Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Повышающий трансформатор напряжения для дома — больше минусов, чем плюсов.

Первая мысль, которая приходит на ум, когда напряжение в сети всё чаще и чаще становится низким, поставить повышающий трансформатор. На первый взгляд кажется, что это — простое и отличное решение, и теперь, наконец-то, будет нормальное напряжение, яркое освещение и стабильно работающие электроприборы.

Но не всё так просто в сказочном королевстве, и прежде чем купить повышающий трансформатор напряжения, цена на который уж очень привлекательна, задумайтесь об одной особенности его работы: он имеет постоянный коэффициент повышения напряжения (коэффициент трансформации). Рассмотрим это на примере.

Предположим, что у вас сетевое напряжение порядка 170 вольт. Чтобы повысить его до 220, нужен трансформатор с коэффициентом трансформации 1.29 (220/170). Вроде бы всё хорошо и логично получается, за исключением одного: если напряжение в сети станет нормальным 220 вольт, то на выходе трансформатора будет уже очень высокое напряжение 285 вольт (220*1.29)! Не все электрические приборы способны выдержать такое перенапряжение в течение даже небольшого времени. Так и до пожара недалеко!


Повышающий трансформатор
ЛАТР

Как вариант, можно приобрести регулируемый автотрансформатор, т.н. ЛАТР, в котором предусмотрен ручной регулятор выходного напряжения. Но и он не будет являться надёжным решением, т.к. придётся постоянно контролировать значение выходного напряжения по индикатору и корректировать его вручную, особенно во время максимальной нагрузки электросети со стороны соседей. Если вовремя этого не делать, то при первом же скачке в электросети напряжение на выходе ЛАТРа тоже резко повысится, и подключенные электроприборы вполне могут перегореть.

Поэтому повышающие трансформаторы напряжения применимы лишь тогда, когда в сети ВСЕГДА существенно меньше 220 вольт, а такого практически никогда и не бывает.

www.td-m.ru

Принцип действия трансформатора для повышения напряжения

Открытие в далёком 1831 году великим учёным Фарадеем принципа электромагнитной индукции позволило по-новому взглянуть на многие законы электротехники. Именно основываясь на взаимодействие электромагнитных полей, через 45 лет после этого великий русский учёный П. Н. Яблочков получил патент на изобретение трансформатора. Классическое определение звучит так: трансформатор — это электрическое устройство, преобразующее ток первичной обмотки одного напряжения, в ток вторичной обмотки с другим напряжением.

Индукционный эффект образуется при изменении электромагнитного поля, поэтому для работы трансформатора необходимо наличие напряжения с переменным током. Трансформация (передача) осуществляется преобразованием электрической энергии первичной обмотки в магнитное поле, а затем, во вторичной обмотке происходит обратное преобразование магнитного поля в электрическую энергию. В случае если количество витков вторичной обмотки будет превышать число витков первичной обмотки, то устройство будет называться повышающим трансформатором. При подключении обмоток в обратном порядке, получается понижающее устройство.

Устройство и принцип работы

Конструктивно повышающее устройство трансформации напряжения состоит из сердечника и двух обмоток. Сердечник собран из пластин электротехнической листовой стали. На него намотаны первичная и вторичная обмотки, из медного провода, различного диаметра. Толщина провода намотки трансформатора напрямую зависит от его выходной мощности.

Сердечник устройства может быть стержневым или броневым. При использовании изделия в сетях низкочастотного напряжения чаще всего применяются стержневые магнит проводы, которые по форме могут быть:

  • П-образные.
  • Ш-образные.
  • Тороидальные.

Изготавливаются сердечники из трансформаторного специального железа, от качественных характеристик которого и зависят многие общие параметры устройства. Набирается сердечник из тонких железных пластин, которые изолированы друг от друга лаком или слоем окиси, для уменьшения потерь за счёт вихревых токов. Могут применяться и готовые половинки, которые сделаны из сплошных железных лент.

Достоинства и недостатки сердечников

  • Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
  • Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
  • Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.

В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой. Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.

Технические характеристики

Основными характеристиками при эксплуатации трансформатора считаются:

  • Напряжение входное.
  • Величина напряжения на выходе.
  • Мощность прибора.
  • Ток и напряжение холостого хода.

Величина отношения напряжений на входе и выходе устройства называется коэффициентом трансформации. Это соотношение зависит только от количества витков в обмотках и остаётся неизменным при любом режиме функционирования устройства.

От диаметра проводов и от типа сердечника напрямую зависит мощность трансформатора, которая со стороны первичной намотки равна сумме мощностей вторичных обмоток, за исключением потерь.

Напряжение, получаемое на выходной обмотке устройства, без подключения нагрузки, называется напряжением холостого хода. Разница между этим показателем и напряжением с нагрузкой указывает на величину потерь за счёт разного сопротивления проводов обмотки.

От качественных показателей сердечника трансформатора полностью зависит величина тока холостого хода. В идеальном случае, ток первичной обмотки создаёт в сердечнике устройства магнитное поле переменного значения, по величине электродвижущая сила которого равна току холостого хода и противоположна по направлению. Но вот в реальности величина электродвижущей силы всегда меньше напряжения на входе, за счёт возможных потерь в сердечнике.

Именно поэтому для уменьшения величины тока холостого хода, требуется материал высокого качества при изготовлении сердечника и минимальный зазор между его пластинами. Таким условиям в большей мере соответствуют тороидальные сердечники.

Типы устройств

В зависимости от мощности, конструкции и сферы их применения,

существуют такие виды трансформаторов:

  • Автотрансформатор конструктивно выполнен как одна обмотка с двумя концевыми клеммами, а также в промежуточных точках устройства имеются несколько терминалов, в которых располагаются первичные и вторичные катушки.
  • Трансформатор тока включает в себя первичную и вторичную обмотку, сердечник из магнитного материала, а также оптические датчики, специальные резисторы, позволяющие ускорять способы регулировки напряжения.
  • Силовой трансформатор — это устройство, передающее ток, при помощи индукции электромагнитного поля, между двумя контурами. Такие трансформаторы могут быть повышающими или понижающими, сухими или масляными.
  • Антирезонансные трансформаторы могут быть как однофазными, так и трёхфазными. Принцип работы такого устройства мало чем отличается от трансформаторов силового типа. Конструктивно представляет собой устройство литого типа с хорошей теплозащитой и полузакрытой структурой. Трансформаторы антирезонансного типа применяются при передаче сигнала на большие расстояния и в условиях больших нагрузок. Идеально подходят для работы в любых климатических условиях.
  • Заземляемые трансформаторы (догрузочные). Особенностью этого типа является расположение обмоток в форме звезды или зигзага. Часто заземляемые приборы применяют для подключения счётчика электрической энергии.
  • Пик — трансформаторы используются в устройствах радиосвязи и технологиях компьютерного производства, по принципу отделения постоянного и переменного тока. Конструкция такого трансформатора является упрощённой: обмотка с определённым количеством витков расположена вокруг сердечника из ферромагнитного материала.
  • Разделительный домашний трансформатор применяется при передаче энергии переменного тока к другому устройству или оборудованию, блокируя при этом способности источника энергии. В бытовых условиях такие приборы обеспечивают регулирование напряжения и гальваническую развязку. Чаще всего применяются для подавления электрических помех в чувствительных приборах и защиты от вредного воздействия электрического тока.

Обслуживание и ремонт

Желательно человеку, не знающему принцип действия электротехнических приборов, не заниматься ремонтными работами этого оборудования, из-за возможности поражения электрическим током. При ремонте и обслуживании трансформаторных устройств, единственное, что можно исправить, без недопустимых последствий, это перемотка трансформатора.

Перед началом любых ремонтных работ необходимо произвести проверку трансформатора:

  • Первым делом необходимо оценить состояние прибора при помощи визуального осмотра, так как порой, потемневшие и вздувшиеся участки, прямо указывают на неисправность обмотки трансформатора.
  • Определение правильности подключения устройства. Электрический контур, генерирующий магнитное поле обязательно должен быть подключён к первичной обмотке прибора. А вот вторая схема, потребляющая энергию трансформатора, должна быть включена в обмотку выходного напряжения.
  • Фильтрация выходного сигнала фазы определяется как для диодов и конденсаторов на вторичной обмотке устройства.
  • Следующим шагом нужно подготовить прибор к контрольному измерению параметров, т. е. снять защитные панели и крышки, чтобы получить свободный доступ к элементам схемы. С помощью тестера нужно в дальнейшем произвести измерение напряжения трансформатора.
  • Для проведения измерений, нужно подать питание на схему устройства. Измерение параметров первичной обмотки проводится тестером в режиме переменного тока. Если полученное значение меньше чем на 80% от ожидаемого, то неисправность может быть как в самом трансформаторе, так и в схеме всего устройства.
  • Проверку выходной обмотки осуществляют при помощи тестера. При этом проверяем обмотку как на возможность появления короткозамкнутых витков, так и на обрыв провода намотки катушки, по принципу измерения сопротивления (если сопротивление мало — то есть вероятность короткозамкнутых витков, а в случае когда сопротивление обмотки велико — обрыв).

После перемотки повышающего трансформатора напряжения, в случае неисправности обмотки, нужно собрать его в обратной последовательности, при этом особое внимание необходимо уделить наиболее плотному прилеганию пластин сердечника.

Самостоятельное изготовление или ремонт устройства предоставляется процессом очень сложным и трудоёмким. Для выполнения таких работ потребуется наличие необходимых материалов, а также умение производить некоторые специальные расчёты. В частности, нужно будет точно рассчитать количество витков в обмотке трансформатора, диаметр проводов для обмотки, а также сечение и тип сердечника устройства.

Поэтому лучше обратиться для проведения этих операций к квалифицированному человеку, знакомому с основными понятиями и свойствами электротехники и расчётами по необходимым формулам.

tokar.guru

Повышающий трансформатор как работает, схема, применение

Повышающий трансформатор это обычный трансформатор (см. назначение и принцип действия трансформатора) который повышает значение напряжения электрического тока. На первичной обмотке оно ниже, а на вторичной выше. Тем самым на выходе прибора напряжение выше и за счет определенного числа витков обмотки и сечения имеет нужное значение.

Принцип работы повышающего трансформатора заключается в величине К (коэффициент трансформации).

При К>1 трансформатор является понижающим, а при К<1 — повышающим трансформатором.

U1/U2 ≈ E1/E2 = N1/N2 = К

где: U1, U2 — напряжение на первичной и вторичной обмотке; E1, E2-мгновенные значения ЭДС;  N1, N2 — количество витков первичной и вторичной обмотки

повышающий трансформатор схема

Применение повышающих трансформаторов

Приборы устанавливаются в электрических линиях и источниках питания потребительских точек. В соответствии с законом Джоуля — Ленца при увеличении силы тока выделяется тепло, которое нагревает провод. Для транслирования энергии на большие линейные расстояния увеличивают напряжение, а токи уменьшают. При поступлении к потребителю мощность снижают, поскольку в целях безопасности пришлось бы использовать массивную изоляцию.

В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.

Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.

Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.

Повышающий тороидальный трансформатор

Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.

Работает тороидальный трансформатор принципиально так же как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.

Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов.

Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности.

Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.

Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам:

  • во-первых, экономия материалов на производстве,
  • во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест,
  • в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Охлаждение обмоток — еще один важный фактор.

Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой.

Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора.

Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, — и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Для чего около электростанций устанавливают повышающий напряжение трансформатор?

Любой проводник имеет свое сопротивление и поэтому в ЛЭП неизбежно возникают тепловые потери на нагрев проводника. Величина нагрева пропорциональна квадрату тока в цепи, по этому повышая напряжение до сотен киловольт, мы, согласно закону Ома понижаем ток, а значит и снижает тепловые потери и размер проводников ЛЭП, экономия материалов и стоимости.

Видео: Повышающий трансформатор

transformator220.ru

конструктивные особенности приборов, способных повышать и понижать напряжение

Трансформатор преобразовывает мощность в сетях и установках, предназначенных для приема электричества и работы с ним. Повышающий трансформатор — это статический агрегат, получающий питание от источника напряжения для трансформирования высокой мощности в низкие показатели. Его применяют для обособления логических защитных контуров и измерительных линий от высокого напряжения.

Понятие трансформатора

Электромагнитное устройство с двумя или больше обмотками, связанными индукцией на магнитопроводе, называется трансформатором. Оно разработано для изменения напряжения переменного тока с сохранением частоты и используется при производстве, трансляции на расстояние и приемке электроэнергии.

Агрегат, повышающий напряжение, содержит проволочную катушку, охваченную магнитными линиями, располагающуюся на сердечнике для проведения потока. Материалом стержня служат ферромагнитные сплавы. Агрегат работает с большими мощностями, его применение обусловлено разными показателями напряжений городских линий (около 6,2 кВ), потребительского контура (0,4 кВ) и мощности, необходимой для функционирования электроприборов и машин (от единичных показаний до нескольких сотен киловольт).

Применение в сетях

Приборы устанавливаются в электрических линиях и источниках питания потребительских точек. В соответствии с законом Джоуля — Ленца при увеличении силы тока выделяется тепло, которое нагревает провод. Для транслирования энергии на большие линейные расстояния увеличивают напряжение, а токи уменьшают. При поступлении к потребителю мощность снижают, поскольку в целях безопасности пришлось бы использовать массивную изоляцию.

В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.

Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.

Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.

Магнитная система

Магнитопровод представляет собой комплекс пластин или других элементов из электротехнической стали, составленных в выбранной геометрической конфигурации. В конструкции сосредоточены поля агрегата. Магнитопровод в сборе вместе с узлами и соединительными элементами образует остов трансформатора. Деталь, на которую намотаны обмотки, является стержнем. Область системы, предназначенная для замыкания цепи и не несущая витков контура, называется ярмом. Расположение в пространстве стержней служит для разделения системы на следующие виды:

  • плоская конструкция, в которой все сердечники располагаются на единой поверхности;
  • пространственный способ — продольные стержни или сердечники и ярма находятся в различных плоскостях;
  • симметричный порядок — стержни одной длины и формы располагаются так, что их пространственная установка одинаково относится ко всем элементам и сердечникам;
  • несимметричный строй предполагает разные по виду и размерам стержни, расположенные отлично от аналогичных деталей.

Обмотки агрегата

Обмотка состоит из отдельных витков, являющихся проводниками, или комплекса таких передатчиков (жилы из нескольких проводов). Оборот однократно обходит стержень, ток которого совместно с токами других сердечников и систем воспроизводит магнитное поле. В результате возникает электродвижущая сила (ЭДС).

Обмотка представляет собой упорядоченный комплекс витков. Она образует цепь, в которой складываются силы, наведенные в оборотах. Обмотка трехфазного агрегата состоит из нескольких объединенных обвивок трех фаз с одинаковым напряжением.

Стержни обмоток понижающего и повышающего трансформатора делают квадратной конфигурации для наилучшего использования пространства (повышения коэффициента наполнения в окне стержня). Если требуется увеличить поперечное сечение сердечника, то его делят на несколько проводников. Это применяется для уменьшения вихревых токов в обвивке. Проводник квадратного поперечного сечения называется жилой. По функционированию обмотки делят на несколько типов:

  • основные — обвивки, предназначенные для приема или отвода преобразуемой или трансформированной энергии переменного тока;
  • регулирующие — те, что предусматривают выводы для изменения коэффициента преобразования напряжения при небольшом токе обмотки и маленьком диапазоне нормализации;
  • вспомогательные витки обеспечивают питание собственных нужд, при этом используется малая мощность, гораздо меньшая, чем аналогичный номинальный показатель повышающего трансформатора.

Изоляцией жилы служит слой бумаги или эмалевый лак. Два параллельно проходящих защищенных провода, расположенные рядом, отгораживаются общей бумажной оберткой и называются транспонированным кабелем. Его отдельный вид составляет непрерывное продолжение, складывающееся при перемещении жилы одного слоя к следующему пласту с одинаковым шагом в единой изоляции. Бумажная защита делается из тонких полос шириной 2—4 см, нанесенных вокруг кабеля. Для получения требуемого пласта заданной толщины бумага накладывается в несколько слоёв. В зависимости от конструкции обмотка бывает:

  1. Рядовая. Обороты на сердечнике кладут в направлении оси по всей протяженности обвивки. Последующие витки располагают плотно один к другому, не допуская промежутка между ними.
  2. Винтовая. Является одним из вариантов многослойного нанесения. Между каждым заходом оборота оставляется расстояние.
  3. Дисковая. Последовательно объединяется ряд накопителей. В них обороты кладут в радиальном направлении по спиральной форме. На первичной прослойке обвивка ведется внутрь, а на соседних кругах делается наружу.
  4. Фольговая. Вместо прямоугольного кабеля ставят медные или алюминиевые пластины. Они широкие, их толщина составляет от 0,1 до 2,5 мм.

Охладительный резервуар

Является емкостью для масла и одновременно защищает активные компоненты агрегата от перегрева. В конструкции исполняет роль опоры для дополнительных и управляющих устройств. Перед наполнением из бака удаляют воздух, подвергающий разрушению изоляцию и уменьшающий ее защитные свойства. Из-за этого резервуар работает в условиях низкого атмосферного давления.

Для уменьшения шума от функционирования трансформатора должны совпадать звуковые частоты, воспроизводимые стержнем агрегата, и аналогичные показатели резонанса конструктивных элементов. Для сброса при увеличении объема жидкости в баке от нагревания устанавливается отдельно расположенная расширительная емкость.

Повышение номинальных значений мощности увеличивает скорость движения электронов снаружи и внутри трансформатора, что разрушает конструкцию. Аналогично действует рассеивающее магнитное течение в баке. Применяют вкладыши из материала, не подверженного намагничиванию. Их располагают вокруг изоляторов сильного потока, что уменьшает риск нагревания. Внутреннюю отделку бака выполняют так, чтобы она не пропускала магнитный поток через ограждения емкости. Материал с малым сопротивлением магнетизму поглощает течение перед его проникновением через наружные стенки.

Количество полуокружностей почти соответствует числу оборотов обвивки. С увеличением витков делается больше дуг, но строгая пропорциональность отсутствует. Возле выхода жирной точкой указывают начало обмоток (на двух катушках и больше). Ставят обозначения мгновенно возникающей ЭДС, они на выходах обычно одинаковы.

Такой подход используется при показе промежуточности агрегатов в преобразовательных цепочках для наметки синхронности или противофазности. Обозначение актуально и при нескольких катушках, если для их эффективного функционирования требуется соблюдать полярность. Отсутствие явного обозначения обвивок говорит о том, что они идут в одном направлении, то есть конец предыдущей соответствует началу последующей.

Особенности эксплуатации

Для определения времени службы используют понятие экономического и технического срока работы. Экономический отрезок заканчивается, когда цена трансформации мощности с помощью искомого трансформатора превышает удельную стоимость таких же услуг в соответствующей рыночной нише. Технический срок службы прекращается с выходом из строя большого числа элементов, требующих капитального ремонта агрегата.

Использование в параллельном режиме

Такой регламент применяется из-за того, что при небольшой нагрузке силовой понижающий агрегат допускает значительные потери на холостом ходу. Для исправления ситуации он заменяется группой устройств небольшой мощности, которые при необходимости отключают поодиночке. Требования к такому подсоединению:

  • к параллельному использованию допускаются агрегаты с равной угловой погрешностью между вторичным и первичным показателем напряжения;
  • параллельно связываются одинаково полярные полюса из областей низкой и высокой мощности;
  • объединяемые устройства должны показывать аналогичный коэффициент передачи по напряжению;
  • сопротивление при коротком замыкании должно отличаться в сторону уменьшения или увеличения не более 10%;
  • соотношение мощности задействованных трансформаторов не должно превышать 1:3.

Агрегаты, входящие в группу, используют с одинаковыми техническими параметрами.

Частота и регулирование мощности

В случаях равного напряжения на первичных обмотках агрегаты с определенной частотой могут эксплуатироваться при увеличенных показателях сети с рекомендованной заменой навесного оборудования. При частоте меньше номинальной индукция повышает значения в магнитном приводе, что ведет к скачку тока при холостой работе и изменению его вида.

Регулирование напряжения трансформатора применяется в сети из-за того, что нормальная работа потребителей возможна только при мощности определенных параметров и минимальных от них отклонениях.

Изоляция и перенапряжение

Специалисты проводят регулярные испытания и ремонты защитного слоя трансформатора, так как он теряет свои свойства от высоких температур. Это касается агрегатного масла в охладительном баке и изоляции активных элементов. После проверки сведения о состоянии защитных материалов вписываются в паспорт агрегата.

Иногда устройства работают в условиях повышенной мощности. Перенапряжение подразделяется на два вида:

  • кратковременное действие сильного фактора продолжается от одной секунды до 2—4 часов;
  • переходное перенапряжение длится от 2—5 наносекунд до 3—5 миллисекунд, оно бывает колебательным или неколебательным, но всегда имеет одинаковое направление.

Иногда при перегрузке комбинируются оба вида перенапряжения. Причинами их возникновения могут быть грозовые разряды, при этом токовый показатель импульса зависит от расстояния между трансформатором и местом удара. Второй причиной являются изменения условий работы, сформированные внутри системы. Они заключаются в поломках, нарушениях проводимости, коротких замыканиях, возгораниях, частых подключениях и отключениях.

При контроле качества в заводских условиях агрегаты проверяют и выдают сведения о возможности бесперебойной работы в соответствии со стандартами.

220v.guru

Как подключить понижающий трансформатор для увеличения напряжения. Хорошо известный повышающий трансформатор…

Преобразование напряжения присутствует повсеместно в любой области нашей жизни и деятельности. Вырабатываемое на электростанции напряжение повышается до нескольких киловольт, чтобы быть переданным с наименьшими потерями через линии электропередач на многие тысячи километров. А потом оно снова понижается на трансформаторных подстанциях до привычных нам значений в 380/220 вольт.

Самые простые и понятные примеры для простого человека: сетевое зарядное устройство для автомобильного аккумулятора, блок питания в компьютерной и другой технике, инвертор для автономного электроснабжения 220 вольт от низковольтных источников питания, понижающие трансформаторы 220-115 и т.д.

В общем, есть много устройств, в которых установлен трансформатор напряжения. Рассмотрим его немного подробнее, не погружаясь в излишние сложности.

Изменяет величину напряжения в большую или меньшую сторону в зависимости от соотношения числа его обмоток:

  • первичной, на которую подаётся исходное напряжение;
  • вторичной, с которой снимается его преобразованное значение.

Все обмотки намотаны на общем сердечнике (магнитопроводе). Если число витков у вторичной обмотки больше, чем у первичной, то это повышающий трансформатор, если меньше – понижающий.

Мощность трансформатора напряжения зависит от сечения проводов обмоток, а габариты и вес – от типа сердечника и материала проводов (медь или технический алюминий). По исполнению он может быть одно- и трёхфазным. Самым компактным и лёгким является автотрансформатор, в котором всего одна обмотка.

Первая мысль, которая приходит на ум, когда напряжение в сети всё чаще и чаще становится низким, поставить повышающий трансформатор. На первый взгляд кажется, что это – простое и отличное решение, и теперь, наконец-то, будет нормальное напряжение, яркое освещение и стабильно работающие электроприборы.

Но не всё так просто в сказочном королевстве, и прежде чем купить повышающий трансформатор напряжения, цена на который уж очень привлекательна, задумайтесь об одной особенности его работы: он имеет постоянный коэффициент повышения напряжения (коэффициент трансформации). Рассмотрим это на примере.

Предположим, что у вас сетевое напряжение порядка 170 вольт. Чтобы повысить его до 220, нужен трансформатор с коэффициентом трансформации 1.29 (220/170). Вроде бы всё хорошо и логично получается, за исключением одного: если напряжение в сети станет нормальным 220 вольт, то на выходе трансформатора будет уже очень высокое напряжение 285 вольт (220*1.29)! Не все электрические приборы способны выдержать такое перенапряжение в течение даже небольшого времени. Так и до пожара недалеко!

Как вариант, можно приобрести регулируемый автотрансформатор, т.н. ЛАТР, в котором предусмотрен ручной регулятор выходного напряжения. Но и он не будет являться надёжным решением, т.к. придётся постоянно контролировать значение выходного напряжения по индикатору и корректировать его вручную, особенно во время максимальной нагрузки электросети со стороны соседей. Если вовремя этого не делать, то при первом же скачке в электросети напряжение на выходе ЛАТРа тоже резко повысится, и подключенные электроприборы вполне могут перегореть.

Поэтому повышающие трансформаторы напряжения применимы лишь тогда, когда в сети ВСЕГДА существенно меньше 220 вольт, а такого практически никогда и не бывает .

Заключение

Задачу автоматического поддержания напряжения на постоянном уровне решает

Падение напряжения в первичной сети 220 вольт является иногда очень серьезной проблемой в сельской местности, да и не только. Холодильник не запускается, плитка не греет, утюгом не погладишь, паяльником не припаяешь, да мало ли… . Если падение напряжения для нагревательных приборов, имеющих для сети активное сопротивление, явление не летальное, то для аппаратуры, в которой установлены двигатели, в частности – холодильники, оно может стать последним в их жизни.

Начнем с простого, с нагревательной аппаратуры. Так как форма напряжения для нагревателей, не имеет ни какого значения, то поднять действующее (среднеквадратичное или эффективное) значение напряжения питания для них нет ни какой проблемы. Смотрим схемку.

Эта приставка напряжение сети (фиг.1) сперва выпрямляет (фиг.2), а потом за счет энергии, запасенной в конденсаторах, увеличивает эффективное напряжение, см. фигуру 3.

offlink.ru

Трансформатор напряжения – этого не знает более 80%!

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.


[contents]


Трансформаторы напряжения назначение  и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

 Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n<1), например, применяется в ламповых усилителях;
  3. согласующий – трансформатор параметры напряжения не изменяет, происходит только гальваническая развязка цепей (n~1), например, применяется в звуковых усилителях.

В основе работы трансформатора лежит принцип электромагнитной индукции и для наиболее полной передачи энергии, для уменьшения потерь при трансформации, устройство обычно выполняется на магнитопроводе.

Как правило, первичная катушка одна, а вот вторичных может быть несколько, все зависит от назначения трансформатора.

Как работает трансформатор напряжения?

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n».  Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

 При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

 Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

popayaem.ru

Как сделать повышающий трансформатор 🚩 повышающие трансформаторы напряжения 🚩 Комплектующие и аксессуары

Автор КакПросто!

Переменное напряжение, в отличие от постоянного, легко поддается не только понижению, но и повышению. Для этого еще с конца девятнадцатого века используются трансформаторы различных конструкций.

Статьи по теме:

Инструкция

Возьмите любой готовый трансформатор, поддающийся разборке. Его характеристики могут быть такими, которые для ваших целей совершенно не подходят. Главное, чтобы он подходил по всего одному параметру – мощности, а также обязательно был рассчитан на частоту в 50 Гц.

Разберите трансформатор. Намотайте поверх имеющихся на нем обмоток еще одну, содержащую ровно сто витков. Снова соберите его.

На ту из обмоток трансформатора, о которой вам гарантированно известно, что она является сетевой, подайте напряжение сети через предохранитель, номинал которого рассчитайте, поделив мощность трансформатора на напряжение сети.

Подключите к временной обмотке вольтметр. Поделите число 100 на измеренное напряжение, и вы получите важный параметр трансформатора – количество витков на вольт. Запишите его и обозначьте как N.

Отключите и разберите трансформатор. Смотайте с него не только временную обмотку, но и все остальные обмотки, кроме сетевой (она намотана последней). Изоляцию, отделяющую ее от остальных обмоток, ни в коем случае не удаляйте. Примите к сведению, что теперь сетевая обмотка трансформатора считается не первичной, а вторичной.

Переменное напряжение, которое вы собираетесь подавать на первичную обмотку, умножьте на N. Частота этого напряжения также должна быть равна 50 Гц. Получить переменное напряжение с такими параметрами, скажем, от аккумулятора можно, используя самодельный двухтактный ключевой инвертор любой конструкции. Намотайте поверх изоляции новую первичную обмотку, число витков которой равно результату умножения. Используйте для этого провод такого сечения, чтобы он выдержал ток через обмотку. Чтобы узнать этот ток, поделите мощность на первичное напряжение.

Изолируйте первичную обмотку. Подключите к вторичной нагрузку, после чего подайте на первичную низкое переменное напряжение. Нагрузка должна заработать.

Видео по теме

Обратите внимание

Помните, что трансформатор является повышающим, и даже при низком питающем напряжении вырабатывает высокое. А самоиндукция может привести к возникновению всплесков высокого напряжения даже на первичной обмотке.

Примите меры по предотвращению сквозного тока в инверторе.

Никогда не пытайтесь питать трансформатор постоянным напряжением.

Полезный совет

Перед расчетами все единицы переводите в систему СИ.

Источники:

  • повышающий трансформатор напряжения

Совет полезен?

Статьи по теме:

www.kakprosto.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *