Как заряжать литий─ионный аккумулятор?
Человека в современной жизни окружает множество электронных помощников. В быту мы используем планшеты, мобильные телефоны, ноутбуки и т. п. На работе используются шуруповёрты, портативные дрели, фонарики, power bank и пуско-зарядные аккумуляторы для автомобиля. Во всех этих устройствах используются разные типы аккумуляторных батарей. Но больше всего распространены литий─ионные аккумуляторы. Они стали популярными благодаря небольшим размерам и массе в сочетании с высокой энергоёмкостью. При разумной стоимости они имеют приличный срок эксплуатации (300─400 циклов заряд-разряд). Поскольку эти АКБ широко используются в разных устройствах, которые нас окружают, надо понимать, как их правильно заряжать. Поэтому сегодняшний материал посвящён зарядке Li─Ion аккумуляторов.
Содержание статьи
Что представляет собой литий─ионный аккумулятор?
Поскольку многие пользователи имеют смутное представление о том, что такое литий─ионная аккумуляторная батарея, скажем пару слов о её устройстве. Если смотреть на примере аккумулятора мобильного телефона, то аккумулятор там имеет следующую конструкцию.
Конструкция литий─ионного аккумулятора
АКБ мобильного телефона в абсолютном большинстве случаев имеет в своей конструкции один аккумуляторный элемент, который часто называют банкой. Номинальное напряжение банки обычно составляет 3,7 вольта. В АКБ ноутбуков таких элементов может быть от 2 до 12. Но там они не прямоугольной, а цилиндрической формы (тип 18650). Также в составе аккумулятора есть контроллер, который представляет собой плату с распаянной на ней управляющей микросхемой. Она управляет процессом заряда и разряда банки, не допуская её перезаряда или глубокого разряда.
Таким образом, производители аккумуляторов уже позаботились о том, чтобы избежать внештатных ситуаций при зарядке и разрядке батареи. А пользователю остаётся только соблюдать некоторые правила эксплуатации, о которых будет сказано ниже.
Если вам интересно, то можете прочитать подробный материал про литий-ионный аккумулятор в статье по ссылке.
Вернуться к содержанию
Как правильно заряжать литий─ионный аккумулятор?
При зарядке Li─Ion аккумулятора нужно помнить о том, что лучше всего поддерживать заряд батареи на уровне 20─80% от полной ёмкости. Литий─ионные АКБ не любят перезаряд. Как говорилось выше, контроллер контролирует степень заряженности аккумуляторного элемента или элементов, если их несколько. Он не допустит их перезарядки. Но это не значит, что аккумулятор можно сутками держать на зарядке. Это совершенно ни к чему.
Телефон и зарядное устройство
Почему для литий─ионного аккумулятора критичен перезаряд и глубокий разряд? Дело в том, что ток в таких аккумуляторах обеспечивается движением ионов лития от одного электрода к другому. Состав этих электродов может быть разным. В этом случае эти подробности не важны. Важно то, что ионы лития внедряются в кристаллическую решётку вещества электродов. В результате происходят постепенные изменения объёма и состава электродов. Чем больше заряжена или разряжена аккумуляторная батарея, тем больше ионов лития находится в одном из электродов. Такая эксплуатация приводит к тому, что срок службы аккумулятора значительно сокращается. Поэтому лучше не создавать такие пограничные состояния и держать заряд на уровне 20─80% от номинала.
Теперь перечислим несколько вариантов, как заряжать Li─Ion аккумулятор.
- Штатное зарядное устройство. Это самый лучший и рекомендуемый вариант. С помощью штатной зарядки рекомендуется заряжать Li─Ion аккумулятор. Это безопасно и максимально быстро;
- От USB разъёма компьютера. Вариант также безопасный, но довольно длительный. Дело в том, что в случае порта USB ток ограничен значением 0,5 ампера;
- От прикуривателя в автомобиле. Если это стандартный переходник на USB, то процесс также может затянуться. Но сейчас в продаже довольно устройств, имеющий набор портов USB с различной силой тока. Есть даже модели, которые позволяют заряжать аккумуляторы ноутбуков с номинальным напряжением 19 вольт током 4 ампера. Узнать максимально допустимый ток для зарядки аккумуляторной батареи своего устройства можно узнать из документации или посмотреть на штатной зарядке. Для АКБ смартфонов обычно 1, а для планшетов – 2 ампера;
- «Лягушка». Так называют универсальные зарядные устройства. Обычно они используются для зарядки литиевых АКБ для мобильных телефонов. Одна из таких «лягушек» показана на изображении ниже. Конструкция включает в себя док для установки батареи и контакты, регулируемые по ширине для различных моделей. Для информирования об окончании зарядки имеется светодиодная индикация.
Зарядное устройство «лягушка»
Как видите, заряжать литий─ионный аккумулятор можно различными способами.
Вернуться к содержанию
Эксплуатация Li─Ion батарей
Теперь коротко расскажем об основных правилах эксплуатации литий─ионных аккумуляторов.
Калибровка
Эту процедуру следует проводить раз в 3 месяца. Она заключается в полной разрядке и последующей полной зарядке АКБ. Это необходимо делать, чтобы контроллер аккумулятора «откалибровал» границы заряда и разряда батареи.
Калибровка литий─ионного аккумулятора
При ручной калибровке вам нужно дождаться выключения телефона, планшета или другого гаджета. Потом в выключенном состоянии ставите устройство на зарядку. Продолжительность до полной зарядки вы можете посмотреть по паспорту. После вынимаете и вставляете аккумуляторную батарею, включаете устройство и смотрите уровень заряда. Если он меньше 100%, то выключаете устройство и снова заряжаете. Так нужно делать до тех пор, пока при включении не будет показан полный уровень заряда.
Для калибровки также можно использовать утилиты, которые существуют для iOS и Андроид.
Если вам интересна переделка шуруповёрта на литиевые аккумуляторы 18650, можете прочитать статью по ссылке.
Вернуться к содержанию
Хранение
Перед тем как отправить литий─ионную АКБ на хранение, её также нужно заряжать. Но уровень заряда должен быть около 50 процентов. Это считается оптимальным значением. Температура хранения батареи в идеале должна составлять 15 градусов Цельсия. В таких условиях литиевый аккумулятор лучше всего сохраняет ёмкость. Чем выше температура хранения, тем больше будут потери ёмкости при хранении.
При длительном хранении раз в три месяца проводите полный заряд-разряд аккумулятора и снова заряжайте его до 50%.
Чего не нужно делать с литий─ионными аккумуляторами?
- Первое, чего не переносят Li─Ion батареи, это нагрев. Литий является чрезвычайно активным металлом и при нагреве в аккумуляторе может начаться неуправляемая реакция. В результате батарея просто воспламениться. Поэтому не держите Li─Ion аккумулятор рядом с источниками тепла, под солнечными лучами и у открытого огня;
- Литий─ионные аккумуляторные батареи также чувствительны к отрицательным температурам, но таких плачевных последствий, как при нагреве, нет. Просто на холоде АКБ теряет заряд;
- Не следует разбирать аккумуляторный элемент. Разгерметизация банки аккумулятора может привести к воспламенению;
- Также не следует заряжать банку АКБ в обход контроллера. Исключение можно сделать в тех случаях, когда вам требуется толкнуть аккумулятор. При этом нужно соблюдать все меры предосторожности и постоянно контролировать процесс.
Вернуться к содержанию
Опрос
Примите участие в опросе! Загрузка …Теперь вы знаете, как заряжать литий─ионный аккумулятор, и правила его эксплуатации. Если статья была полезной для вас, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения по теме оставляйте в комментариях.
Вернуться к содержанию
Каким током заряжать Li-ion аккумулятор 18650? Тонкости правильной зарядки.
Литий-ионные аккумуляторы типоразмера 18650 широко используются в качестве источников питания для разнообразных устройств бытовой и электронной техники. В виде независимых источников питания и в составе аккумуляторных батарей они успешно применяются в ноутбуках, шуруповертах, радиоприемниках, фонариках, электронных сигаретах и многих других устройствах. Важными преимуществами литиевых источников питания выступают значительная емкость, малый саморазряд, безопасность использования и отсутствие потребности в обслуживании.
Аккумуляторы типа Li-ion имеют высокий эксплуатационный ресурс. Но такие факторы как глубокий разряд, перезаряд, использование при низких температурах и несоблюдение правил заряда приводят к ускоренному износу аккумуляторов и их преждевременному выходу из строя. Поэтому важно знать, каким током заряжать Li-ion аккумулятор 18650, использовать подходящее по всем параметрам зарядное устройство и соблюдать все правила подзарядки, чтобы избежать их перегрева и быстрой потери свойств.
Как зарядить высокотоковые аккумуляторы 18650
Для корректной зарядки Li-ion аккумуляторов 18650 важно:
- Использовать предназначенные для этих целей зарядные устройства. Они автоматически начинают зарядку от напряжения 0,05 В и завершают ее при 4,2 В. Это максимально допустимое значение, безопасное для литий-ионных аккумуляторов. Что касается вопроса, каким напряжением быстро зарядить Li-ion аккумулятор 18650, все зарядные устройства для таких элементов питания являются источниками постоянного напряжения 5 В. Они отдают зарядный ток, составляющий порядка 0,5–1 емкости аккумулятора.
- Не превышать длительность зарядки. В среднем процесс восстановления заряда длится 3 часа. При более длительном заряде повреждается химическая структура накопителя энергии и происходит его перегрев. «Умные» зарядные устройства имеют автоматическую систему контроля и сами определяют необходимое время подзарядки элементов питания.
- Соблюдать полярность – всегда подсоединять плюс к плюсу, а минус к минусу. Не все зарядные устройства способны распознавать корректность подключения элемента питания. Если процесс зарядки пойдет при некорректном подключении аккумулятора, он неизбежно выйдет из строя.
- Избегать глубокого разряда аккумулятора и его заряда до максимального значения. Желательно не выходить из диапазона заряда от 25 до 90%. Это поможет продлить срок службы элемента питания. Популярная «прокачка» в виде полных циклов заряд-разряд в данном случае не нужна и даже вредна. Современные Li-ion аккумуляторы обычно имеют защиту от перегрева и перезаряда, но не защищены от потери заряда при использовании устройств при низких температурах. Хранить литий-ионные аккумуляторы рекомендуется в умеренно заряженном состоянии при температуре от +10 до +25 °С.
Зарядные устройства для аккумуляторов типоразмера 18650 бывают различных конфигураций. Например, есть модели с зарядным током 1 А, вмещающие 1 элемент питания, и варианты с несколькими «гнездами», индикатором уровня зарядки, системой безопасности и максимальным напряжением 4,2 В.
Выбираем оптимальный ток заряда
Теперь обсудим, каким током лучше заряжать аккумуляторы 18650. Возможные варианты – 0,5 А и 1 А. При силе зарядного тока 1 А процесс подзарядки проходит быстрее, чем при 0,5 А, но для сохранения эксплуатационного ресурса элементов питания более предпочтителен плавный заряд. Поэтому оптимальный ток заряда – 0,5 А. Если нужно ускорить процесс подзарядки, можно увеличить зарядный ток до 1 А, но без особой необходимости этого делать не стоит.
Для подзарядки литиевых элементов питания желательно использовать оригинальные зарядные устройства, рассчитанные на применение с конкретной моделью аккумулятора. Они четко понимают, какая мощность необходима конкретному элементу питания, и своевременно останавливают процесс зарядки. Что касается силы тока, оригинальные зарядные устройства вначале осуществляют подзарядку сильным током, а ближе к завершению процесса подзарядки уменьшают его. Такой алгоритм помогает избежать перегрева элементов питания и продлить срок их службы.
Предлагаем вам ознакомиться с еще одним познавательным материалом – о том, как правильно заряжать литий-железо-фосфатные аккумуляторные батареи.
Перейти в раздел зарядные устройства для АКБ
Литий-ионный аккумулятор – советы и правила пользования
Из данной статьи вы узнаете, как правильно заряжать ваш литий-ионный аккумулятор, как часто и как долго. А также прочитаете советы по эксплуатации АКБ, рекомендации и правила. В общем, все, что необходимо знать о Li-ion аккумуляторе мы собрали для вас в одну статью-инструкцию.
В наше время портативная техника встречается буквально на каждом шагу. Ее значимость трудно оценить. Современная жизнь диктует свои условия, быть всегда в курсе событий просто необходимо современному человеку, – проверить электронную почту, совершить важный звонок, да и просто скоротать время играя в игры, или слушая mp3-плеер, помогают цифровые помощники. Но, как известно, вся эта идиллия была бы просто невозможна без портативных источников питания. Самым популярным источником энергии в наше время остается литий-ионный аккумулятор. Соотношение габаритов, емкости и цены, а также надежности в эксплуатации по праву сделали их лидерами среди портативных источников питания.
Практически каждый раз приобретая технику, можно услышать от продавца советы по использованию литий-ионных батарей, точнее о их первом шаге во взрослую жизнь. Это и первая зарядка в течении 15 часов, и 3 — 5 полных рабочих цикла, иногда советуют заряжать и разряжать аккумулятор полностью, в общем советов хоть отбавляй, а вот где истина, сейчас попробуем разобраться.
Основные правила ухода за аккумуляторными батареями, обычно, прописаны в инструкции к устройству которое от них питается. Не поленитесь прочитать инструкцию перед началом эксплуатации, а не когда гаджет начинает сбоить, как обычно это делается у нас. И касается это не только эксплуатации батареи.
По поводу первой зарядки в течении 12 часов, выдуманное утверждение, потому как электронная система защиты BMS попросту не даст аккумулятору заряжаться больше положенного времени.
Совет по поводу нескольких рабочих циклов (полностью зарядить аккумулятор и разрядить, дабы он «запомнил» истинную свою емкость), литий-ионные аккумуляторы обладают замечательной «памятью», и запоминают все с первого раза. Может кому-то покажется, что первые несколько дней устройство, будь-то фотоаппарат, мобильник, или что-то иное, быстро разряжается, я советую присмотреться к детям, первые несколько дней они тоже от новой игрушки не отходят, но со временем просто забывают о ней. Здесь мы видим то же самое, пока разберешься в устройстве, пока похвастаешься знакомым, при интенсивном использовании батарея, естественно, садится быстрее. По прошествии некоторого времени устройство входит в свой рабочий режим, использование происходит только по необходимости, а это положительно сказывается на автономности.
Полный цикл заряда/разряда требовался никель-кадмиевым аккумуляторам, они могли при неполном заряде/разряде терять свою номинальную емкость. К литий-ионным батареям это не относится. К тому же полный разряд просто противопоказан литий-ионным аккумуляторам, правда электронная система защиты просто не даст аккумулятору полностью разрядится, но, представьте ситуацию, – разряженная батарея лежит долгое время, заряд естественно утечет, и система защиты попросту заблокирует дальнейшую работу аккумулятора. Избыточный заряд, кстати, тоже вреден, но за этим следит все та же система защиты. Иногда могут посоветовать производить заряд батареи как угодно, но, главное что бы раз в недельку производился полностью заряд (для восстановления памяти аккумулятора). Этот совет актуален для никель-металлгидридных аккумуляторов, у них то же имеется так называемая «память», но, она восстанавливается полностью, в отличии от никель-кадмиевых, после одного-двух полных циклов заряда. Для литий-ионных батарей такой совет может быть актуален только в случае долгого неиспользования батареи.
Продолжительность жизни
Продолжительность жизни литий-ионных батарей зависит как от циклов заряда/разряда, так и от времени использования. Дело в том, что пролежавший год в шкафу аккумулятор потеряет в среднем 5-10% емкости, поэтому рекомендовано при покупке портативной техники обращать внимание на дату выпуска батареи.
Продолжительность жизни от колличества циклов заряда наглядно показана в таблице:
Глубина заряда | Количество циклов (продолжительность жизни) |
100% | 500 |
50% | 1500 |
25% | 2500 |
10% | 4700 |
Как видно, чем меньше мы заряжаем аккумулятор, тем дольше он нам будет служить, хотя 500 циклов – это около 3 лет использования (при условии что зарядка батареи происходит раз в пару дней), как по мне — устройство морально устареет быстрее, чем аккумулятор выйдет из строя …
Температурный режим и хранение
Оптимальным температурным режимом для литий-ионных аккумуляторов является +20 градусов. Стоит помнить, что понижение температуры сказывается на отдаче тока, а при повышении активизируется «процесс старения».
Заряжать батарею стоит только при плюсовых температурных режимах, в противном случае гарантирован выход аккумулятора из строя. Оптимальным температурным режимом хранения неиспользуемого аккумулятора является температура +5 градусов. Батарея заряжается до уровня 40 — 50%, герметично упаковывается, и в холодильник, только не в морозилку, там температура намного ниже рекомендуемой.
Итак, сделаем вывод:
- При покупке обязательно проверяйте дату выпуска батареи.
- Произведите полный цикл заряда перед использованием, обычно это составляет от 1,5 — 2 часов, больше заряжать смысла нет.
- Постарайтесь избегать полного заряда/разряда батареи, это положительно скажется на долговечности.
- Не стоит оставлять на долгое время разряженный аккумулятор, можете потерять его безвозвратно.
- Не стоит производить заряд литий-ионных батарей при отрицательны температурах, выход из строя обеспечен.
- При долгом хранении извлеките аккумулятор из устройства, и поместите в прохладно место.
- При хранении периодически заряжайте батарею, предварительно прогрев ее до комнатной температуры.
Следуя этим нехитрым советам вы обеспечите долгую работу вашей АКБ и, следовательно, вашему устройству.
Внимание!
- Используйте аккумуляторы только по назначению.
- Не разбирайте и не ломайте аккумуляторы.
- Не подвергайте аккумуляторы нагреву и воздействию огня.
- Избегайте воздействия прямого солнечного света.
- Не допускайте короткого замыкания аккумуляторов.
- Не храните аккумуляторы беспорядочно в коробке или ящике, где они могут замкнуться друг на друга или другие металлические предметы.
- Не подвергайте аккумуляторы механическим ударам.
Как правильно заряжать аккумулятор Li-ion Все про Li-ion (литиевые аккумуляторы)
Аккумуляторные батареи типа литий-ион получили широкое распространение благодаря своему легкому весу, отсутствию «эффекта памяти», быстрой зарядке и длительному сроку эксплуатации. Но чтобы по максимуму оценить все достоинства приобретенной АКБ, нужно соблюдать правила её эксплуатации. Аккумуляторные батареи Li-ion неприхотливы в использовании и хранении – чтобы они долго и эффективно служили вам, достаточно соблюдать простые требования.
Инструкция по использованию Li-ion аккумуляторов
Не допускайте чрезмерного заряда и полного разряда АКБ. Перед тем, как заряжать Li-ion аккумулятор, ненужно дожидаться его максимального разряда. Уже при остатке в10–20% ставьте батарею заряжаться и останавливайте этот процесс при достижении уровня 80–90%. Это поможет существенно увеличить число рабочих циклов аккумуляторной батареи.
Не боятся избыточного заряда и полного разряда литий-ионные батареи со встроенной платой защиты.
- Храните АКБ типа литий-ион с уровнем заряженности в30–50% при температуре 15 °C. При превышении рекомендованного диапазона заряженности может снизиться емкость батареи, а при длительном хранении разряженного устройства его вряд ли удастся «реанимировать». Чтобы продлить срок службы таких устройств, можно хранить их в герметичной емкости в холодильнике (но не в морозильной камере!).
- Заботясь о том, как правильно зарядить Li-ion аккумулятор, всегда пользуйтесь оригинальными зарядными устройствами, рекомендованными производителем дляконкретной модели батареи. Они гарантированно выдают нужное напряжение и обеспечивают правильную зарядку всех элементов питания. Зарядные устройства неизвестного происхождения и сомнительного качества способны погубить аккумулятор.
- Избегайте перегрева и переохлаждения АКБ. Температурные скачки губительно действуют на аккумуляторные батареи Li-ion, поэтому использовать такие устройства рекомендуется при температуре окружающей среды от+10 до+25 °С.
- Вредят таким батареям и прямые солнечные лучи, и близость источников тепла. При использовании в температурном режиме ниже нуля срок службы АКБ стремительно сокращается, хотя в целом их применение допускается в диапазоне температур от–40 до+50 °C.
- В среднем аккумуляторные батареи категории литий-ион заряжаются порядка 3 часов. Точная продолжительность зарядки зависит от емкости конкретной модели.
Перейти в раздел литий-ионные аккумуляторы Li-ion
Заряжаем литий ионный аккумулятор правильно
Зарядное устройство для литий ионных аккумуляторов очень похоже на зарядное для свинцово- кислотных, за тем лишь исключением, что у Li-ion аккумуляторов значительно выше напряжение на каждой банке и более жёсткие требования к допускам по напряжению.
В то время, когда для свинцово-кислотных аккумуляторов возможны некоторые неточности в установке граничных напряжений при зарядке, с литий-ионными все гораздо жёстче. Во врем заряда, когда напряжение на элементе возрастает до 4,2 вольта, должно прекращаться подача напряжения на элемент питания. Разрешенный допуск в напряжении всего 0,05 вольт.Банкой называют литий ионные элементы питания за из схожесть по форме на алюминиевую банку из-под прохладительных напитков (напр. coca-cola) Самым распространенным элементом такой формы является банка формата 18650. То есть 18 мм в диаметре и 65 мм в высоту.
Средний литий-ионный аккумулятор заряжается около 3 часов. Однако точное время зарядки, все же зависит от ёмкости аккумулятора.
Итак приведём несколько основных правил, используя которые можно продлить срок использования li-ion аккумулятора в разы.
Использование оригинальных зарядных устройств
При изготовлении литий ионных аккумуляторов, их производители довольно серьёзно относятся к зарядным устройствам. Никто не даст вам гарантии, что зарядные устройства сомнительного происхождения не погубят Ваши аккумуляторы. Оригинальные же зарядки 100% выдают только необходимое напряжение и правильно заканчивают зарядку каждого элемента питания. Ведь, если в конце процесса зарядки напряжение будет затухать со значительным опозданием, это может привести к перезарядке элемента, что в свою очередь скажется весьма негативно на химической системе литий-ионного аккумулятора и будет потеряна часть емкости.
Хранить аккумуляторы лучше с малым зарядом (30-50%)
Если Вам приходится оставлять li-ion аккумуляторы на продолжительное время бездействовать, то лучше их вынуть из устройства (фонаря, Р/У машинки и т.д.).
Очень вероятно, что полностью заряженный аккумулятор при продолжительном хранении потеряет часть своей ёмкости. Полностью разряженный или при минимальном уровне, хранящийся аккумулятор, может «умереть» навсегда. Т.е. восстановить его так и не удастся после длительной спячки. Исходя из этого и рекомендуется держать 50% заряд у хранящихся, длительное время li-ion аккумуляторов.
Не допускайте перезаряда и полного разряда аккумулятора.
Учитывая химическую особенность литийевых аккумуляторов, весьма не рекомендуют, как полностью разряжать, так и чрезмерно перезаряжать такие аккумуляторы.
Как известно, у li-ion аккумуляторов, полностью отсутствует «эффект памяти«, исходя из этого рекомендуется разряжать аккумулятор до 10-20% а заряжать до 80-90, дабы не повредить химическую систему элемента.
Эффект памяти, в основном свойствен только Никель-Кадмиевым аккумуляторам.
А означает он некую потерю емкости аккумулятора после неправильного режима зарядки, в частности дозарядки при не полностью разрядившемся аккумуляторе. Проще говоря Ni-Cd нельзя начинать заряжать, до того, как он разрядится до допустимо низкого уровня. Нарушая данное правило, емкосли никель кадмиевого аккумулятора несколько уменьшается.
Литий ионные аккумуляторы, лучше начинать заряжать не дожидаясь их полного разряда. Таким образом можно значительно продлить срок жизни элемента питания.
Вышеуказанное правило относится только к незащищённым аккумуляторам. Литиевые аккумуляторы с защитой не страдают от пере или недозаряда. Встроенная плата защиты, отсекает чрезмерное напряжение (более 3,7 вольт на банку) при зарядке и отключает аккумулятор, если уровень заряда упал до минимального, обычно до 2,4 вольт.
Li-Ion аккумулятор не любит холода и жары.
Оптимальной температурой для литиевых аккумуляторов, является от +10°С до +25°С. Li-ion аккумуляторы чувствительны к большим перепадам температур. При отрицательной температуре, время работы аккумулятора сильно сокращается, хим. система элемента может сильно пострадать и даже разрушиться. Наверняка, вы замечали, как заряд мобильного телефона, на морозе резко начинает стремиться к минимуму, хотя ранее, в тепле, заряд был полным.
Нужно заметить, что литий-ионные аккумуляторы, весьма неприхотливы. При должном уходе, они проживут от 3 до 5 лет исправной службы хозяину. Так же нужно знать что такие аккумуляторы имеют свой срок использования от даты производства, а это значит, что заранее покупать запасные аккумуляторы не всегда хорошая идея. Обычно считается нормальным покупать литий-ионки не позднее 2-х лет после производства.
По поводу ёмкости литий ионных аккумуляторов. Банки самого распространенного формата 18650, могут иметь реальную емкость до 3500 мАч. При цене не менее 3-4 долларов за шт. Аккумуляторы, ёмкостью в 9900 мАч по цене $2 за шт. — это как минимум смешно. В действительности там будет 3000 мАч. если повезет.
Бренд против Нонейма
Стоит сказать несколько слов о производителях литий ионных аккумуляторов.
Практически все аккумуляторы имеют название (Бренд изготовителя), но это может быть «Panasonic» в котором реальная емкость будет меньше на 50 мАч из 3000 мАч или какой ни-будь «ХуньСюньПродакшн», в котором не хватает 1900 мАч из 3000 мАч. И это не смешно, а реальные цифры.
Так вот нормальными (честными) брендами среди аккумуляторов без защиты, считаются:
- Panasonic,
- Sony,
- Sanyo,
- Samsung,
- LG,
Напротив, такие бренды, как:
- UltraFire,
- SingFire,
- Bailong,
- TrastFire
имеют далеко не точную указанную емкость, зато стоят в 2 — 3 раза дешевле.
Среди достойных установщиков защиты на литий-ионки стоит отметить:
- Keeppower;
- Efest;
- Nitecore
Купить литий ионные аккумуляторы, например, формата 18650 можно как в местных интернет магазинах, так и у китайцев на прямую.
И пожалуйста не обольщайтесь на низкую цену и банки аккумуляторов в прозрачной термо-усадке. Из опыта, могу сказать, что в таком варианте используются в основном оригинальные банки но совсем никудышние платы защиты.
Как правильно заряжать полимерный аккумулятор
Литий полимерный отличается от литий ионного аккумулятора только лишь консистенцией электролита. Более подробнее читайте здесь. В остальном же, литий-полимерный поддается тем же правилам, что и литий-ионный аккумулятор.
Правильная зарядка литий-ионных аккумуляторов: правила зарядки li-ion АКБ
Литий-ионный, или Li—Ion, аккумулятор необходим для поддержания бесперебойной работы самой разной техники. На этих аккумуляторных батареях работают смартфоны, планшеты, ноутбуки, дрели, фонари и пуско-зарядные АКБ. Такое широко распространение этих моделей объясняется высокой энергоемкостью и небольшими размерами данных элементов. Кроме того, Li-Ion аккумуляторы рассчитаны на работу 300-400 циклов. В современных устройствах этот показатель составляет до 600 подобных циклов.
Основные формы литий-ионных аккумуляторов
Но в некоторых случаях батареи выходят из строя намного быстрее, основной причиной данного явления считается неправильный режим использования. Поэтому так важно знать, как правильно заряжать литий-ионный аккумулятор, и что собой представляет это устройство.
Особенности работы
Обычно Li-Ion батарея представляет собой призматический или цилиндрический корпус из алюминия или стали. Внутри находится пакет электродов, и расположены сепараторы. Катодом является какой-либо из оксидов лития: никелат лития (LiNiO2) или кобальтат (LiCoO2). Для этих целей может использоваться феррофосфат лития (iFePO4) и литий-марганцевая шпинель (LiMn2O4). Анод выполняется из графита, графена и других углеродистых соединений.
Как работает Li-ion аккумулятор
Процесс зарядки и разрядки аккумулятора идет по принципу кресла качалки. В ходе работы происходит перенос из одного электрода в другой ионов лития. Во время разрядки на отрицательном электроде идет извлечение или деинтеркаляция из углеродного материала лития и интеркаляция его в оксид на положительном электроде. Когда батареи заряжаются, все происходит в обратном порядке. В призматическом корпусе электроды и сепараторы складываются в виде прямоугольных пластин, что обеспечивает повышенную плотность упаковки. В цилиндрических батарейках содержимое свернуто в рулон. Еще один вариант – сворачивание в эллиптическую спираль. Это дает возможность объединить обе модификации.
Хотя многие батареи могут функционировать в диапазоне от -40°C до +50°, следует помнить, что емкость и эффективность работы зависят от температуры окружающей среды. На морозе емкость падает, и батарея может разрядиться. Повышение температур приводит к снижению ресурса и характеристик устройства. Поэтому не следует хранить аккумуляторы на солнце, вблизи от электрообогревателей и других источников тепла.
Обратите внимание! Все литиевые аккумуляторы не имеют общей системы стандартизации. Модели с одними и теми же характеристиками могут отличаться. Поэтому использование устройствами ионных аккумуляторов сторонних брендов может вывести из строя как саму батарею, так и все оборудование.
Схема работы зарядного устройства для батареи может быть разной. В одном оборудовании элемент, обеспечивающий саму зарядку li-ion аккумуляторов, встроен в батарею, в другом – у прибора нет подобного гаджета. В первом случае предусмотренный сетевой адаптер необходим для понижения напряжение и выпрямления тока. Так заряжаются многие мобильные устройства. Если же речь идет о цифровых фотокамерах, то здесь литиевый аккумулятор питается от внешнего зарядника. Использование неподходящего адаптера в лучшем случае просто не зарядит батарею, а в худшем – выведет из строя и фотокамеру, и батарею.
От чего зависит зарядка аккумулятора
Некоторые варианты аккумуляторов снабжены контролирующими элементами, не позволяющими переходить критические значения заряду. Если значение выше, элемент отключит поступление тока, а если ниже, перестанет питать оборудование. Это позволяет избежать излишнего разогрева и короткого замыкания. Если питание смартфона или планшета показывает 10-20 процентов, то устройство следует поставить на зарядку. После того, как показатели дошли до максимальных ста процентов, нужно оставить технику на зарядке еще на полтора или даже два часа. Иначе устройство будет фактически заряжено только на 70-80 процентов.
Но правила говорят, что все время заряжать батареи по максимуму не следует. Производители не зря устанавливают максимальные показатели на уровне 80 процентов. Это связано с тем, что при перезаряде на катоде более активно выделяется кислород, а на углеродистой части образуется мшистый осадок металлического лития с высокой способностью к электролиту. Это повышает вероятность теплового разгона, последующего увеличения давления и, как следствие, разрушения и даже возгорания батареи.
Зарядка Li-ion батареи у смартфона
Конечно, последнее происходит довольно редко, но снижение ресурса аккумулятора при постоянном перезаряде неизбежно. Если не доводить оборудование до полного разряжения, количество циклов работы может возрасти в полутора тысяч.
Обратите внимание! Единственный вариант, при котором снижение ресурса работы при максимальной зарядке не происходит, – это Li-ion аккумуляторные батареи с марганцем. Добавление марганца приводит к значительному замедлению реакции выделения кислорода и металлизации анода. В таких устройствах контроллеры не предусмотрены.
С другой стороны, для увеличения срока работы батареи иногда следует доводить аккумулятор до полного разряжения. Это связано с тем, что постоянно следить за состоянием заряда довольно сложно. Отсутствие периодичности зарядки приводит к тому, что сбиваются показания минимального и максимального заряда, которые изначально заложены в контролере. Постепенно устройство начинает получать недостоверные данные о количестве заряда. Доведение аккумулятора до полного разряжение приведет к обнулению контроллеров и фиксированию минимального значения. Далее следует заряжать оборудование как можно дольше, примерно от 8 до 12 часов. За это время контроллер обновит максимальное значение, и работа батареи стабилизируется.
Если планируется не использовать аккумулятор длительное время, то следует:
- зарядить прибор на 30-50%;
- обеспечить температуру хранения приблизительно в 150С;
- поместить оборудование в сухое помещение.
Полностью разряженные аккумуляторы при длительном простое теряют свои эксплуатационные характеристики и перестают работать. Если поместить на хранение батарею со стопроцентной зарядкой, то в процессе существенная часть емкости будет потеряна.
Внимание! Кобальт представляет опасность для окружающей среды и человека, поэтому отслужившие аккумуляторы подлежат утилизации.
Зарядка АКБ через ЗУ
Общие правила зарядки
Если необходимо провести зарядку АКБ в автомобиле, то нужно использовать специальные зарядные устройства. Плюс соединяют с положительной клеммой, а минус – с отрицательной. Регулятор ставят на минимум и оставляют на несколько часов. Полный заряд соответствует показателям «0» или зеленому индикатору.
Выделим основные принципы того, как правильно и без вреда для работы заряжать и использовать литий-ионные аккумуляторы:
- Не следует постоянно дожидаться полного разряда аккумулятора;
- В обычном режиме заряжать Li-ion батарею следует при 10-20% зарядки;
- Необходимо использовать только штатное зарядное устройство;
- Цикл от полного до максимального заряда следует проводить 1 раз в 2-3 месяца;
- Хранить батареи нужно частично заряженными;
- Следует избегать перегрева и значительного охлаждения оборудования.
Рассмотрим, как зарядить по USB-проводу от компьютера, ведь в поставке со смартфоном часто предлагают USB-переходник. Здесь важно учесть, что скорость зарядки будет отличаться от привычного. Это связано с тем, что зарядка через порт по ПК ограничена силой тока в 0,5 ампера.
Если зарядка происходит через переходник от прикуривателя в автомобиле, следует внимательно сравнить характеристики штатного адаптера и нового. Обычно для смартфонов значение составляет 1 ампер, а для планшетов требуется 2 ампера.
Видео
Оцените статью:Способы заряда Li-ion аккумуляторов и батарей на их основе
В данной статье мы не будем касаться самих электрохимических процессов, протекающих в Li-ion аккумуляторе, а рассмотрим все с точки зрения конечного пользователя. Для потребителя и разработчика электроники любой аккумулятор выглядит как некий двухполюсник, имеющий два контакта, выходящих из корпуса. Такой элемент схемы имеет ряд числовых характеристик, графиков зависимости и т. д., и практически ничем не отличается по количеству приводимых в документации параметров от, например, диода. С этой точки зрения мы и будем рассматривать способы заряда этих устройств.
Литий-ионные аккумуляторы производят как в корпусном (например, типоразмера 18650), так и в ламинированном исполнении (гель-полимерные), электроды и электродные массы которых помещены в герметичный пакет из специальной пленки. Электрохимические процессы протекают одинаково как в тех, так и в других, и все, сказанное ниже, в равной степени относится ко всем аккумуляторам вне зависимости от их исполнения.
Сразу отметим, что классический способ заряда Li-ion аккумулятора делится на два этапа. Первый — это заряд постоянным током, второй — заряд при постоянном напряжении (рис. 1).
Рис. 1. Этапы заряда Li-ion аккумулятора:
I — ток;
U — напряжение;
t — время
На рис. 1 можно увидеть этап 1′. Он необходим, когда напряжение на аккумуляторе ниже некоторого установленного значения (например, 2,5 В). При долгом хранении аккумулятора вследствие саморазряда и/или потребления системы обеспечения функционирования (СОФ) напряжение на аккумуляторе может упасть ниже, к примеру, 2,5 В (СОФ входит в состав аккумуляторной батареи, даже если она состоит из одного аккумулятора). Малый ток заряда обеспечивает постепенный выход активных электродных материалов на заданные уровни напряжения, при которых они штатно функционируют (например, при более 2,8 В), после чего включается основной ток заряда. Данный режим призван обеспечить более долгую жизнь аккумулятора при выходе его из заданного диапазона напряжений. Также этап 1′ применяется при заряде аккумулятора при низких температурах, например ниже +5 °C — для «разогрева» электродных масс.
Первоначальный заряд малым током используется и для обеспечения безопасности аккумулятора при заряде. Если внутри аккумулятора произошло микрокороткое замыкание (или просто КЗ), то по истечении некоторого времени заряда напряжение на нем не будет возрастать. Этот факт может свидетельствовать о неисправности. Если начать заряд достаточно большим током сразу, то при КЗ может произойти сильный разогрев аккумулятора и его разгерметизация. Хотя СОФ имеет температурный датчик, при быстром заряде и относительно большой теплоемкости аккумулятора и высоком конечном значении теплопроводности разгерметизация может произойти немного раньше, чем СОФ отключит аккумуляторы от заряда. Функция заряда малым током часто возлагается не на зарядное устройство, а на СОФ батареи. В схеме СОФ это может быть дополнительный MOSFET (управляющий зарядом), включенный через последовательный резистор, ограничивающий ток, подключенный к аккумуляторной батарее (АБ). Необходимо отметить, что данный этап часто исключают из цикла заряда батареи, начиная заряд сразу с этапа 1.
На первом этапе заряд осуществляется номинальным током, который измеряется в долях от номинальной емкости аккумулятора (Сн). Например, емкость аккумулятора 10 А·ч, номинальный ток заряда 0,2Сн, то есть 2 А — пятичасовой режим заряда. Понятно, что потребитель хочет, чтобы заряд осуществлялся как можно быстрее — в течение 1–2 ч, что соответствует 0,5–1Сн. Такой режим заряда обычно называют ускоренным. Для нормальной работы аккумулятора номинальный ток заряда лежит в пределах 0,2–0,5Сн, а ускоренный, как уже говорилось, — в диапазоне 0,5–1Сн. Каким максимальным током можно заряжать тот или иной аккумулятор, можно узнать в документации на конкретный тип устройства. График роста напряжения на аккумуляторе, показанный на рис. 1, носит линейный характер (для простоты восприятия).
Чем выше ток заряда (или меньше время, отводимое на полный заряд), тем меньше аккумулятор «наберет» емкости и тем пристальней необходимо следить за разогревом, чтобы его температура не вышла за установленный предел. При большом токе заряда существенно продлевается время 2-го этапа (рис. 1), когда ток постепенно падает до определенного предела. Так, например, при токе заряда 1Сн и отводимом на заряд времени в 1 ч аккумулятор достигнет своего конечного напряжения за 45–50 мин. Любой аккумулятор имеет внутреннее сопротивление (включающее в себя несколько составляющих — омическую, диффузионную и т. д.). Падение напряжения на внутреннем сопротивлении при большом токе заряда приведет к более быстрому достижению конечного зарядного напряжения. При достижении конечного напряжения заряд перейдет ко второму этапу — падающему току при постоянном напряжении. За оставшееся время 10–15 мин. аккумулятор «наберет» еще 0,1–0,15Сн, что в сумме составит не более 0,85–0,95Сн. При более коротком режиме заряда и лимите времени зарядная емкость будет еще меньше. Можно учитывать внутреннее сопротивление аккумулятора и ввести зависимость конечного зарядного напряжения от тока заряда, но это требует проработки для конкретного типа аккумуляторов и более сложных зарядных устройств. Обычно разработчики не используют данные зависимости при проектировании простых устройств.
Ускоренный и номинальный режим заряда необходимо чередовать, особенно при заряде батарей, состоящих из нескольких последовательно соединенных аккумуляторов. При номинальном токе заряда возрастает его продолжительность. Увеличение времени заряда способствует лучшей балансировке аккумуляторов в батарее [1]. Чем больше время такой балансировки, тем лучше будут сбалансированы аккумуляторы по емкости и, в конечном итоге, батарея отдаст емкость, близкую к номинальной при разряде. Обычно системы баланса делаются пассивными, и работают они только при заряде батареи. Заряд номинальным режимом особенно рекомендуется после длительного хранения батареи, когда степень заряженности отдельных аккумуляторов будет сильно зависеть от токов саморазряда, который у разных аккумуляторов разный, даже при специально подобранных аккумуляторах в одной батарее.
Второй этап — заряд при постоянном напряжении и падающем токе. Ток на этом этапе падает до определенного значения. Например, процесс считается завершенным при установлении тока заряда менее 0,1–0,05Сн (в нашем примере <100 мА). Как было показано выше, продолжительность фазы падающего тока зависит от тока заряда. Для номинального режима заряда (0,2Сн) она длится обычно не более нескольких десятков минут, при этом аккумулятор набирает до 0,1–0,15Сн. Время заряда падающим током также зависит от степени деградации аккумулятора в процессе эксплуатации (иначе говоря, от срока службы и количества циклов заряд/разряд). Чем больше деградация, тем длиннее фаза падающего тока.
После окончания заряда напряжение на аккумуляторе падает на 0,05–0,1 В (рис. 1), приходя к своему равновесному состоянию. Держать аккумулятор продолжительное время (десятки часов) при конечном напряжении (например, 4,2–4,3 В) не рекомендуется из-за несколько повышенной в этом состоянии скорости деградации электродных масс. Поэтому после фазы падающего тока желательно прекратить заряд.
Производители электроники предоставляют уже готовые схемотехнические решения, реализующие описанный выше алгоритм заряда, выполненные в одном корпусе микросхемы — например МАХ1551, МАХ745 и т. д. Одна из популярных микросхем, применяемых для заряда Li-ion аккумуляторов (мобильных телефонов, фототехники и т. д.) от сети постоянного тока 12–24 В, — MC34063 (рис. 2). На рис. 2 выходное напряжение MC34063 — 5 В, но его можно пересчитать на конечное зарядное напряжение аккумулятора 4,1–4,3 В, варьируя резисторами R1, R2. Дополнительный выходной фильтр для уменьшения пульсаций можно исключить.
Рис. 2. Структурная схема МС34063, реализующая алгоритм заряда Li-ion аккумулятора
Часто возникает желание осуществлять заряд устройством, на выходе которого есть только постоянный ток (без фазы постоянного напряжения в конце заряда). Это позволяют сделать, к примеру, зарядные устройства от никель-кадмиевых аккумуляторных батарей. Рассмотрим этот способ.
Необходимо отметить, что литий-ионная аккумуляторная батарея подключается через СОФ к зарядному устройству (ЗУ), имеющему внутренние ключи (для батарей небольшой емкости до 40–60 А·ч это обычно MOSFET). Поэтому прежде, чем подключать ЗУ к АБ, необходимо убедиться, что выходное напряжение ЗУ (напряжение разомкнутой выходной цепи) не слишком высокое, чтобы не вывести из строя коммутаторы заряда АБ. Сам алгоритм заряда можно осуществить с помощью постоянного тока (этап 1) и фазы импульсов (этап 2), показанной на рис. 3. Фаза импульсов заменяет фазу падающего тока (также этап 2), показанную на рис. 1.
Рис. 3. Заряд постоянным током с прерывистой фазой зарядного тока:
I — ток;
U — напряжение;
t — время
Критерием остановки заряда могут служить напряжение на аккумуляторе или время импульса тока (Tимп), за которое напряжение на аккумуляторе достигает конечного зарядного напряжения (например, 4,2 В). При каждом импульсе напряжение на аккумуляторе будет повышаться, как показано на рис. 3. Как только оно достигнет уровня полностью заряженного аккумулятора с фазой падающего тока (рис. 1, примерно 4,1–4,15 В), заряд можно прекращать. Измерение напряжения на аккумуляторе необходимо производить через некоторое время после завершения зарядного импульса. Этот критерий окончания заряда при фазе импульсного тока Li-ion аккумулятора в большей степени справедлив для аккумуляторов на основе кобальтата лития (так называемые кобальтатные аккумуляторы). Об отличительных особенностях этих типов аккумуляторов мы поговорим далее.
Если ориентироваться на Tимп, то как только длительность импульса, в течение которого напряжение на аккумуляторе достигнет своего конечного значения, будет достаточно маленькой, заряд можно прекращать. Длительность можно считать маленькой, если аккумулятор за это время наберет менее 0,2–1% от своей емкости Сн. Например, при емкости аккумулятора 10 А·ч — 0,5% от Сн составит 0,05 А·ч. При токе заряда 5 А расчетная длительность зарядного импульса составит порядка 30 с.
Реализацию данного алгоритма заряда можно возложить на СОФ АБ, если она спроектирована таким образом, что можно изменять алгоритм ее функционирования [2]. Тогда микроконтроллер СОФ может отслеживать напряжение на аккумуляторе или производить вычисления времени импульса и останавливать заряд, размыкая окончательно зарядный ключ.
Еще один способ — заряд ступенчатым током (рис. 4).
Рис. 4. Заряд ступенчатым током:
I — ток;
U — напряжение;
t — время
Для упрощения ЗУ обычно заряд осуществляют в два этапа: номинальный ток (этап 1) и ток вдвое меньше номинального. То есть существует всего две ступени заряда. На рис. 4 для наглядности показано три ступени. И действительно, если есть возможность уменьшать ток ЗУ дискретно не в два раза, а на меньшую величину, то заряд будет осуществляться почти так же, как показано на рис. 1, а на этапе 2 напряжение на аккумуляторе будет колебаться около конечного напряжения заряда.
Помимо аккумуляторов с катодом из кобальтата лития, в мире все большую популярность набирают железо-фосфатные аккумуляторы (литированный фосфат железа). Железо-фосфатные аккумуляторы хоть и имеют меньшие удельные характеристики (Вт·ч/кг, Вт·ч/дм3), но из-за меньшей стоимости (при той же емкости) становятся все более и более популярными. На рис. 5 представлены зарядные кривые двух типов аккумуляторов.
Рис. 5. Графики заряда при различных температурах аккумуляторов с материалом положительного электрода:
а) кобальтат лития;
б) литированный фосфат железа
Заряд производился током 0,5Сн. Из графиков видно, что аккумуляторы с положительным электродом на основе кобальтата лития имеют почти линейную характеристику роста напряжения от степени заряженности. Характеристика аккумуляторов с положительным электродом на основе литированного фосфата железа почти горизонтальна и только в конце заряда резко возрастает, а также существенно зависит от температуры. Конечное напряжение заряда у железо-фосфатных аккумуляторов обычно ниже и составляет 3,7–3,9 В. После заряда (фазы падающего тока) напряжение даже у заряженного на 100% такого аккумулятора при нормальных условиях упадет до 3,35–3,45 В. Поэтому не будет наблюдаться такого роста напряжения, как показано на рис. 3, оно будет снижаться после каждого импульса заряда до указанного уровня (3,35–3,45 В). Критерием оценки заряженности аккумулятора в этом случае будет только Tимп, если заряд ведется прерывистой фазой тока (рис. 3).
Существуют Li-ion аккумуляторы с положительным электродом на основе никель-кобальт-алюминия и никель-кобальт-марганца. Зарядные зависимости у них ближе к зависимостям кобальтатных (рис. 5а). В любом случае при выборе и эксплуатации конкретного устройства необходимо внимательно ознакомиться с рекомендациями и документацией производителя. Заряд таких аккумуляторов также производится в два этапа.
Фаза постоянного напряжения (падающий ток) на рис. 5 отражена на представленных зависимостях в виде горизонтальной площадки в конце заряда. По величине этой площадки можно судить о емкости, набранной аккумулятором на этом этапе. Приведем экспериментальные данные заряда аккумулятора, иллюстрирующие способы, рассмотренные выше (рис. 6).
Рис. 6. Изменение напряжения литий-железо-фосфатного аккумулятора емкостью 240 А·ч в процессе заряда токами от 0,5 до 3Сн
На рис. 6 представлены зарядные кривые аккумулятора емкостью 240 А·ч с положительным электродом на основе литированного фосфата железа. Зарядные зависимости нормированы относительно емкости аккумулятора, а не времени. Заряд осуществлялся токами 120 А (0,5Сн), 240 А (1Сн), 480 А (2Сн) и 720 А (3Сн) до напряжения 3,7 В (при токах 0,5, 1 и 2Сн) и до 3,8 В (при токе 3Сн), при нормальных климатических условиях и температуре +20 °C. На графике видно, что при токе заряда 0,5Сн фаза падающего тока (при постоянном напряжении) составляет 12–15 А·ч (плоская площадка в конце графика). При токе 1Сн это уже 35–40 А·ч. При токе заряда 2Сн емкость составила всего около 190 А·ч при достигнутом напряжении 3,7 В, затем ток уменьшили в два раза (провал по напряжению), после чего аккумулятор еще зарядился на 35–40 А·ч. При токе заряда 3Сн напряжение отключения было повышено до 3,8 В, емкость составила всего около 180 А·ч, фаза падающего тока при постоянном напряжении отсутствует. На графике видно также, что при токе заряда 3Сн произошел некоторый провал по напряжению в середине кривой заряда. Это связано с повышением температуры аккумулятора и, как следствие, понижением внутреннего сопротивления (при повышении температуры возрастает скорость электрохимических реакций).
Выводы
Существует несколько способов заряда Li-ion аккумуляторов, но все они отражают сущность двухэтапного процесса: заряд постоянным и падающим током при постоянном напряжении. При заряде аккумуляторов или батарей током 0,5–1 Сн и более фаза падающего тока обязательна для увеличения принятой аккумулятором зарядной емкости. При заряде током 0,1–0,3 Сн фазой падающего тока можно пренебречь, так как за 3,5–10 ч заряда аккумулятор и так зарядится почти на всю емкость.
Методы разряда батареи– Battery University
Узнайте, как определенные разрядные нагрузки сокращают срок службы батареи.
Назначение батареи – накапливать энергию и высвобождать ее в желаемое время. В этом разделе исследуется разряд при различных скоростях C и оценивается глубина разрядки, на которую батарея может безопасно перейти. В документе также наблюдаются различные сигнатуры разряда и исследуется время автономной работы при различных схемах загрузки.
Электрохимическая батарея имеет преимущество перед другими устройствами накопления энергии в том, что энергия остается высокой в течение большей части заряда, а затем быстро падает по мере истощения заряда.Суперконденсатор имеет линейный разряд, а сжатый воздух и накопитель на маховике – это противоположность аккумулятора, поскольку вначале он обеспечивает максимальную мощность. На рисунках 1, 2 и 3 показаны смоделированные разрядные характеристики накопленной энергии.
Большинство перезаряжаемых аккумуляторов могут быть кратковременно перезаряжены, но это должно быть непродолжительное время. Срок службы батареи напрямую зависит от уровня и продолжительности нагрузки, которая включает заряд, разряд и температуру.
Любители дистанционного управления (ПДУ) – это особая категория пользователей батарей, которые максимально увеличивают терпимость к «хрупким» высокопроизводительным батареям, разряжая их со скоростью 30 ° С, что в 30 раз превышает номинальную емкость. Таким же захватывающим, как вертолет с дистанционным управлением, может быть гоночный автомобиль или скоростной катер; срок службы пакетов будет коротким. Баффы RC хорошо осведомлены о компромиссе и готовы как заплатить цену, так и столкнуться с дополнительными рисками безопасности.
Чтобы получить максимальную энергию на единицу веса, производители дронов обращаются к элементам с высокой емкостью и выбирают Energy Cell.Это контрастирует с отраслями, требующими больших нагрузок и длительного срока службы. Эти приложения относятся к более надежным элементам Power Cell с меньшей емкостью.
Глубина разряда
Свинцово-кислотные разряды до 1,75 В / элемент; система на никелевой основе до 1,0 В / элемент; и большинство литий-ионных до 3,0 В / элемент. На этом уровне расходуется примерно 95 процентов энергии, и если бы разряд продолжался, напряжение быстро упало бы. Чтобы защитить аккумулятор от чрезмерной разрядки, большинство устройств не допускают работу сверх указанного напряжения в конце разряда.
При снятии нагрузки после разряда напряжение исправного аккумулятора постепенно восстанавливается и повышается до номинального напряжения. Различия в сродстве металлов в электродах создают этот потенциал напряжения, даже когда батарея разряжена. Паразитная нагрузка или высокий саморазряд препятствуют восстановлению напряжения.
Высокий ток нагрузки, как в случае сверления бетона с помощью электроинструмента, снижает напряжение батареи, и порог напряжения конца разряда часто устанавливается ниже, чтобы предотвратить преждевременное отключение.Напряжение отключения также следует снижать при разрядке при очень низких температурах, так как напряжение аккумулятора падает, а внутреннее сопротивление аккумулятора увеличивается. В таблице 4 показаны типичные значения напряжения в конце разряда для батарей различного химического состава.
Конец разгрузки Номинал | Литий-марганцевый 3,60 В / элемент | Литий-фосфат 3.20 В / ячейка | Свинцово-кислотный 2,00 В / элемент | NiCd / NiMH 1,20 В / элемент |
Нормальная нагрузка Тяжелая нагрузка или | 3,0–3,3 В / элемент 2,70 В / элемент | 2.70 В / ячейка 2,45 В / элемент | 1,75 В / элемент 1,40 В / элемент | 1,00 В / элемент 0,90 В / элемент |
Таблица 4: Номинальное и рекомендованное напряжение в конце разряда при нормальной и большой нагрузке. Более низкое напряжение в конце разряда при высокой нагрузке компенсирует большие потери.
Чрезмерная зарядка свинцово-кислотного аккумулятора может привести к образованию сероводорода, бесцветного, ядовитого и легковоспламеняющегося газа, который пахнет тухлыми яйцами. Сероводород также возникает при разложении органических веществ в болотах и сточных коллекторах и присутствует в вулканических газах и природном газе. Газ тяжелее воздуха и скапливается на дне плохо вентилируемых помещений. Сначала сильное обоняние со временем притупляется, и жертвы не замечают наличия газа. (См. BU-703: Проблемы со здоровьем, связанные с батареями.)
Что представляет собой цикл разряда?
Под циклом разрядки / зарядки обычно понимается полная разрядка заряженной батареи с последующей подзарядкой, но это не всегда так. Батареи редко полностью разряжаются, и производители часто используют 80-процентную формулу глубины разряда (DoD) для оценки батареи. Это означает, что доставляется только 80 процентов доступной энергии, а 20 процентов остается в резерве. Перезагрузка аккумулятора при неполной разрядке увеличивает срок службы, и производители утверждают, что это ближе к полевому представлению, чем полный цикл, потому что аккумуляторы обычно перезаряжаются с оставшейся некоторой запасной емкостью.
Не существует стандартного определения того, что представляет собой цикл разряда. Некоторые счетчики циклов добавляют полный счет, когда батарея заряжена. Интеллектуальной батарее может потребоваться 15-процентная разрядка после зарядки, чтобы соответствовать требованиям цикла разрядки; что-либо меньшее не считается циклом. Батарея в спутнике имеет типичную DoD 30-40 процентов до того, как батареи будут заряжены в течение спутникового дня. Новый аккумулятор электромобиля может заряжаться только до 80 процентов и разряжаться до 30 процентов. Эта полоса пропускания постепенно расширяется по мере того, как батарея разряжается, чтобы обеспечить одинаковое расстояние вождения.Избегание полной зарядки и разрядки снижает нагрузку на аккумулятор. (См. Также BU-1003: Электромобиль.)
Гибридный автомобиль использует только часть емкости во время разгона перед подзарядкой аккумулятора. Запуск двигателя транспортного средства потребляет менее 5 процентов энергии от стартерной батареи, и это также называется циклом в автомобильной промышленности. Ссылка на количество циклов должна быть сделана в контексте соответствующей обязанности.
Ссылка на цикл разряда или количество циклов не одинаково хорошо относится ко всем приложениям батарей.Одним из примеров, когда подсчет циклов разряда не отражает точное состояние жизни, является запоминающее устройство (ESS). Эти батареи дополняют возобновляемые источники энергии от ветровой и фотоэлектрической энергии, доставляя кратковременную энергию, когда это необходимо, и накапливая, если ее избыток. Время между зарядкой и разрядкой может быть в миллисекундах; типичный уровень заряда аккумулятора составляет 40–60%. Вместо подсчета циклов можно использовать подсчет кулонов как средство измерения износа.
Последнее обновление 09.08.2019
*** Пожалуйста, прочтите комментарии ***
Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.
Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected]. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.
Предыдущий урок Следующий урокИли перейти к другой артикуле
Батареи как источник питанияСпособы зарядки литий-ионных аккумуляторов
Для большинства электронных устройств, работающих от аккумуляторов, выбирают литий-ионный аккумулятор. Узнайте, что нужно для их правильной зарядки.
Опубликовано Джон Тил
Литий-ионный аккумулятор– это аккумулятор, который чаще всего используется в бытовой электронике.Из других типов, которые использовались ранее, никель-кадмиевые батареи для использования в электронном оборудовании были запрещены в ЕС, поэтому общий спрос на эти типы упал.
Никель-металлогидридные батареивсе еще используются, но их более низкая удельная энергия и соотношение цены и качества делают их непривлекательными.
Работа и конструкция литий-ионного аккумулятора
Литий-ионные батареисчитаются вторичными батареями , что означает, что они перезаряжаемые. Наиболее распространенный тип состоит из анода, сделанного из слоя графита, нанесенного на медную подложку, или токоприемника, и катода из покрытия из оксида лития-кобальта на алюминиевой подложке.
Сепаратор обычно представляет собой тонкую полиэтиленовую или полипропиленовую пленку, которая электрически разделяет два электрода, но позволяет переносить через нее ионы лития. Это расположение показано на рисунке 1.
Также используются различные другие типы анодных и катодных материалов, наиболее распространенные катоды обычно дают свои имена в соответствии с описанием типа батареи.
Таким образом, катодные элементы из оксида лития-кобальта известны как ячейки LCO. Типы оксида лития, никеля, марганца и кобальта называются типами NMC, а элементы с катодами из фосфата лития-железа известны как ячейки LFP.
Рисунок 1 – Основные компоненты типичного литий-ионного элемента
В реальном литий-ионном элементе эти слои обычно плотно скручены друг с другом, а электролита, хотя и жидкого, едва хватает для смачивания электродов, и внутри нет жидкости, плещущейся.
Это расположение показано на рисунке 2, который изображает реальную внутреннюю конструкцию призматической или прямоугольной металлической ячейки. Другими популярными типами корпусов являются цилиндрические и мешочные (обычно называемые полимерными ячейками).
На этом рисунке не показаны металлические выступы, прикрепленные к каждому токосъемнику. Эти выступы являются электрическими соединениями с батареей, в основном клеммами батареи.
Рисунок 2 – Типичная внутренняя конструкция призматического литий-ионного элемента
Зарядка литий-ионного элемента включает использование внешнего источника энергии для переноса положительно заряженных ионов лития от катода к анодному электроду. Таким образом, катод становится отрицательно заряженным, а анод – положительно заряженным.
Внешне зарядка включает движение электронов от анодной стороны к источнику заряда, и такое же количество электронов проталкивается в катод. Это направление противоположно внутреннему потоку ионов лития.
Во время разряда к клеммам аккумулятора подключается внешняя нагрузка. Ионы лития, которые накапливались в аноде, возвращаются на катод. Внешне это связано с движением электронов от катода к аноду. Таким образом, через нагрузку протекает электрический ток.
Вкратце, то, что происходит внутри элемента во время зарядки, например, заключается в том, что на катодной стороне оксид лития-кобальта отдает часть своих ионов лития, превращаясь в соединение с меньшим содержанием лития, которое все еще остается химически стабильным.
Со стороны анода эти ионы лития внедряются или интеркалируются в межузельные пространства молекулярной решетки графита.
При зарядке и разрядке необходимо учитывать несколько моментов. Внутри литий-ионы должны пересекать несколько границ раздела во время зарядки и разрядки.Например, во время зарядки ионы лития должны переноситься из объема катода на катод к границе раздела электролита.
Оттуда он должен пройти через электролит через сепаратор к границе раздела между электролитом и анодом. Наконец, он должен диффундировать от этой границы раздела к основной части анодного материала.
Скорость переноса заряда через каждую из этих различных сред определяется ее ионной подвижностью. На это, в свою очередь, влияют такие факторы, как температура и концентрация ионов.
На практике это означает, что во время зарядки и разрядки необходимо соблюдать меры предосторожности, чтобы гарантировать, что эти ограничения не будут превышены.
Рекомендации по зарядке литий-ионных аккумуляторов
Зарядка литий-ионных аккумуляторов требует особого алгоритма зарядки. Это осуществляется в несколько этапов, описанных ниже:
Капельный заряд (предварительная зарядка)
Если уровень заряда аккумулятора очень низкий, то он заряжается с пониженным постоянным током, который обычно составляет около 1/10 полной скорости зарядки, описанной ниже.
В это время напряжение аккумулятора увеличивается, и когда оно достигает заданного порога, скорость заряда увеличивается до полной скорости заряда.
Обратите внимание, что некоторые зарядные устройства разделяют этот этап непрерывной зарядки на две части: предварительная зарядка и постоянная зарядка, в зависимости от того, насколько низкое напряжение батареи изначально.
Полная ставка
Если напряжение батареи изначально достаточно высокое, или если батарея заряжена до этого момента, то запускается этап полной скорости заряда.
Это также стадия зарядки постоянным током, и во время этой стадии напряжение батареи продолжает медленно расти.
Конический заряд
Когда напряжение аккумулятора поднимается до максимального зарядного напряжения, начинается стадия постепенного заряда. На этом этапе зарядное напряжение поддерживается постоянным.
Это важно, поскольку литий-ионные аккумуляторы катастрофически выйдут из строя, если их зарядить при более высоком напряжении, чем их максимальное напряжение. Если это зарядное напряжение поддерживается постоянным на этом максимальном значении, то зарядный ток будет медленно уменьшаться.
Отключение / прекращение
Когда зарядный ток снизился до достаточно низкого значения, зарядное устройство отключается от аккумулятора. Это значение обычно составляет 1/10 или 1/20 от полного зарядного тока.
Важно не заряжать литий-ионные аккумуляторы постоянно, так как это снизит производительность и надежность аккумулятора в долгосрочной перспективе.
Хотя в предыдущем разделе описаны различные этапы зарядки, конкретные пороговые значения для различных этапов не были предоставлены.Начиная с напряжения, каждый тип литий-ионного аккумулятора имеет собственное напряжение на клеммах полного заряда.
Для наиболее распространенных типов LCO и NCM это 4,20 В. Есть некоторые с 4,35 В и 4,45 В.
Для типов LFP это 3,65 В. Пороговое значение непрерывного заряда до полного заряда составляет около 3,0 и 2,6 для типов LCO / NMC и LFP соответственно.
Зарядное устройство, предназначенное для зарядки литий-ионных аккумуляторов одного типа, например LCO, не может использоваться для зарядки аккумулятора другого типа, например аккумулятора LFP.
Обратите внимание, однако, что существуют зарядные устройства, которые можно настроить для зарядки нескольких типов. Обычно для этого требуются разные значения компонентов в конструкции зарядного устройства, чтобы соответствовать каждому типу аккумуляторов.
Что касается зарядного тока, то здесь требуется небольшое пояснение. Емкость литий-ионного аккумулятора традиционно указывается как мАч, или миллиампер-час, или Ач. Сама по себе эта единица не является единицей накопления энергии. Чтобы получить реальную энергоемкость, необходимо учитывать напряжение аккумулятора.
На рис. 3 показана типичная кривая разрядки литий-ионной батареи типа LCO. Поскольку напряжение разряда имеет наклон, среднее напряжение батареи на всей кривой разряда принимается за напряжение батареи.
Это значение обычно составляет от 3,7 до 3,85 В для типов LCO и 2,6 В для типов LFP. Умножив значение мАч на среднее напряжение батареи, мы получим мВтч, или емкость накопления энергии, данной батареи.
Зарядный ток аккумулятора указан в единицах C-rate, где 1C численно совпадает с емкостью аккумулятора в мА.Таким образом, батарея емкостью 1000 мАч имеет значение C 1000 мА. По разным причинам максимально допустимая скорость зарядки литий-ионной батареи обычно составляет от 0,5 ° C до 1 ° C для типов LCO и 3 ° C или более для типов LFP.
ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .
Батарея, конечно, может состоять минимум из одной ячейки, но может состоять из многих ячеек в комбинации последовательно соединенных групп параллельно соединенных ячеек.
Сценарий, приведенный ранее, применим к одноэлементным батареям. В случаях, когда батарея состоит из нескольких ячеек, необходимо масштабировать зарядное напряжение и зарядный ток, чтобы они соответствовали друг другу.
Таким образом, зарядное напряжение умножается на количество последовательно соединенных ячеек или группы ячеек, и, аналогично, зарядный ток умножается на количество параллельно подключенных ячеек в каждой последовательно соединенной группе.
Рисунок 3 – Типичная кривая разрядки батареи типа LCO
Еще одним очень важным дополнительным фактором, который необходимо учитывать при зарядке литий-ионных аккумуляторов, является температура.Литий-ионные аккумуляторы нельзя заряжать при низких или высоких температурах.
При низких температурах ионы лития движутся медленно. Это может вызвать скопление ионов лития на поверхности анода, где они в конечном итоге превратятся в металлический литий. Поскольку это образование металлического лития принимает форму дендритов, оно может пробить сепаратор, вызывая внутренние короткие замыкания.
В верхнем диапазоне температур проблема заключается в избыточном тепловыделении. Зарядка аккумулятора не на 100% эффективна, и во время зарядки выделяется тепло.Если внутренняя температура сердечника становится слишком высокой, электролит может частично разложиться и превратиться в газообразные побочные продукты. Это приводит к необратимому уменьшению емкости аккумулятора, а также к вздутию.
Типичный диапазон температур для зарядки литий-ионных аккумуляторов составляет от 0 ° C до 45 ° C для высококачественных аккумуляторов или от 8 ° C до 45 ° C для более дешевых аккумуляторов. Некоторые батареи также позволяют заряжаться при более высоких температурах, примерно до 60 ° C, но с пониженной скоростью зарядки.
Все эти соображения обычно выполняются специальными микросхемами зарядного устройства, и настоятельно рекомендуется использовать такие микросхемы независимо от фактического источника зарядки.
Зарядные устройства Li-ion
Литий-ионные зарядные устройстваможно разделить на две основные категории: линейные и переключаемые зарядные устройства. Оба типа могут соответствовать ранее заявленным требованиям относительно правильной зарядки литий-ионных аккумуляторов. Однако у каждого из них есть свои преимущества и недостатки.
Достоинством линейного зарядного устройства является его относительная простота. Однако главный его недостаток – неэффективность. Например, если напряжение питания составляет 5 В, напряжение аккумулятора составляет 3 В, а зарядный ток составляет 1 А, линейное зарядное устройство будет рассеивать 2 Вт.
Если это зарядное устройство встроено в продукт, необходимо отвести много тепла. Именно поэтому линейные зарядные устройства в основном используются в тех случаях, когда максимальный зарядный ток составляет около 1А.
Для больших аккумуляторов предпочтительны переключаемые зарядные устройства. В некоторых случаях они могут иметь КПД до 90%. Недостатками являются его более высокая стоимость и несколько большие требования к площади схемы из-за использования индукторов в ее конструкции.
Рассмотрение источника зарядки
Различные приложения могут использовать разные источники зарядки.Например, это может быть прямой адаптер переменного тока с выходом постоянного тока или блок питания. Это также может быть USB-порт от настольного компьютера или аналогичных устройств. Это также может быть сборка солнечных батарей.
Из-за возможности передачи энергии этими различными источниками необходимо дополнительно рассмотреть конструкцию реальной схемы зарядного устройства, помимо простого выбора линейного или переключаемого зарядного устройства.
Самый простой случай – это когда источник зарядки обеспечивает регулируемый выход постоянного тока, такой как адаптер переменного тока или блок питания.Единственное требование – выбрать зарядный ток, который не превышает максимальную скорость зарядки аккумулятора или мощность источника питания.
Зарядка от USB-источника требует немного большего внимания. Если порт USB относится к типу USB 2.0, он будет соответствовать стандарту зарядки аккумулятора USB 1.2 или BC 1.2.
Для этого требуется, чтобы любая нагрузка, в данном случае зарядное устройство, не потребляла более 100 мА, если только нагрузка не указана в источнике. В этом случае допускается принимать 500 мА при 5 В.
Если порт USB – USB 3.1, то он может следовать за USB BC1.2, или в конструкцию может быть включена активная схема контроллера для согласования увеличения мощности по протоколу USB Power Delivery или USB PD.
Солнечные элементы в качестве источника заряда представляют собой еще один набор проблем. Напряжение-ток солнечного элемента, или VI, чем-то похож на обычный диод. Обычный диод не будет проводить заметного тока ниже минимального значения прямого напряжения, а затем может пропускать гораздо больший ток с небольшим увеличением прямого напряжения.
С другой стороны, солнечный элемент может подавать ток до определенного максимума при относительно ровном напряжении. При превышении этого значения тока напряжение резко падает.
Итак, солнечное зарядное устройство должно иметь схему управления питанием, которая модулирует ток, потребляемый от солнечного элемента, чтобы не приводить к слишком низкому выходному напряжению.
К счастью, существуют микросхемы, такие как TI BQ2407x, BQ24295 и другие, которые могут работать с одним или несколькими из перечисленных выше источников.
Настоятельно рекомендуется потратить время на поиск подходящего зарядного чипа, а не на разработку зарядного устройства с нуля.
Наконец, не забудьте загрузить бесплатно PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.Другой контент, который вам может понравиться:
Что такое рейтинг C батареи и как рассчитать коэффициент C
Скорость заряда и разряда батареи контролируется параметром C Rates. Рейтинг батареи C – это измерение тока, при котором батарея заряжается и разряжается.Емкость аккумулятора обычно рассчитывается и обозначается как 1С (ток 1С), это означает, что полностью заряженный аккумулятор емкостью 10 Ач должен обеспечивать 10 А в течение одного часа. Та же самая батарея на 10 Ач, разряженная с рейтингом 0,5C, будет обеспечивать 5 ампер в течение двух часов, а при разряде со скоростью 2C она будет обеспечивать 20 ампер в течение 30 минут. Рейтинг батареи C важно знать, так как для большинства батарей доступная накопленная энергия зависит от скорости токов заряда и разряда.
ТАБЛИЦА ЗАРЯДА БАТАРЕИ
В приведенной ниже таблице показаны различные номиналы аккумуляторов с указанием времени их обслуживания. Важно знать, что даже несмотря на то, что при разряде батареи при разных скоростях C должны использоваться те же расчеты, что и идентичное количество энергии, в действительности, вероятно, будут некоторые внутренние потери энергии. При более высоких скоростях C некоторая часть энергии может быть потеряна и превращена в тепло, что может привести к снижению мощности на 5% или более.
Чтобы получить достаточно хорошие показания емкости, производители обычно оценивают щелочные и свинцово-кислотные батареи как очень низкие 0.05C, или 20-часовая разрядка. Даже при такой низкой скорости разряда свинцово-кислотная батарея редко достигает 100-процентной емкости, так как батареи имеют переоцененные характеристики. Производители предоставляют компенсацию мощности для корректировки несоответствий, если она разряжается с более высокой скоростью, чем указано.
КАК РАССЧИТАТЬ НОМЕР АККУМУЛЯТОРА
Рейтинг C батареи определяется временем, в течение которого она заряжается или разряжается. Вы можете увеличить или уменьшить показатель C Rate, и в результате это повлияет на время, необходимое для зарядки или разрядки аккумулятора.Время заряда или разряда C Rate изменяется в зависимости от номинала. 1С равен 60 минутам, 0,5С – 120 минутам, а рейтинг 2С равен 30 минутам.
Формула проста.
t = Время Cr = C Скорость t = 1 / Cr (для просмотра в часах) t = 60 минут / Cr (для просмотра в минутах)
0.5C Пример скорости
- 2300 мАч Аккумулятор
- 2300 мАч / 1000 = 2.3A
- 0.5C x 2.3A = 1.15A доступно
- 1 / 0.5C = 2 часа
- 60/0.5C = 120 минут
2C Пример скорости
- 2300 мАч Аккумулятор
- 2300 мАч / 1000 = 2.3A
- 2C x 2.3A = 4.6A доступно
- 1 / 2C = 0,5 часа
- 60 / 2C = 30 минут
30C Пример скорости
- 2300mAh Аккумулятор
- 2300mAh / 1000 = 2.3A
- 30C x 2.3A = 69A доступно
- 60 / 30C = 2 минуты
Вы можете увидеть пример скорости 30C в таблице данных для Power Sonic 26650 LiFePO4 power cell
Вы можете использовать приведенную ниже формулу для расчета выходного тока, мощности и энергии батареи на основе ее класса C.
Er = Номинальная энергия (Ач) Cr = C Скорость I = ток заряда или разряда (амперы) I = Cr * Er Cr = I / Er
КАК УЗНАТЬ НОМЕР АККУМУЛЯТОРНОЙ БАТАРЕИ
Батареи меньшего размера обычно имеют рейтинг 1С, который также известен как один час. Например, если ваша батарея имеет маркировку 3000 мАч при одночасовом расходе, то рейтинг 1С составляет 3000 мАч. Обычно вы можете найти показатель C вашей батареи на этикетке и в паспорте батареи. Батареи разного химического состава иногда показывают разную скорость разряда, например, свинцово-кислотные батареи обычно рассчитаны на очень низкую скорость разряда, часто равную нулю.05C, или 20-часовой тариф. Химический состав и конструкция вашей батареи будут определять максимальную скорость разряда вашей батареи, например, литиевые батареи могут выдерживать гораздо более высокие скорости разряда, чем другие химические вещества, такие как щелочные. Если вы не можете найти номинал батареи C на этикетке или в техническом паспорте, мы рекомендуем обратиться напрямую к производителю батареи.
Емкость литиевой батареи по сравнению со свинцово-кислотной при различных токах разрядаПРИЛОЖЕНИЯ, ТРЕБУЮЩИЕ ВЫСОКИХ СТАВКОВ C
На рынке появляется все больше приложений и устройств, которым требуется аккумулятор с высокой скоростью разряда.К ним относятся промышленные и потребительские приложения, такие как радиоуправляемые модели, дроны, робототехника и пусковые устройства для транспортных средств. Все эти приложения требуют мощного всплеска энергии за короткий промежуток времени.
Для большинства пусковых устройств может потребоваться разряд до 35 ° C, а в радиоуправляемой промышленности используются батареи с высокой скоростью разряда до 50 ° C! На рынке есть некоторые батареи, которые требуют еще более высоких показателей C, основанных на максимальной скорости импульсного разряда, при которой батарея полностью разряжается всего за несколько секунд.Однако большинству приложений не требуются такие высокие ставки C.
Если вам нужна помощь в поиске батареи, подходящей для вашего приложения, свяжитесь с одним из инженеров Power Sonic.
Конфигурации литиевых батарей
Категории: Блог, Батареи, Литий
Вторичная литиевая батарея работает аналогично батареям с другим химическим составом в том, что она питает другие устройства (это называется разрядкой) и…
Читать далее…Балансировка ячеек LiFePO4
Категории: Блог, Батареи, Литий
Если вы знакомы с литиевыми батареями, вы знаете, что они состоят из ячеек.Эта концепция не такая уж и чужая, если учесть, что…
Читать далее…Литиевые усилители коленчатого вала
Категории: Блог, Батареи, Литий, PowerSport
Литий-фосфат железа, часто называемый LiFePO4, – химический состав для литиевых батарей Power Sonic Power Sport – был всего…
Читать далее…Балансировка ячеек LiFePO4 и как сбалансировать ячейки LiFePO4
Если вы знакомы с литиевыми батареями, вы знаете, что они состоят из элементов. Эта концепция не так уж чужда, если учесть, что герметичные свинцово-кислотные (SLA) батареи также состоят из элементов. Оба типа батарей требуют балансировки ячеек, но что такое балансировка ячеек? Как происходит балансировка ячеек? Как это влияет на производительность?
Прежде чем мы перейдем к балансировке ячеек LiFePO4, напомним, как собрать батарею.Различные приложения имеют разные требования к напряжению и ампер-часам, и поэтому батарея может иметь всего одну ячейку или может иметь много элементов. Например, для создания 12,8-вольтовой батареи требуется 4 элемента LiFePO4 (каждый с напряжением 3,2 В). Свинцово-кислотный 12-вольтовый эквивалент состоит из 6 свинцово-кислотных элементов по 2 вольта.
Перед сборкой батареи важно убедиться, что все элементы LiFePO4 согласованы – по номинальной емкости, напряжению и внутреннему сопротивлению – и они также должны быть сбалансированы после изготовления.
ЧТО ТАКОЕ БАЛАНСИРОВКА ЯЧЕЕК?
Термин «балансировка» происходит от согласования ячеек по емкости и напряжению и контроля их напряжений посредством циклического переключения батареи для поддержания баланса или близких к равным напряжениям на всех уровнях состояния заряда (SOC). Важно отметить, что балансировка ячеек происходит до и после сборки батареи и должна происходить в течение всего срока службы батареи, чтобы батарея сохраняла оптимальную производительность. Это похоже на то, как мы поддерживаем баланс между отдельными батареями, когда мы помещаем их в серию.
БАЛАНСИРУЮЩИЕ ЯЧЕЙКИ LIFEPO4
Аккумуляторные блокиLiFePO4 (или любые литиевые аккумуляторные блоки) имеют печатную плату либо со схемой балансировки, либо с модулем защитной схемы (PCM), либо с платой схемы управления аккумулятором (BMS), которая контролирует аккумулятор и его элементы (дополнительную информацию см. В этом блоге. об интеллектуальной литиевой защите цепи). В батарее с уравновешивающей схемой схема просто уравновешивает напряжения отдельных ячеек в батарее с оборудованием, когда батарея приближается к 100% SOC – отраслевой стандарт для фосфата лития-железа должен уравновешивать напряжение ячейки выше 3.6 вольт. В PCM или BMS баланс также обычно поддерживается аппаратным обеспечением, однако в схеме, защищающей батарею, есть дополнительные средства защиты или возможности управления, которые выходят за рамки того, что делает схема баланса, например, ограничивая ток заряда / разряда батареи.
АккумуляторыSLA не контролируются так же, как литиевые, поэтому они не сбалансированы таким же образом. Батарея SLA сбалансирована путем зарядки батареи немного более высоким напряжением, чем обычно.Поскольку аккумулятор не имеет внутреннего контроля, для предотвращения теплового разгона необходимо будет контролировать их внешнее устройство (так называемый ареометр) или человек. Это не делается автоматически, но обычно выполняется в рамках планового графика технического обслуживания.
АКТИВНЫЙ ПРОТИВ ПАССИВНОЙ БАЛАНСИРОВКИ ЯЧЕЙКИ
Пассивная балансировка ячеек – это когда ток, поступающий в батарею, отводится через резисторы. В этом случае ток входит в батарею и заполняет ячейки. Если одна ячейка «заполнена», резисторы забирают эту энергию и сжигают ее (превращая ее в тепло), так что ток, протекающий в полную ячейку, уменьшается до тех пор, пока все ячейки не будут сбалансированы.
Активная балансировка ячеек направляет ток в первую очередь к наименее заполненным ячейкам и разряжает «полные» ячейки для зарядки «низких» ячеек. В этом случае ток поступает в батарею и вместо того, чтобы заполнять все ячейки с одинаковой скоростью, концентрируется на заполнении более пустых ячеек, пока они не достигнут уровня других ячеек. Когда все ячейки равны, ток равномерно направляется во все ячейки, пока они не будут полностью заряжены (и полностью сбалансированы).
Активная и пассивная балансировка ячеек выполняет одинаковую функцию; Единственная разница в том, что активная балансировка выполняется быстрее и эффективнее.
ПОЧЕМУ ВАЖНА БАЛАНСИРОВКА КЛЕТОК LIFEPO4?
В аккумуляторах LiFePO4, как только элемент с самым низким напряжением достигает точки отсечки напряжения разряда, обозначенной BMS или PCM, он полностью отключит аккумулятор. Если элементы были разбалансированы во время разряда, это может означать, что в некоторых элементах есть неиспользованная энергия, и что батарея на самом деле не «разряжена». Аналогичным образом, если элементы не сбалансированы во время зарядки, зарядка будет прервана, как только элемент с самым высоким напряжением достигнет напряжения отключения, и не все элементы LiFePO4 будут полностью заряжены, и аккумулятор тоже не будет заряжен. .
Что в этом плохого? Для начала, несбалансированная батарея будет иметь меньшую емкость и более высокое напряжение отключения на уровне батареи. Кроме того, постоянная зарядка и разрядка несбалансированной батареи со временем усугубят это. Относительно линейный профиль разряда элементов LiFePO4 делает все более важным, чтобы все элементы были согласованы и сбалансированы – чем больше разница между напряжениями элементов, тем ниже достижимая емкость.
Теория состоит в том, что все сбалансированные элементы разряжаются с одинаковой скоростью и поэтому каждый раз отключаются при одном и том же напряжении.Это не всегда так, поэтому наличие балансировочной схемы (или PCM / BMS) гарантирует, что при зарядке элементы батареи могут быть полностью сбалансированы для сохранения проектной емкости и полной зарядки. Правильное обслуживание является ключом к продлению срока службы литиевой батареи, и балансировка ячеек является важной частью этого.
Если у вас есть дополнительные вопросы о балансировке ячеек, литиевых батареях или о чем-либо еще, свяжитесь с нами.
Можно ли оставлять литий-ионную батарею в зарядном устройстве? Часто задаваемые вопросы по зарядке аккумуляторов вилочного погрузчика и других устройств
Что такое ‘ Battery SoC’ and ‘ Battery DoD ’ ?
SoC или состояние заряда батареи – это уровень заряда электрической батареи относительно ее емкости: 0% – разряжена, а 100% – полна.Обратной формой этого показателя является DoD или глубина разряда, при которой 100% пусто, а 0% заполнено.
Термин «батарея SoC» обычно относится к состоянию батареи во время ее использования, тогда как термин «батарея DoD» обычно означает, какая часть общей емкости батареи была разряжена.
Есть несколько способов измерения SoC, применимых к разным типам батарей. Свинцово-кислотные батареи с жидким электролитом могут быть измерены химически с помощью ареометра, в то время как большинство других батарей, включая литий-ионные, измеряются по их напряжению холостого хода.
Измерение напряжения батареи необходимо производить после того, как она проработала в разомкнутой цепи в течение как минимум нескольких часов, иначе на показания будут влиять ток и температура батареи, и они будут неточными.
Как можно перезарядить аккумулятор?
Перезаряд происходит, когда аккумулятор заряжается до напряжения выше указанного. Это может быть очень опасным для аккумуляторов вилочного погрузчика и, если его не контролировать, опасно для пользователей.
Правильное зарядное устройство для вашей батареи имеет решающее значение для предотвращения перезарядки; зарядное устройство должно соответствовать аккумулятору с точки зрения выходного напряжения и номинальной мощности в ампер-часах.
В литий-ионных аккумуляторах легче избежать перезарядки, поскольку они могут частично заряжаться или заряжаться с перерывами.
Свинцово-кислотные батареи имеют более сложный процесс зарядки и должны полностью заряжаться каждый раз, когда они вставляются в розетку; по этой причине легче случайно перезарядить.
Свинцово-кислотные аккумуляторыв среднем рассчитаны на 1500 циклов зарядки, поэтому не рекомендуется заряжать их частично – вы должны делать это каждый раз полностью, чтобы продлить срок службы аккумулятора.
По тому же принципу, начинать зарядку свинцово-кислотного аккумулятора, когда его емкость превышает 50-60%, также является пустой тратой срока службы аккумулятора. Каждый цикл зарядки, независимо от SOC, по-прежнему считается одним циклом. Таким образом, чем чаще заряжается свинцово-кислотный аккумулятор, тем короче срок его службы.
Каковы последствия перезарядки аккумулятора?
В литий-ионном аккумуляторе перезарядка может создать нестабильные условия внутри аккумулятора, повысить давление и вызвать тепловой разгон.
Литий-ионные аккумуляторные блокидолжны иметь схему защиты для предотвращения чрезмерного повышения давления и отключения потока ионов при слишком высокой температуре.
Большинство литий-ионных аккумуляторных батарей также содержат систему управления батареями для контроля их состояния заряда и отключения тока при достижении предела.
Избыточный заряд свинцово-кислотной батареи вызывает коррозию катодов, приводит к повышенному расходу воды и повышению температуры внутри батареи. В лучшем случае это приведет к снижению емкости и сокращению срока службы, а в худшем – к тепловому разгоне. Кроме того, свинцово-кислотные батареи могут выделять вредные токсичные газы при перезарядке.
Какой газ выделяется при зарядке свинцово-кислотной батареи?
Во время процесса зарядки свинцово-кислотный аккумулятор выделяет небольшое количество газообразного водорода, что может быть опасно без надлежащей вентиляции аккумулятора.Газообразный водород может быть очень взрывоопасным, если его концентрация в воздухе составляет 4% или более.
Если свинцово-кислотный аккумулятор слишком заряжен, он может выделять сероводород, имеющий запах тухлых яиц и очень ядовитый. В низких концентрациях этот аккумуляторный газ может вызвать тошноту, усталость и головокружение, а в больших количествах может быть смертельным.
Большинство свинцово-кислотных аккумуляторов необходимо снимать с погрузчиков и помещать в отдельную зону для зарядки. Помещение должно хорошо проветриваться для количества заряжаемых аккумуляторов и иметь устройства для контроля уровня газа в воздухе.
Как происходит зарядка литий-ионной батареи?
В литий-ионных батареяхна первом этапе процесса зарядки используется метод постоянного тока и постоянного напряжения. После достижения пикового напряжения аккумулятор переходит в стадию заряда насыщения. В целом этот процесс занимает около 1-2 часов.
Литий-ионные аккумуляторыможно использовать до тех пор, пока не останется 20% их емкости. В отличие от свинцово-кислотных аккумуляторов, он не повредит аккумулятор, чтобы использовать возможность подзарядки, что означает, что пользователь может подключить аккумулятор во время обеденного перерыва, чтобы завершить зарядку и завершить смену, не разряжая аккумулятор слишком сильно.
Многие промышленные литий-ионные аккумуляторные батареи поставляются со встроенными в них зарядными устройствами, которые можно подключать к обычным электрическим розеткам, что означает, что аккумуляторы даже не нужно размещать рядом с установленным настенным зарядным устройством для зарядки аккумуляторов.
Могут ли литий-ионные батареи повысить производительность складских помещений?
Если ваш склад работает в несколько смен, упрощенный процесс зарядки литий-ионных аккумуляторов дает огромное преимущество.Операторы вилочных погрузчиков могут заряжать литий-ионные батареи во время перерыва или в перерывах между сменами, и аккумуляторы доступны всего через 15–30 минут, чтобы вернуться в рабочее состояние, даже если они еще не полностью заряжены.
Простой оборудования может быть дорогостоящим, поэтому тот факт, что оператор вилочного погрузчика может подключить аккумулятор к зарядному устройству, не тратя время на извлечение разряженного аккумулятора и повторную установку заряженного аккумулятора, повысит производительность склада.
Plus, устраняющий необходимость переносить 1000-фунтовые батареи между погрузчиками и зарядными станциями, значительно снижает риски безопасности для рабочих.
Процесс зарядки аккумуляторов может быть сложным, но важно понимать все факторы, чтобы его можно было сделать правильно, чтобы обеспечить долгий срок службы аккумуляторов. Упрощенный процесс зарядки литий-ионных аккумуляторов делает их гораздо лучшим вариантом с точки зрения безопасности и производительности для компаний, работающих в несколько смен и непрерывно заряжающих аккумуляторы.
Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с вашим системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Зарядное устройство для литий-ионных аккумуляторовпозволяет выбрать метод подключения и включает регулируемый стабилизатор тока 100 мА с низким падением напряжения
Литий-ионные аккумуляторы, в том числе литий-ионные полимерные, относительно близки к идеальным аккумуляторам: высокая плотность энергии, легкий вес, низкий саморазряд, высокое напряжение (по сравнению с другими элементами), отсутствие проблем с памятью, низкие эксплуатационные расходы и, что самое главное, , они просты в зарядке.Конечно, есть и недостатки, но оставим это на потом в этой статье.
Поскольку многие портативные устройства могут работать от одной литий-ионной батареи, во многих зарядных устройствах с одной ячейкой используется линейная, а не переключаемая топология. Линейные зарядные устройства проще переключателей и сравнительно эффективны при низком перепаде входного и выходного напряжения, типичном для портативных устройств.
В этой статье представлено простое автономное зарядное устройство на 1 А, которое сочетает в себе многие желаемые характеристики зарядного устройства и стабилизатор LDO в крошечном низкопрофильном корпусе DFN размером 3 мм × 3 мм.Также кратко обсуждаются плюсы и минусы литий-ионных аккумуляторов, а также способы зарядки.
Существует несколько рекомендуемых методов зарядки литий-ионных аккумуляторов. Один из способов – подать на батарею ограниченное по току постоянное напряжение в течение трех часов, а затем остановиться. При использовании этого метода аккумулятор будет заряжен на 100% через 3 часа при условии, что ток заряда установлен в диапазоне примерно от C 1 до C / 2.
Второй аналогичный метод заключается в подаче ограниченного по току постоянного напряжения на батарею при одновременном контроле тока заряда.Во время первой части цикла зарядки зарядное устройство находится в режиме постоянного тока, при этом напряжение аккумулятора медленно повышается по мере того, как аккумулятор принимает заряд. Когда напряжение батареи приближается к запрограммированному постоянному (плавающему) напряжению, ток заряда начинает экспоненциально падать. Когда зарядный ток падает до достаточно низкого значения, зарядное устройство прекращает зарядку. В зависимости от выбранного минимального тока заряда аккумулятор заряжен от 95% до 100%. Поскольку литий-ионные аккумуляторы не способны поглощать перезаряд, весь ток заряда должен прекратиться, когда аккумулятор полностью зарядится.
LTC4063 – это законченное одноэлементное зарядное устройство для литий-ионных аккумуляторов, которое предоставляет пользователю возможность выбора методов завершения зарядки и включает в себя регулируемый линейный стабилизатор 100 мА с низким падением напряжения. В дополнение к обычному алгоритму заряда при постоянном токе / постоянном напряжении, другие желательные функции включают ограничение мощности, которое снижает ток заряда при высокой температуре окружающей среды и / или в условиях высокого рассеяния мощности. Это позволяет зарядному устройству обеспечивать более высокие токи заряда в нормальных условиях и при этом обеспечивать безопасную зарядку в ненормальных условиях, таких как высокая температура окружающей среды, высокое входное напряжение или низкое напряжение батареи.
LTC4063 содержит много общих черт с другими литий-ионными зарядными устройствами, включая постоянную подзарядку при низком заряде батареи, автоматическую подзарядку, контроль тока заряда, вывод состояния заряда, возможность зарядки от USB-источника питания, низкий ток разряда батареи при удалении V IN и точность (± 0,35%) точность напряжения заряда аккумулятора.
Что отличает это линейное зарядное устройство от других одноэлементных зарядных устройств, так это возможность выбора окончания заряда и встроенный регулятор напряжения. Прекращение может быть основано либо на общем времени, которое программируется, либо на минимальном токе заряда, который также программируется, либо цикл заряда может быть остановлен пользователем с помощью контакта разрешения заряда.
Регулятор с малым падением напряжения, который питается от батареи, регулируется от 1 В до почти 4,2 В и может обеспечивать нагрузку до 100 мА. Низкий рабочий ток покоя 15 мкА и ток отключения 2,5 мкА продлевают срок службы батареи.
Первая часть цикла заряда состоит из нагнетания постоянного тока (обычно 1С) в батарею до тех пор, пока напряжение элемента не приблизится к запрограммированному плавающему напряжению (обычно 4,2 В ± 1% или лучше), после чего зарядный ток начинает падать.Для разряженной батареи это происходит примерно через 30 минут, когда уровень заряда батареи составляет примерно 55% от полной емкости. Поскольку зарядный ток довольно быстро падает на этапе постоянного напряжения цикла зарядки, аккумуляторной батарее требуется еще 2 часа, чтобы довести ее до уровня заряда 100%. К сожалению, мало что можно сделать для ускорения этой части цикла зарядки без превышения рекомендованного напряжения зарядки.
В некоторых зарядных устройствах используется термистор с отрицательным температурным коэффициентом (NTC), который расположен рядом с аккумулятором или внутри него для измерения температуры аккумулятора.Это защищает аккумулятор, не позволяя начать цикл зарядки, если температура аккумулятора ниже 0 ° C или выше 50 ° C. Во время нормального цикла зарядки литий-ионные аккумуляторы очень мало нагреваются.
На рисунке 1 показан цикл зарядки LTC4063 для литий-ионного полимерного аккумулятора емкостью 900 мАч со скоростью 1С. Кривые показывают взаимосвязь между током заряда, напряжением аккумулятора, емкостью заряда и выходным сигналом CHRG. Поскольку был выбран метод завершения таймера, цикл зарядки закончился примерно через 172 минуты при 100% уровне заряда аккумулятора.(Примечание: зарядный ток ближе к концу цикла зарядки очень низкий – 6 мА). На рисунке 1 также показан выходной сигнал с открытым стоком CHRG, который был запрограммирован на повышение, когда ток заряда падает ниже 50 мА (порог I DETECT ) или приблизительно C / 20.
Рис. 1. Цикл зарядки литий-ионного элемента емкостью 900 мАч, заряженного при 1С с использованием завершения таймера.
Рис. 2. Укомплектованное одноэлементное литий-ионное зарядное устройство с таймером, обнаружением минимального тока заряда 50 мА и стабилизатором напряжения 3 В 100 мА LDO.
Если бы был выбран метод завершения минимального тока заряда, а не метод таймера, цикл заряда закончился бы, когда сигнал CHRG стал высоким (через 105 минут). В этот момент аккумулятор заряжен примерно на 97%, а для зарядки последних 3% потребуется еще час. Программируемый пороговый уровень тока I DETECT LTC4063 имеет превосходную точность даже при уровне тока всего 5 мА. Программирование низкого тока I DETECT и выбор завершения минимального тока приведет к завершению цикла зарядки примерно в то же время, что и отключение таймера.
Какое окончание лучше? Из предыдущего абзаца кажется, что это не может иметь большого значения, потому что, выбрав низкий уровень тока I DETECT , эти два метода можно сделать практически идентичными. Прекращение минимального зарядного тока может иметь преимущество в ситуации, когда может потребоваться выбрать разные уровни зарядного тока во время цикла зарядки, или при зарядке батареи, которая все еще имеет частичный заряд, цикл зарядки может быть очень коротким. Но завершение таймера может быть лучше, если нагрузка, превышающая запрограммированный уровень тока I DETECT , постоянно подключена к батарее.В этой ситуации цикл зарядки может никогда не закончиться. Кроме того, при завершении таймера, если батарея не достигает порога перезарядки 4,1 В по окончании таймера, таймер сбрасывается и начинается новый цикл зарядки.
Правильный ток заряда всегда зависит от емкости аккумулятора или просто «C». Буква «C» – это термин, используемый для обозначения заявленной производителем разрядной емкости аккумулятора, которая измеряется в мАч. Например, батарея с номиналом 900 мАч может обеспечивать нагрузку 900 мА в течение одного часа до того, как батарея разрядится.В том же примере зарядка аккумулятора со скоростью C / 3 будет означать зарядку на 300 мА.
В семействе литий-ионных батарей есть несколько составов: в основном оксид лития-кобальта или оксид лития-марганца в качестве положительного электрода и либо кокс, либо графит в качестве отрицательного электрода. Электролит представляет собой жидкость в цилиндрических ячейках или твердое тело или гель в литий-ионных полимерных ячейках. Поскольку в полимерных ячейках не используется жидкость, упаковка ячейки может состоять из недорогого легкого мешочка из фольги, который может быть выполнен в различных формах, включая очень тонкие ячейки, идеально подходящий для сотовых телефонов и других небольших портативных устройств.Хотя характеристики разряда и производительность разных типов литий-ионных элементов различаются, характеристики зарядки по существу одинаковы.
Технология перезаряжаемых литиевых батарей является относительно новой, и поэтому многие улучшения будущих характеристик батарей практически гарантированы. Различные материалы, химические вещества и конструкция, несомненно, позволят создать аккумулятор, который будет еще ближе к идеальному аккумулятору.
Рекомендуемое напряжение заряда – это компромисс между емкостью элемента, сроком службы элемента и безопасностью элемента.Более высокие напряжения заряда увеличивают емкость ячейки в мАч, но сокращают срок ее службы. Также существуют верхние пределы, которых необходимо придерживаться из соображений безопасности. Чаще всего напряжение заряда составляет 4,2 В ± 1%, хотя в будущих конструкциях аккумуляторов напряжение может быть немного выше. В приложениях, в которых срок службы превышает емкость элемента, более низкое напряжение заряда значительно увеличивает срок службы. Циклы мелкой, а не глубокой разрядки также увеличивают срок службы. Срок службы литий-ионной батареи обычно заканчивается, когда ее емкость падает до 80% от номинальной.
Один из менее известных фактов о литий-ионных аккумуляторах – это их характеристики старения. Литий-ионные батареи имеют ограниченный срок службы вне зависимости от того, хранятся они или используются ежедневно. Необратимая потеря емкости, особенно для литий-марганцевых химикатов, увеличивается с увеличением уровня заряда и температуры. Например, хранение батареи при уровне заряда 40% при 25 ° C в течение года может привести к постоянной потере емкости на 4%, тогда как при хранении при уровне заряда 100% постоянная потеря емкости будет близка к 20%. .Хранение на уровне 100% заряда при 40 ° C может привести к необратимой потере емкости до 35% через год. Конечно, дальнейшие улучшения в технологии литий-ионных аккумуляторов наверняка минимизируют старение.
Литий-ионные аккумуляторыне могут поглощать перезаряд. Ток заряда должен быть полностью отключен, когда аккумулятор полностью заряжен. Избыточная зарядка может вызвать внутреннее металлическое покрытие литием, что является проблемой безопасности. Кроме того, литий-ионные батареи не должны разряжаться ниже 2,5–3 В, в зависимости от химического состава батареи, поскольку внутреннее меднение может вызвать короткое замыкание.
Большинство производителей литий-ионных аккумуляторов не продают аккумуляторы, если они не имеют встроенной схемы защиты аккумуляторного блока для обеспечения безопасности и продления срока службы аккумулятора. Схема включает переключатель на полевом транзисторе, включенный последовательно с аккумулятором, который отключается в случае перенапряжения, пониженного напряжения, перегрузки по току и перегрева при зарядке или разрядке аккумулятора. Длительное перенапряжение при зарядке может привести к перегреву, взрыву или даже взрыву аккумулятора.При разрядке защита блока отключает батарею, если напряжение батареи падает ниже заданного порогового уровня или если ток батареи превышает заданный предел. Без защиты блока литий-ионные батареи могут быть легко повреждены или, что еще хуже, могут вызвать повреждение других схем или телесные повреждения.
Зарядное устройство для литий-ионных аккумуляторов LTC4063 предлагает пользователю отличное сочетание упаковки (3 мм × 3 мм DFN), высокого зарядного тока (1 А), постоянного напряжения (0,35%), низкого допустимого тока I DETECT (5 мА), выбор оконечной нагрузки и встроенный стабилизатор 100 мА LDO.Два других зарядных устройства имеют схожие характеристики зарядки, но различаются функциями. LTC4061 не имеет регулятора, но включает вход для определения температуры NTC, вход USB для выбора тока и дополнительный выход состояния. LTC4062 заменяет стабилизатор LDO программируемым компаратором и эталоном, а также включает в себя вход выбора тока USB.