень этого переживания ограничится покалыванием или приступами боли из-за накопления статического электричества, проходящего через наши тела. Когда мы работаем с электрическими цепями, способными передавать большую мощность нагрузкам, поражение электрическим током становится гораздо более серьезной проблемой, а боль – наименее значимым результатом поражения электрическим током.

Поскольку электрический ток проходит через материал, любое противодействие току (сопротивлению) приводит к рассеиванию энергии, обычно в виде тепла. Это самый простой и понятный эффект воздействия электричества на живую ткань: ток заставляет ее нагреваться. Если количество выделяемого тепла достаточно, ткань может обжечься. Эффект носит физиологический характер, такой же, как повреждение, вызванное открытым пламенем или другим высокотемпературным источником тепла, за исключением того, что электричество обладает способностью сжигать ткани под кожей жертвы, даже обжигая внутренние органы.

Как электрический ток влияет на нервную систему

Еще одно воздействие электрического тока на организм, возможно, наиболее опасное, касается нервной системы. Под «нервной системой» я имею в виду сеть особых клеток в организме, называемых нервными клетками или нейронами, которые обрабатывают и проводят множество сигналов, ответственных за регуляцию многих функций организма. Мозг, спинной мозг и сенсорные / двигательные органы в теле функционируют вместе, позволяя ему чувствовать, двигаться, реагировать, думать и запоминать.

Нервные клетки взаимодействуют друг с другом, действуя как «преобразователи», создавая электрические сигналы (очень малые напряжения и токи) в ответ на ввод определенных химических соединений, называемых нейротрансмиттерами , и высвобождая эти нейротрансмиттеры при стимуляции электрическими сигналами. Если электрический ток достаточной силы проходит через живое существо (человека или другое), его эффект будет состоять в том, чтобы подавлять крошечные электрические импульсы, обычно генерируемые нейронами, перегружая нервную систему и препятствуя тому, чтобы как рефлекторные, так и волевые сигналы могли действовать. задействовать мышцы.Мышцы, вызванные внешним (шоковым) током, непроизвольно сокращаются, и жертва ничего не может с этим поделать.

Эта проблема особенно опасна, если пострадавший касается руками проводника под напряжением. Мышцы предплечья, отвечающие за сгибание пальцев, как правило, лучше развиты, чем мышцы, отвечающие за разгибание пальцев, и поэтому, если оба набора мышц будут пытаться сокращаться из-за электрического тока, проводимого через руку человека, «сгибающие» мышцы выиграют, сжимая пальцы в кулак.Если проводник, подающий ток к пострадавшему, обращен к ладони его или ее руки, это сжимающее действие заставит руку крепко ухватиться за провод, тем самым ухудшив ситуацию, обеспечивая отличный контакт с проводом. Пострадавший совершенно не сможет отпустить проволоку.

С медицинской точки зрения это состояние непроизвольного сокращения мышц называется столбняком . Электрики, знакомые с этим эффектом поражения электрическим током, часто называют обездвиженную жертву поражения электрическим током «зависшей в цепи».Вызванный током столбняк можно прервать, только отключив ток через пострадавшего.

Даже когда ток прекращается, жертва не может восстановить произвольный контроль над своими мышцами на некоторое время, поскольку химический состав нейротрансмиттера находится в беспорядке. Этот принцип был применен в устройствах «электрошокера», таких как электрошокеры, которые основаны на принципе мгновенного поражения жертвы высоковольтным импульсом, передаваемым между двумя электродами. Правильно нанесенный электрошокер временно (на несколько минут) обездвиживает жертву.

Однако электрический ток может воздействовать не только на скелетные мышцы жертвы электрошока. Мышца диафрагмы, контролирующая легкие, и сердце, которое само по себе является мышцей, также могут быть «заморожены» в состоянии столбняка электрическим током. Даже токи, слишком слабые, чтобы вызвать столбняк, часто способны перебивать сигналы нервных клеток настолько, что сердце не может биться должным образом, отправляя сердце в состояние, известное как фибрилляция . Фибриллирующее сердце скорее трепещет, чем бьется, и не может перекачивать кровь к жизненно важным органам тела.В любом случае смерть от удушья и / или остановки сердца обязательно наступит из-за достаточно сильного электрического тока, проходящего через тело. По иронии судьбы, медицинский персонал использует сильный разряд электрического тока, прикладываемый к груди жертвы, чтобы «подтолкнуть» фибриллирующее сердце к нормальному ритму биений.

Эта последняя деталь подводит нас к другой опасности поражения электрическим током, свойственной коммунальным энергосистемам. Хотя наше первоначальное исследование электрических цепей будет сосредоточено почти исключительно на постоянном токе (постоянный ток или электричество, которое движется в непрерывном направлении в цепи), современные энергетические системы используют переменный ток или переменный ток.Технические причины этого предпочтения переменного тока перед постоянным током в энергосистемах не имеют отношения к этому обсуждению, но особые опасности каждого вида электроэнергии очень важны для темы безопасности.

Воздействие переменного тока на организм во многом зависит от частоты. Низкочастотный (от 50 до 60 Гц) переменный ток используется в домашних хозяйствах США (60 Гц) и Европы (50 Гц); он может быть опаснее высокочастотного переменного тока и в 3-5 раз опаснее постоянного тока того же напряжения и силы тока. Низкочастотный переменный ток вызывает длительное сокращение мышц (тетанию), которое может прижать руку к источнику тока, продлевая воздействие.Постоянный ток, скорее всего, вызовет одиночное судорожное сокращение, которое часто заставляет жертву отойти от источника тока.

Переменный характер

AC имеет большую тенденцию приводить нейроны, задающие ритм сердца, в состояние фибрилляции, тогда как DC имеет тенденцию просто вызывать остановку сердца. Как только ток разряда прекращается, у «замороженного» сердца больше шансов восстановить нормальный ритм сердечных сокращений, чем у фибриллирующего сердца. Вот почему «дефибриллирующее» оборудование, используемое врачами скорой помощи, работает: разряд тока, подаваемого дефибриллятором, – это постоянный ток, который останавливает фибрилляцию и дает сердцу шанс восстановиться.

В любом случае электрические токи, достаточно высокие, чтобы вызвать непроизвольное мышечное действие, опасны, и их следует избегать любой ценой. В следующем разделе мы рассмотрим, как такие токи обычно входят в тело и выходят из него, и рассмотрим меры предосторожности против таких случаев.

  • Электрический ток может вызвать глубокие и серьезные ожоги тела из-за рассеивания мощности через электрическое сопротивление тела.
  • Столбняк – это состояние, при котором мышцы непроизвольно сокращаются из-за прохождения внешнего электрического тока через тело.Когда непроизвольное сокращение мышц, управляющих пальцами, приводит к тому, что жертва не может отпустить проводник под напряжением, жертва считается «замороженной в цепи».
  • Диафрагма (легкие) и сердечные мышцы одинаково подвержены воздействию электрического тока. Даже токи, слишком слабые, чтобы вызвать столбняк, могут быть достаточно сильными, чтобы мешать работе нейронов кардиостимулятора, заставляя сердце трепетать, а не сильно биться.
  • Постоянный ток (DC) с большей вероятностью вызовет столбняк в мышцах, чем переменный ток (AC), поэтому постоянный ток с большей вероятностью «заморозит» жертву в случае шока.Однако переменный ток с большей вероятностью вызовет фибрилляцию сердца жертвы, что является более опасным состоянием для жертвы после прекращения действия электрического тока.

Электричество требует полного пути (цепи) для непрерывного потока. Вот почему удар, полученный от статического электричества, представляет собой только мгновенный толчок: течение тока обязательно кратковременно, когда статические заряды уравниваются между двумя объектами. Подобные шоки самоограниченной продолжительности редко бывают опасными.

Без двух точек контакта на теле для входа и выхода тока, соответственно, опасность поражения электрическим током отсутствует. Вот почему птицы могут спокойно отдыхать на высоковольтных линиях электропередачи, не подвергаясь электрошоку: они контактируют с цепью только в одной точке.

Рис. 1.1

Для того, чтобы ток протекал по проводнику, должно присутствовать напряжение, которое его мотивирует. Напряжение, как вы должны помнить, всегда составляет относительно двух точек . Нет такой вещи, как напряжение «на» или «в» одной точке цепи, и поэтому птица, контактирующая с одной точкой в ​​вышеуказанной цепи, не имеет напряжения, приложенного к ее телу, чтобы установить ток через нее.Да, несмотря на то, что они опираются на на две ножки , обе ступни касаются одного и того же провода, что делает их электрически общими . С точки зрения электричества, обе птичьи лапы соприкасаются с одной и той же точкой, поэтому между ними нет напряжения, которое могло бы стимулировать ток через тело птицы.

Это может привести к мысли, что невозможно получить поражение электрическим током, прикоснувшись только к одному проводу. Как птицы, если мы будем касаться только одного провода за раз, мы будем в безопасности, верно? К сожалению, это не так.В отличие от птиц, при контакте с «живым» проводом люди обычно стоят на земле. Часто одна сторона энергосистемы будет намеренно подключена к заземлению, и поэтому человек, касающийся одного провода, фактически устанавливает контакт между двумя точками в цепи (провод и заземление):

Рис. 1.2

Значок земли представляет собой набор из трех горизонтальных полос уменьшающейся ширины, расположенных в нижнем левом углу показанной схемы, а также у ступни человека, подвергающегося электрошоку.В реальной жизни заземление энергосистемы представляет собой какой-то металлический проводник, закопанный глубоко в землю для обеспечения максимального контакта с землей. Этот проводник электрически подключен к соответствующей точке соединения в цепи толстым проводом. Заземление жертвы осуществляется через ноги, которые касаются земли.

В этот момент в уме ученика обычно возникает несколько вопросов:

  • Если наличие точки заземления в цепи обеспечивает легкую точку контакта для кого-то, чтобы получить электрошок, зачем вообще она в цепи? Разве схема без заземления не была бы безопаснее?
  • Человек, которого шокирует, вероятно, не ходит босиком.Если резина и ткань являются изоляционными материалами, то почему их обувь не защищает их, предотвращая образование цепи?
  • Насколько хорошим проводником может быть грязь ? Если вы можете быть поражены током, протекающим через землю, почему бы не использовать землю в качестве проводника в наших силовых цепях?

В ответ на первый вопрос, наличие преднамеренной точки «заземления» в электрической цепи предназначено для обеспечения того, чтобы одна сторона была безопасной для контакта.Обратите внимание, что если бы наша жертва на приведенной выше диаграмме коснулась нижней стороны резистора, ничего бы не произошло, даже если бы их ноги все еще касались земли:

Рис. 1.3

Поскольку нижняя сторона схемы надежно соединена с землей через точку заземления в нижнем левом углу схемы, нижний проводник схемы выполнен электрически общим с заземлением. Поскольку между электрически общими точками не может быть напряжения, на человека, контактирующего с нижним проводом, не будет напряжения, и они не получат удара током.По той же причине провод, соединяющий цепь с заземляющим стержнем / пластинами, обычно остается оголенным (без изоляции), так что любой металлический объект, о который он задевает, будет электрически общим с землей.

Заземление цепи гарантирует, что по крайней мере одна точка в цепи будет безопасна для прикосновения. Но как насчет того, чтобы оставить цепь полностью незаземленной? Разве это не сделало бы человека, касающегося только одного провода, таким же безопасным, как птица, сидящая только на одном? В идеале да. Практически нет.Посмотрите, что происходит без земли:

Рисунок 1.4

Несмотря на то, что ноги человека все еще соприкасаются с землей, любая точка в цепи должна быть безопасной для прикосновения. Поскольку не существует полного пути (цепи), образованного через тело человека от нижней стороны источника напряжения к верхней, нет возможности установить ток через человека. Однако все это может измениться из-за случайного заземления, такого как ветвь дерева, касающаяся линии электропередачи и обеспечивающая соединение с землей.Такое случайное соединение между проводником энергосистемы и землей (землей) называется замыканием на землю .

Рисунок 1.5

Замыкания на землю

Замыкания на землю могут быть вызваны многими причинами, в том числе скоплением грязи на изоляторах линий электропередач (создание пути грязной воды для тока от проводника к полюсу и к земле во время дождя), проникновением грунтовых вод в подземные проводники линии электропередачи. , и птицы, приземляющиеся на линии электропередач, перемыкая линию к полюсу своими крыльями.Учитывая множество причин замыканий на землю, они, как правило, непредсказуемы. В случае с деревьями никто не может гарантировать , с какой проволокой могут касаться их ветви. Если бы дерево задело верхний провод в цепи, это сделало бы верхний провод безопасным для прикосновения, а нижний опасным – как раз противоположность предыдущему сценарию, когда дерево касается нижнего провода:

Рисунок 1.6

Когда ветвь дерева соприкасается с верхним проводом, этот провод становится заземленным проводом в цепи, электрически общим с заземлением.Следовательно, между этим проводом и землей нет напряжения, а есть полное (высокое) напряжение между нижним проводом и землей. Как упоминалось ранее, ветви деревьев являются лишь одним потенциальным источником замыканий на землю в энергосистеме. Рассмотрим незаземленную энергосистему без соприкосновения деревьев с деревьями, но на этот раз с двумя людьми, касающимися отдельных проводов:

Рис. 1.7

Когда каждый человек стоит на земле, контактируя с разными точками цепи, путь для электрического тока проходит через одного человека, через землю и через другого человека.Несмотря на то, что каждый человек думает, что он в безопасности, коснувшись только одной точки в цепи, их совместные действия создают смертельный сценарий. Фактически, один человек действует как замыкание на землю, что делает его небезопасным для другого человека. Именно поэтому незаземленные энергосистемы опасны: напряжение между любой точкой цепи и землей (землей) непредсказуемо, потому что замыкание на землю может возникнуть в любой точке цепи в любое время. Единственный персонаж, который гарантированно будет в безопасности в этих сценариях, – это птица, которая вообще не связана с землей! Надежно подключив обозначенную точку цепи к заземлению («заземлив» цепь), по крайней мере, безопасность может быть обеспечена в этой точке.Это большая гарантия безопасности, чем полное отсутствие заземления.

Отвечая на второй вопрос, ботинки do с резиновой подошвой действительно обеспечивают некоторую электрическую изоляцию, чтобы помочь защитить кого-то от проведения электрического тока через ступни. Однако наиболее распространенные конструкции обуви не являются электрически «безопасными», поскольку их подошва слишком тонкая и не из подходящего материала. Кроме того, любая влага, грязь или токопроводящие соли из пота тела на поверхности подошвы или проникающие через нее могут поставить под угрозу ту небольшую изоляционную ценность, которая должна была изначально иметь обувь.Есть обувь, специально предназначенная для опасных электромонтажных работ, а также толстые резиновые коврики, на которых можно стоять во время работы с цепями под напряжением, но эти специальные детали должны быть в абсолютно чистом и сухом состоянии, чтобы быть эффективными. Достаточно сказать, что обычной обуви недостаточно, чтобы гарантировать защиту от поражения электрическим током от электросети.

Исследования контактного сопротивления между частями человеческого тела и точками контакта (например, с землей) показывают широкий диапазон цифр (информацию об источнике этих данных см. В конце главы):

  • Контакт для рук или ног, с резиновой изоляцией: обычно 20 МОм.
  • Контакт ступни через кожаную подошву обуви (сухой): от 100 кОм до 500 кОм
  • Контакт ступни через кожаную подошву обуви (мокрый): от 5 кОм до 20 кОм

Как видите, резина не только является гораздо лучшим изоляционным материалом, чем кожа, но и присутствие воды в пористом веществе, таком как кожа , значительно снижает электрическое сопротивление.

Отвечая на третий вопрос, грязь – не очень хороший проводник (по крайней мере, когда она сухая!). У него слишком плохой проводник, чтобы поддерживать постоянный ток для питания нагрузки.Однако, как мы увидим в следующем разделе, требуется очень мало тока, чтобы ранить или убить человека, поэтому даже плохой проводимости грязи достаточно, чтобы обеспечить путь для смертельного тока при наличии достаточного напряжения, как обычно находится в энергосистемах.

Некоторые шлифованные поверхности лучше изолируют, чем другие. Например, асфальт на масляной основе имеет гораздо большее сопротивление, чем большинство видов грязи или камней. Бетон, с другой стороны, имеет довольно низкое сопротивление из-за внутреннего содержания воды и электролита (проводящего химического вещества).

  • Поражение электрическим током может произойти только при контакте между двумя точками цепи; когда на тело жертвы подается напряжение.
  • Цепи питания
  • обычно имеют обозначенную точку, которая «заземлена»: прочно подключена к металлическим стержням или пластинам, закопанным в грязь, чтобы гарантировать, что одна сторона цепи всегда находится под потенциалом земли (нулевое напряжение между этой точкой и землей).
  • Замыкание на землю – это случайное соединение проводника цепи с землей (землей).
  • Специальная изолированная обувь и коврики предназначены для защиты людей от ударов через заземление, но даже эти части снаряжения должны быть в чистом, сухом состоянии, чтобы быть эффективными. Обычная обувь недостаточно хороша, чтобы обеспечить защиту от ударов, изолируя ее владельца от земли.
  • Хотя грязь – плохой проводник, она может проводить ток, достаточный для того, чтобы ранить или убить человека.

Распространенная фраза в отношении электробезопасности звучит примерно так: « Убивает не напряжение, а ток ! ”Хотя в этом есть доля правды, об опасности поражения электрическим током нужно понимать больше, чем эта простая пословица.Если бы напряжение не представляло опасности, никто бы никогда не распечатал и не вывесил надписи: ОПАСНО – ВЫСОКОЕ НАПРЯЖЕНИЕ!

Принцип «убивает текущее» по сути верен. Это электрический ток, который сжигает ткани, замораживает мышцы и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе: должно быть доступное напряжение, чтобы побудить ток протекать через жертву. Тело человека также оказывает сопротивление току, что необходимо учитывать.

Взяв закон Ома для напряжения, тока и сопротивления и выразив его через ток для заданных напряжения и сопротивления, мы получим следующее уравнение:

[латекс] \ textbf {закон Ома} [/ латекс]

[латекс] Ток = \ frac {Напряжение} {Сопротивление} [/ латекс] [латекс] I = \ frac {E} {R} [/ латекс]

Величина тока, протекающего через тело, равна величине напряжения, приложенного между двумя точками этого тела, деленному на электрическое сопротивление, оказываемое телом между этими двумя точками.Очевидно, что чем больше напряжения доступно для протекания тока, тем легче он будет проходить через любое заданное сопротивление. Следовательно, существует опасность высокого напряжения, которое может генерировать ток, достаточный для получения травмы или смерти. И наоборот, если тело имеет более высокое сопротивление, меньший ток будет протекать при любом заданном напряжении. Насколько опасно напряжение, зависит от общего сопротивления цепи, препятствующего прохождению электрического тока.

Сопротивление тела не является фиксированной величиной.Это варьируется от человека к человеку и время от времени. Существует даже метод измерения содержания жира в организме, основанный на измерении электрического сопротивления между пальцами рук и ног. Различное процентное содержание жира в организме обеспечивает разное сопротивление: одна переменная, влияющая на электрическое сопротивление в организме человека. Чтобы методика работала точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела.

Сопротивление тела также зависит от того, как происходит контакт с кожей: от руки к руке, от руки к ноге, от ступни к ступне, от руки к локтю и т. Д. Пот, богатый солью и минералами. , являясь жидкостью, является отличным проводником электричества. То же самое и с кровью с таким же высоким содержанием проводящих химикатов. Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.

Измеряя электрическое сопротивление чувствительным измерителем, я измеряю примерно 1 миллион Ом (1 МОм) на руках, держась за металлические щупы измерителя между пальцами.Измеритель показывает меньшее сопротивление, когда я крепко сжимаю щупы, и большее сопротивление, когда я держу их свободно. Я сижу за компьютером и печатаю эти слова, мои руки чистые и сухие. Если бы я работал в жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, представляя меньшее сопротивление смертельному току и большую опасность поражения электрическим током.

Насколько опасен электрический ток?

Ответ на этот вопрос также зависит от нескольких факторов.Химический состав тела человека оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току, испытывая непроизвольное сокращение мышц из-за разряда статического электричества. Другие могут получить большие искры от разряда статического электричества и почти не почувствовать его, не говоря уже о мышечном спазме. Несмотря на эти различия, с помощью тестов были разработаны приблизительные руководящие принципы, которые показывают, что для проявления вредных эффектов требуется очень небольшой ток (опять же, информацию об источнике этих данных см. В конце главы).Все текущие значения даны в миллиамперах (миллиампер равен 1/1000 ампер):

ТЕЛО ВЛИЯНИЕ МУЖЧИНЫ / ЖЕНЩИНЫ ПРЯМОЙ ТОК (ПОСТОЯННЫЙ ТОК) 60 Гц 100 кГц
Легкое ощущение под рукой Мужчины 1,0 мА 0,4 мА 7 мА
Женщины 0,6 мА 0,3 мА 5 мА
Порог боли Мужчины 5.2 мА 1,1 мА 12 мА
Женщины 3,5 мА 0,7 мА 8 мА
Болезненный, но произвольный контроль мышц сохраняется Мужчины 62 мА 9 мА 55 мА
Женщины 41 мА 6 мА 37 мА
Болезненно, не может отпустить провода Мужчины 76 мА 16 мА 75 мА
Женщины 60 мА 15 мА 63 мА
Сильная боль, затрудненное дыхание Мужчины 90 мА 23 мА 94 мА
Женщины 60 мА 15 мА 63 мА
Возможная фибрилляция сердца через 3 секунды Мужчины и женщины 500 мА 100 мА

«Гц» означает блок Гц .Это мера того, насколько быстро меняется переменный ток, иначе известный как частота . Таким образом, столбец цифр, обозначенный «60 Гц переменного тока», относится к току, который меняется с частотой 60 циклов (1 цикл = период времени, когда ток течет в одном направлении, а затем в другом) в секунду. Последний столбец, обозначенный «10 кГц переменного тока», относится к переменному току, который совершает десять тысяч (10 000) возвратно-поступательных циклов каждую секунду.

Имейте в виду, что эти цифры являются приблизительными, поскольку люди с разным химическим составом тела могут реагировать по-разному.Было высказано предположение, что ток через грудную клетку всего 17 мА переменного тока достаточно, чтобы вызвать фибрилляцию у человека при определенных условиях. Большинство наших данных относительно индуцированной фибрилляции получены в результате испытаний на животных. Очевидно, что проводить тесты индуцированной фибрилляции желудочков на людях непрактично, поэтому имеющиеся данные отрывочны. О, и если вам интересно, я понятия не имею, почему женщины, как правило, более восприимчивы к электрическому току, чем мужчины! Предположим, я положил руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов в секунду).Какое напряжение необходимо для этого состояния чистой, сухой кожи, чтобы получить ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Мы можем использовать закон Ома, чтобы определить это:

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (1 M \ Omega) [/ латекс]

[латекс] \ textbf {E = 20 000 вольт или 20 кВ} [/ латекс]

Имейте в виду, что это «лучший случай» (чистая, сухая кожа) с точки зрения электробезопасности и что это значение напряжения представляет собой величину, необходимую для индукции столбняка.Чтобы вызвать болезненный шок, потребуется гораздо меньше! Кроме того, имейте в виду, что физиологические эффекты любой конкретной силы тока могут значительно отличаться от человека к человеку, и что эти расчеты являются приблизительными только оценками.

Обрызгав пальцы водой, чтобы имитировать пот, я смог измерить сопротивление рук в руках всего 17000 Ом (17 кОм). Имейте в виду, что это касается только одного пальца каждой руки, касающегося тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 мА, мы получим эту цифру:

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (17 кОмега) [/ латекс]

[латекс] \ textbf {E = 340 V} [/ латекс]

В этих реальных условиях потребуется всего 340 вольт потенциала от одной моей руки к другой, чтобы вызвать ток 20 миллиампер.Тем не менее, все еще возможно получить смертельный удар от меньшего напряжения, чем это. При условии значительно более низкого показателя сопротивления тела, увеличенного за счет контакта с кольцом (полоса золота, обернутая по окружности пальца, делает отличной точкой контакта для поражения электрическим током) или полного контакта с большим металлическим предметом, таким как труба или металл рукоятки инструмента сопротивление корпуса может упасть до 1000 Ом (1 кОм), что приведет к тому, что даже более низкое напряжение может представлять потенциальную опасность.

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (1 кОм) [/ латекс]

[латекс] \ textbf {E = 20 V} [/ латекс]

Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы произвести ток в 20 миллиампер через человека; достаточно, чтобы вызвать столбняк. Помните, было высказано предположение, что сила тока всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении рукопашной в 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт.

[латекс] E = IR [/ латекс]
[латекс] E = (17 мА) (1 кВт) [/ латекс]
[латекс] \ textbf {E = 17 В} [/ латекс]

Семнадцать вольт – это не очень много для электрических систем. Конечно, это «наихудший» сценарий с напряжением переменного тока 60 Гц и отличной проводимостью тела, но он действительно показывает, насколько низкое напряжение может представлять серьезную угрозу при определенных условиях.

Условия, необходимые для создания сопротивления тела 1000 Ом, не должны быть такими экстремальными, как то, что было представлено (потная кожа при контакте с золотым кольцом).Сопротивление тела может уменьшаться при приложении напряжения (особенно если столбняк заставляет пострадавшего крепче держать проводник), так что при постоянном напряжении удар может усилиться после первого контакта. То, что начинается как легкий шок – ровно настолько, чтобы «заморозить» жертву, чтобы она не могла отпустить ее, может перерасти в нечто достаточно серьезное, чтобы убить ее, поскольку сопротивление их тела уменьшается, а сила тока соответственно увеличивается.

Исследования предоставили приблизительный набор цифр для электрического сопротивления точек контакта человека в различных условиях:

Ситуация Сухой мокрый
Проволока касалась пальцем 40 000 Ом – 1 000 000 Ом 4000 Ом – 15000 Ом
Проволока в руке 15000 Ом – 50 000 Ом 3000 Ом – 5000 Ом
Ручные плоскогубцы по металлу 5000 Ом – 10 000 Ом 1000 Ом – 3000 Ом
Контакт ладонью 3000 Ом – 8000 Ом 1000 Ом – 2000 Ом
1.5-дюймовая металлическая труба с захватом одной рукой 1000 Ом – 3000 Ом 500 Ом – 1500 Ом
1,5-дюймовая металлическая труба, удерживаемая двумя руками 500 Ом – 1500 кОм 250 Ом – 750 Ом
Рука погружена в проводящую жидкость 200 Ом – 500 Ом
Нога погружена в проводящую жидкость 100 Ом – 300 Ом

Обратите внимание на значения сопротивления для двух состояний с 1.5-дюймовая металлическая труба. Сопротивление, измеренное при захвате трубы двумя руками, составляет ровно половину сопротивления при захвате трубы одной рукой.

Рисунок 1.8

Двумя руками площадь контакта с телом вдвое больше, чем с одной рукой. Это важный урок: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Если держать трубу двумя руками, ток имеет два параллельных путей, по которым он течет от трубы к телу (или наоборот).

Рисунок 1.9

Как мы увидим в более поздней главе, параллельных цепей всегда приводят к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.

В промышленности 30 вольт обычно считается консервативным пороговым значением для опасного напряжения. Осторожный человек должен рассматривать любое напряжение выше 30 вольт как опасное, не полагаясь на нормальное сопротивление тела для защиты от поражения электрическим током. Тем не менее, при работе с электричеством все же отличной идеей является держать руки чистыми и сухими и снимать все металлические украшения.Даже при более низком напряжении металлические украшения могут представлять опасность, поскольку проводят ток, достаточный для ожога кожи, при контакте между двумя точками в цепи. Металлические кольца, в частности, были причиной более чем нескольких ожогов пальцев из-за замыкания между точками в низковольтной и сильноточной цепи.

Кроме того, напряжение ниже 30 может быть опасным, если его достаточно, чтобы вызвать неприятное ощущение, которое может вызвать вздрагивание и случайное соприкосновение с более высоким напряжением или другой опасностью.Я вспоминаю, как однажды жарким летним днем ​​работал над автомобилем. На мне были шорты, моя голая нога касалась хромового бампера автомобиля, когда я затягивал контакты аккумулятора. Когда я прикоснулся металлическим ключом к положительной (незаземленной) стороне 12-вольтовой батареи, я почувствовал покалывание в том месте, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей вспотевшей кожи позволило почувствовать шок всего лишь с 12 вольт электрическим потенциалом.

К счастью, ничего плохого не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не ноге, я мог бы рефлекторно толкнуть руку на пути вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора (производя большой ток через гаечный ключ с большим количеством сопутствующих искр).Это иллюстрирует еще один важный урок, касающийся электробезопасности; этот электрический ток сам по себе может быть косвенной причиной травмы, заставляя вас подпрыгивать или спазмировать части вашего тела в опасную для вас сторону.

Ток, проходящий через человеческое тело, имеет значение, насколько он опасен. Ток будет влиять на все мышцы, находящиеся на его пути, а поскольку мышцы сердца и легких (диафрагмы), вероятно, являются наиболее важными для выживания, пути удара, проходящие через грудную клетку, являются наиболее опасными.Это делает путь электрического тока из рук в руки очень вероятным способом получения травм и летального исхода.

Во избежание подобных ситуаций рекомендуется работать с цепями под напряжением, находящимися под напряжением, только одной рукой, а вторую руку держать в кармане, чтобы случайно ни к чему не прикоснуться. Конечно, всегда безопаснее работать в цепи, когда она отключена, но это не всегда практично или возможно. При работе одной рукой обычно предпочитают правую руку левой по двум причинам: большинство людей правши (что обеспечивает дополнительную координацию при работе), а сердце обычно находится слева от центра в грудной полости.

Для левшей этот совет может быть не лучшим. Если такой человек недостаточно скоординирован с правой рукой, он может подвергнуть себя большей опасности, используя руку, с которой ему меньше всего комфортно, даже если электрический ток, протекающий через эту руку, может представлять большую опасность для его сердца. Относительная опасность между сотрясением одной рукой или другой, вероятно, меньше, чем опасность работы с менее чем оптимальной координацией, поэтому выбор руки для работы лучше всего оставить на усмотрение человека.

Лучшая защита от ударов цепи под напряжением – это сопротивление, а сопротивление может быть добавлено к телу с помощью изолированных инструментов, перчаток, обуви и другого снаряжения. Ток в цепи является функцией доступного напряжения, деленного на общее сопротивление на пути потока. Как мы рассмотрим более подробно позже в этой книге, сопротивления имеют аддитивный эффект, когда они сложены так, что ток течет только по одному пути:

. Рисунок 1.10

Человек, находящийся в прямом контакте с источником напряжения: ток ограничен только сопротивлением тела.

[латекс] I = \ frac {E} {R_ {boot}} [/ латекс]

Теперь мы рассмотрим эквивалентную схему для человека в изолированных перчатках и ботинках:

Рисунок 1.11

Лицо в изоляционных перчатках и сапогах;

Ток теперь ограничен сопротивлением цепи:

[латекс] I = \ frac {E} {R_ {glove} + R_ {body} + R_ {boot} +} [/ latex]

Поскольку электрический ток должен проходить через ботинок и корпус и перчатку, чтобы замкнуть цепь обратно к батарее, общая сумма ( сумма ) этих сопротивлений противодействует протеканию тока в большей степени, чем любое другое. сопротивлений рассматривается индивидуально.

Безопасность – одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией: чтобы значительно увеличить сопротивление между проводником и тем или иным предметом, который может с ним контактировать. К сожалению, было бы непомерно дорого изолировать проводники линии электропередач из-за недостаточной изоляции для обеспечения безопасности в случае случайного контакта. Таким образом, безопасность обеспечивается за счет того, что эти стропы должны находиться достаточно далеко вне досягаемости, чтобы никто не мог случайно прикоснуться к ним.

Если возможно, отключите питание цепи перед выполнением каких-либо работ с ней.Вы должны обезопасить все источники вредной энергии, прежде чем систему можно будет считать безопасной для работы. В промышленности обеспечение безопасности цепи, устройства или системы в этом состоянии обычно называют переводом в состояние с нулевой энергией . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

  • Вред для тела зависит от силы электрического тока. Более высокое напряжение позволяет производить более высокие и опасные токи.Сопротивление противостоит току, поэтому высокое сопротивление является хорошей защитой от ударов.
  • Обычно считается, что любое напряжение выше 30 может создавать опасные ударные токи. Металлические украшения определенно плохо носить при работе с электрическими цепями. Кольца, ремешки для часов, ожерелья, браслеты и другие подобные украшения обеспечивают отличный электрический контакт с вашим телом и сами могут проводить ток, достаточный для возникновения ожогов кожи даже при низком напряжении.
  • Низкое напряжение может быть опасным, даже если оно слишком низкое, чтобы напрямую вызвать поражение электрическим током.Их может быть достаточно, чтобы напугать жертву, заставив ее отпрянуть и коснуться чего-то более опасного в непосредственной близости.
  • Когда необходимо работать с «живым» контуром, лучше всего выполнять работу одной рукой, чтобы предотвратить смертельный путь электрического тока из рук в руки (через грудную клетку).
  • Если возможно, отключите питание цепи перед выполнением каких-либо работ с ней.

При работе с оборудованием отключите все источники питания перед выполнением любых работ.В промышленности удаление этих источников питания из схемы, устройства или системы обычно известно как перевод их в состояние нулевой энергии . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

Обеспечение безопасности чего-либо в состоянии нулевой энергии означает избавление от любого вида потенциальной или накопленной энергии, включая, помимо прочего:

  • Опасное напряжение
  • Давление пружины
  • Гидравлическое давление (жидкость)
  • Пневматическое (воздушное) давление
  • Подвес
  • Химическая энергия (легковоспламеняющиеся или иным образом реагирующие вещества)
  • Ядерная энергия (радиоактивные или делящиеся вещества)

Напряжение по своей природе является проявлением потенциальной энергии.В первой главе я даже использовал приподнятую жидкость в качестве аналогии для потенциальной энергии напряжения, имеющей способность (потенциал) производить ток (поток), но не обязательно осознавая этот потенциал, пока не будет установлен подходящий путь для потока. и сопротивление потоку преодолевается. Пара проводов с высоким напряжением между ними не выглядит и не звучит опасно, даже если они несут между собой достаточно потенциальной энергии, чтобы протолкнуть смертоносное количество тока через ваше тело. Несмотря на то, что это напряжение в настоящее время ничего не делает, у него есть потенциал, и этот потенциал необходимо нейтрализовать, прежде чем можно будет физически контактировать с этими проводами.

Все правильно спроектированные схемы имеют механизмы отключения для снятия напряжения в цепи. Иногда эти «разъединения» служат двойной цели: автоматически размыкаются в условиях чрезмерного тока, и в этом случае мы называем их «автоматическими выключателями». В других случаях выключатели-разъединители представляют собой устройства с ручным управлением без автоматической функции. В любом случае они существуют для вашей защиты и должны использоваться должным образом. Обратите внимание, что устройство отключения должно быть отдельно от обычного выключателя, используемого для включения и выключения устройства.Это предохранительный выключатель, который должен использоваться только для защиты системы в состоянии нулевого потребления энергии:

Рисунок 1.12

Когда выключатель находится в «разомкнутом» положении, как показано (нет непрерывности), цепь разомкнута, и ток не будет существовать. На нагрузке будет нулевое напряжение, а полное напряжение источника будет падать на разомкнутые контакты выключателя. Обратите внимание, что в нижнем проводе цепи нет необходимости в размыкающем выключателе. Поскольку эта сторона цепи надежно соединена с землей (землей), она электрически является общей с землей, и ее лучше оставить таким образом.Для максимальной безопасности персонала, работающего с нагрузкой этой цепи, можно установить временное заземление на верхней стороне нагрузки, чтобы исключить падение напряжения на нагрузке:

Рисунок 1.13

При наличии временного заземляющего соединения обе стороны проводки нагрузки соединяются с землей, обеспечивая нулевое состояние энергии на нагрузке.

Поскольку заземление с обеих сторон нагрузки электрически эквивалентно короткому замыканию через нагрузку с помощью провода, это еще один способ достижения той же цели максимальной безопасности:

Рисунок 1.14

В любом случае обе стороны нагрузки будут электрически общими с землей, с учетом отсутствия напряжения (потенциальной энергии) между обеими сторонами нагрузки и землей, на которой стоят люди. Этот метод временного заземления проводов в обесточенной энергосистеме очень распространен при работах по техническому обслуживанию, выполняемых в системах распределения электроэнергии высокого напряжения.

Еще одним преимуществом этой меры предосторожности является защита от возможности включения размыкающего переключателя (включения его для обеспечения непрерывности цепи), когда люди все еще контактируют с нагрузкой.Временный провод, подключенный к нагрузке, создавал бы короткое замыкание, когда выключатель был замкнут, немедленно срабатывая любые устройства защиты от перегрузки по току (автоматические выключатели или предохранители) в цепи, что снова отключало бы питание. Если это произойдет, разъединитель вполне может получить повреждение, но рабочие на нагрузке находятся в безопасности.

Здесь было бы хорошо упомянуть, что устройства максимального тока не предназначены для защиты от поражения электрическим током.Скорее, они существуют исключительно для защиты проводников от перегрева из-за чрезмерных токов. Только что описанные временные закорачивающие провода действительно могли бы вызвать «срабатывание» любых устройств перегрузки по току в цепи, если бы выключатель был замкнут, но следует понимать, что защита от поражения электрическим током не является предполагаемой функцией этих устройств. Их основная функция будет просто использоваться для защиты рабочего с установленным перемычкой.

Структурированные системы безопасности: блокировка / маркировка

Поскольку очевидно, что важно иметь возможность закрепить любые отключающие устройства в разомкнутом (выключенном) положении и убедиться, что они остаются в этом положении во время работы в цепи, существует необходимость в структурированной системе безопасности, которая должна быть введена в место.Такая система обычно используется в промышленности и называется Lock-out / Tag-out .

Процедура блокировки / маркировки работает следующим образом: все люди, работающие в защищенной цепи, имеют свой собственный замок или кодовый замок, который они устанавливают на рычаге управления устройства отключения перед работой с системой. Кроме того, они должны заполнить и подписать ярлык, который они вешают на свой замок, с описанием характера и продолжительности работы, которую они собираются выполнять в системе.Если есть несколько источников энергии, которые необходимо «заблокировать» (множественные разъединения, как электрические, так и механические источники энергии должны быть защищены, и т. Д.), Рабочий должен использовать столько своих замков, сколько необходимо для обеспечения питания от системы. до начала работы. Таким образом, система поддерживается в состоянии нулевого энергопотребления до тех пор, пока не будет снята каждая последняя блокировка со всех устройств отключения и отключения, а это означает, что каждый последний работник даст согласие, сняв свои личные блокировки. Если будет принято решение повторно активировать систему, и замок (и) одного человека все еще остается на месте после того, как все присутствующие снимают свои, метка (и) покажет, кто этот человек и что он делает.

Даже при наличии хорошей программы безопасности по блокировке / маркировке все еще необходимы усердие и меры предосторожности, основанные на здравом смысле. Это особенно актуально в промышленных условиях, когда над устройством или системой может одновременно работать множество людей. Некоторые из этих людей могут не знать о надлежащей процедуре блокировки / маркировки или могут знать о ней, но слишком самоуверенны, чтобы ей следовать. Не думайте, что все соблюдают правила безопасности!

После того, как электрическая система была заблокирована и помечена вашим личным замком, вы должны дважды проверить, действительно ли напряжение зафиксировано в нулевом состоянии.Один из способов проверить – увидеть, запустится ли машина (или что-то еще, над чем она работает), если будет задействован переключатель или кнопка start . Если он запускается, значит, вы знаете, что не смогли обеспечить от него электрическую энергию.

Кроме того, всегда должен проверять на наличие опасного напряжения с помощью измерительного прибора, прежде чем касаться каких-либо проводов в цепи. Для большей безопасности вы должны выполнить следующую процедуру проверки, использования, а затем проверки вашего глюкометра:

  • Убедитесь, что ваш измеритель правильно показывает на известном источнике напряжения.
  • Используйте свой измеритель, чтобы проверить цепь блокировки на наличие опасного напряжения.
  • Еще раз проверьте свой измеритель на известном источнике напряжения, чтобы убедиться, что он по-прежнему показывает должным образом.

Хотя это может показаться чрезмерным или даже параноидальным, это проверенный метод предотвращения поражения электрическим током. Однажды у меня был счетчик, который не смог показать напряжение, когда он должен был, при проверке цепи, чтобы убедиться, что она «мертва». Если бы я не использовал другие средства для проверки наличия напряжения, меня бы сегодня не было в живых, чтобы написать это.Всегда есть шанс, что ваш вольтметр окажется неисправным именно тогда, когда он понадобится вам для проверки на наличие опасного состояния. Следуя этим инструкциям, вы никогда не попадете в смертельную ситуацию из-за поломки счетчика.

Наконец, электротехник прибудет к тому моменту процедуры проверки безопасности, когда будет считаться безопасным прикосновение к проводнику (проводам). Имейте в виду, что после принятия всех мер предосторожности возможно (хотя и очень маловероятно) наличие опасного напряжения.Последней мерой предосторожности, которую следует предпринять на этом этапе, является кратковременный контакт проводника (проводов) тыльной стороной руки перед тем, как схватить его или металлический инструмент, соприкасающийся с ним. Почему? Если по какой-то причине между этим проводником и заземлением все еще присутствует напряжение, движение пальца из-за реакции удара (сжатие в кулак) приведет к разрыву контакта с проводником. Обратите внимание, что это абсолютно последний шаг , последний шаг , который должен выполнить любой электромонтер перед началом работы с энергосистемой, и никогда не следует использовать в качестве альтернативного метода проверки опасного напряжения.Если у вас когда-либо будут основания сомневаться в надежности вашего глюкометра, воспользуйтесь другим глюкометром, чтобы получить «второе мнение».

  • Состояние нулевой энергии: Когда цепь, устройство или система защищены так, что не существует потенциальной энергии, которая могла бы нанести вред кому-либо, работающему с ними.
  • Устройства выключателя-разъединителя должны присутствовать в правильно спроектированной электрической системе, чтобы обеспечить удобную готовность к состоянию нулевого энергопотребления.
  • К обслуживаемой нагрузке могут быть подключены временные заземляющие или закорачивающие провода для дополнительной защиты персонала, работающего с этой нагрузкой.
  • Блокировка / маркировка работает следующим образом: при работе с системой в состоянии нулевого энергопотребления рабочий помещает личный замок или кодовый замок на каждое устройство отключения энергии, имеющее отношение к его или ее задаче в этой системе. Кроме того, на каждый из этих замков навешивается тег, описывающий характер и продолжительность работы, которую необходимо выполнить, и того, кто ее выполняет.
  • Всегда проверяйте, что цепь была зафиксирована в состоянии нулевого потребления энергии с помощью испытательного оборудования после «блокировки». Обязательно проверьте свой глюкометр до и после проверки цепи, чтобы убедиться, что она работает правильно.
  • Когда придет время действительно вступить в контакт с проводником (-ами) предположительно мертвой энергосистемы, сделайте это сначала тыльной стороной одной руки, чтобы в случае удара током мышечная реакция оттолкнула пальцы от проводника. .

Безопасное и эффективное использование электросчетчика – это, пожалуй, самый ценный навык, которым может овладеть электронщик, как ради собственной безопасности, так и для профессионального мастерства. Поначалу может быть сложно использовать счетчик, зная, что вы подключаете его к цепям под напряжением, которые могут содержать опасные для жизни уровни напряжения и тока.Это опасение небезосновательно, и всегда лучше действовать осторожно при использовании счетчиков. Небрежность больше, чем какой-либо другой фактор, является причиной несчастных случаев с электричеством у опытных технических специалистов.

Мультиметры

Самым распространенным электрическим испытательным оборудованием является мультиметр . Мультиметры названы так потому, что они могут измерять множество переменных: напряжение, ток, сопротивление и часто многие другие, некоторые из которых не могут быть объяснены здесь из-за их сложности.В руках обученного техника мультиметр является одновременно эффективным рабочим инструментом и защитным устройством. Однако в руках невежественного и / или неосторожного человека мультиметр может стать источником опасности при подключении к «действующей» цепи.

Существует много разных марок мультиметров, причем каждый производитель выпускает несколько моделей с разными наборами функций. Мультиметр, показанный здесь на следующих иллюстрациях, представляет собой «универсальную» конструкцию, не специфичную для какого-либо производителя, но достаточно общую, чтобы научить основным принципам использования:

Рисунок 1.15

Вы заметите, что дисплей этого измерителя имеет «цифровой» тип: числовые значения отображаются с использованием четырех цифр, как на цифровых часах. Поворотный селекторный переключатель (теперь установлен в положение Off ) имеет пять различных положений измерения, в которых он может быть установлен: два значения «V», два значения «A» и одно положение посередине с забавной «подковой». Символ на нем, представляющий «сопротивление». Символ «подкова» – это греческая буква «Омега» (Ω), которая является общим символом для электрической единицы измерения ом.

Из двух настроек «V» и двух настроек «A» вы заметите, что каждая пара разделена на уникальные маркеры либо парой горизонтальных линий (одна сплошная, одна пунктирная), либо пунктирной линией с волнистой кривой над ней. . Параллельные линии представляют «постоянный ток», а волнистая кривая – «переменный ток». «V», конечно, означает «напряжение», а «A» означает «сила тока» (ток). Измеритель использует другие методы для измерения постоянного тока внутри, чем он использует для измерения переменного тока, и поэтому он требует от пользователя выбора типа напряжения (В) или тока (А) для измерения.Хотя мы не обсуждали переменный ток (AC) в каких-либо технических деталях, это различие в настройках счетчика важно помнить.

Мультиметр Розетки

На лицевой панели мультиметра есть три разных гнезда, в которые мы можем подключить наши измерительные провода . Измерительные провода – это не что иное, как специально подготовленные провода, используемые для подключения измерителя к тестируемой цепи. Провода покрыты гибкой изоляцией с цветовой кодировкой (черной или красной), чтобы руки пользователя не касались оголенных проводов, а кончики зондов представляют собой острые жесткие кусочки проволоки:

Рисунок 1.16

Черный измерительный провод всегда подключается к разъему черного цвета на мультиметре: с пометкой «COM» для «общего». Красные измерительные провода подключаются либо к красной розетке с маркировкой напряжения и сопротивления, либо к красной розетке с маркировкой тока, в зависимости от того, какое количество вы собираетесь измерить с помощью мультиметра.

Чтобы увидеть, как это работает, давайте посмотрим на пару примеров, показывающих, как используется измеритель. Сначала мы настроим измеритель для измерения постоянного напряжения от батареи:

Рисунок 1.17

Обратите внимание, что два измерительных провода подключены к соответствующим гнездам на измерителе для измерения напряжения, а селекторный переключатель установлен на «V» постоянного тока. Теперь рассмотрим пример использования мультиметра для измерения напряжения переменного тока от бытовой электрической розетки (настенной розетки):

Рис. 1.18

Единственное отличие в настройке измерителя – это расположение селекторного переключателя: теперь он установлен на переменный ток «V». Поскольку мы все еще измеряем напряжение, измерительные провода останутся подключенными к тем же гнездам.В обоих этих примерах настоятельно необходимо, , чтобы вы не позволяли наконечникам пробников соприкасаться друг с другом, пока они оба находятся в контакте со своими соответствующими точками в цепи. Если это произойдет, образуется короткое замыкание, вызывающее искру и, возможно, даже шар пламени, если источник напряжения способен обеспечить достаточный ток! Следующее изображение иллюстрирует потенциальную опасность:

Рис. 1.19.

Это лишь один из способов, которым счетчик может стать источником опасности при неправильном использовании.

Измерение напряжения, пожалуй, самая распространенная функция, для которой используется мультиметр. Это, безусловно, первичное измерение, выполняемое в целях безопасности (часть процедуры блокировки / маркировки), и оно должно быть хорошо понято оператором счетчика. Поскольку напряжение между двумя точками всегда является относительным, измеритель должен быть надежно подключен к двум точкам в цепи, прежде чем он будет обеспечивать надежное измерение. Обычно это означает, что оба щупа должны быть схвачены руками пользователя и прижаты к правильным точкам контакта источника напряжения или цепи во время измерения.

Поскольку путь электрического тока из рук в руки является наиболее опасным, удерживание измерительных щупов в двух точках высоковольтной цепи таким образом всегда представляет собой потенциальную опасность . Если защитная изоляция на датчиках изношена или потрескалась, пальцы пользователя могут соприкоснуться с проводниками датчика во время испытания, что приведет к сильному удару. Это более безопасный вариант, если можно использовать только одну руку для захвата зондов. Иногда можно «защелкнуть» один наконечник щупа на контрольной точке цепи, чтобы его можно было отпустить, а другой установить на место, используя только одну руку.Для облегчения этого можно прикрепить специальные аксессуары для наконечников зонда, такие как пружинные зажимы.

Помните, что измерительные провода измерителя являются частью всего комплекта оборудования и что с ними следует обращаться так же осторожно и уважительно, как и с самим измерителем. Если вам нужен специальный аксессуар для ваших измерительных проводов, такой как пружинный зажим или другой специальный наконечник зонда, обратитесь к каталогу продукции производителя измерителя или другого производителя испытательного оборудования. Не пытайтесь проявить изобретательность и создавать свои собственные пробники, так как вы можете подвергнуть себя опасности в следующий раз, когда будете использовать их в цепи под напряжением.

Также следует помнить, что цифровые мультиметры обычно хорошо справляются с различением измерений переменного и постоянного тока, поскольку они настраиваются на одно или другое при проверке напряжения или тока. Как мы видели ранее, как переменное, так и постоянное напряжение и ток могут быть смертельными, поэтому при использовании мультиметра в качестве устройства проверки безопасности вы всегда должны проверять наличие как переменного, так и постоянного тока, даже если вы не ожидаете найти и то, и другое. ! Кроме того, при проверке наличия опасного напряжения вы должны обязательно проверить всех пар точек, о которых идет речь.

Например, предположим, что вы открыли шкаф с электропроводкой и обнаружили три больших проводника, подающих питание переменного тока на нагрузку. Автоматический выключатель, питающий эти провода (предположительно), был отключен, заблокирован и помечен. Вы дважды проверили отсутствие питания, нажав кнопку Start для нагрузки. Ничего не произошло, поэтому теперь вы переходите к третьему этапу проверки безопасности: проверке измерителя напряжения.

Сначала вы проверяете свой измеритель на известном источнике напряжения, чтобы убедиться, что он работает правильно.Любая ближайшая электрическая розетка должна обеспечивать удобный источник переменного напряжения для проверки. Вы делаете это и обнаруживаете, что счетчик показывает как следует. Затем вам нужно проверить напряжение между этими тремя проводами в шкафу. Но напряжение измеряется между двумя точками, так где же проверить?

Рисунок 1.20

Ответ – проверить все комбинации этих трех точек. Как видите, на рисунке точки обозначены буквами «A», «B» и «C», поэтому вам нужно будет взять мультиметр (установленный в режиме вольтметра) и проверить его между точками A и B, B и C, а также A и C.Если вы обнаружите напряжение между любой из этих пар, цепь не находится в состоянии нулевой энергии. Но ждать! Помните, что мультиметр не будет регистрировать напряжение постоянного тока, когда он находится в режиме переменного напряжения, и наоборот, поэтому вам необходимо проверить эти три пары точек в для каждого режима , в общей сложности шесть проверок напряжения для завершения!

Однако, даже несмотря на всю эту проверку, мы еще не охватили все возможности. Помните, что опасное напряжение может появиться между одиночным проводом и землей (в этом случае металлический каркас шкафа будет хорошей точкой отсчета заземления) в энергосистеме.Итак, чтобы быть в полной безопасности, мы должны не только проверять между A и B, B и C, и A и C (как в режимах переменного, так и постоянного тока), но мы также должны проверять между A и землей, B и землей, и C & заземление (как в режимах переменного, так и постоянного тока)! Это дает в общей сложности двенадцать проверок напряжения для этого, казалось бы, простого сценария всего с тремя проводами. Затем, конечно, после того, как мы завершили все эти проверки, нам нужно взять мультиметр и повторно проверить его с помощью известного источника напряжения, такого как розетка, чтобы убедиться, что он по-прежнему в хорошем рабочем состоянии.

Использование мультиметра для проверки сопротивления

Использование мультиметра для проверки сопротивления – гораздо более простая задача. Измерительные провода будут оставаться подключенными к тем же розеткам, что и для проверки напряжения, но селекторный переключатель необходимо повернуть, пока он не укажет на символ сопротивления «подкова». Касаясь щупами устройства, сопротивление которого необходимо измерить, измеритель должен правильно отображать сопротивление в омах:

Рисунок 1.21

При измерении сопротивления следует помнить, что это должно выполняться только на обесточенных компонентах ! Когда измеритель находится в режиме «сопротивления», он использует небольшую внутреннюю батарею для генерации крошечного тока через измеряемый компонент. Путем определения того, насколько сложно пропустить этот ток через компонент, можно определить и отобразить сопротивление этого компонента. Если в контуре измерителя-вывод-компонент-вывод-измеритель имеется дополнительный источник напряжения, который либо помогает, либо противодействует току измерения сопротивления, производимому измерителем, это приведет к ошибочным показаниям.В худшем случае счетчик может даже выйти из строя из-за внешнего напряжения.

Режим «Сопротивление» мультиметра

Режим «сопротивления» мультиметра очень полезен для определения целостности проводов, а также для точных измерений сопротивления. Когда между наконечниками пробников имеется хорошее, прочное соединение (моделируется путем их соприкосновения), измеритель показывает почти нулевое сопротивление. Если бы в измерительных проводах не было сопротивления, он показывал бы ровно ноль:

. Рисунок 1.22

Если выводы не соприкасаются друг с другом или не касаются противоположных концов разорванного провода, измеритель покажет бесконечное сопротивление (обычно путем отображения пунктирных линий или сокращения «O.L.», что означает «разомкнутый контур»):

Рисунок 1.23

Измерение тока с помощью мультиметра

Безусловно, наиболее опасным и сложным применением мультиметра является измерение тока. Причина этого довольно проста: для того, чтобы измеритель мог измерять ток, измеряемый ток должен пройти от до счетчика.Это означает, что измеритель должен быть частью цепи тока, а не просто подключаться к какой-либо стороне, как в случае измерения напряжения. Чтобы сделать счетчик частью пути тока цепи, исходная цепь должна быть «разорвана», а счетчик соединен через две точки разомкнутого разрыва. Чтобы настроить измеритель на это, селекторный переключатель должен указывать на переменный или постоянный ток «A», а красный измерительный провод должен быть вставлен в красную розетку с маркировкой «A». На следующем рисунке показан измеритель, полностью готовый к измерению тока, и проверяемая цепь:

Рисунок 1.24

Сейчас цепь разомкнута при подготовке к подключению счетчика:

Рисунок 1.25

Следующий шаг – вставить измеритель в линию со схемой, подключив два наконечника щупа к разомкнутым концам цепи, черный щуп к отрицательной (-) клемме 9-вольтовой батареи и красный щуп к свободному концу провода, ведущему к лампе:

Рисунок 1.26

Этот пример показывает очень безопасную схему для работы. 9 вольт вряд ли представляют опасность поражения электрическим током, поэтому не стоит бояться разомкнуть эту цепь (не голыми руками, не меньше!) И подключить счетчик параллельно с током.Однако с цепями более высокой мощности это действительно может быть опасным занятием. Даже если напряжение в цепи было низким, нормальный ток мог быть достаточно высоким, чтобы возникла опасная искра в момент установления последнего подключения датчика измерителя.

Другая потенциальная опасность использования мультиметра в режиме измерения тока («амперметр») заключается в том, что он не может правильно вернуть его в конфигурацию измерения напряжения перед измерением напряжения с его помощью. Причины этого зависят от конструкции и работы амперметра.При измерении тока в цепи путем размещения измерителя непосредственно на пути тока, лучше всего, чтобы измеритель оказывал небольшое сопротивление току или не оказывал никакого сопротивления. В противном случае дополнительное сопротивление изменит работу схемы. Таким образом, мультиметр спроектирован так, чтобы сопротивление между наконечниками измерительного щупа было практически нулевым, когда красный щуп был вставлен в красное гнездо «А» (для измерения тока). В режиме измерения напряжения (красный провод вставлен в красное гнездо «V») между наконечниками измерительных щупов имеется большое количество мегаомов сопротивления, потому что вольтметры имеют сопротивление, близкое к бесконечному (так что они не работают). t потребляют значительный ток из тестируемой цепи).

При переключении мультиметра из режима измерения тока в режим измерения напряжения легко повернуть селекторный переключатель из положения «A» в положение «V» и забыть, соответственно, переключить положение разъема красного измерительного провода с «A» на положение «V». «V». В результате – если счетчик затем подключить к источнику значительного напряжения – произойдет короткое замыкание счетчика!

Рисунок 1.27

Чтобы предотвратить это, у большинства мультиметров есть функция предупреждения, с помощью которой они издают звуковой сигнал, если когда-либо в гнездо «A» вставлен провод, а селекторный переключатель установлен в положение «V».Однако какими бы удобными ни были эти функции, они по-прежнему не заменяют ясного мышления и осторожности при использовании мультиметра.

Все качественные мультиметры содержат внутри предохранители, которые спроектированы так, чтобы «перегорать» в случае чрезмерного тока через них, как в случае, показанном на последнем изображении. Как и все устройства максимальной токовой защиты, эти предохранители в первую очередь предназначены для защиты оборудования (в данном случае самого счетчика) от чрезмерного повреждения и только во вторую очередь для защиты пользователя от повреждений.Мультиметр можно использовать для проверки собственного предохранителя, установив селекторный переключатель в положение сопротивления и создав соединение между двумя красными гнездами следующим образом:

Рисунок 1.28.

. Исправный предохранитель будет указывать на очень низкое сопротивление, в то время как перегоревший предохранитель всегда будет показывать «O.L.» (или любое другое указание, которое используется в этой модели мультиметра для обозначения отсутствия непрерывности). Фактическое количество Ом, отображаемое для исправного предохранителя, не имеет большого значения, если оно является произвольно низким.

Итак, теперь, когда мы увидели, как использовать мультиметр для измерения напряжения, сопротивления и тока, что еще нужно знать? Множество! Ценность и возможности этого универсального испытательного прибора станут более очевидными по мере того, как вы приобретете навыки и познакомитесь с ним.Ничто не заменит регулярные занятия со сложными инструментами, такими как эти, поэтому не стесняйтесь экспериментировать с безопасными схемами с батарейным питанием.

  • Измеритель, способный проверять напряжение, ток и сопротивление, называется мультиметром .
  • Поскольку напряжение между двумя точками всегда относительное, измеритель напряжения («вольтметр») должен быть подключен к двум точкам в цепи, чтобы получить хорошие показания. Будьте осторожны, не касайтесь оголенных наконечников щупов вместе при измерении напряжения, так как это приведет к короткому замыканию!
  • Не забывайте всегда проверять как напряжение переменного, так и постоянного тока при использовании мультиметра для проверки наличия опасного напряжения в цепи.Убедитесь, что вы проверяете напряжение между всеми комбинациями пар проводников, в том числе между отдельными проводниками и землей!
  • В режиме измерения напряжения («вольтметр») мультиметры имеют очень высокое сопротивление между выводами.
  • Никогда не пытайтесь измерить сопротивление или целостность цепи с помощью мультиметра в цепи, которая находится под напряжением. В лучшем случае показания сопротивления, полученные от глюкометра, будут неточными, а в худшем случае глюкометр может быть поврежден, а вы можете получить травму.
  • Измерители тока («амперметры») всегда подключены в цепь, поэтому электроны должны проходить через через счетчик .
  • В режиме измерения тока («амперметр») мультиметры практически не имеют сопротивления между выводами. Это сделано для того, чтобы электроны могли проходить через счетчик с наименьшими трудностями. Если бы это было не так, измеритель добавлял бы дополнительное сопротивление в цепи, тем самым влияя на ток.

Как мы видели ранее, энергосистема без надежного соединения с землей непредсказуема с точки зрения безопасности.Невозможно гарантировать, какое или как мало будет напряжения между любой точкой цепи и землей. Заземлив одну сторону источника напряжения энергосистемы, по крайней мере, одна точка в цепи может быть электрически соединена с землей и, следовательно, не представляет опасности поражения электрическим током. В простой двухпроводной системе электропитания проводник, соединенный с землей, называется нейтраль , а другой провод – горячий , также известный как под напряжением или активный :

Рисунок 1.29 Двухпроводная система электропитания

Что касается источника напряжения и нагрузки, заземление не имеет никакого значения. Он существует исключительно ради личной безопасности, гарантируя, что по крайней мере одна точка в цепи будет безопасна для прикосновения (нулевое напряжение относительно земли). «Горячая» сторона цепи, названная в честь ее потенциальной опасности поражения электрическим током, будет опасна прикасаться, если напряжение не будет обеспечено путем надлежащего отключения от источника (в идеале, с использованием процедуры систематической блокировки / маркировки).

Этот дисбаланс опасностей между двумя проводниками в простой силовой цепи важно понимать. Следующая серия иллюстраций основана на распространенных бытовых системах электропроводки (для простоты с использованием источников постоянного напряжения, а не переменного тока).

Если мы посмотрим на простой бытовой электроприбор, такой как тостер с проводящим металлическим корпусом, мы увидим, что при правильной работе не должно быть опасности поражения электрическим током. Провода, передающие питание на нагревательные элементы тостера, изолированы от соприкосновения с металлическим корпусом (и друг с другом) резиной или пластиком.

Рисунок 1.30 Отсутствие напряжения между корпусом и землей

Однако, если один из проводов внутри тостера случайно войдет в контакт с металлическим корпусом, корпус станет электрически общим для провода, и прикосновение к корпусу будет столь же опасным, как прикосновение к оголенному проводу. Представляет ли это опасность поражения электрическим током, зависит от номера , к которому случайно прикасается провод :

Рисунок 1.31 случайное контактное напряжение между корпусом и землей

Если «горячий» провод касается корпуса, это подвергает опасности пользователя тостера.С другой стороны, если нейтральный провод касается корпуса, опасности поражения электрическим током нет:

Рисунок 1.32 Случайное отсутствие напряжения между корпусом и землей

Чтобы гарантировать, что первый отказ менее вероятен, чем второй, инженеры стараются проектировать устройства таким образом, чтобы свести к минимуму контакт горячего проводника с корпусом. В идеале, конечно, вы не хотите, чтобы какой-либо из проводов случайно соприкасался с токопроводящим корпусом прибора, но обычно есть способы спроектировать расположение частей, чтобы сделать случайный контакт менее вероятным для одного провода, чем для другого.

Однако эта профилактическая мера эффективна только в том случае, если может быть гарантирована полярность вилки питания. Если вилку можно перевернуть, то проводник с большей вероятностью соприкоснется с корпусом вполне может быть «горячим»:

Рисунок 1.33 Напряжение между корпусом и землей

Устройства, разработанные таким образом, обычно поставляются с «поляризованными» вилками, причем один контакт вилки немного уже, чем другой. Розетки питания также имеют такую ​​же конструкцию, причем один слот уже другой.Следовательно, вилку нельзя вставить «задом наперед», и можно гарантировать идентичность проводника внутри устройства. Помните, что это никак не влияет на основные функции устройства: это делается исключительно ради безопасности пользователя.

Некоторые инженеры решают проблему безопасности, просто делая внешний корпус прибора непроводящим. Такие приборы называются с двойной изоляцией, , поскольку изолирующий кожух служит вторым слоем изоляции выше и выше самих проводников.Если провод внутри устройства случайно войдет в контакт с корпусом, это не представляет опасности для пользователя устройства.

Другие инженеры решают проблему безопасности, поддерживая проводящий корпус, но используя третий провод для надежного соединения этого корпуса с землей:

Рис. 1.34 Нулевое напряжение корпуса заземления между корпусом и землей

Третий контакт на шнуре питания обеспечивает прямое электрическое соединение корпуса устройства с землей, делая две точки электрически общими друг с другом.Если они электрически общие, то между ними не может быть падения напряжения. По крайней мере, так оно и должно работать. Если горячий провод случайно коснется металлического корпуса прибора, он вызовет прямое короткое замыкание обратно на источник напряжения через заземляющий провод, сработав любые устройства защиты от сверхтоков. Пользователь устройства останется в безопасности.

Вот почему так важно никогда не отрезать третий контакт вилки питания, когда пытаетесь вставить его в розетку с двумя контактами.Если это будет сделано, не будет заземления корпуса прибора для обеспечения безопасности пользователя (ей). Устройство по-прежнему будет функционировать должным образом, но в случае внутренней неисправности, приводящей к контакту горячей проволоки с корпусом, результаты могут быть смертельными. Если необходимо использовать двухконтактную розетку , можно установить двухконтактный переходник розетки с заземляющим проводом, прикрепленным к заземляющему винту крышки. Это обеспечит безопасность заземленного прибора, подключенного к розетке этого типа.

Однако электрически безопасное проектирование не обязательно заканчивается нагрузкой. Последнюю защиту от поражения электрическим током можно установить на стороне источника питания цепи, а не на самом приборе. Эта мера защиты называется , обнаружение замыкания на землю , и работает она следующим образом:

В правильно работающем приборе (показанном выше) ток, измеренный через проводник под напряжением, должен быть точно равен току через нейтральный проводник, потому что существует только один путь для прохождения электронов в цепи.При отсутствии неисправности внутри устройства нет соединения между проводниками цепи и человеком, касающимся корпуса, и, следовательно, нет удара.

Если, однако, горячая проволока случайно коснется металлического корпуса, через человека, прикоснувшегося к корпусу, пройдет ток. Наличие тока разряда будет проявляться как разница тока между двумя силовыми проводниками в розетке:

Рисунок 1.35 Разница в токе между двумя силовыми проводниками в розетке

Эта разница в токе между «горячим» и «нейтральным» проводниками будет существовать только в том случае, если есть ток через заземление, что означает, что в системе есть неисправность.Следовательно, такая разница тока может использоваться как способ обнаружения неисправного состояния. Если устройство настроено для измерения этой разницы в токах между двумя силовыми проводниками, обнаружение дисбаланса тока можно использовать для запуска размыкания выключателя, тем самым отключая питание и предотвращая серьезный удар:

Рисунок 1.36 Прерыватели тока замыкания на землю

Такие устройства называются Прерыватели тока замыкания на землю , или сокращенно GFCI. За пределами Северной Америки GFCI также известен как предохранительный выключатель, устройство защитного отключения (RCD), RCBO или RCD / MCB в сочетании с миниатюрным автоматическим выключателем или выключателем утечки на землю (ELCB).Они достаточно компактны, чтобы их можно было встроить в розетку. Эти розетки легко идентифицировать по их характерным кнопкам «Тест» и «Сброс». Большим преимуществом использования этого подхода для обеспечения безопасности является то, что он работает независимо от конструкции устройства. Конечно, использование прибора с двойной изоляцией или заземлением в дополнение к розетке GFCI было бы еще лучше, но приятно знать, что можно что-то сделать для повышения безопасности, помимо конструкции и состояния прибора.

Прерыватель цепи дуги (AFCI) , автоматический выключатель, предназначенный для предотвращения пожаров, предназначен для отключения при прерывистых резистивных коротких замыканиях. Например, нормальный выключатель на 15 А предназначен для быстрого размыкания цепи при нагрузке, значительно превышающей номинальную 15 А, или медленнее, немного превышающей номинальную. Хотя это защищает от прямого короткого замыкания и нескольких секунд перегрузки, соответственно, он не защищает от дуги – аналогично дуговой сварке. Дуга представляет собой сильно изменяющуюся нагрузку, периодически достигающую максимума более 70 А, разомкнутую цепь с переходами через ноль переменного тока.Хотя среднего тока недостаточно для срабатывания стандартного выключателя, его достаточно, чтобы разжечь пожар. Эта дуга может быть создана из-за металлического короткого замыкания, которое сжигает металл, оставляя резистивную распыляющую плазму ионизированных газов.

AFCI содержит электронную схему для обнаружения этого прерывистого резистивного короткого замыкания. Он защищает как от дуги от горячего к нейтральному, так и от горячего к заземлению. AFCI не защищает от опасности поражения электрическим током, как GFCI. Таким образом, GFCI по-прежнему необходимо устанавливать на кухне, в ванной и на открытом воздухе.Поскольку AFCI часто срабатывает при запуске больших двигателей и, в более общем смысле, щеточных двигателей, его установка ограничена электрическими цепями в спальнях в соответствии с Национальным электротехническим кодексом США. Использование AFCI должно уменьшить количество электрических пожаров. Однако неприятные срабатывания при работе приборов с двигателями в цепях AFCI представляют собой проблему.

  • В энергосистемах одна сторона источника напряжения часто подключается к заземлению для обеспечения безопасности в этой точке.
  • «Заземленный» провод в энергосистеме называется нейтральным проводником , , а незаземленный провод – , горячим проводом .
  • Заземление в энергосистемах существует для личной безопасности, а не для работы нагрузки (ей).
  • Электробезопасность прибора или других нагрузок может быть улучшена за счет хорошей инженерии: поляризованные вилки, двойная изоляция и трехконтактные вилки с «заземлением» – все это способы повышения безопасности на стороне нагрузки.
  • Прерыватели тока замыкания на землю (GFCI) работают, считывая разницу в токе между двумя проводниками, подающими питание на нагрузку.Никакой разницы в токе быть не должно. Любая разница означает, что ток должен входить в нагрузку или выходить из нее каким-либо образом, кроме двух основных проводников, что нехорошо. Значительная разница в токе автоматически откроет размыкающий механизм выключателя, полностью отключив питание.

Обычно допустимая токовая нагрузка проводника – это предел конструкции схемы, который нельзя намеренно превышать, но есть приложение, в котором ожидается превышение допустимой токовой нагрузки: в случае предохранителей .

Что такое предохранитель?

A предохранитель представляет собой устройство электробезопасности, построенное вокруг токопроводящей ленты, которая предназначена для плавления и разделения в случае чрезмерного тока. Предохранители всегда подключаются последовательно с компонентом (ами), который должен быть защищен от перегрузки по току, так что, когда предохранитель перегорает (размыкается), он размыкает всю цепь и останавливает ток через компонент (ы). Плавкий предохранитель, включенный в одну ветвь параллельной цепи, конечно, не повлияет на ток, протекающий через любую из других ветвей.

Обычно тонкий кусок плавкой проволоки помещается в защитную оболочку, чтобы свести к минимуму опасность возникновения дугового разряда в случае прорыва проволоки с большой силой, как это может произойти в случае сильных перегрузок по току. В случае небольших автомобильных предохранителей оболочка прозрачна, так что плавкий элемент может быть визуально осмотрен. В бытовой электропроводке обычно используются ввинчиваемые предохранители со стеклянным корпусом и тонкой узкой полосой из металлической фольги посередине. Фотография, на которой показаны оба типа предохранителей, представлена ​​здесь:

Рисунок 1.37 Типы предохранителей

Предохранители картриджного типа популярны в автомобилях и в промышленности, если они изготовлены из материалов оболочки, отличных от стекла. Поскольку предохранители рассчитаны на «отказ» срабатывания при превышении их номинального тока, они обычно предназначены для легкой замены в цепи. Это означает, что они будут вставлены в какой-либо тип держателя, а не припаиваться или прикрепляться болтами к проводникам цепи. Ниже приведена фотография, на которой изображена пара предохранителей со стеклянным картриджем в держателе с несколькими предохранителями:

Рисунок 1.38 Стеклянный патрон предохранителей Держатель нескольких предохранителей

Предохранители удерживаются пружинными металлическими зажимами, причем сами зажимы постоянно соединены с проводниками цепи. Основной материал держателя предохранителя (или блока предохранителей , как их иногда называют) выбран как хороший изолятор.

Другой тип держателя предохранителей патронного типа обычно используется для установки в панелях управления оборудованием, где желательно скрыть все точки электрического контакта от контакта с человеком.В отличие от только что показанного блока предохранителей, где все металлические зажимы открыты, этот тип держателя предохранителя полностью закрывает предохранитель в изолирующем корпусе:

Рисунок 1.39 Держатель предохранителя закрывает изолирующий корпус

Самым распространенным устройством защиты от перегрузки по току в сильноточных цепях сегодня является автоматический выключатель .

Что такое автоматический выключатель?

Автоматические выключатели – это специально разработанные переключатели, которые автоматически размыкаются для отключения тока в случае перегрузки по току.Малые автоматические выключатели, например, используемые в жилых, коммерческих и легких промышленных предприятиях, имеют термическое управление. Они содержат биметаллическую полоску (тонкая полоса из двух металлов, соединенных спина к спине), по которой проходит ток цепи, которая изгибается при нагревании. Когда биметаллическая полоса создает достаточную силу (из-за чрезмерного нагрева ленты), срабатывает механизм отключения, и прерыватель размыкается. Автоматические выключатели большего размера автоматически активируются силой магнитного поля, создаваемого токонесущими проводниками внутри выключателя, или могут срабатывать для отключения от внешних устройств, контролирующих ток цепи (эти устройства называются защитными реле , ).

Поскольку автоматические выключатели не выходят из строя в условиях перегрузки по току – скорее, они просто размыкаются и могут быть повторно включены путем перемещения рычага – они с большей вероятностью будут обнаружены подключенными к цепи более надежным образом, чем предохранители. Фотография маленького автоматического выключателя представлена ​​здесь:

Рисунок 1.40. Малый автоматический выключатель

Снаружи он выглядит не более чем выключателем. Действительно, его можно было использовать как таковое. Однако его истинная функция – работать как устройство защиты от перегрузки по току.

Следует отметить, что в некоторых автомобилях используются недорогие устройства, известные как плавкие вставки , для защиты от перегрузки по току в цепи зарядки аккумулятора из-за стоимости предохранителя и держателя надлежащего номинала. Плавкая вставка – это примитивный предохранитель, представляющий собой не что иное, как короткий кусок провода с резиновой изоляцией, предназначенный для плавления в случае перегрузки по току, без какой-либо твердой оболочки. Такие грубые и потенциально опасные устройства никогда не используются в промышленности или даже в жилых помещениях, в основном из-за встречающихся более высоких уровней напряжения и тока.По мнению автора, их применение даже в автомобильных схемах вызывает сомнения.

Обозначение на электрической схеме для предохранителя представляет собой S-образную кривую:

Рисунок 1.41 S-образная кривая

Номиналы предохранителей

Предохранители

, как и следовало ожидать, в основном рассчитаны на ток: ампер. Хотя их работа зависит от самовыделения тепла в условиях чрезмерного тока за счет собственного электрического сопротивления предохранителя, они спроектированы так, чтобы вносить незначительное дополнительное сопротивление в цепи, которые они защищают.Это в значительной степени достигается за счет того, что плавкий провод делается как можно короче. Точно так же, как допустимая токовая нагрузка обычного провода не связана с его длиной (сплошной медный провод 10 калибра выдержит ток 40 ампер на открытом воздухе, независимо от длины или короткого отрезка), плавкий провод из определенного материала и калибра будет дуть при определенном токе независимо от того, как долго он длится. Поскольку длина не является фактором в текущем рейтинге, чем короче она может быть сделана, тем меньшее сопротивление будет между концом и концом.

Однако разработчик предохранителя также должен учитывать, что происходит после срабатывания предохранителя: оплавленные концы сплошного провода будут разделены воздушным зазором с полным напряжением питания между концами.Если предохранитель недостаточно длинный в цепи высокого напряжения, искра может перескочить с одного из концов расплавленного провода на другой, снова замкнув цепь:

Рисунок 1.42 Принципиальная схема конструктора предохранителей Рисунок 1.43 Принципиальная схема конструктора предохранителей

Следовательно, предохранители рассчитываются с точки зрения их допустимого напряжения, а также уровня тока, при котором они сработают.

Некоторые большие промышленные предохранители имеют заменяемые проволочные элементы для снижения затрат. Корпус предохранителя представляет собой непрозрачный картридж многоразового использования, защищающий провод предохранителя от воздействия и экранирующий окружающие предметы от провода предохранителя.

Номинальный ток предохранителя – это нечто большее, чем просто цифра. Если через предохранитель на 30 ампер пропускается ток в 35 ампер, он может внезапно перегореть или с задержкой перед перегоранием, в зависимости от других аспектов его конструкции. Некоторые предохранители предназначены для очень быстрого срабатывания, в то время как другие рассчитаны на более скромное время «открытия» или даже на замедленное срабатывание в зависимости от области применения. Последние предохранители иногда называют плавкими предохранителями с задержкой срабатывания из-за их преднамеренной выдержки времени.

Классическим примером применения плавкого предохранителя с задержкой срабатывания является защита электродвигателя, где пусковые токи обычно возникают при каждом пуске двигателя с полной остановки до десятикратного нормального рабочего тока. Если бы в таком приложении использовались быстродействующие предохранители, двигатель никогда бы не запустился, потому что при нормальных уровнях пускового тока плавкий предохранитель (и) немедленно перегорел бы! Конструкция плавкого предохранителя с задержкой срабатывания такова, что элемент плавкого предохранителя имеет большую массу (но не большую допустимую нагрузку), чем эквивалентный быстродействующий плавкий предохранитель, что означает, что он будет нагреваться медленнее (но до той же конечной температуры) при любом заданном количестве. тока.

На другом конце диапазона действия предохранителей находятся так называемые полупроводниковые предохранители , предназначенные для очень быстрого размыкания в случае перегрузки по току. Полупроводниковые устройства, такие как транзисторы, как правило, особенно нетерпимы к условиям перегрузки по току и, как таковые, требуют быстродействующей защиты от сверхтоков в мощных приложениях.

Предохранители всегда должны размещаться на «горячей» стороне нагрузки в заземленных системах. Это сделано для того, чтобы нагрузка была полностью обесточена во всех отношениях после срабатывания предохранителя.Чтобы увидеть разницу между плавлением «горячей» стороны и «нейтральной» стороны нагрузки, сравните эти две схемы:

Рисунок 1.44 Принципиальная схема конструктора предохранителей Рисунок 1.45 Принципиальная схема конструктора предохранителей

В любом случае предохранитель успешно прервал ток в нагрузке, но нижняя цепь не может прервать потенциально опасное напряжение с обеих сторон нагрузки на землю, где может стоять человек. . Первая схема намного безопаснее.

Как было сказано ранее, предохранители – не единственный используемый тип устройства защиты от сверхтоков.Переключатели, называемые автоматическими выключателями , часто (и чаще) используются для размыкания цепей с чрезмерным током, их популярность связана с тем, что они не разрушают себя в процессе размыкания цепи, как предохранители. В любом случае, размещение устройства защиты от перегрузки по току в цепи будет соответствовать тем же общим рекомендациям, перечисленным выше: а именно, «предохранить» сторону источника питания , а не , подключенную к земле.

Хотя размещение защиты от перегрузки по току в цепи может определять относительную опасность поражения электрическим током в этой цепи при различных условиях, следует понимать, что такие устройства никогда не предназначались для защиты от поражения электрическим током.Ни предохранители, ни автоматические выключатели не предназначены для срабатывания в случае поражения электрическим током; скорее, они предназначены для открытия только в условиях потенциального перегрева проводника. Устройства максимального тока в первую очередь защищают проводники цепи от повреждения из-за перегрева (и опасности возгорания, связанной с чрезмерно горячими проводниками), и, во вторую очередь, защищают определенные части оборудования, такие как нагрузки и генераторы (некоторые быстродействующие предохранители предназначены для защиты особенно чувствительных электронных устройств. к скачкам тока).Поскольку уровни тока, необходимые для поражения электрическим током или поражения электрическим током, намного ниже, чем нормальные уровни тока обычных силовых нагрузок, состояние перегрузки по току не указывает на возникновение удара током. Существуют и другие устройства, предназначенные для обнаружения определенных условий удара (детекторы замыкания на землю являются наиболее популярными), но эти устройства строго служат этой единственной цели и не связаны с защитой проводов от перегрева.

  • A Предохранитель представляет собой небольшой тонкий проводник, предназначенный для плавления и разделения на две части с целью разрыва цепи в случае чрезмерного тока.
  • A Автоматический выключатель – это специально разработанный переключатель, который автоматически размыкается для прерывания тока цепи в случае перегрузки по току. Они могут срабатывать (размыкаться) термически, магнитными полями или внешними устройствами, называемыми «реле защиты», в зависимости от конструкции выключателя, его размера и области применения.
  • Предохранители
  • в первую очередь рассчитаны на максимальный ток, но также рассчитаны на то, какое падение напряжения они будут безопасно выдерживать после прерывания цепи.
  • Предохранители
  • могут быть сконструированы так, чтобы срабатывать быстро, медленно или где-то между ними при одинаковом максимальном уровне тока.
  • Лучшее место для установки предохранителя в заземленной электросети – на пути незаземленного проводника к нагрузке. Таким образом, при сгорании предохранителя к нагрузке останется только заземленный (безопасный) провод, что сделает безопаснее для людей находиться рядом.
Обзор электрических схем

– Ответы № 2

Обзор электрических схем

Переход к:

Главная страница сеанса обзора – Список тем

Electric Circuits – Главная страница || Версия для печати || Вопросы со ссылками

Ответы на вопросы: Все || # 1-7 || # 8-51 || # 52-59 || # 60-72



Часть B: множественный выбор

8.Если бы электрическая цепь была аналогична аквапарку, то аккумулятор был бы аналогичен ____.

а. трубы, по которым вода проходит через водяной контур

г. насос, который подает энергию для перемещения воды с земли на высоту

г. люди, которые текут с вершины водного аттракциона на основание водного аттракциона

г. скорость, с которой вода закачивается на горку

e. изменение потенциальной энергии гонщиков

ф.верх водной горки

г. дно водной горки

ч. длинные очереди в парке

и. скорость, с которой движутся всадники при скольжении сверху вниз по траектории

Ответ: B

Водный аттракцион в аквапарке аналогичен электрическому контуру. Во-первых, существует сущность, которая течет – вода течет в аквапарке и (условно) + течет заряд в электрической цепи.В каждом случае жидкость самопроизвольно течет из места с высокой энергией в место с низкой энергией. Поток идет по трубам (или горкам) в аквапарке и по проводам в электрической цепи. Если трубы или провода порваны, непрерывный поток жидкости через контур невозможен. Для установления цепи требуется полный цикл.

Этот поток жидкости – будь то вода или заряд – возможен, когда создается разница давлений между двумя точками в контуре .В аквапарке перепад давления – это разница напора воды, создаваемая двумя локациями на разной высоте. Вода самопроизвольно течет из мест с высоким давлением (большая высота) в места с низким давлением (низкая высота). В электрической цепи разность электрических потенциалов между двумя выводами батареи или источника энергии обеспечивает электрическое давление, которое оказывает давление на заряд, чтобы переместить их из места высокого давления (высокого электрического потенциала) в место низкого давления (низкий электрический потенциал). потенциал).

Энергия требуется для перемещения жидкости вверх по склону . В аквапарке водяной насос используется для работы с водой, чтобы поднять ее с небольшой высоты обратно на большую. Водяной насос не подает воду; вода, которая уже есть в трубах. Напротив, водяной насос подает энергию для перекачивания воды из места с низкой энергией и низким давлением в место с высокой энергией и высоким давлением. В электрической цепи аккумулятор является зарядным насосом, который прокачивает заряд через аккумулятор от места с низким электрическим потенциалом (клемма -) к месту с высоким электрическим потенциалом (клемма +).Аккумулятор не подает электрический заряд; заряд уже в проводах. Батарея просто подает энергию для работы над зарядом, накачивая его на в гору .


9. Если бы электрическая цепь была аналогична аквапарку, то положительный полюс батареи был бы аналогичен ____.

а. трубы, по которым вода проходит через водяной контур

г.насос, который подает энергию для перемещения воды с земли на высоту

г. люди, которые текут с вершины водного аттракциона на основание водного аттракциона

г. скорость, с которой вода закачивается на горку

e. изменение потенциальной энергии гонщиков

ф. верх водной горки

г. дно водной горки

ч. длинные очереди в парке

и.скорость, с которой движутся всадники при скольжении сверху вниз по траектории


Ответ: F

Водный аттракцион в аквапарке аналогичен электрическому контуру. Во-первых, существует сущность, которая течет – вода течет в аквапарке и (условно) + течет заряд в электрической цепи. В каждом случае жидкость самопроизвольно течет из места с высокой энергией в место с низкой энергией.Поток идет по трубам (или горкам) в аквапарке и по проводам в электрической цепи. Если трубы или провода порваны, непрерывный поток жидкости через контур невозможен. Для установления цепи требуется полный цикл.

Этот поток жидкости – будь то вода или заряд – возможен, когда создается разница давлений между двумя точками в контуре . В аквапарке перепад давления – это разница напора воды, создаваемая двумя локациями на разной высоте.Вода самопроизвольно течет из мест с высоким давлением (большая высота) в места с низким давлением (низкая высота). В электрической цепи разность электрических потенциалов между двумя выводами батареи или источника энергии обеспечивает электрическое давление, которое оказывает давление на заряд, чтобы переместить их из места высокого давления (высокого электрического потенциала) в место низкого давления (низкий электрический потенциал). потенциал).

Энергия требуется для перемещения жидкости вверх по склону .В аквапарке водяной насос используется для работы с водой, чтобы поднять ее с небольшой высоты обратно на большую. Водяной насос не подает воду; вода, которая уже есть в трубах. Напротив, водяной насос подает энергию для перекачивания воды из места с низкой энергией и низким давлением в место с высокой энергией и высоким давлением. В электрической цепи аккумулятор является зарядным насосом, который прокачивает заряд через аккумулятор от места с низким электрическим потенциалом (клемма -) к месту с высоким электрическим потенциалом (клемма +).Аккумулятор не подает электрический заряд; заряд уже в проводах. Батарея просто подает энергию для работы над зарядом, накачивая его на в гору .


10. Если бы электрическая цепь была аналогична аквапарку, то электрический ток был бы аналогичен ____.

а. трубы, по которым вода проходит через водяной контур

г.насос, который подает энергию для перемещения воды с земли на высоту

г. люди, которые текут с вершины водного аттракциона на основание водного аттракциона

г. скорость, с которой вода закачивается на горку

e. изменение потенциальной энергии гонщиков

ф. верх водной горки

г. дно водной горки

ч. длинные очереди в парке

и.скорость, с которой движутся всадники при скольжении сверху вниз по трассе

Ответ: D

Поток воды в аквапарке аналогичен потоку заряда в электрической цепи. Скорость, с которой заряд проходит через точку в цепи, измеряемая в кулонах заряда в секунду (или некотором сопоставимом наборе единиц), называется током. В нашей аналогии текущая жидкость – это вода, а скорость, с которой жидкость проходит через любую заданную точку, – это течение.

11. Потенциальная энергия единицы заряда в любом заданном месте называется электрической ___.

а. текущий

г. сопротивление

г. потенциал

г. мощность

Ответ: C

Это определение электрического потенциала – понятие, которое вы должны усвоить.

[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]

12. Один ампер – это величина тока, которая существует, когда ____ протекает через определенную точку в проводнике в ____.

а.один ватт; одна секунда

г. один джоуль; один час

г. один электрон; одна секунда

г. один электрон; один час

e. один вольт; одна секунда

ф. один вольт; один час

г.один кулон; одна секунда

ч. один кулон; один час

Ответ: G

Ампер – единица измерения электрического тока. Электрический ток определяется как скорость, с которой заряд проходит через точку в цепи, измеряемую в стандартных единицах кулонов заряда в секунду.

[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]

13.Если 6 кулонов заряда проходят мимо точки «А» в контуре за 4 секунды, то ____ кулонов заряда проходят мимо точки «А» за 8 секунд.

а. 0,67

г. 1,5

г. 2

г. 3

e. 4

ф.6

г. 8

ч. 12

и. 24

Ответ: H

Ток (I) – это количество заряда, протекающего через точку (Q) за заданный промежуток времени (t). То есть I = Q / t. Таким образом, в этом случае ток в точке A равен (6 C) / (4 с) или 1.5 ампер. Таким образом, отношение Q / t составляет 1,5 независимо от времени. Решите уравнение

1,5 Кл / с = Q / (8 с)

для Q, чтобы получить ответ.

[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]

14.В какой из следующих ситуаций загорится лампочка? Перечислите все подходящие варианты.

Ответ: DF

Для установления цепи должен быть замкнутый проводящий контур от положительной клеммы к отрицательной. Это будет означать, что цепи D, E и F будут цепями. Но чтобы лампочка загорелась, ее необходимо включить в электрическую цепь. Итак, в E лампочка не загорается, поскольку петля не проходит в лампочку и не проходит сквозь нее; заряд будет просто вытекать из + клеммы батареи и прямо обратно в отрицательную клемму батареи.

Для вопросов № 15- № 17:

Простая схема, содержащая аккумулятор и лампочку, показана на схеме справа. Используйте эту диаграмму, чтобы ответить на несколько следующих вопросов.

15. Ток через батарею ___.

а. больше, чем через лампочку

г.меньше, чем через лампочку

г. то же, что и через лампочку

г. больше, чем через каждый провод

e. меньше, чем через каждый провод

Ответ: C

Начисление – это сохраняемая величина; он никогда не приобретается и не теряется.В электрической цепи заряд, присутствующий в проводах и проводящих элементах, – это то, что движется по цепи. Этот заряд заключен в провода и не может выйти (при условии, что в цепи нет неисправности). По мере того, как заряд течет, он не накапливается в данном месте. И заряд не израсходовал, а как бы расходное количество. При этом заряд не трансформируется в другой тип сущности. Учитывая все эти рассуждения, можно было бы заключить, что ток в одном месте в электрической цепи такой же, как ток в любом другом месте в электрической цепи.

16. Заряд, протекающий по этой цепи, имеет наибольшее напряжение в ____. Выберите один лучший ответ.

а. + клемма аккумулятора

г. – клемма аккумулятора

г. непосредственно перед входом в лампочку

г. сразу после выхода из лампочки

e. … ерунда! Энергия заряда одинакова во всем контуре.

Ответ: A

Клемма “+” батареи – это высокоэнергетическая клемма батареи.

17. Роль или назначение батареи в этой цепи – ____. Выберите три.

а. подавать электрический заряд, чтобы мог существовать ток

г. подавать энергию к заряду

г.переместите заряд с – на + вывод аккумуляторной батареи

г. преобразовать энергию из электрической энергии в световую

e. установите разность электрических потенциалов между клеммами + и –

ф. восполнить потерянный в лампочке заряд

г. Обеспечьте сопротивление потоку заряда, чтобы лампочка могла нагреваться

Ответ: до н.э.

Чтобы установить электрическую цепь, заряд должен быть переведен с низкой энергии на высокую.При достижении высокой энергии заряд самопроизвольно течет через проводящие провода и другие проводящие элементы схемы назад вниз к клемме с низким энергопотреблением. Роль батареи заключается в обеспечении энергией, необходимой для переноса заряда с клеммы – на клемму + батареи. Помещая большое количество одинакового заряда в одном месте, устанавливается электрическое давление или разность потенциалов, заставляя одинаковые заряды перемещаться из этого места в место противоположного заряда (клемма -).


18. Аккумулятор на 12 В будет обеспечивать ___. Перечислите все подходящие варианты.

а. 3 кулоны заряда с 4 джоулями энергии

г. 4 кулоны заряда с 3 джоулями энергии

г. 12 кулонов заряда с 1 Джоулем энергии

г. 1 кулон заряда с энергией 12 джоулей

e. 0,5 кулонов заряда с энергией 24 джоулей

ф.24 кулоны заряда с 2 джоулями энергии

Ответ: D

Электрический потенциал (или напряжение) определяется как электрическая потенциальная энергия на заряд. Это джоули энергии на кулон заряда, которыми обладает некоторое количество заряда в некотором месте электрической цепи. Аккумулятор на 12 В перемещает некоторое количество заряда с клеммы – на клемму +, обеспечивая энергию заряда. Каждый кулон заряда потреблял бы 12 Джоулей энергии.Соотношение энергия / заряд будет 12 Дж / Кл.

19. Заряды, протекающие по проводам в вашем доме ____.

а. хранятся в торговых точках у вас дома

г. создаются при включении устройства

г. происходят в энергетической компании

г. берут начало в проводах между вашим домом и энергокомпанией

e. уже есть в проводах у вас дома

Ответ: E

Этот вопрос направлен против распространенного заблуждения об электрических цепях.Заблуждение предполагает, что роль электрической розетки, аккумулятора или энергокомпании заключается в обеспечении заряда, необходимого для передвижения по дому. Но энергетическая компания является только источником энергии, необходимой для приведения заряда в движение, путем установления разности электрических потенциалов. Сам заряд присутствует в проводах и токопроводящих элементах вашего дома в виде мобильных электронов.

20.Примерно сколько времени потребуется электрону, чтобы пройти от аккумуляторной батареи автомобиля до фары и обратно (полный цикл)?

а. секунды

г. часы

г.

лет

г. одна миллионная секунды

e. одна десятая секунды

Ответ: B

Электрический заряд, проходящий по электрической цепи, движется довольно медленно.Довольно удивительно для многих, что расстояние, пройденное за единицу времени, составляет порядка 1 метра в час.

21. Представленная справа электрическая схема состоит из аккумулятора и трех одинаковых лампочек. Какие из следующих утверждений относительно этой схемы верны? Перечислите все подходящие варианты.

а. Ток через точку X будет больше, чем через точку Z.

г. Ток через точку Z будет больше, чем через точку Y.

г. Ток будет одинаковым через точки X, Y и Z.

г. Ток через точку X будет больше, чем через точку Y.

e. Ток через точку Y будет больше, чем через точку X.

Ответ: C

Как обсуждалось в вопросе № 15 выше, ток в электрической цепи везде одинаков. Таким образом, ток в этих трех местах одинаков.

22. Представленная справа электрическая схема состоит из аккумулятора и трех одинаковых лампочек. Какие из следующих утверждений относительно этой схемы верны? Перечислите все подходящие варианты.

а. Разность электрических потенциалов между X и Y больше, чем между Y и Z.

г. Разность электрических потенциалов между X и Z больше, чем между Y и W.

г.Разность электрических потенциалов между X и Y такая же, как между Y и Z.

г. Разность электрических потенциалов между X и Z такая же, как между Y и W.

e. Разность электрических потенциалов между Y и W больше, чем между X и Y.

Ответ: DE

Разность электрических потенциалов на лампочке (или на любом резисторе) в электрической цепи – это просто произведение тока в этой лампочке на ее сопротивление.Каждая лампочка имеет одинаковое сопротивление (поскольку они идентичны) и одинаковый ток (поскольку ток везде одинаковый). Таким образом, разность электрических потенциалов на каждой лампочке одинакова. И падение потенциала на любых двух последовательных лампочках одинаково. И падение потенциала на двух лампах будет больше, чем на одной лампочке.

23. Электрическая схема, показанная справа, состоит из аккумулятора и трех одинаковых лампочек.Какие из следующих утверждений относительно этой схемы верны? Перечислите все подходящие варианты.

а. Обычный ток направляется по внешней цепи от точки X к Y, от Z к W.

г. Обычный ток направляется через внешнюю цепь от точки W к Z, от точки Y к X.

г. Обычный ток направляется по внутренней цепи от точки W к точке X.

г. Обычный ток направляется по внутренней цепи из точки X в точку W.

e. Точка, в которой заряд обладает наименьшим количеством электрической потенциальной энергии, – точка W.

Ответ: ACE

Батарея называется внутренней схемой. Заряд перемещается по внутренней цепи от клеммы – к клемме + (в направлении от W к Z). Провода и лампочки составляют внешнюю цепь; заряд движется по внешней цепи от клеммы + к клемме – (в направлении от X к Y, от Z к W).

24. Напряжение ____ в электрической цепи.

а. проходит через

г. выражается через

г. постоянно на протяжении

г. скорость, с которой расходы проходят через

Ответ: B

Напряжение или электрический потенциал не движутся.Таким образом, варианты A и D не являются ответами, поскольку предполагают изменение напряжения. И напряжение или электрический потенциал заряда не является чем-то постоянным во всей цепи, как предполагает вариант C.

Напряжение или электрический потенциал – это мера того, насколько заряжено количество заряда в данном месте относительно клеммы -. Часто это выражается как разница между двумя точками. Возможно, вы обратили внимание на эту формулировку «потенциал через …» в нескольких ответах в этом обзоре.

25. Два или более из следующих слов и фраз означают одно и то же. Определите их, перечислив их буквы.

а. Напряжение

г. Мощность

г. Разница электрических потенциалов

г. Скорость движения платежей

e.Электрическое давление

ф. Энергия

Ответ: ACE

Напряжение или разность электрических потенциалов являются синонимами. Напряжение не является синонимом энергии. В то время как напряжение (или разность электрических потенциалов) является мерой того, насколько заряжено количество заряда в данном месте, напряжение выражается как энергия на заряд (а не просто как энергия).По аналогии между аквапарком и электрической цепью, напряжение – это мера количества электрического давления, оказываемого на заряд, заставляя его перемещаться из одного места в другое.

Мощность – это синоним мощности. Ток является синонимом скорости, с которой течет заряд.


26. Высоковольтная батарея может ____.

а. много работать над каждым зарядом, с которым он сталкивается

г.выполнять много работы в течение срока службы

г. протолкнуть много заряда через цепь

г. длиться долго

Ответ: A

Напряжение относится к энергии / заряду. Батарея, рассчитанная на высокое напряжение, может выполнять большую работу на каждый кулон заряда, с которым она сталкивается. В зависимости от размера батареи он может или не сможет выполнять большую работу в течение всего срока службы.



27. Что из перечисленного происходит при перезарядке аккумуляторной батареи?

а. Батарея, мощность которой разряжена, восстанавливается.

г. Батарея, у которой закончился ток, возвращается в нее.

г. Батарея, которая разрядилась, возвращается к ней.

г. Батарея, в которой закончились химические реактивы, подверглась химическому преобразованию.

Ответ: D

Батареи выполняют свои задачи по энергоснабжению, используя энергию экзотермической окислительно-восстановительной реакции для работы при зарядке в электрической цепи. Когда батарея больше не работает, ее реагенты расходуются до такой степени, что электрический потенциал, который реагенты способны производить, невелик по сравнению с общим сопротивлением цепи. В такой момент времени способность индуцировать ток ограничена до такой степени, что элементы внешней цепи больше не работают.

Не все батареи можно перезаряжать. Те, которые являются перезаряжаемыми, могут превращать продукты обратно в реагенты. Зарядное устройство использует электрическую энергию из розетки, чтобы обратить вспять ранее экзотермическую реакцию, превращая ее продукты обратно в реагенты.


28. Птицы могут спокойно стоять на высоковольтных линиях электропередачи. Это потому что ____.

а.они имеют низкий потенциал по отношению к земле.

г. они не оказывают сопротивления току.

г. они всегда выбирают неиспользуемые линии электропередач.

г. разность потенциалов между их ногами мала.

e. они идеальные изоляторы.

ф. они прекрасные дирижеры.

Ответ: D

Чтобы заряд протекал между двумя точками, между этими двумя точками должна быть установлена ​​разность электрических потенциалов.Если птица ставит левую ногу на линию электропередачи, а правую ногу на расстоянии нескольких сантиметров от той же линии электропередачи, то разницы потенциалов между его двумя ногами практически нет. Без разности электрических потенциалов заряд не будет проходить через птицу, и птица будет в безопасности.

29. Когда лампочка в вашей лампе больше не работает, это потому, что в лампочке _____.

а. заканчивается энергия и больше не может качать заряд

г.нет напряжения и необходимо перезарядить

г. закончились электроны и поэтому нет больше тока

г. сгорел все ватты и больше не светит

e. сработал автоматический выключатель и должен быть закреплен на блоке предохранителей

ф. обрыв нити накала, что привело к обрыву цепи

г. … ерунда! Лампочка в порядке; вашей семье просто нужно полностью оплатить счет за электроэнергию.

Ответ: F

Самая частая причина неспособности лампочки зажигать – обрыв нити накала.Спиральная вольфрамовая проволока протягивается между двумя вертикальными опорами. Если потревожить в горячем состоянии или из-за чрезмерного износа, металлический вольфрам может сломаться и оставить зазор между двумя вертикальными опорами. Этот разрыв представляет собой разрыв цепи; замкнутый проводящий контур больше не устанавливается, и заряд не течет.



30. В цепи вашего фонаря нужна батарейка, чтобы ____.

а.заряд предоставляется на провода

г. энергия света уравновешивается аккумулятором

г. возможна экзотермическая реакция, создающая свет

г. в цепи

поддерживается разность электрических потенциалов.

e. электроны подаются, чтобы зажечь лампочку

Ответ: D

Одна из функций батареи – просто установить разницу в электрическом потенциале между двумя ее выводами.Заряд с высоким потенциалом будет проходить через внешнюю цепь в место с низким потенциалом.


31. При включении освещения в помещении они сразу загораются. Лучше всего это объясняется тем, что ____.

а. электроны очень быстро перемещаются от переключателя к нити накала лампочки

г. электроны, присутствующие повсюду в цепи, движутся мгновенно

Ответ: B

Электроны очень медленно перемещаются из одного места в другое.Но как только цепь замыкается, они сразу начинают движение. Пока электроны движутся примерно на метр или за час, фактический сигнал, который говорит им начать движение, может двигаться со скоростью света. Таким образом, как только переключатель включен, по цепи циркулирует сигнал, чтобы электроны маршировали . Электроны присутствуют в нити накала цепи.


32. Скорость дрейфа подвижных носителей заряда в электрических цепях ____.

а. очень быстро; меньше, но очень близко к скорости света

г. быстро; быстрее, чем самая быстрая машина, но далеко не скорость света

г. медленный; медленнее Майкла Джексона пробегает 220-метровую

г. очень медленно; медленнее улитки

Ответ: D

Скорость дрейфа – это расстояние, на которое заряд перемещается за единицу времени.Это значение очень мало, так как электроны движутся очень и очень медленно. Двигаясь со скоростью около 1 метра в час, они буквально медленнее, чем улитка.


33. Предположим, что ток в типовой цепи (постоянный ток) велик. Это показатель того, что ____.

а. мобильные носители заряда движутся очень быстро

г. большое количество мобильных носителей заряда продвигается в секунду

г.и a, и b верны

Ответ: B

Ток (скорость, с которой заряд движется мимо точки в цепи) и скорость дрейфа (расстояние, на которое заряд проходит за секунду) не следует путать (и часто это так). Если ток большой, можно быть уверенным только в одном: много зарядов перемещается вперед через точку в цепи каждую секунду.


34.Какие из следующих утверждений представляют правильные эквиваленты единиц измерения? Перечислите все подходящие варианты.

а. 1 Ампер = 1 Кулон в секунду

г. 1 Джоуль = 1 В / кулон

г. 1 Ватт = 1 Джоуль • секунда

г. 1 Вт = 1 В • Кулон в секунду

e.1 Джоуль / Ом = 1 Ампер • Кулон

ф. 1 Джоуль • Ом = 1 В 2 • секунда

Ответ: ADEF

Этот вопрос требует знания как единиц измерения электрических величин, так и уравнений, связывающих эти величины.

При выборе a, ампер – это единица измерения тока (I), а кулон в секунду – это единица заряда в единицу времени (Q / t).Это согласуется с уравнением I = Q / t.

При выборе b джоуль – это единица энергии (Э), а вольт / кулон – это единица измерения напряжения на единицу заряда (В / Кв). Поскольку напряжение – это энергия, приходящаяся на заряд, мы ожидаем, что энергия будет эквивалентна напряжению • заряда. Таким образом, неправильно приравнивать единицы энергии к единицам напряжения на заряд.

При выборе c, ватт – это единица мощности (P), а джоуль • секунда – это единица энергии (E), умноженная на единицу времени (t).Но мощность – это энергия / время, а не энергия • время, так что это неправильный эквивалент единиц.

При выборе d ватт – это единица мощности (P). Справа вольт – это единица измерения напряжения (В), а кулон в секунду – это единица измерения тока (I). Так как P = I • V, это правильная эквивалентность единиц.

При выборе e джоуль / Ом – это единица энергии на единицу сопротивления (E / R). Ампер • Кулон – это единица измерения тока, умноженная на единицу заряда (I • Q).Таким образом, уравнение предполагает, что E / R = I • Q. Это можно переставить алгебраически, чтобы сказать, что E / Q = I • R. Поскольку напряжение – это энергия, приходящаяся на заряд (E / Q), уравнение можно переписать как V = I • R. Таким образом, это правильная эквивалентность единиц измерения.

При выборе f джоуль • Ом – это единица энергии, умноженная на единицу сопротивления (E • R). Вольт 2 / сек – это единица измерения напряжения 2 , умноженная на единицу времени (В 2 • t). Таким образом, это уравнение предполагает, что E • R = V 2 • t.Это можно переставить алгебраически, чтобы сказать, что E / t = V 2 / R. Правая часть уравнения эквивалентна мощности, поэтому уравнение можно переписать как P = V 2 / R. правильный способ записи уравнения мощности, эквивалентность данной единицы верна.

35. На какой из следующих схем представлены последовательно включенные резисторы? Перечислите все подходящие варианты.

Ответ: B

A и C представляют собой параллельные соединения, как показано разветвлением, которое происходит до и после резисторов.В варианте B нет разветвления, поэтому резисторы подключаются последовательно.

Вопросы № 36- № 39:

На схеме справа показаны два идентичных резистора – R 1 и R 2 , включенные в цепь с 12-вольтовой батареей. Используйте эту диаграмму, чтобы ответить на несколько следующих вопросов.

36. Эти два резистора соединены в ____.

а.серия

г. параллельно

г. ни

Ответ: A

Можно начать с плюсовой клеммы аккумулятора и начать водить пальцем по проводу. Если когда-либо есть точка, в которой провод подходит к стыку и разветвляется в двух или более направлениях, тогда схема имеет параллельное соединение.В противном случае это последовательная цепь. На этой диаграмме нет разветвлений. Таким образом, это последовательная схема.

37. Разность электрических потенциалов (падение напряжения) на каждом резисторе составляет ___ Вольт.

а. 6

г. 12

г. 24

г…. ерунда!. Разность электрических потенциалов зависит от фактического сопротивления резисторов

.

Ответ: A

Заряд получает увеличение электрического потенциала на 12 вольт при перемещении по внутренней цепи (аккумулятор). Таким образом, когда заряд покидает батарею и проходит через внешнюю цепь, общее падение электрического потенциала должно составлять 12 вольт.Это падение напряжения происходит в два этапа, когда заряд проходит через каждый из резисторов. Заряд потеряет 6 вольт на первом резисторе и 6 вольт на втором резисторе, вернув его к нулю к тому времени, когда он вернется на клемму – батареи. Диаграмма потенциальных возможностей справа является визуальным средством представления этой важной концепции.


38. Если третий резистор (R 3 ), идентичный двум другим, добавлен последовательно с первыми двумя, то общее сопротивление будет ____, а общий ток будет ____.

а. прибавка, прибавка

г. уменьшение, уменьшение

г. увеличение, уменьшение

г. уменьшение, увеличение

e. увеличиваются, остаются прежними

ф. уменьшаются, остаются прежними

г.останется прежним, увеличить

ч. остаются прежними, уменьшаются

и. остаются прежними, остаются прежними

Ответ: C

Увеличение количества резисторов в последовательной цепи приведет к увеличению общего сопротивления этой цепи и уменьшению тока.(Обратное верно для параллельной схемы.)


39. Если третий резистор (R 3 ), идентичный двум другим, добавлен последовательно с первыми двумя, то разность электрических потенциалов (падение напряжения) на каждом из трех отдельных резисторов будет ____.

а. увеличить

г.уменьшение

г. остаются прежними

Ответ: B

Используя те же рассуждения, что и в вопросе № 37, мы можем сказать, что заряд приобретает 12 Вольт при прохождении через батарею. Он должен будет потерять эти 12 вольт в три этапа при прохождении через внешнюю цепь. Поскольку теперь во внешней цепи есть три падения напряжения вместо двух первоначальных, каждое падение должно быть меньше, чем раньше.Таким образом, на каждом резисторе будет падение напряжения на 4 В (вместо исходных 6 В).


Вопросы № 40- № 43:

На схеме справа показаны два идентичных резистора – R 1 и R 2 , включенные в цепь с 12-вольтовой батареей. Используйте эту диаграмму, чтобы ответить на несколько следующих вопросов.

40. Эти два резистора соединены в ____.

а. серия

г. параллельно

г. ни

Ответ: B

Можно начать с плюсовой клеммы аккумулятора и начать водить пальцем по проводу. Если когда-либо есть точка, в которой провод подходит к стыку и разветвляется в двух или более направлениях, тогда схема имеет параллельное соединение.В противном случае это последовательная цепь. На этой диаграмме есть некоторые разветвления. Когда заряд достигает точки разветвления, он проходит либо через резистор в левой ветви (R 1 ), либо через резистор в правой ветви (R 2 ). Таким образом, это параллельная схема.


41. Разность электрических потенциалов (падение напряжения) на каждом резисторе составляет ___ Вольт.

а.6

г. 12

г. 24

г. … ерунда!. Разность электрических потенциалов зависит от фактического сопротивления резисторов

.

Ответ: B

Заряд получает увеличение электрического потенциала на 12 вольт при перемещении по внутренней цепи (аккумулятор).Таким образом, когда заряд покидает батарею и проходит через внешнюю цепь, общее падение электрического потенциала должно составлять 12 вольт. Это падение напряжения происходит за один шаг, поскольку заряд проходит только через один резистор на обратном пути к батарее. Таким образом, поскольку для заряда выбирается либо левая, либо правая ветвь (но не обе), любая ветвь должна обеспечивать падение напряжения на 12 В. В параллельных цепях разность электрических потенциалов на батарее равна разности электрических потенциалов на любой ветви.Диаграмма потенциальных возможностей справа является визуальным средством представления этой важной концепции.


42. Если третий резистор (R 3 ), идентичный двум другим, добавить параллельно с первыми двумя, то общее сопротивление будет ____, а общий ток будет ____.

а. прибавка, прибавка

г.уменьшение, уменьшение

г. увеличение, уменьшение

г. уменьшение, увеличение

e. увеличиваются, остаются прежними

ф. уменьшаются, остаются прежними

г. останется прежним, увеличить

ч.остаются прежними, уменьшаются

и. остаются прежними, остаются прежними

Ответ: D

Добавление идентичного резистора в отдельную ветвь обеспечит больше путей, по которым заряд может проходить через петлю цепи. Это было бы эквивалентом добавления еще одной будки на пункте взимания платы на платной дороге параллельно с существующей будкой.Открытие другой полосы движения снизит общее сопротивление и приведет к увеличению скорости потока автомобилей. То же самое происходит с зарядом в параллельных цепях. Больше ответвлений означает меньшее сопротивление и повышенный ток.

43. Если третий резистор (R 3 ), идентичный двум другим, добавить параллельно с первыми двумя, то разность электрических потенциалов (падение напряжения) на каждом из трех отдельных резисторов будет ____.

а. увеличить

г. уменьшение

г. остаются прежними

Ответ: C

Разность электрических потенциалов на любой ветви равна напряжению батареи. Добавление новой ветви может изменить общее сопротивление и общий ток, но не меняет разность электрических потенциалов ни на батарее, ни на ветвях.


[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]

44. Сопротивление токонесущего провода увеличится на ____. Выберите все, что подходит.

а. длина провода увеличена

г.сечение провода увеличено

г. температура проволоки повышена

г. напряжение на концах провода увеличивается

e. провод ставим все ближе и ближе к + клемме цепи

Ответ: AC

Сопротивление провода увеличивается с увеличением длины и (в меньшей степени) с повышением температуры.Увеличение длины провода увеличивает количество столкновений заряда атома и, следовательно, величину сопротивления. Повышение температуры увеличивает удельное сопротивление материала и, таким образом, увеличивает общее сопротивление.

45. При подключении к розетке на 120 В лампочка потребляет 300 джоулей энергии в течение 5 секунд. Мощность лампочки ____ Вт.

а.0,0167

г. 0,50

г. 2,0

г. 2,50

e. 60

ф. 600

г. 1500

ч. 7200

Ответ: E

Мощность – это просто скорость, с которой энергия подается в цепь или преобразуется в ней.В этом случае мощность – это энергия, потребляемая за раз.

P = (300 Дж) / (5 секунд) = 60 Вт

46. Определенная электрическая цепь содержит аккумулятор, провода и лампочку. Если потенциальная энергия приобретается за счет заряда в месте расположения батареи, тогда заряды теряют потенциальную энергию ____.

а. только в проводах

г. в лампочке только

г. поровну в проводах и лампочке

г.в основном в проводах но немного в лампочке

e. в основном в лампочке, но немного в проводах

ф. никуда

Ответ: E

Charge теряет энергию при прохождении через зоны сопротивления. При последовательном соединении участки с наибольшим сопротивлением преобразуют электрическую энергию в другие формы с большей скоростью. Таким образом, энергия будет потеряна в лампочке и в проводах в гораздо меньшей степени.



47. Электрическая лампочка с высоким сопротивлением и лампочка с низким сопротивлением последовательно подключены к 6-вольтовой батарее. Какая из двух лампочек будет светить ярче всех?

а. У них будет одинаковая яркость.

г. Лампа с низким R будет светиться ярче.

г. Лампа с высоким R будет светиться ярче.

г. Невозможно сделать такой прогноз, поскольку яркость лампы не зависит от сопротивления лампы.

Ответ: C

Поскольку две лампочки включены последовательно, каждая из них испытывает одинаковый ток (i). Мощность будет отдана продуктом i 2 • R. Поскольку i одинаково для каждой лампочки, лампа с наибольшим сопротивлением будет иметь наибольшую мощность. Таким образом, лампочка с высоким R будет преобразовывать электрическую энергию в энергию света с максимальной скоростью и, таким образом, будет светить наиболее ярко.

48.Лампочка с высоким сопротивлением и лампочка с низким сопротивлением подключены параллельно и питаются от 6-вольтовой батареи. Какая из двух лампочек будет светить ярче всех?

а. У них будет одинаковая яркость.

г. Лампа с низким R будет светиться ярче.

г. Лампа с высоким R будет светиться ярче.

г. Невозможно сделать такой прогноз, поскольку яркость лампы не зависит от сопротивления лампы.

Ответ: B

Поскольку две лампочки включены параллельно, каждая из них испытывает одинаковое падение напряжения (В).Мощность будет отдана продуктом i 2 • R. Поскольку V одинаково для каждой лампочки, лампа с наибольшим сопротивлением будет иметь наименьший ток. Ток имеет наибольшее значение при определении мощности лампочки, поскольку в уравнении он возведен в квадрат. Таким образом, лампочка с низким R будет иметь наибольший ток и, таким образом, преобразовывать электрическую энергию в энергию света с наибольшей скоростью; он будет сиять наиболее ярко.


49.Три одинаковые лампочки подключены к батарее, как показано справа. Какие настройки можно было бы внести в схему, чтобы увеличить ток, измеряемый в точке X? Включите все, что применимо.

а. увеличить сопротивление одной из лампочек

г. увеличить сопротивление двух лампочек

г. уменьшить сопротивление двух лампочек

г. увеличить напряжение АКБ

e. уменьшить напряжение АКБ

ф.снимаем одну из лампочек

Ответ: CDF

Ток в последовательной цепи (как общий ток, так и ток через отдельные резисторы) напрямую зависит от напряжения батареи и обратно пропорционально полному сопротивлению цепи. Этот ток можно увеличить, увеличив напряжение аккумулятора. Его также можно увеличить, уменьшив общее сопротивление. Удаление лампы уменьшило бы общее сопротивление, а уменьшение сопротивления любой отдельной лампы уменьшило бы общее сопротивление.


50. Три одинаковые лампочки (обозначенные X, Y и Z) подключены к батарее, как показано справа. Какие настройки можно внести в схему ниже, чтобы увеличить ток в точке P? Перечислите все подходящие варианты.

а. увеличить сопротивление одной из лампочек

г. увеличить сопротивление двух лампочек

г. уменьшить сопротивление двух лампочек

г.увеличить напряжение АКБ

e. уменьшить напряжение АКБ

ф. снимаем одну из лампочек

Ответ: CD

Точка P представляет собой место, где можно измерить полный ток этой параллельной цепи. Полный ток будет напрямую зависеть от общего напряжения и обратно пропорционально общему сопротивлению. Увеличение напряжения батареи приведет к увеличению тока в точке P.Уменьшение общего сопротивления приведет к увеличению тока в точке P. Общее сопротивление можно уменьшить, добавив еще один резистор в отдельную ветвь или уменьшив сопротивление любой из ветвей.

51. Три одинаковые лампочки (обозначенные X, Y и Z) подключены к батарее, как показано справа. Какие настройки можно внести в схему ниже, чтобы уменьшить ток в лампочке Z? Перечислите все подходящие варианты.

а. увеличить сопротивление лампы X

г. уменьшить сопротивление лампы X

г. увеличить сопротивление лампы Z

г. уменьшить сопротивление лампы Z

e. увеличить напряжение АКБ

ф. уменьшить напряжение АКБ

г. снять лампу Y

Ответ: CF

Ток в лампе Z зависит от падения напряжения на лампе Z и сопротивления лампы Z.В форме уравнения,

Я Z = V Z / R Z

Увеличение напряжения батареи приведет к увеличению падения напряжения на лампе Z (V Z ) и, таким образом, обеспечит больший ток через лампу. Уменьшение сопротивления лампы Z также приведет к увеличению тока через лампу. Однако изменение положения лампы X или Y не повлияет на соотношение V Z / R Z .



Переход к:

Главная страница сеанса обзора – Список тем

Electric Circuits – Главная страница || Версия для печати || Вопросы со ссылками

Ответы на вопросы: Все || # 1-7 || # 8-51 || # 52-59 || # 60-72

Вам тоже может понравиться…

Пользователи The Review Session часто ищут учебные ресурсы, которые предоставляют им возможности для практики и обзора, которые включают встроенную обратную связь и инструкции. Если это то, что вы ищете, то вам также может понравиться следующий номер:
  1. Блокнот калькулятора

    Блокнот калькулятора включает в себя текстовые задачи по физике, организованные по темам. Каждая проблема сопровождается всплывающим ответом и аудиофайлом, в котором подробно объясняется, как подойти к проблеме и решить ее.Это идеальный ресурс для тех, кто хочет улучшить свои навыки решения проблем.

    Посещение: Панель калькулятора На главную | Блокнот для калькулятора – электрические схемы

  2. Minds On Physics App Series

    Minds On Physics the App («MOP the App») представляет собой серию интерактивных модулей вопросов для учащихся, которые серьезно настроены улучшить свое концептуальное понимание физики. Каждый модуль этой серии посвящен отдельной теме и разбит на подтемы.«Опыт MOP» предоставит учащемуся сложные вопросы, отзывы и помощь по конкретным вопросам в контексте игровой среды. Он доступен для телефонов, планшетов, Chromebook и компьютеров Macintosh. Это идеальный ресурс для тех, кто желает усовершенствовать свои способности к концептуальному мышлению. Четвертая часть серии включает темы «Электрические схемы».

    Посетите: MOP the App Home || MOP приложение – часть 4

Потенциальные опасности при побеге со ступеньки: Уменьшите напряжение между ступнями | 2018-03-01

Человек может подвергнуться риску травмы во время неисправности – любого аномального электрического тока – просто стоя рядом с заземленным предметом, имеющим электрический заряд.Согласно OSHA, человек, находящийся на земле, подвергается риску во время электрического повреждения, пытаясь двигаться к точке заземления или от нее. Ступенчатый потенциал – это напряжение между ногами человека, стоящего рядом с заземленным объектом под напряжением. Цель состоит в том, чтобы минимизировать напряжение между ногами и избежать опасных ситуаций.

Поврежденные провода, находящиеся под напряжением транспортные средства или инструменты, а также находящиеся под напряжением заземленные деревья или ветки деревьев являются примерами потенциальной опасности поражения электрическим током.

Что делать?

Согласно OSHA1, вы должны убедиться, что каждый из ваших сотрудников обучен распознавать и обладает соответствующей квалификацией для работы рядом с любой опасностью поражения электрическим током, которая может возникнуть на рабочем месте. Чтобы избежать потенциальных опасностей, связанных со ступенями, OSHA рекомендует использовать очень короткие перемежающиеся шаги или отойти от места повреждения электрической цепи, держа обе ноги близко друг к другу. Сотрудники, подвергающиеся риску, должны избегать больших шагов и избегать прямого или косвенного контакта с любыми предметами при выходе из опасной зоны.

В отличие от ступенчатого потенциала, потенциал прикосновения – это напряжение между заземленным объектом под напряжением и ступнями человека, контактирующего с объектом.

Чтобы понять потенциал шага и касания, вам необходимо понять, как энергия рассеивается через проводящие объекты. В условиях обрыва полюса или опущенного провода существуют хорошие проводники, обеспечивающие путь к земле, включая металлические ограждения, влажную почву и лужи. Другими проводниками, которые позволяют току проходить на землю, являются деревья, деревянные заборы и опоры.Древесина обычно рассматривается как изолятор, но мокрая древесина будет проводить электрический ток. 2

Когда находящийся под напряжением провод падает через сетчатый забор или прямо на землю, объект и непосредственная область находятся под напряжением, создавая зону высокого напряжения по отношению к земле. Фактическое напряжение зависит от источника, сопротивления объекта и состояния почвы – материала и влажности. Рассеяние напряжения от заземленного проводника – или от заземленного конца заземленного объекта под напряжением – называется градиентом потенциала земли.Напряжение является самым высоким у источника и спадает, когда энергия движется по земле. 3

Два стандарта OSHA предлагают защиту от ступенчатого потенциала:

  • 1910.136 (a) требует, чтобы работники из группы риска использовали защитную обувь, если ее использование защитит пострадавшего сотрудника от поражения электрическим током, например статического разряда или электрического разряда. -опасность поражения электрическим током, остающаяся после принятия работодателем других необходимых защитных мер.
  • 1910.269 (p) (4) (iii) (C) требует, чтобы сотрудники были защищены от опасностей, которые могут возникнуть в результате контакта механического оборудования с линиями или оборудованием под напряжением.Работодатели должны принимать защитные меры в дополнение к заземлению оборудования. Пошаговая потенциальная защита является результатом этого изменения. Опасности, характерные для конкретной площадки, должны быть идентифицированы в каждом рабочем инструктаже на месте (см. 1910.269 (c)), чтобы можно было определить, необходимы ли дополнительные меры предосторожности. 4

Ссылки

  1. OSHA Quick Card «Предотвращение потенциальной опасности поражения электрическим током», http://www.osha.gov/SLTC/treecare/index.html
  2. Район государственной энергетики Корнхаскер, «Шаговый потенциал вокруг линий электропередач», http: // cornhusker-power.com / безопасность / шаг-потенциал /
  3. Район государственной энергетики Корнхаскер, «Шаговый потенциал вокруг линий электропередачи», http://cornhusker-power.com/safety/step-potential/
  4. «Голос опыта: требования к ступенчатой ​​потенциальной защите», Дэнни Рейнс, журнал по предотвращению инцидентов, июль-август 2016 г., https://incident-prevention.com/ip-articles/tailgate-safety-topics/voice-of -опыт

Электрический ток | Encyclopedia.com

Электрический ток обычно рассматривается как поток электронов.Когда два конца батареи соединяются друг с другом с помощью металлического провода, электроны выходят из одного конца (электрода или полюса) батареи через провод к противоположному концу батареи.

Электрический ток можно также рассматривать как поток положительных «дырок». «Дыра» в этом смысле – это область пространства, где обычно можно найти электрон, но не существует. Отсутствие отрицательного заряда электрона можно рассматривать как создание положительно заряженной дыры.

В некоторых случаях электрический ток может также состоять из потока положительно заряженных частиц, известных как катионы. Катион – это просто атом или группа атомов, несущих положительный заряд.

Измерение тока

Ампер (ампер) используется для измерения величины протекающего тока. Отделение было названо в честь французского математика и физика Андре Мари Ампера (1775–1836), основавшего современные исследования электрических токов. Ампер определяется как количество электронов, которые проходят через любую заданную точку за определенную единицу времени.Поскольку электрический заряд измеряется в кулонах, точное определение ампера – это количество кулонов, которые проходят через заданную точку каждую секунду.

Характеристики электрического тока

Разность потенциалов. Для протекания электрического тока необходимо выполнение ряда условий. Во-первых, между двумя точками должна существовать разность потенциалов. Термин разность потенциалов (или напряжение) означает, что сила, создаваемая группой электронов в одном месте, больше, чем сила электронов в другом месте.Большая сила отталкивает электроны от первого места ко второму.

Потенциальные различия обычно не встречаются в природе. В большинстве случаев распределение электронов в окружающем нас мире довольно равномерное. Однако ученые изобрели определенные виды устройств, в которых электроны могут накапливаться, создавая разность потенциалов. Например, батарея – это не что иное, как устройство для производства больших масс электронов на одном электроде (точка, из которой отправляется или принимается электрический ток) и недостатка электронов на другом электроде.Эта разница объясняет способность батареи генерировать разность потенциалов или напряжение.

Электрическое сопротивление. Второе условие, необходимое для протекания тока, – это путь, по которому могут перемещаться электроны. Некоторые материалы могут обеспечить такой путь, а другие – нет. Материалы, которые пропускают электрический ток, называются проводниками. Те, которые блокируют прохождение электрического тока, называются непроводниками или изоляторами. Металлический провод, соединяющий два полюса батареи в приведенном ранее примере, обеспечивает путь для движения электронов от одного полюса батареи к другому.

Электропроводность материалов – это внутреннее (или естественное) свойство, основанное на их сопротивлении движению электронов. Электроны в некоторых материалах связаны химическими связями и не могут проводить электрический ток. В других материалах большое количество электронов свободно перемещается, и они легко передают поток электронов.

Электрическое сопротивление (или удельное сопротивление) измеряется в единицах, известных как ом (Ом). Устройство было названо в честь немецкого физика Георга Симона Ома (1789–1854), первого человека, выразившего законы электропроводности.Противоположностью сопротивлению является проводимость, свойство, которое измеряется единицей, называемой mho (ом, записанный наоборот).

Сопротивление куска провода, используемого в электрической цепи, зависит от трех факторов: длины провода, его площади поперечного сечения и удельного сопротивления материала, из которого он сделан. Чтобы понять влияние электрического сопротивления, представьте себе воду, текущую по шлангу.

Количество воды, протекающей по шлангу, аналогично току в проводе.Подобно тому, как через толстый пожарный шланг может пройти больше воды, чем через тонкий садовый шланг, толстая металлическая проволока может пропускать больше тока, чем тонкая металлическая проволока. У провода чем больше площадь поперечного сечения, тем меньше его сопротивление; чем меньше площадь поперечного сечения, тем больше его сопротивление.

Аналогичное сравнение можно провести и по длине. Воду сложнее течь по длинному шлангу просто потому, что она должна течь дальше. Точно так же току труднее пройти по длинному проводу, чем по короткому.

Удельное сопротивление – это свойство материала, из которого изготовлен сам провод, которое различается от материала к материалу. Представьте, что вы наполняете пожарный шланг патокой, а не водой. Меласса будет течь медленнее просто из-за ее вязкости (липкости или сопротивления течению). Точно так же электрический ток проходит через некоторые металлы (например, свинец) с большим трудом, чем через другие металлы (например, серебро).

Электрические цепи

В большинстве случаев путь, по которому проходит электрический ток, известен как электрическая цепь.Как минимум, схема состоит из (1) источника электронов (например, батареи), который будет обеспечивать разность потенциалов, и (2) пути, по которому могут перемещаться электроны (например, металлической проволоки). Вспомните, что разность потенциалов (или напряжение) означает большую силу электронов в одном месте, чем в другом; эта большая сила толкает электроны к месту с меньшей силой.

Для любого практического (или полезного) применения ток также требует (3) устройства, работа которого зависит от протекания электрического тока.К таким приборам относятся электрические часы, тостеры, радио, телевизоры и различные типы электродвигателей. Во многих случаях электрические цепи также содержат (4) какой-то измеритель, который показывает величину электрического тока или разность потенциалов в цепи. Наконец, схема, вероятно, будет включать (5) различные устройства для управления потоком электрического тока, такие как выпрямители, трансформаторы, конденсаторы и автоматические выключатели.

Приборы можно включать в электрическую цепь одним из двух способов.В последовательной цепи ток течет через приборы один за другим. В параллельной цепи входящий ток разделяется и передается через каждую отдельную цепь независимо.

Важным преимуществом параллельных цепей является их устойчивость к повреждениям. Предположим, что какой-либо из приборов в последовательной цепи поврежден, и ток не может течь через него. Этот пробой предотвращает протекание тока в любом из приборов. При параллельной схеме такой проблемы не возникает.Если одно из устройств в параллельной цепи выходит из строя, ток все равно продолжает течь через другие устройства в цепи.

Принципиальная математическая зависимость, управляющая протеканием электрического тока в цепи, была обнаружена Омом в 1827 году. Закон Ома гласит, что величина тока (i) в цепи напрямую связана с разностью потенциалов (V) и обратно пропорциональна сопротивление (r) в цепи. Другими словами, i = V / r. Закон Ома гласит, что увеличение разности потенциалов

или уменьшение сопротивления приводит к увеличению тока.И наоборот, уменьшение разности потенциалов или увеличение сопротивления приводит к уменьшению тока. Чем сложнее становится электрическая цепь, тем труднее становится применить закон Ома.

Поток тока и поток электронов

Область электротехники обременена странной проблемой, которая возникла более 200 лет назад. Когда ученые впервые изучили поток электрического тока из одного места в другое, они считали, что этот поток создается движением крошечных частиц.Поскольку электрон еще не был обнаружен, они предположили, что эти частицы несут положительный заряд.

Сегодня мы знаем иначе. Электрический ток – это поток отрицательно заряженных частиц: электронов. Но обычай отображать электрический ток как положительный существует уже давно и до сих пор широко используется. По этой причине нередко можно увидеть электрический ток в виде потока положительных зарядов, хотя мы уже давно знаем это лучше.

Типом электрического тока, описанного выше, является постоянный ток (DC).Постоянный ток всегда предполагает движение электронов из области с высоким отрицательным зарядом в область с более низким отрицательным зарядом. Электрический ток, вырабатываемый батареями, – это постоянный ток.

Интересно, что подавляющее большинство электрического тока, используемого в практических целях, – это переменный ток (AC ток). Переменный ток – это ток, который очень быстро меняет направление своего протекания. В Северной Америке, например, коммерческие линии электропередач работают с частотой 60 герц.(Герцы – это единица измерения частоты.) В линии с частотой 60 Гц ток меняет свое направление 60 раз каждую секунду.

Также широко используются другие типы переменного тока. За пределами Северной Америки чаще встречается линия электропередачи на 50 герц. А в самолетах переменный ток обычно составляет 400 герц.

[ См. Также Электричество; Электродвигатель ]

Водяной контур аналогично электрической схеме

Функция заземляющего провода в электрической цепи во многом аналогична резервуару, присоединенному к водяному контуру.Когда труба заполнена водой, насос может циркулировать воду без дальнейшего использования резервуара, и, если бы он был удален, это не оказало бы видимого влияния на поток воды в контуре.

Резервуар обеспечивает эталонное давление, но не является частью функционального контура. Точно так же батарея может передавать электрический ток без заземляющего провода. Земля обеспечивает опорное напряжение для цепи, но если бы она была нарушена, не было бы очевидных изменений в функционировании цепи.Заземляющий провод защищает от поражения электрическим током и во многих случаях обеспечивает защиту от внешних электрических помех.

Этот вид заземления не подходит для объяснения функции провода заземления прибора, потому что простого соединения с землей недостаточно для отключения автоматического выключателя в случае электрического повреждения. Чтобы эффективно предотвратить опасность поражения электрическим током, заземление устройства должно подключаться к источнику питания через нейтральный провод.

Тем не менее, образ Земли как резервуара заряда помогает понять энергетику всей системы электроснабжения.На электростанции заряд может быть получен из земли, и процесс генерации работает с зарядом, чтобы дать ему энергию. Эта энергия описывается указанием ее напряжения (1 вольт = 1 джоуль / кулон = энергия / заряд). Энергию можно транспортировать по пересеченной местности при высоком напряжении, а затем поставлять конечным пользователям при более низком напряжении с использованием понижающих трансформаторов. Затем энергия может быть использована, а заряд сброшен на землю. Заряд, на котором выполняются работы на электростанции, не нужно перевозить по пересеченной местности, а «отработанные» заряды не нужно транспортировать обратно на электростанцию, а просто сбрасывать в «резервуар».

У всех таких аналогий есть свои недостатки, и вы можете инициировать оживленные дискуссии на всех уровнях знаний об аналогиях для обоснования. Некоторые возражают против резервуарного подхода, потому что он создает образ некоего безграничного запаса заряда, и что в этом есть что-то «особенное». Это также создает ошибочное впечатление, что вы можете извлечь из нее некоторый заряд, не вставляя его. Земля является просто хорошим проводником зарядов, но, как и все электрические цепи, в конечном итоге должна образовывать замкнутый путь циркуляции, чтобы сохранить заряд ( жесткий и быстрый закон сохранения).

Определение ступенчатого напряжения | Law Insider

Относится к

Ступенчатое напряжение

высокое напряжение означает классификацию электрического компонента или цепи, если их рабочее напряжение составляет> 60 В и ≤ 1500 В постоянного тока или> 30 В и ≤ 1000 В переменного тока, среднее значение площадь (среднеквадратичное значение).

низкое напряжение означает набор номинальных уровней напряжения, которые используются для распределения электроэнергии и чей верхний предел обычно принимается равным a.c. напряжение 1000 В (или напряжение постоянного тока 1500 В). [SANS 1019]

напряжение означает среднеквадратичное значение электрического потенциала между двумя проводниками.

среднее напряжение означает набор номинальных уровней напряжения, которые лежат выше низкого напряжения и ниже высокого напряжения в диапазоне 1 кВ

Диаметр означает наибольший размер, измеренный под прямым углом к ​​линии от стебля до конца цветка вишни.

Потенциальная выходная электрическая мощность означает номинальную мощность в МВт (эл. с поправками до 23 марта 1993 г.

точка вспышки означает самую низкую температуру жидкости, при которой ее пары образуют легковоспламеняющуюся смесь с воздухом;

Генератор высокого напряжения рентгеновского излучения означает устройство, которое преобразует электрическую энергию из потенциала, подаваемого рентгеновским контролем, в рабочий потенциал трубки.Устройство также может включать в себя средства для преобразования переменного тока в постоянный, трансформаторы накала для рентгеновской трубки (трубок), высоковольтные переключатели, электрические защитные устройства и другие соответствующие элементы.

Гидравлический подъемный бак означает резервуар, содержащий гидравлическую жидкость для механической системы с замкнутым контуром, которая использует сжатый воздух или гидравлическую жидкость для работы лифтов, лифтов и других подобных устройств.

Противодавление означает любое повышение давления в системе трубопроводов ниже по потоку (вызванное насосом, приподнятым резервуаром или трубопроводом, давлением пара и / или воздуха) выше давления подачи воды в точке, которая может вызвать или может вызвать изменение направления потока на противоположное.

Вес осадка сточных вод означает вес осадка сточных вод в сухих тоннах США, включая добавки, такие как известковые вещества или наполнители. Периодичность мониторинга параметров осадка сточных вод основана на сообщенном весе осадка, образовавшемся за календарный год (используйте данные за последний календарный год, когда разрешение NPDES будет продлено).

Вес процесса означает общий вес всех материалов, введенных в любую исходную операцию. Заряженное твердое топливо будет считаться частью технологической массы, а жидкое и газообразное топливо и воздух для горения – нет.

Ежегодная (1 / год) частота отбора проб означает, что отбор проб должен проводиться в сентябре, если иное не указано особо в таблице требований к сбросам и мониторингу.

Интенсивность использования энергии (EUI означает kBTUs (1000 британских тепловых единиц), используемых на квадратный фут общей площади пола.

Ежегодная (1 / год) частота выборки означает, что выборка будет сделана в сентябре , если иное специально не указано в таблице требований к сбросам и мониторингу.

Узел двойного обратного клапана означает узел, состоящий из двух одинарных, независимо действующих, обратных клапанов, включая плотно закрывающиеся запорные клапаны, расположенные на каждом конце узла, и подходящие соединения для проверки водонепроницаемости каждого обратного клапана.

Стек означает любую точку в источнике, предназначенную для выброса твердых веществ, жидкостей или газов в воздух, включая трубу или воздуховод, но не включая факелы.

Гидрофторуглероды с высоким потенциалом глобального потепления. означает любые гидрофторуглероды в конкретном конечном использовании, для которого программа политики значительных новых альтернатив (SNAP) Агентства по охране окружающей среды определила другие приемлемые альтернативы, которые имеют более низкий потенциал глобального потепления.Список альтернатив SNAP находится в 40 CFR, часть 82, подраздел G, а дополнительные таблицы альтернатив доступны по адресу (http://www.epa.gov/snap/).

Фильтрация из диатомовой земли означает процесс, приводящий к значительному удалению твердых частиц, в котором (i) слой фильтрующего материала из диатомовой земли осаждается на несущей мембране (перегородке), и (ii) вода фильтруется, проходя через После корки на перегородке к питательной воде непрерывно добавляется дополнительная фильтрующая среда, известная как основная масса, чтобы поддерживать проницаемость фильтрационной корки.

Плотность означает население муниципалитета, деленное на количество квадратных миль муниципалитета;

Клапан означает устройство, используемое для регулирования расхода воды в системе орошения.

Насос означает устройство, используемое для повышения давления, приведения в движение или увеличения потока жидких потоков в закрытых или открытых трубопроводах.

фунтов на квадратный дюйм означает фунтов на квадратный дюйм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *