Что будет, если подать в электросеть постоянный ток / Habr
Война токов завершилась, и Тесла с Вестингаузом, похоже, победили. Сети постоянного тока сейчас используются кое-где на железной дороге, а также в виде свервысоковольтных линий передачи.Подавляющее большинство энергосетей работают на переменном токе. Но давайте представим, что вместо переменного напряжения с действующим значением 220 вольт в ваш дом внезапно стали поступать те же 220 В, но постоянного тока.
Театр начинается с вешалки, а наш электрический цирк — с вводного щитка.
И сразу хорошие новости: защитные автоматы будут работать как положено. Автомат имеет два расцепителя: тепловой и электромагнитный. Тепловой служит для защиты от длительной перегрузки. Ток нагревает биметаллическую пластинку, она изгибается и размыкает цепь. Электромагнитный элемент срабатывает от кратковременного импульса тока при коротком замыкании. Он представляет собой соленоид, который втягивает в себя сердечник и, опять же, разрывает цепь. Обе эти системы прекрасно работают на постоянном токе.
источник картинки: выключатель-автоматический.рф
Дополнения от Bronx и AndrewN:
Магнитный расцепитель срабатывает по амплитудному значению тока, то есть в 1,4 раза больше действующего. На постоянном токе его ток срабатывания будет в 1,4 раза выше.
Дугу постоянного тока сложнее погасить, так что при коротком замыкании увеличится время разрыва цепи и ускорится износ автомата. Существуют специальные автоматы, рассчитанные на работу с постоянным током.
Помимо автоматов, в щитке есть устройство защитного отключения (УЗО). Его цель — обнаруживать утечку тока из сети на землю, например при касании человеком токоведущих частей. УЗО измеряет силу тока в двух проводниках, проходящих через него. Если в нагрузку втекает такой же ток, что и вытекает — всё в порядке, утечки нет. Если же токи не равны, УЗО бьёт тревогу и разрывает цепь.
Чувствительный элемент УЗО — дифференциальный трансформатор. У такого трансформатора две первичные обмотки, включенные в противоположных направлениях. Если токи равны, их магнитные поля компенсируют друг друга и на выходе сигнала нет. Если токи не скомпенсированы, на выходе сигнальной обмотки появляется напряжение, на которое реагирует схема УЗО. На постоянном токе трансформатор работать не будет, и УЗО окажется бесполезным.
Неважно, какой у вас электросчетчик — старый механический или новый электронный — работать он не будет. Механический счетчик представляет собой электродвигатель, где ротором служит металлический диск, а статор содержит две обмотки. Одна обмотка включена последовательно с нагрузкой и измеряет ток, вторая включена параллельно и измеряет напряжение. Таким образом, чем больше потребляемая мощность, тем быстрее крутится диск. Работа такого счетчика основана на явлении электромагнитной индукции, и при постоянном токе в обмотках диск останется неподвижен.
Ну и ладно, не хватало ещё платить за всё это безобразие! Идём дальше по цепи и смотрим, какие электроприборы могут нам встретиться.
Тут всё прекрасно. Электронагреватель — это чисто резистивная нагрузка, а тепловое действие тока не зависит от его формы и направления. Электроплиты, чайники, кипятильники, утюги и паяльники будут работать на постоянном токе точно так же, как и на переменном. Биметаллические терморегуляторы (как, например, в утюге) тоже будут функционировать правильно.
Старая добрая лампочка Ильича на постоянном токе чувствует себя не хуже, чем на переменном. Даже лучше: не будет пульсаций света, лампа не будет гудеть. На переменном токе лампочка может гудеть из-за того, что спираль (особенно, если она провисла) работает как электромагнит, сжимаясь и растягиваясь дважды за период. При питании постоянным током этого неприятного явления не будет.
Однако если у вас установлены регуляторы яркости (диммеры), то они работать перестанут. Ключевым элементом диммера является тиристор — полупроводниковый прибор, который открывается и начинает пропускать ток в момент подачи управляющего импульса. Закрывается тиристор, когда ток через него прекращает течь. При питании тиристора переменным током он будет закрываться при каждом переходе тока через ноль. Подавая управляющий импульс в разное время относительно этого перехода, можно менять время, в течение которого тиристор будет открыт, а значит, и мощность в нагрузке. Именно так и работает диммер.
При питании постоянным током тиристор не сможет закрыться, и лампа всегда будет гореть на 100% мощности. А возможно, управляющая схема не сможет «поймать» переход сетевого напряжения через ноль и не подаст импульс для открытия тиристора. Тогда лампа не загорится совсем. В любом случае, диммер будет бесполезен.
Люминесцентную лампу нельзя включать напрямую в сеть, для нормальной работы ей нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой. Стартёр — это неоновая лампочка, один из электродов которой при нагреве изгибается и касается второго электрода. Дроссель — большая катушка индуктивности, включенная последовательно с лампой:
Штатно всё это работает так: при включении зажигается разряд в стартёре, его контакты нагреваются и замыкаются между собой. Ток течёт через нити накала лампы, отчего те разогреваются и начинают испускать электроны. В это время стартёр остывает и размыкает цепь. Ток резко падает, и за счет самоиндукции на дросселе появляется импульс высокого напряжения. Этот импульс зажигает разряд в лампе, и дальше он горит самостоятельно. Дроссель теперь ограничивает ток разряда, работая как добавочное сопротивление.
Что же будет на постоянном токе? Стартёр сработает, лампа зажжётся как положено, но вот дальше всё пойдёт наперекосяк. В цепи постоянного тока у дросселя не будет индуктивного сопротивления (только активное сопротивление проводов, а оно мало), а значит, он больше не сможет ограничивать ток. Чем выше ток разряда, тем сильнее ионизируется газ в лампе, сопротивление падает, и ток растёт ещё сильнее. Процесс будет развиваться лавинообразно и закончится взрывом лампы.
Электромагнитные ПРА просты, но не лишены недостатков. У них низкий КПД, дроссель громоздкий и тяжелый, гудит и нагревается, лампа загорается с диким миганием, а потом мерцает с частотой 100 Гц. Всех этих недостатков лишен электронный пускорегулирующий аппарат (ЭПРА). Как он работает? Если посмотреть схемы различных ЭПРА, можно заметить общий принцип. Напряжение сети выпрямляется (преобразуется в постоянное), затем генератор на транзисторах или микросхеме вырабатывает переменное напряжение высокой частоты (десятки кГц), которое питает лампу. В дорогих ЭПРА есть схемы разогрева нитей и плавного запуска, которые продлевают срок службы лампы.
источник картинки: aliexpress.com
Схожую схемотехнику имеют как блоки для линейных ламп, так и компактные «энергосберегайки», которые вкручиваются в обычный патрон. Поскольку на входе ЭПРА стоит выпрямитель, можно питать всю схему постоянным напряжением.
Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В, обычно соединяют несколько диодов последовательно) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны, от простых до довольно сложных.
Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток. Такая схема имеет чудовищно низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц. На постоянном токе такая лампа работать не будет, так как для постоянного тока конденсатор имеет бесконечное сопротивление.
источник картинки: bigclive.com
Более дорогие лампы устроены сложнее, очень похоже на ЭПРА для люминесцентных ламп. Источник питания в них содержит высокочастотный импульсный стабилизатор, который питается выпрямленным сетевым напряжением. Как и в случае с ЭПРА, схема будет нормально работать, если подать на неё постоянное напряжение.
источник картинки: powerelectronictips.com
Универсальный коллекторный двигатель (УКД) состоит из неподвижного статора и ротора, который вращается внутри. Статор имеет одну обмотку, а ротор сразу несколько. Роторные обмотки подключаются через коллектор — цилиндр с контактами, по которому скользят угольные щётки. Взаимодействие магнитных полей статора и ротора заставляет ротор поворачиваться. Коллектор устроен так, что всё время включает ту из обмоток, которая находится перпендикулярно обмотке статора — для неё вращающий момент будет максимальным.
Такой двигатель может работать при питании как переменным, так и постоянным током. Собственно, поэтому он и называется «универсальным». При смене полярности одновременно меняется направление магнитного поля и в статоре, и в роторе, в результате двигатель продолжает вращаться в ту же сторону. На постоянном токе УКД развивает даже больший момент, чем на переменном, за счет отсутствия индуктивного сопротивления обмоток. Универсальные коллекторные двигатели применяются там, где нужно получить большую мощность при малых габаритах. В бытовой технике УКД стоят в стиральных машинах, пылесосах, фенах, блендерах, миксерах, мясорубках, а также в электроинструментах. Все эти приборы продолжат работать, если напряжение в розетке внезапно «выпрямится».
У синхронного двигателя в статоре несколько обмоток, которые создают вращающееся магнитное поле. Ротор содержит постоянный магнит либо обмотку, питаемую постоянным током. Магнитное поле статора сцепляется с полем ротора и вращает его за собой. Особенностью такого двигателя является то, что частота его вращения зависит только от частоты питающего тока. На постоянном токе, очевидно, такой двигатель будет вращаться с нулевой частотой, то есть остановится.
В быту применяются маломощные синхронные двигатели там, где нужно поддерживать строго постоянную частоту вращения. В основном, это электромеханические часы и таймеры. Также синхронными являются двигатель вращения тарелки в СВЧ-печи и двигатель сливного насоса в стиральной машине.
Асинхронный двигатель похож своим устройством на синхронный. В нем также статор имеет несколько обмоток и создаёт вращающееся поле. Но обмотка ротора никуда не подключена и замкнута накоротко. Ток в ней создаётся за счет явления электромагнитной индукции в переменном поле статора. Этот ток создаёт своё магнитное поле, которое взаимодействует с вращающимся полем статора и заставляет ротор вращаться.
Асинхронные двигатели отличаются низким уровнем шума и большим ресурсом из-за отсутствия трущихся щёток. Их можно встретить в холодильниках, кондиционерах и вентиляторах. При питании постоянным током магнитное поле статора вращаться не будет. Также не возникнет ток в короткозамкнутом роторе. Двигатель останется неподвижен, а обмотка будет просто нагреваться, как обычный кусок провода.
Строго говоря, это не отдельный тип двигателя, а способ управления им. Сам двигатель может быть синхронным или асинхронным. Главная особенность в том, что напряжения на обмотках формируются управляющей схемой по сигналу с датчика положения ротора. Это позволяет регулировать скорость и крутящий момент в широких диапазонах, ограничивать пусковые токи и даёт кучу возможностей, вроде стабилизации частоты вращения. Вот пара хороших статей, объясняющих всю эту магию:
Раз
Два
Вентильные двигатели всё шире используются в бытовой технике: в стиральных машинах, холодильниках, кондиционерах, пылесосах. Обычно такую технику можно узнать по прилагательному «инверторный» в рекламе. Вентильный двигатель безразличен к форме питающего напряжения. Напряжение сети первым делом выпрямляется, а затем управляющий блок «лепит» из него несколько разных синусоид (обычно три) для питания обмоток мотора. Естественно, такая система будет спокойно работать на постоянном токе.
Трансформатор состоит из нескольких обмоток, связанных общим магнитопроводом. Переменный ток в одной обмотке (первичной) порождает индукционные токи во всех остальных обмотках (вторичных). Ключевая особенность трансформатора, ради которой его обычно и используют, в том, что напряжения на обмотках соотносятся так же, как количество витков в этих обмотках. Если в первичной обмотке намотать 1000 витков, а во вторичной — 100, такой трансформатор будет понижать напряжение в 10 раз. Если включить его наоборот — в 10 раз повышать. Очень просто и удобно.
В линейном блоке питания напряжение сети понижается (или повышается, если надо) до необходимого уровня при помощи трансформатора. Далее стоит выпрямитель, который преобразует переменное напряжение в постоянное, и фильтр, сглаживающий пульсации. Затем может идти стабилизатор, который поддерживает неизменным выходное напряжение.
Линейные блоки питания постепенно вытесняются импульсными, но первые работают ещё много где. В микроволновке, если она не «инверторная», есть мощный трансформатор, который повшает сетевые 220 В до нескольких киловольт, необходимых для работы магнетрона. От трансформаторов питается управляющая электроника в стиральных машинах, кухонных плитах и кондиционерах. Трансформаторные блоки питания используются в аудиоаппаратуре и дешёвых зарядных устройствах.
Что случится с трансформатором, если его включить в сеть постоянного тока? Во-первых, на вторичных обмотках напряжение не появится, так как электромагнитная индукция возникает лишь при изменении тока. Во-вторых, обмотка не будет обладать индуктивным сопротивлением, а значит, через неё потечёт гораздо больший ток, чем рассчитано. Трансформатор будет перегреваться и довольно быстро сгорит.
Чем выше частота переменного тока, тем эффективнее работает трансформатор (в разумных пределах, конечно). Если использовать частоту в несколько десятков килогерц вместо сетевых 50 Гц, можно прилично уменьшить габариты трансформаторов при той же передаваемой мощности. Эта идея лежит в основе импульсных блоков питания. Работает такой блок следующим образом: напряжение сети выпрямляется, полученное постоянное напряжение питает транзисторный генератор, который даёт снова переменное напряжение, но уже высокой частоты. Его теперь можно понижать или повышать трансформатором, выпрямлять и подавать в нагрузку.
По такой схеме сейчас питается подавляющее большинство электроники: компьютеры, мониторы, телевизоры, зарядные устройства для ноутбуков, телефонов и прочих гаджетов. Поскольку входное напряжение первым делом выпрямляется, импульсный блок питания должен без проблем работать на постоянном токе. Но есть пара моментов, которые могут всё испортить.
Во-первых, напряжение после выпрямителя равно почти амплитудному значению переменного напряжения. То есть для ~220 В на входе выпрямитель даст 311 B. Мы же по условию подаём постоянное напряжение 220 В, что на 30% ниже. Это скорее всего не вызовет проблем, потому что современные блоки питания могут работать в широком диапазоне напряжений, обычно от 100 до 250 В.
Во-вторых, выпрямитель состоит из четырёх диодов, которые работают парами: одна пара на положительной полуволне тока, другая — на отрицательной. Таким образом, каждый диод пропускает ток лишь половину времени. Если мы подадим на выпрямитель постоянное напряжение, одна пара диодов будет открыта всегда, и на них будет рессеиваться двойная мощность. Если диоды не имеют двойного запаса по току, они могут сгореть. Но это не слишком большая беда: можно просто выкинуть выпрямитель и подавать постоянное напряжение сразу после него.
После того, как вы потушили несколько возгораний и сгребли в кучу испорченные приборы, настало время подвести итоги. Переход на постоянный ток переживёт либо старая и простая техника (лампы накаливания, нагреватели, коллекторные моторы с механическим управлением) либо, наоборот, самая современная (с импульсными блоками питания и инверторными моторами).
К счастью, описанный сценарий вряд ли осуществится на практике, если не рассматривать возможность специально организованной диверсии. Ни при какой возможной аварии в энергосети переменное напряжение не станет вдруг постоянным. Правда, при возможных авариях случаются иные нехорошие вещи, но это уже совсем другая история. Берегите себя и делайте бэкапы.
habr.com
Что такое перегрузка электрической сети и её основные причины
Число электроприборов, используемых в домах или квартирах, увеличивается с каждым годом, увеличивая тем самым нагрузку на бытовую сеть. В большинстве жилых помещений монтаж проводки осуществлялся 20-30 лет назад, когда допустимые нагрузки считались по совершенно другим нормам. Соответственно, когда производится подключение мощных потребителей электроэнергии, возникает перегрузка электросети. О ее природе и последствиях пойдет речь в данной статье.
Что такое перегрузка?
В первую очередь необходимо определиться с терминологией, то есть выяснить, что подразумевается под перегрузкой. Касательно электрических сетей так принято называть их нештатный (аварийный) режим работы, при котором проходящий ток превышает допустимую (расчетную) величину.
Основные причины перегрузки электросети
Прежде, чем рассматривать способы защиты домашней электросети от перегрузки, необходимо установить причину ее возникновения. В противном случае предпринятые меры могут оказаться неэффективными. Как показывает практика, чаще всего нештатный режим работы локального участка цепи может быть вызван следующими причинами:
- Подключение к электросети неисправных бытовых электроприборов.
- Неправильное распределение нагрузки между линиями электрической сети.
- Проблемы с проводкой (несвоевременная замена, неправильный монтаж, ошибки в расчетах сечения кабеля, неправильный выбор номинала автоматических выключателей и т.д.).
- Превышение мощности групп освещения.
- Низкое качество энергоснабжения.
Рассмотрим детально каждую из названных выше причин.
Включение в сеть неисправного электроприбора
Неисправные бытовые приборы включать в сеть категорически противопоказано. Это может привести к короткому замыканию и срабатыванию электромагнитного расцепителя автомата защиты. Вполне может случиться так, что несправная электротехника не вызывает КЗ, но начинает потреблять существенно больше допустимого тока. В такой ситуации срабатывает тепловая защита АВ.
И в первом, и во втором случае возникает перегрузка электропроводки, поэтому при первых признаках неисправности бытовых электроприборов их необходимо отключить от сети и отнести в ремонтную мастерскую. Помните, что несправные устройства могут стать причиной пожара.
Неправильное распределение нагрузки
Это наиболее распространенная причина, по которой происходит перегрузка электропроводки, поэтому имеет смысл привести наглядный пример.
Допустим, в квартире имеется некая электроточка, к которой через «тройник» подключается одновременно стиральная машина и бойлер, мощностью 2,3 и 2,6 кВт, соответственно. Из этого следует, что суммарная мощность электроприборов будет 4,9 кВт. Значит, токовая нагрузка на линию составит чуть больше 22 А (I = P/U = 4900/220 = 22,27).
Поскольку номинальный ток автоматических выключателей в электрощитках большинства квартир – 10 или 16 А, то при одновременном включении указанных бытовых электроприборов будет происходить срабатывание тепловой защиты из-за возникновения перегрузки.
Чтобы выйти из сложившейся ситуации, многие допускают классическую ошибку, которая может стать фатальной. А именно, устанавливают на линию автомат, рассчитанный на большую электрическую мощность, например на 25 или 32 Ампера. Учитывая, что в большинстве домов вторичного рынка жилья при монтаже электропроводки использовался кабель под номинальный ток 19 А, то будет происходить нагрев проводов, с последующим нарушением изоляции проводников.
Помимо этого следует учитывать, что типовые электрические розетки изготавливаются под номинальный ток 16,0 Ампер. Превышение его почти на 40% приведет к тому, что корпус электроточки расплавится.
Результат подключения к розетке большой нагрузкиВероятность возникновения пожара вследствие такого непродуманного распределения нагрузки довольно велика. Ситуацию можно существенно усугубить, используя тройники или удлинители китайских производителей.
Правильным решением устранения перегрузки в приведенном примере будет прокладка отдельных линий питания для каждого мощного электроприбора.
Несвоевременная замена проводки
Срок эксплуатации электрической сети — довольно важный фактор, который не следует оставлять без внимания, говоря о причинах перегрузки. Считается, что его продолжительность напрямую зависит от материала, из которого изготовлен электрический кабель. Это отчасти верно, но разумнее руководствоваться Ведомственными строительными нормами, в частности ВСН 58 88, действующими и по сегодняшний день.
В соответствии с данным нормативным документом, срок эксплуатации внутриквартирных бытовых сетей жилых помещений составляет 40 лет для скрытой проводки и 25 лет для внешней. При этом для элементов сети (розеток, выключателей и т.д.) этот срок ограничен 10-ю годами.
Для алюминиевых проводов, используемых для проводки в эпоху массовой застройки прошлого века, срок эксплуатации ограничен 30-ю годами. Напомним, что начиная с 2001 года, провода с алюминиевыми жилами запрещено применять при монтаже проводки. Если Вам досталась квартира с такой проводкой, настоятельно советуем, не затягивая, произвести ее замену.
Но это мы привели нормативные сроки, фактические могут существенно отличаться, как в меньшую, так и большую сторону. Немаловажное влияние на это оказывает нагрев кабеля, вызванный перегрузкой электросети. Превышение температуры всего на 5°С сверх допустимой нормы сокращает срок эксплуатации проводки вдвое.
Приведем обратный пример. Допустим, сечение кабеля проводки 2,50 мм, что допускает величину проходящего тока до 25 А. Если установить на него автоматический предохранитель с номинальным током 16 А, то фактический срок эксплуатации проводки может превысить нормативный, а опасность перегрузок будет практически исключена. Поэтому важно правильно выбирать сечение проводов и номинальный ток автоматических выключателей, чтобы упростить себе задачу, можете воспользоваться приведенной на рисунке таблицей.
Выбор сечения провода и автоматовПревышение мощности групп освещения
Установка большого количества энергоемких осветительных приборов, может спровоцировать перегрузку. Но в настоящее время, доступность энергосберегающих и светодиодных ламп практически нивелировало эту проблему.
Низкое качество энергоснабжения
Спровоцировать перегрузку сети может устоявшееся заниженное или завышенное напряжение, что также опасно для Ваших приборов. Поскольку качество энергоснабжения является внешним фактором, бороться с этой причиной можно только установкой защиты. В качестве таковой используется стабилизатор и/или реле напряжения.
Реле напряженияВозможные последствия
Даже незначительная перегрузка бытовой электросети может создать множество проблем и привести к серьезным последствиям. Перечислим их, чтобы Вы понимали всю серьезность этой проблемы:
- Нагрев кабеля приводит к повреждению изоляции проводов, что может спровоцировать возникновение коротких замыканий и, как следствие, — пожара.
- Частые аварийные автоматические отключения могут привести к потере данных на компьютерном оборудовании и вызвать сбои в работе электронных устройств.
- Существенное повышение тока вызывает падение напряжения в участке цепи, что отражается на работе практически всех электроприборов.
Это далеко не полный список последствий. Как видите, наиболее серьезное из них может привести к тому, что возникнет пожар. Причем, как показывает печальная статистика, при перегрузках чаще всего из-за замыкания возникают возгорания, последствия которых намного серьезней, чем потеря информации из-за отключения автоматов.
Часто причины пожаров связаны с перегрузкой электросетиКак предотвратить и устранить перегрузки электросети?
Учитывая, какие неприятные последствия происходят, если возникла перегрузка, расскажем о том, как защитить Вашу электросеть. Поскольку перегрузка является следствием, необходимо устранить вызывающие ее причины. Для этого необходимо придерживаться следующих рекомендаций:
- Не подключать электрические приборы, работоспособность которых вызывает сомнение.
- Правильно распределять нагрузку на бытовую электрическую сеть.
- Серьезно отнестись к расчетам и монтажу электропроводки. Если Вы не имели опыта электромонтажных работ, лучше обратиться к специалистам. Именно проблемная электропроводка наиболее распространенная причина пожара.
- При низком качестве электроэнергии установите стабилизатор и реле напряжения на вводе.
Советуем также почитать:
www.asutpp.ru
Анализ опасности поражения током в различных электрических сетях [Jurik-Phys.Net]
Прохождение тока через человека, является следствием его прикосновения не менее, чем к двум точкам электрической цепи, между которыми есть некоторая разность потенциалов (напряжение).
Опасность такого прикосновения неоднозначна и зависит от ряда факторов:
схемы включения человека в электрическую цепь;
напряжения сети;
схемы самой сети;
режима нейтрали сети;
степени изоляции токоведущих частей от земли;
ёмкости токоведущих частей относительно земли.
Классификация сетей напряжением до 1000 В
Однофазные сети
Однофазные сети разделятся на двухпроводные и однопроводные.
Двухпроводные
Двухпроводные сети делятся на изолированные от земли и с заземлённым проводом.
Изолированные от земли
Однофазная сеть. Двухпроводная изолированная от земли |
С заземлённым проводом
Однофазная сеть. Двухпроводная с заземлённым проводом |
Данные сети широко используются в народном хозяйстве, начиная с питания малым напряжением переносного инструмента и заканчивая питанием мощных однофазных потребителей.
Однопроводные
В случае однопроводной сети, роль второго провода выполняет земля, рельс и т.д.
Однофазная сеть. Однопроводная |
Основное применение данные сети получили в электрифицированном транспорте (электровозы, трамваи, метро и т.д.).
Трёхфазные сети
В зависимости от режима нейтрали источника тока и наличия нейтрального или нулевого проводника могут быть выполнены по четырём схемам.
Нейтральная точка источника тока – точка, напряжения на которой относительно всех фаз одинаковы по абсолютному значению.
Нулевая точка источника тока – заземлённая нейтральная точка.
Проводник,присоединённый к нейтральной точке, называется нейтральным проводником (нейтралью), а к нулевой точке – нулевым проводником.
1. Трехпроводная сеть с изолированной нейтралью
Трёхфазная сеть. Трёхпроводная с изолированной нейтралью |
2. Трёхпроводная сесть с заземлённой нейтралью
Трёхфазная сеть. Трёхпроводная с заземлённой нейтралью. |
3. Четырёх проводная сеть с изолированной нейтралью
Трёхфазная сеть. Четырёхпроводная с изолированной нейтралью. |
4. Четырёх проводная сеть с заземлённой нейтралью
Трёхфазная сеть. Четырёхпроводная с заземлённой нейтралью. |
При напряжении до 1000В в нашей стране используются схемы «1» и «4».
Схемы включения человека в электрическую цепь
Двухфазное прикосновение – между двумя фазами электрической сети. Как правило, наиболее опасное т.к., имеет место быть линейное напряжение. Однако данные случаи довольно редки.
Однофазное прикосновение – между фазой и землёй. При этом предполагается наличие электрической связи между сетью и землёй.
Подробнее о схемах включения человека в цепь см. Долин П.А. Основы техники безопасности в электроустановках.
Однофазные сети
Изолированная от земли
Прикосновение человека к однофазной двухпроводной изолированной от земли сети. Нормальный режим работы сети. |
Чем лучше изоляция проводов относительно земли, тем меньше опасность однофазного прикосновения к проводу.
Прикосновение человека к проводу с большим электрическим сопротивлением изоляции более опасно.
Прикосновение человека к однофазной двухпроводной изолированной от земли сети. Аварийный режим работы сети. |
При замыкании провода на землю, человек прикоснувшийся к исправному проводу, оказывается под напряжением, равным почти полному напряжению линии, независимо от сопротивления изоляции проводов.
С заземлённым проводом
Прикосновение человека к незаземлённому проводнику однофазной двухпроводной сети. Нормальный режим работы сети. |
В данном случае, человек оказывается практически под полным напряжением сети.
Прикосновение человека к заземлённому проводнику однофазной двухпроводной сети. Нормальный режим работы сети. |
В нормальных условиях прикосновение к заземлённому проводу практически не опасно.
Прикосновение человека к заземлённому проводнику однофазной двухпроводной сети. Аварийный режим работы сети. |
При коротком замыкании напряжение на заземлённом проводе может достигать опасных значений.
Трёхфазные сети
С изолированной нейтралью
Прикосновение человека к пров |
jurik-phys.net
Подключаем электроприборы правильно – Электрика от А до Я – Каталог статей по электрике
В наш век головокружительных технологий в каждом доме найдется десяток, а то и два, электрифицированных предметов бытовой техники. Стиральные машины и холодильники, кухонные комбайны и музыкальные центры, компьютеры и телевизоры. Список нужных в доме вещей, выпускаемых предприятиями и питающихся от электрической сети, может состоять из нескольких сотен наименований. Правда, некоторые малогабаритные приборы радиоэлектроники могут питаться от сухих батарей или аккумуляторов. Но и аккумуляторы требуют периодической подзарядки посредством сетевого зарядного устройства.
Учитывая вышеизложенное, каждый современный человек должен обладать минимумом необходимых знаний по электротехнике, чтобы правильным образом подключить бытовые приборы. Этот вопрос не праздный, так как неправильное подключение может привести к порче электрической проводки, вилок, розеток, переходников, удлинителей и даже привести к пожару. Сами посудите, если в розетку, рассчитанную на ток до 6 А (6 ампер), будет подключена нагрузка, потребляющая ток 10 А, то места контактов начнут сильно разогреваться. При этом пластмассовые детали начнут плавиться, издавать неприятный запах. Кроме того, продукты горения крайне вредны для человека. В дальнейшем в розетке может появиться искрение, а сам прибор может выйти из строя.
Возможности бытовой электросети
Чтобы не случилось беды, нужно знать возможности домашней бытовой электросети и содержать в порядке ее составные части. Необходимо помнить, что если в квартире установлены розетки советского периода, то они, как правило, рассчитаны на максимальную нагрузку 6 А. Современные розетки европейского типа выпускаются в двух вариантах – на ток до 10 А и на ток до 16 А. Часто бывает, что старые советские розетки заменяют розетками европейского стандарта. Это допустимо, если сечение проводов способно выдержать указанный ток. В противном случае, при большом токе квартирная проводка может нагреваться. Неясные вопросы успешно решит дежурный электрик жилищно-коммунального хозяйства.
Какие бывают электрические нагрузки
Питание бытовых электрических приборов характеризуется родом тока, номинальной величиной напряжения, потребляемой мощностью либо потребляемым током. Род тока – переменный, частотой 50 Гц (50 герц). Величина напряжения – 220 В (220 вольт). Потребляемая мощность зависит от конкретного бытового устройства, указана в паспорте и отмечена на корпусе прибора. Параметры электрической сети в разных странах мира могут различаться. Например, в Японии используется бытовая сеть напряжением 100 В. Поэтому японская бытовая техника, рассчитанная на работу в родной стране, в России работать не будет и, скорее всего, сгорит от перенапряжения. Конечно, на экспорт японские производители поставляют устройства, адаптированные соответствующим образом, но бывают случаи, когда в Россию попадают «чистые японцы». В таком случае прибор следует подключить через специальный адаптер 100 В / 220 В – повышающий трансформатор.
Любой электрический прибор потребляет от сети определенную мощность. Потребляемая мощность – важный параметр, он должен интересовать потребителя, в первую очередь. Данные о потребляемой мощности можно найти на корпусе прибора или в технической документации – руководстве, паспорте, инструкции по эксплуатации. Важно уметь отличать мощные нагрузки от слабых. Мощными нагрузками следует считать изделия с потребляемой мощностью более 100 Вт (100 ватт). Соответственно электроприборы до 100 Вт можно отнести к слаботочным. Особое внимание нужно обратить на мощную бытовую технику, так как именно при ее подключении возникают ошибки.
Как связаны между собой потребляемая мощность и ток?
Данные параметры связывает простая формула: мощность есть произведение тока и напряжения. Эта формула позволяет легко высчитать допустимую мощность в ваттах для розеток, у которых обозначен максимальный ток нагрузки в амперах. При напряжении в сети 220 В, вычислим значения максимальной мощности для розеток 6 А, 10 А и 16 А. Умножив напряжение на соответствующий ток, получим следующие величины мощности:
- Для розетки 6 А – допустимая нагрузка 1320 Вт.
- Для розетки 10 А – максимальная нагрузка 2200 Вт.
- Для розетки 16 А – допустимая нагрузка 3520 Вт.
Зная эти значения, а также паспортные данные потребляемой мощности на используемую бытовую электротехнику, можно разрешить все вопросы подключения приборов в доме.
Ошибки при подключении бытовых электроприборов
Отметим, что ошибки подключения электроприборов, приводящие к неприятным последствиям, часто возникают при использовании мощной бытовой техники. Поэтому о правильности подключении слаботочных нагрузок беспокоиться не стоит. Об этом говорит такой пример. В одну 10-амперную розетку можно подключить 22 торшера с лампочками мощностью по 100 Вт. Такая потребность вряд ли возникнет. А вот одновременно 2 электрочайника мощностью по 1500 Вт каждый включать нельзя, так как суммарная мощность – 3000 Вт – превысит допустимые возможности розетки, рассчитанной для работы с нагрузками до 2200 Вт.
Распространенной ошибкой считается использование удлинителя, рассчитанного на меньший рабочий ток (например, 6 А) и подключенного к розетке с большим током (например, 16 А). Потребитель по инерции может подумать, что его способ подключения позволит обеспечить 3520 Вт, как у розетки. На самом деле, при таком подключении потребитель может подсоединить к удлинителю нагрузки, суммарная мощность которых не превысит 1320 Вт. В противном случае, возникнет перегрузка в удлинителе, он начнет греться и, в конечном счете, выйдет из строя.
Часто бывает и наоборот: к розетке 6 А потребитель включает удлинитель на 16 А и считает, что теперь получен запас по мощности – 3520 Вт. Однако такая система подключения не сможет обеспечить мощность большую, чем ту, на которую рассчитана сама квартирная розетка – в нашем примере 1320 Вт. При превышении этой величины с 16-амперным удлинителем, надо полагать, ничего не произойдет, но выйдет из строя 6-амперная розетка. Хотя при сильном разогреве вилка удлинителя также может пострадать.
Еще одни случай некомпетентного подключения заключается в следующем. Допустим, потребитель использует и домашнюю розетку, и удлинитель на ток 6 А, то есть можно подключить электрическую нагрузку в сумме до 1320 Вт. Удлинитель имеет на выходе несколько своих розеток. Когда к ним подключен, например, один инфракрасный обогреватель мощностью 1000 Вт либо пылесос на 800 Вт, то проблем с перегрузкой не возникает. Проблема возникнет, когда потребитель пожелает одновременно включить два указанных электроприбора. Ведь суммарная мощность взрастет до значения 1800, что недопустимо для 6-амперной розетки.
При подключении мощной бытовой техники следует быть внимательными, и тогда беда не застигнет потребителя врасплох. Прежде чем подключить очередную мощную нагрузку, следует просчитать возможность домашней электросети. При возникших затруднениях необходимо обратиться к специалисту.
Компания «Электро911» выполнит любые электромонтажные работы.
Качественный и профессиональный электромонтаж под ключ!
Подробнее ознакомиться с перечнем и стоимостью электромонтажных работ, Вы можете на странице: Электромонтаж и электромонтажные работы.
– – – – –
Статью подготовил: Sirius (from Advego – прим. ред.) специально для официального сайта компании “Электро911”.
elektro911.ru
Скачки напряжения, 12 причин появления скачков в сети
09-03-2013
Скачки напряжения. Определения и понятия
Скачки напряжения
Скачками напряжения в повседневной речи принято называть резкое (быстрое) значительное изменение значения напряжения. Как правило, под скачком напряжения понимается быстрое значительное увеличение напряжения. Юридически точного определения понятия «скачок напряжения» у нас не существует. Обычно юристы понимают под «скачком напряжения» отклонения качества поставляемой электроэнергии от требований нормативной документации.
Как правило, в судебной практике речь идет о таких скачках напряжения, которые стали причиной нанесения ущерба.
Четкого определения «скачка напряжения» в нормативной документации тоже не найти. Отраслевая нормативная документация различает следующие отклонения параметров электроснабжения от нормы: отклонения и колебания напряжения, перенапряжение.
Отклонение напряжения
«Отклонение напряжения» — это изменение амплитуды длительностью более 1 минуты. Различают нормально допустимое отклонение напряжения и предельно допустимое отклонение напряжения. При этом предельно допустимым является отклонение в 10% от номинального.
Колебание напряжения
«Колебание напряжения» — это изменение амплитуды длительностью менее 1 минуты. Различают нормально допустимое колебание напряжения и предельно допустимое колебание напряжения. При этом предельно допустимым является отклонение в 10% от номинального.
Перенапряжение
«Перенапряжение» — это значительное по амплитуде увеличение параметров тока. Перенапряжением считается повышение напряжения свыше 242 Вольт. Перенапряжение может проходить с длительностью и менее 1 секунды.
Таким образом, объединяя нормативные определения скачка электрического напряжения и юридическое понимание этого понятия, можно сказать, что скачками могут называться как не очень большие, но длительные изменения значения напряжения, так и кратковременные, но значительные превышения этого параметра. Последние ещё могут называться «импульсными скачками».
С точки зрения физики, важным является общая излишняя энергия, воздействующая на приборы — потребители тока. Именно эта энергия, вызванная скачком в сети, и приводит к нанесению ущерба подключенным электрическим приборам.
Причины появления скачков напряжения
Существует достаточное количество объективных и субъективных причин природного, аварийного и техногенного характера для появления скачков напряжения в электрических сетях. Ниже постараемся перечислить основные.
1 причина появления «скачка напряжения» — одновременное отключение мощных бытовых приборов
Причина появления скачка параметров тока кроется у нас дома. Сегодня современный дом очень насыщен мощными электрическими приборами. В домах со старой проводкой это очень опасно. Но и в новых домах часто бывает, что нагрузка не может быть рассчитана на использование очень мощных приборов по причине подключения всего нового дома к «старым электрическим сетям». На практике часто происходит следующее. В доме включаются несколько мощных электрических приборов, это приводит к падению параметров тока в сети. При резком отключении мощного прибора или нескольких мощных электрических приборов происходит резкий скачок.
2 причина появления «скачка напряжения» — нестабильность в работе трансформаторной подстанции
Большинство трансформаторных подстанций, осуществляющих электроснабжение в распределительных и транспортирующих сетях, было построено достаточно давно. Оборудование, установленное на этих подстанциях, имеет сегодня значительный износ. Кроме того, многие подстанции работают с большой перегрузкой ввиду увеличения потребления электроэнергии. В результате на подстанциях случаются сбои в работе оборудования, приводящие к возникновению скачков.
3 причина появления «скачков напряжения» — аварии в передающих электрических сетях
Сотни тысяч километров линий электропередач окутывают все города и поселки нашей страны. К каждому дому, к каждому участку подходит линия электроснабжения. Перефразировав известную фразу из популярного фильма, можно сказать, что без электричества сегодня и «не туда», «и не сюда». Линии электропередач построенные десятки лет назад, не молодеют и сегодня. А значит, вероятность обрывов и замыкания на линиях передач существует. Такие аварии могут спровоцировать большие скачки электрического напряжения.
4 причина появления «скачков напряжения» — обрыв «нуля»
Это, пожалуй, самый частый и опасный вид аварии, вызывающий очень большое перенапряжение. Ежегодно тысячи человек несут ущерб по причине примитивного «обрыва нуля». В случае обрыва «нуля» может произойти появление напряжения на контакте «ноль» во всех розетках дома. Это приводит к тому, что все электрические приборы, включенные в розетку, сгорают. При этом сгорают даже «выключенные» с помощью дистанционного пульта приборы. Причина банальная — ослабление контакта «ноль» в общем коммутационном щитке дома. При этом, если контакт не постоянный, то появляется, то пропадает, то возникают очень сильные скачки.
5 причина появления «скачков напряжения» — ослабление заземления
Заземление электрических приборов играет важную роль в обеспечении безопасности использования устройств. В случае нарушения изоляции электрических приборов, напряжение часто передается на корпус прибора. В этом случае «заземление» играет роль отвода этого аварийного тока. В случае ухудшения качества заземления вероятность появления скачков параметров тока существенно вырастает.
6 причина появления «скачков напряжения» — значительная перегрузка сети
Электрооборудование, смонтированное на электрических подстанциях, рассчитано на конкретное максимальное значение мощности подключаемой нагрузки. В настоящее время идет очень большой рост потребления электроэнергии в наших домах. Первая причина здесь — это строительство новых больших зданий на месте старых маленьких домиков. Вместо 10 квартир получается сразу 100 квартир в одном большом доме. Вторая причина — рост числа используемых мощных электрических приборов. Посмотрите на фасад современно многоквартирного дома, на нем 200 сплит-систем. А это дополнительно 400 кВт мощности. Плюс 100 микроволновых печей, плюс 100 электрических калориферов, плюс 100 стиральных машин, плюс 100 электрических нагревателей воды, набегает очень большая суммарная мощность дома. При этом подстанции испытывают значительные перегрузки, и скачки в таком районе города неизбежны.
7 причина появления «скачков напряжения» — плохое качество монтажа и материалов электрической домовой разводки
Если что-то не работает в электрической цепи, то нужно искать плохой контакт. Это первое правило электриков. Плохой контакт в розетке или в электрическом патроне может возникнуть из-за плохого монтажа этих устройств или по причине использования дешевых сплавов для контактных пластин этих приборов. Плохой контакт вызывает искрение. А искрение — это эпицентр появления скачков электрического напряжения и сильных импульсных помех. Было бы хорошо для исключения появления скачков напряжения не использовать розетки вовсе, но так не бывает. А значит, каждое включение или выключение мощного электрического прибора — это новый скачок напряжения в сети.
8 причина появления «скачков напряжения» — включение промышленного оборудования в смежной сети электропередач
Большие и систематические скачки напряжения в сети наблюдаются вблизи крупных промышленных объектов. Включение мощного электродвигателя порождает большие пусковые токи. Эти токи могут «вернуться» в электрическую сеть в виде большой реактивной нагрузки. И хотя на таком оборудовании должны устанавливаться специальные пускатели и дополнительные сетевые фильтры, порождения электрических скачков избежать нельзя. И вовсе не обязательно жить рядом с большим металлургическим заводом, чтобы получить неприятные электрические сюрпризы. Для порождения хорошего скачка напряжения будет достаточно соседства с насосной станцией, с мощным вентиляционным оборудованием, с автомобильной мастерской или с большим супермаркетом.
9 причина появления «скачков напряжения» — «мерцающий эффект»
Скачки напряжения могут иметь систематический характер. Возможной причиной таких скачков может быть некорректная работа регулирующего оборудования в электрических приборах. Регуляторы электрических приборов должны осуществлять включение и выключение прибора или его части для контроля определенных параметров. Пример самого простого регулятора — это регулятор температуры отопительного прибора или электрического утюга. При достижении нужной температуры элемента прибор должен отключится. Часто бывает, что регулятор срабатывает очень часто, это приводит к износу контактов коммутирующего устройства. Изношенные контакты начинают порождать скачки тока. В этом случае можно видеть на графике напряжения скачки периодического характера.
10 причина появления «скачков напряжения» — попадание молнии в линии передач
Самая эффектная и самая мощная причина, порождающая гигантские перенапряжения и скачки — это попадание молнии в линии электропередач. Я думаю, каждый человек видел, как молния попадает в линии электропередач и в металлические опоры линий передач. Нужно сказать, что история создания электрических приборов тесно связана с молнией. Первые опыты по использованию электричества проводились с энергией молнии. Современные системы электропередач имеют защиту от молнии, однако, полностью избежать появления больших импульсов в сети не удается. Мощные разряды молний порождают большое перенапряжение, которое распространяется вдоль линии передач и может дойти до конечного потребителя. И хотя импульс от удара молнии длиться сотые или тысячные доли секунды, но этой бешеной энергии в тысячи вольт достаточно для нанесения большого ущерба электрооборудованию.
11 причина появления «скачков напряжения» — попадание высокого напряжения с линий трамвайных и троллейбусных контактных линий
Ситуация, когда происходит обрыв контактной трамвайной или троллейбусной линии электропередач, случается в городе несколько раз в месяц. Причиной может быть сильный порыв ветра или выполнение строительных работ, падение дерева на линию передач. При этом один из проводов контактной линии может зацепить или полностью упасть на линии обычных электропередач. В этом случае в сети можно наблюдать скачки напряжения в сотни вольт. Бывают случаи, когда такая авария приводит к сгоранию всех электрических приборов в нескольких домах рядом с аварией. При этом, если не происходит защитного отключения, то перенапряжение может вызвать даже возгорание приборов.
12 причина появления «скачков напряжения» — проведение сварочных работ
Проведение сварочных работ с помощью электрической сварки всегда приводит к появлению больших скачков напряжения во всей сети. И если в городе такое явление редко, то в деревнях и поселках встречается с завидной постоянностью. Кто-то варит забор, кто-то выбрасывает холодильник, сгоревший от большого скачка напряжения. При этом часто сварочные аппараты подключают прямо на вход проводов в дом, то есть минуя все защиты. Каждая дуга сварки в этом случае порождает большой скачок параметров тока в сети.
Таким образом, можно выделить несколько групп причин порождения скачков напряжения:
- скачки напряжения порождаются по причине плохого качества оборудования и монтажа электрооборудования и электрической разводки;
- скачки напряжения появляются по причине включения или выключения мощного оборудования или мощных электрических приборов;
- скачок напряжения обусловлен природными факторами, ударами молнии, сильным ветром, наводнением;
- скачки напряжения порождены нарушениями правил эксплуатации приборов и оборудования или недостаточного объема проведенных профилактических работ;
- скачок электрического напряжения обусловлен нарушениями при проведении строительных и сварочных работ;
- скачок напряжения появился из-за аварий техногенного характера.
Как бороться со скачками напряжения в сети
Важность защиты электрической сети и приборов в электрической сети от воздействия больших скачков напряжения трудно переоценить. Защита от скачков напряжения в электрической сети может строиться на применении специальных устройств для защиты от скачков напряжения, сетевых фильтров. Для защиты сети и потребителей от скачков могут использоваться и стабилизаторы напряжения со встроенной защитой от скачков напряжения. Устройства защиты от скачков напряжения могут монтироваться в коммутационные электрические шкафы или включаться непосредственно в розетку. Отдельным способом защиты от скачков является использование устройства защиты от скачков, монтируемых внутри электрического прибора.
Как защитить свой дом от скачков напряжения, смотрите в разделах Защита от скачков напряжения и Стабилизаторы напряжения.
Читайте также по теме:
Тех. поддержка
Бастион в соц. сетях
Канал Бастион на YouTube
teplo.bast.ru
Подключение электробытовых приборов с большой мощностью
Ведь если техника будет подключена неграмотно, то хоть и будет работать, но гораздо скорее выйдет из строя. Кроме того, такой прибор может стать причиной возгорания. Причем это касается не только устройств большой мощности, но и остальных, включая настенные и потолочные светильники.
У любого из бытовых приборов существуют свои собственные правила техники безопасности, и подключения и последующей эксплуатации. Каждое электротехническое устройство рассчитано на конкретную максимальную мощность. Руководствуясь такими данным, выбирают определенное сечение провода.
Подключение к сети холодильника
В каждом доме, в том числе дачном, на кухне обязательно стоит холодильник. Для того чтобы он как можно дольше эксплуатировался, необходимо правильно осуществить его подключение.
В первую очередь выбирают место, где будет стоять агрегат, соотнеся площадь кухни с его размерами. Чтобы установить холодильник, требуется исключительно ровная поверхность, только в этом случае он будет стоять строго вертикально, не заваливаясь набок.
Рядом с источниками света холодильник располагать нельзя. Он должен стоять в прохладном и сухом месте. В этом случае риска, что он может внезапно выйти из строя, не возникнет.
Обязательно внимательно осматривают провод бытового агрегата. Если на нем обнаружатся хотя бы незначительные повреждения, их непременно устраняют, в противном случае техника может перегореть.
Если никаких повреждений обнаружено не было, переходят к подключению холодильника к электрической сети.
Сначала соотносят уровень напряжения в холодильнике и электрической сети. Обычно на задней стенке корпуса есть таблица, в которой указано рабочее напряжение прибора. Такие же данные присутствуют в паспорте холодильника вместе с его техническими характеристиками и гарантийным талоном. В бытовой электросети напряжение обычно равно 220 В.
Необходимо к тому же предусмотреть достаточный уровень заземления для холодильника. Если уровни напряжения не соответствуют друг другу, то подключение следует произвести через бытовой автотрансформатор. Он поможет избежать негативных последствий от скачков напряжения в электрической сети, которые неизбежны.
Как правило, у каждой модели холодильника и у каждого производителя существует своя схема подключения компрессора и схема подключения реле, которые указаны в сопроводительных документах прибора.
Устанавливая холодильник, обратите внимание на то, как располагается сетевой шнур. Если он будет защемлен или в процессе эксплуатации произойдет перетирание его оболочки, то впоследствии это может стать причиной оголения проводов и, как результат, короткого замыкания, возгорания или поражения электрическим током.
В сопроводительных документах обязательно указывается, сколько времени потребуется на заморозку или охлаждение помещенных в холодильник продуктов. Подключив технику к сети в первый раз, не стоит сразу класть продукты, сначала надо убедиться, что холодильник работает исправно.
Подключение к сети электрической плиты
Монтаж электрической плиты начинают с электрощитка. Сначала проверяют выходящий из него кабель. Параметры такого кабеля будут зависеть от мощности бытового прибора.
Сечение проводов должно быть не менее 6 мм2, если мощность агрегата составляет 13,5—18 кВт. Если плита обладает меньшей мощностью, будет достаточно сечения проводов от 4 мм2. Но любой из кабелей должен быть трехжильным и иметь фазу, заземление и ноль и непременно быть заключенным в двойную изоляцию. Вводной кабель должен отличаться большей мощностью, чем тот, что отходит от электрического щитка к плите.
После этого проверяют автоматический выключатель — вводной автомат. Он должен выдерживать силу тока не меньше чем 32 А, если мощность плиты составляет до 13,5 кВт, и не меньше 40 А в том случае, когда плита обладает мощностью до 18 кВт.
Гораздо безопаснее, если электрическая плита будет подключена прямо к электрическому щиту без розеток. В подобном случае можно применять длинную цепь электропитания, а также плавкий предохранитель, рассчитанный на плиты большой мощности.
При подключении электрической плиты нужно особое внимание уделить конфоркам. Как правило, схема, по которой подключаются конфорки, представлена в паспорте, приложенном к бытовому прибору. Каждая конфорка включает в себя стальной корпус, теплоизоляцию с клеммником и съемной крышкой, а также плоские нагреватели, которые закрепляются на внутренней поверхности агрегата.
Если подключение плиты однофазное, то на линию устанавливают автоматический выключатель, который выдерживает силу тока в 32 А. Его монтируют в том случае, когда номинальный ток вводного выключателя составляет 40—50 А. После установления автомата последовательно подключают УЗО. Оно должно выдерживать до 30 мА дифференциального и до 32—40 А номинального тока. Вместо УЗО и выключателя допускается устанавливать ДИФ-автомат, который объединяет эти устройства в единое целое.
Если подключение бытового прибора трехфазное, то выключатель должен быть трех-полюсным и выдерживать номинальный ток силой 16 А. Четырехполюсное устройство защитного напряжения должно выдерживать 30 мА дифференциального и 25 А номинального тока.
Что касается розетки, подходящей для плиты, она должна выдерживать силу тока в 25—32 А и обладать тремя или пятью контактами для одно- или трехфазного подключения агрегата соответственно.
Провод с заземлением подсоединяют к верхней клемме, фазу и ноль прикрепляют к двум нижним клеммам в произвольном порядке. Соединения в электрической цепи питания плиты должны быть исключительно надежными, иначе контакты могут перегреться и привести к короткому замыканию. При зачистке жил кабеля повреждения проводников недопустимы. Все винтовые соединения необходимо надежно затянуть.
После этого подбирают кабель. Для подключения электрической плиты нужно будет приобрести два вида кабеля. От автомата до силовой розетки протягивают трехжильный кабель сечением 4 мм2, а от силовой розетки до плиты — гибкий кабель сечением 3×4 мм (подойдет КГ или ПВС). Внимание: использовать в данном случае провод ПУНП ни в коем случае нельзя! Осуществляя подключение контактов, концы кабеля хорошо защищают от окисления. Для этого их залуживают при помощи паяльника, придавая им форму, требуемую для подключения, после чего обрезают все излишки. Вместо лужения допускается просто обжать концы кабеля с помощью гильз из латуни.
Надо помнить, что по ГОСТу допускается производить пайку проводов лишь в том случае, когда нормативная документация предусматривает соединение такого рода. Когда же зажимы автоматического выключателя и устройства защитного отключения имеют вид гнезд, паять концы провода не требуется — зажим и так их обжимает достаточно надежно. Лучше в этом случае использовать опрессовку вместо паяния. Гибкий провод с несколькими жилами необходимо сначала залудить, а затем заводить в автомат. Можно также сначала выполнить опрессовку вместо лужения.
Провод питания, проходящий от плиты к розетке, располагают на расстоянии не больше 2 м от нее и оставляют в свободном доступе. Внимание: на проводе должна быть двойная изоляция! В том случае, когда в ходе эксплуатации электрической плиты планируется ее передвижение, подобные манипуляции следует учитывать на этапе определения длины кабеля.
Если при подключение плиты трехфазное, потребуется пятижильный кабель. Три фазы: LI, L2, L3, N — ноль, РЕ — заземление. Он должен обладать сечением 2,5 мм2 по меди.
Нельзя забывать о том, что кабель, который питает электрическую плиту, ни в коем случае недопустимо нагружать дополнительно.
Ниже представлены три схемы подключения электрической плиты.
Фаза подключается на клеммы 1, 2, 3. Перед этим их соединяются друг с другом с помощью перемычек, как правило, поставляющихся в комплекте с электрической плитой. Ноль (N) подключается к клеммам 4 и 5 (N1 и N2), также предварительно соединенным перемычками. К клемме 6 (РЕ), подключается заземление. Эта клемма нередко располагается на корпусе электрической плиты.
Три фазы в соответствии с цветовой маркировкой подключаются к клеммам 1, 2, 3. Клеммы 4 и 5 сначала соединяют между собой при помощи перемычки, после чего подсоединяют к «нулевой» жиле. Клемму 6 подсоединяют к заземлению. Необходимо быть предельно внимательным, чтобы не перепутать маркировки.
В редких случаях одна из фаз может отсутствовать. Тогда при помощи перемычки соединяют 2 клеммы, после чего подсоединяют их на одну фазу. Оставшуюся третью клемму подсоединяют на другую фазу. Землю и ноль подключают точно так же, как при трехфазном варианте.
Чтобы подсоединить к выводу электрической плиты питающий кабель, сначала снимают с прибора заднюю крышку.
Электрическую плиту можно подключать, только в том случае, если заземление проводки в доме выполнено по системам TN-C-S, ТТ.
Прежде чем включать электрическую плиту, необходимо очень тщательно очистить ее стеклянную поверхность от грязи и пыли. Когда плита будет включена впервые, могут появиться запахи, которые должны исчезнуть со временем. Затем нужно проветрить помещение, используя вентиляцию или открыв окно.
Особое внимание следует уделить установке конфорок. Каждую конфорку монтируют в ячейку, соответствующую ей по размеру, так, чтобы рабочая поверхность элемента несколько выступала над поверхностью бытового прибора.
Фиксируют конфорку в строго горизонтальном положении с помощью регулировочных винтов, которые располагаются в опорной части электрической плиты. После этого подключают провода, питающие бытовой прибор, к винтам клеммника и тщательно зажимают гайки.
Подключая конфорки, необходимо руководствоваться приложенными к бытовому прибору инструкциями и схемами. Если установку конфорок произвести неграмотно, электрическая плита может испортиться.
Подключение к сети стиральной машины
Как правило, стиральную машину к электрической сети подключают после всех остальных приборов.
Сначала ее подсоединяют к канализации и водопроводу. Для этого на подаче воды устанавливают тройник, снабженный краном и фильтром, к нему впоследствии прикручивают шланг, через который в стиральную машину будет заливаться водопроводная вода. Другой конец шланга прикручивают к самой машине.
Для подключения стиральной машины к электрической сети, потребуются предохранитель, отдельная розетка и инструмент электрика. Сначала определяют, провода какого сечения подойдут для подключения бытового прибора. Мощность стиральных машин обычно составляет 2000—2500 Вт. При помощи таблицы 4, приведенной выше, можно легко определить, какое сечение должно быть у питающих проводов.
Если питание розетки, предназначенной для подключения стиральной машины, выполнено из двухжильного алюминиевого кабеля, то необходимо проложить новый трехжильный кабель из меди по новым системам TN-C-S или TN-S.
Нередко в домах на розетки прокладывается трехжильный кабель из меди сечением 2,5 мм2, поскольку в эту же розетку, кроме стиральной машины, включают электрическую бритву, фен и т. д.
Перед установкой и подключением стиральной машины удалите с ее задней стенки транспортировочные болты или иные крепежные элементы для бака и вращающихся частей. Вместо болтов в отверстия установите прилагаемые к машине пластиковые заглушки. Использование стиральной машины без удаления крепежных элементов приведет к ее поломке. Однако болты сохраните, они могут понадобиться в случае необходимости доставки машины в сервисный центр.
При подключении стиральной машины обязательно выполняют заземление, для чего приобретают евророзетку, обладающую заземляющим контактом. Желательно, чтобы у нее была керамическая арматура.
Не рекомендуется при подключении такого бытового прибора пользоваться тройником, переходником, удлинителями, поскольку при слабом контакте они могут привести к возгоранию.
Розетка, предназначенная для эксплуатации во влажных помещениях, обладает классом защиты, превышающим обычный, поэтому если стиральная машина будет устанавливаться в ванной комнате, потребуется именно такая розетка.
Розетку, предназначенную для стиральной машины, лучше запитать в электрическом щитке отдельной группой.
Запрещается при подключении данного бытового прибора соединять его корпус с водопроводными или отопительными трубами.
Подключение кондиционера к электрической сети
Монтаж всех коммуникаций сплит-системы начинается с электрики. Чтобы подключить бытовое устройство к сети, прокладывают два кабеля. Межблочный кабель прокладывают к внешнему блоку от внутреннего, а второй кабель — к источнику тока от внутреннего блока.
Если кондиционер не обладает большой мощностью, то его допустимо подсоединять к уже существующей электрической сети. В том случае, когда агрегат достаточно мощный, для него оборудуют отдельную линию. Неважно, подключается ли сплит-система к ближайшей розетке или к отдельной линии, автомат следует установить обязательно. Провода вместе с трубками из меди прячут в декоративные короба или штробы.
Если электропитание в кондиционере устанавливается к его внутреннему блоку, то один из кабелей, связывающих блоки между собой, по сечению должен быть равен кабелю питания. В том случае, когда электропитание поступает к внешнему блоку, сечение межблочного кабеля может составлять не более 1 мм2, этого будет вполне достаточно для вентилятора.
В первую очередь надо понять, каким образом сплит-система будет подключена к электрической сети в доме.
К существующей проводке кондиционер можно подключать, если:
- он обладает низкой мощностью;
- устройство оконное или мобильное;
- электрическая сеть высокой мощности;
- сплит-система монтируется на короткий срок;
- на одну линию с кондиционером не будут подключаться электрический чайник, электрическая плита, стиральная машина и иные приборы большой мощности.
Подключать кондиционер в уже существующую в дачном доме электрическую сеть категорически запрещено, если:
- провода в сети алюминиевые и обладают низкой площадью сечения;
- защита и заземление в сети отсутствуют;
- электрическая проводка имеет повреждения или является ветхой.
В том случае, когда кондиционер планируется подключить к ближайшей розетке, необходимо оборудовать сеть дифференциальным автоматом и УЗО. Сплит-система в течение долгого времени будет потреблять большое количество электроэнергии. Также следует обязательно установить автомат, рассчитанный на 20 А и более в месте включения агрегата.
Но конечно, предпочтительнее оборудовать для кондиционера отдельную линию электропитания. Такой подход даст возможность защитить от перегрузок и скачков напряжения как само устройство, так и всю сеть. Благодаря отдельной линии ток можно будет подвести непосредственно к кондиционеру, что позволит расположить его в любом удобно месте, не обращая внимания на местоположение розеток.
Отдельная линия электропитания обязана отвечать следующим требованиям:
- на ней должен быть автомат;
- на ней должно быть заземление;
- при устройство линии можно использовать только кабели из меди;
- сечение проводов должно составлять от 3 х 2,5 мм и более.
Даже если оборудована отдельная линия, крайне нежелательно включать в нее, помимо сплит-системы, освещение и иные бытовые приборы. Допускается подключать к ней дополнительные системы для эксплуатации кондиционера: например, обогрев внешнего блока или дренажа. На отдельную питающую линию не нужно устанавливать дифференциальный автомат и устройство защитного отключения.
Кабель, пролегающий от внутреннего блока к внешнему, рекомендуется укладывать вместе с фреоновой трассой. В инструкции, прилагающейся к каждой конкретной модели кондиционера, указано, как именно надо подключать провода. Также в документах приводится доступная схема их подключения.
Кроме того, подобная электрическая схема располагается на внутренней стороне крышки каждого блока устройства. На ней указывается, каким образом следует соединять эти блоки между собой, а также как подключать сплит-систему к существующей электросети.
Для примера рассмотрим наиболее распространенную последовательность подключения сплит-системы для дома. Сначала подключают к монтажному блоку питающий провод строго по схеме, приведенной на крышке устройства.
К клемме L подключают провод черного цвета, который идет от автомата. К клемме N подключают провод синего цвета. И наконец, на массу агрегата подключают желто-зеленый провод.
Наружный блок подключают в соответствии со схемой, располагающейся на корпусе устройства. Для подключения между собой блоков потребуется силовой кабель. Его сечение не должно быть меньше показателей, указанных на крышке сплит-системы.
Рекомендованное сечение проводов, которые допустимо использовать при подключении кондиционера, обладающего мощностью до 4,6 кВт, составляет 3 х 2,5. Нельзя забывать о том, что можно использовать только кабели из меди.
Во время подключения кондиционера к электрической цепи надо строго придерживаться схемы. Электрические кабели укладывать в декоративные штробы или кабели с использованием гофрированной трубы нужного диаметра. Тогда в случае необходимости можно будет заменить или демонтировать поврежденные провода. Если вместе с кабелем будет прокладываться дренаж, то кабель следует обязательно спрятать в гофрированную трубку.
www.uniexo.ru
Тема 3.1.
Электростанции России объединены в федеральную энергосистему, являющуюся источником электрической энергии для всех ее потребителей. Передача и распределение электроэнергии осуществляется с помощью воздушных линий электропередачи, пересекающих всю страну. Для уменьшения потерь при передаче электроэнергии в линиях электропередач применяется очень высокое напряжение – десятки и (чаще) сотни киловольт.
В силу своей экономичности при передаче энергии применяется изобретенная русским инженером М.О. Доливо-Добровольским трехфазная система переменного тока, при которой электроэнергия передается с помощью четырех проводов.
Потребители электроэнергии рассчитаны на более низкие напряжения, чем напряжение в энергосистеме. Понижение напряжения производится в два этапа. Сначала на понижающей подстанции, являющейся частью энергосистемы, напряжение понижается до 6-10 кВ (киловольт). Дальнейшее понижение напряжение производится на трансформаторных подстанциях. После трансформаторной подстанции напряжение понижается до 220-380 В.
В трех фазной сети используют следующие типы проводников:
Линейный провод (L) –обеспечивает соединение потребителя с фазным выводом генератора.
Рабочий ноль (нейтральный провод) (N) -проводник, обеспечивающий вместе с фазным проводником питание потребителя. Нейтральный провод в трехфазной системе переменного тока выполняет очень важную функцию. Он служит для выравнивания фазных напряжений во всех трех фазах при разных нагрузках фаз (или, как говорят электрики, – перекосе фаз).
В случае обрыва нейтрального провода при неодинаковых нагрузках в фазах фазные напряжения будут различными. В фазах с большой нагрузкой (меньшим сопротивлением) напряжение будет ниже нормального, даже если эта фаза очень далека от перегрузки. В фазах с меньшей нагрузкой (большим сопротивлением) напряжения станет выше нормального.
Кроме этого нейтральный провод обеспечивает эффективную компенсацию токов в разных фазах в случае синусоидальных токов в трехфазной электрической сети. Если в электрическую сеть включено много компьютеров, то форма кривой тока искажается и эффективность работы нейтрального провода резко снижается. При этом возможны опасные перегрузки нейтрального провода и искажения формы кривой напряжения.
Ранее в России применялась четырехпроводная трехфазная электрическая сеть. Она еще называется электрической сетью с глухо-заземленной нейтралью. За этими словами скрывается вполне простой факт: нейтральный провод на подстанции заземлен и практически не только выполняет свою функцию “симметрирования” трехфазной сети, но и используется как защитное заземление.
В настоящее время обычно применяется пяти-проводная электрическая сеть. В такой электрической сети имеется отдельный (пятый) провод заземления и нейтральный провод выполняет только одну функцию. Кстати сказать, все западные источники бесперебойного питания предназначены для использования именно с такой электрической сетью.
Защитное заземление (PE) – проводник, обеспечивающий соединение не токоведущих частей корпуса потребителя с заземляющим устройством. В трех фазной сети различают следующие виды напряжений:
Фазное напряжение
Напряжение между фазным (L) и рабочим нулевым (N) проводниками. Для сети 380/220 В – 220 В.
Линейное напряжение
Напряжение между двумя фазными (L) проводниками. Для сети 380/220 В – 380 В.
Рисунок 1 – Трехфазная система переменного тока
Переменный электрический ток характеризуется также частотой. Номинальное стандартное значение частоты в России равно 50 Гц (Герц).
В России требования к качеству электрической энергии стандартизованы. ГОСТ 23875-88 дает определения показателям качества электроэнергии, а ГОСТ 13109-87 устанавливает значения этих показателей. Этим стандартом установлены значения показателей в точках подключения потребителей электроэнергии. Для пользователя это означает, что он может требовать от энергоснабжающей организации, чтобы установленные нормы соблюдались не где-то в энергосистеме, а непосредственно в его розетке.
Наиболее важные показатели качества электроэнергии – это отклонение напряжения от номинального значения, коэффициент несинусоидальности напряжения, отклонение частоты от 50 Гц.
Согласно стандарту в течение не менее 95 % времени каждых суток фазное напряжение должно находиться в диапазоне 209-231 В (отклонение 5 %), частота в пределах 49.8-50.2 Гц, а коэффициент несинусоидальности не должен превышать 5 %.
Остальные 5 или менее процентов времени каждых суток напряжение может изменяться от 198 до 242 В (отклонение 10 %), частота от 49.6 до 50.4 Гц, а коэффициент несинусоидальности должен быть не более 10 %. Допускаются также более сильные изменения частоты: от 49.5 Гц до 51 Гц, но общая длительность таких изменений не должна превышать 90 часов за год.
Авариями электроснабжения называются ситуации, когда показатели качества электроэнергии кратковременно выходят за установленные пределы. Частота может отклоняться на 5 Гц от номинального значения. Напряжение может снижаться до нуля. В дальнейшем показатели качества должны восстанавливаться.
Заземление При установке промышленного оборудования для предотвращения поражения электрическим током, применяется защитное заземление.
Защитным заземлением называется преднамеренное соединение с землей металлических частей оборудования (обычно рамы, корпуса или защитного кожуха), нормально не находящихся под напряжением. Даже если произойдет повреждение электрической изоляции (и даже, если при этом не сработают защитные предохранители), то напряжение на заземленных частях оборудования будет безопасным, так как сопротивление заземления по стандарту не должно превышать 4 Ома. При организации локальных компьютерных сетей рекомендуется еще более низкое сопротивление
«Электропитание средств вычислительной техники»
Учебно-методический комплекс
Романов В. П. 9
заземления – не более 0.5-1 Ома. Впрочем, в этом случае заземление главным образом служит для уменьшения помех, возникающих при работе различного оборудования.
Для устройства заземления в грунте размещают металлические предметы с развитой поверхностью и надежно соединяют его с шиной заземления.
Ранее в России для подключения бытовых и офисных приборов не применялось заземление. В быту и офисах использовались двухпроводные розетки, рассчитанные на напряжение до 250 В и ток до 6 А. Один из контактов в этой розетке соединен с линейным проводом трехфазной цепи (или, как говорят электрики с “фазой”), а другой – с нейтралью.
Исключение делалось только для мощной бытовой техники, типа кухонных плит и некоторых стиральных машин. Эти приборы подключались к специальной розетке с заземлением (которым часто служила “нейтраль” электрической цепи).
С появлением персональных компьютеров и большого количества импортной офисной и бытовой техники, начала широко применяться розетка с расположенными в периферийной части розетки заземляющими контактами. Эта розетка рассчитана на напряжение до 250 В и ток до 10 А (иногда до 16 А). Обычно ее называют “компьютерной”, “европейской” или “евророзеткой”.
В России в настоящее время применяется пятипроводная трехфазная сеть. В ней провод заземления и нейтраль отделены друг от друга. Пятипроводная сеть дороже (больше расходы на кабель и его прокладку), но более устойчива к помехам, особенно при работе компьютерного оборудования.
В России имеется стандарт (ГОСТ Р 50628-93), определяющий требования к персональным компьютерам по устойчивости к электромагнитным помехам. Этому стандарту должны соответствовать все компьютеры, производимые или импортируемые в России.
Компьютеры и периферийные устройства подразделяются на две группы в зависимости от устойчивости к помехам. Группу определяет производитель компьютера. После соответствующих испытаний и сертификации он имеет право объявить о соответствии его компьютера группе I или II ГОСТ Р 50628-93 по устойчивости к электромагнитным помехам. В таблице приведены параметры электрической сети, которые должны выдерживать компьютеры и периферийное оборудование в соответствии с этим стандартом.
Сбои электропитания
1. Провалы напряжения – кратковременные понижения напряжения, связанные с резким увеличением нагрузки в сети в связи с включением мощных потребителей, таких, как промышленное оборудование, лифты и т.д. Является наиболее частой неполадкой в электрической сети, встречается в 87 % случаев.
2. Высоковольтные импульсы – кратковременное (на наносекунды или единицы микросекунд) очень сильное увеличение напряжения, связанное с близким грозовым разрядом или включением напряжения на подстанции после аварии. Составляет 7.4 % всех сбоев питания.
3. Полное отключение напряжения согласно этому исследованию является следствием аварий, грозовых разрядов, сильных перегрузок электростанции. Встречается в 4.7 % случаев.
4. Слишком большое напряжение – кратковременное увеличение напряжения в сети, связанное с отключением мощных потребителей. Встречается в 0.7 % случаев.
В России, и особенно в других странах СНГ, наблюдается вид сбоя питания совершенно неизвестный на Западе. Это нестабильная частота. Самым характерным примером являлась Грузия в 1992-1994 годах. Энергосистема Грузии в целом видимо была очень сильно перегружена. Поэтому частота в сети могла опускаться до 42 Гц.
Само по себе изменение частоты не представляет существенной опасности для оборудования, оснащенного импульсным блоком питания, но очень низкая частота обычно сопровождается сильными гармоническими искажениями, которые могут отрицательно повлиять на работу не только компьютера, но и большинства источников бесперебойного питания (ИБП). Кроме того, многие ИБП среднего класса воспринимают сильное понижение частоты как аварийный случай и начинают расходовать заряд батареи. Батарея разряжается через несколько минут и вся работа на этом заканчивается.
Еще одной отличительной особенностью России являются причины (и, соответственно, количество) полных отключений напряжения. Аварии и стихийные бедствия, являющиеся причинами полного отключения напряжения в развитых странах, случаются у нас примерно с такой же частотой, что и там. Но в России эти случайности не являются единственными, и даже главными, причинами полного исчезновения напряжения. Свое уверенное слово говорит человеческий фактор.
Дело в недостатке знаний. Электрики, обслуживающие офисное здание с множеством компьютеров, обычно не имеют никакого представления о том, какие последствия имеет отключение напряжения для компьютеров и данных. Поэтому они ведут себя совершенно так же, как и 20 лет назад.
При возникновении какой-либо проблемы с электропитанием на этаже (например, отключился автоматический выключатель – предохранитель), электрик начинает искать автоматический выключатель, отвечающий за зону, в которой возникла проблема. Ищет он, разумеется, не по схеме (это долго, да и схемы у него возможно, или, скорее всего, нет). Он просто последовательно отключает и тут же включает все автоматы на щитке и смотрит на результат. В момент, когда в нужном помещении появляется свет, он считает свою миссию законченной.
Если нужный автомат окажется последним, то в течение минуты каждая электролампа и каждый компьютер на этаже подвергнутся кратковременному (менее секунды) отключению напряжения. Для освещения ничего страшного не происходит, люди обычно даже не успевают испугаться, оказавшись на мгновение в темноте. Но секундного отключения вполне достаточно для потери данных на компьютерах.
Особенно часто такие случаи бывают весной и осенью, когда заканчивается или начинается отопительный сезон. Если отопление уже отключили или еще не включили, и вдруг похолодало, то люди реагируют стандартно: они включают электрические подогреватели. Если электрическая сеть сильно нагружена, то подключение дополнительных (и мощных) потребителей может привести к срабатыванию автоматического предохранителя. Такой цикл включений и отключений может в некоторых организациях повторяться по несколько раз в день.
Отметим еще один вид искажений электропитания – речь идет об искажениях формы синусоиды, связанных с работой компьютеров и других нелинейных нагрузок.
При работе импульсных блоков питания в сильно перегруженной сети могут возникать искажения формы синусоидального напряжения. Это может выражаться в срезании вершины синусоиды и появлении гармоник – колебаний кратных частот. Эти искажения могут приводить к неполадкам в работе другого чувствительного оборудования, например измерительных приборов или видеоаппаратуры.
Искажения формы кривой напряжения усугубляются специфическими свойствами трехфазной электрической сети, изначально предназначенной для работы только с синусоидальными напряжениями и токами.
Перегрузки
Перегрузки (т.е. ситуации, когда ток в сети выше номинального или предельно допустимого для участка электрической сети) могут происходить на разных уровнях системы электроснабжения. Соответственно разные и последствия.
Локальная перегрузка – это перегрузка сети на участке от потребителей до ближайшего автоматического предохранителя. Перегрузки на участке сети могут вызывать срабатывание этого предохранителя и, следовательно, локальное отключение напряжения.
Местная перегрузка возникает, если перегружена вся линия от потребителей до понижающего трансформатора. Происходит снижение напряжения в сети. При сильных перегрузках и выходе из строя локальных систем защиты, возможно срабатывание системы защиты подстанции, также сопровождаемое временным полным отключением напряжения. Это отключение распространяется на всех потребителей, питаемых от этого трансформатора.
Общая перегрузка возникает, если перегружена вся энергосистема или существенная ее часть. В этом случае, помимо снижения напряжения может происходить и уменьшение частоты синусоидального напряжения. При глубоких общих перегрузках возможно срабатывание защиты на электростанции и отключение напряжения в системе в целом.
Совершенно особенным случаем перегрузки является временная перегрузка, связанная со стартовыми токами, возникающими при запуске почти любого оборудования (особенно это характерно для СВТ и других устройств содержащих источники питания). Стартовый ток может превышать номинальный ток потребления электрического прибора в единицы, десятки и (к счастью очень редко) в сотни раз. В зависимости от величины стартового тока, временная перегрузка может распространиться на больший или меньший участок сети. Чаще всего включение оборудования вызывает местные перегрузки, но известны случаи, когда включение одного очень мощного агрегата вызывает перегрузку энергосистемы целой страны.
Схемы включения СВТ в электрическую цепь.
Для питания средств вычислительной техники применяется электрическая сеть с переменным напряжением 220В. Данное напряжение при воздействии на человека вызывает протекание электрического тока опасного для жизни человека.
В тоже время любой бытовой электроприбор, включенный в электрическую сеть в результате своей работы, создает вокруг себя вредное для здоровья человека электромагнитное поле (ЭМП) как низкой (50 Гц) так и высокой (40-80кГц) частоты. На человека, находящегося вблизи работающего бытового электроприбора, воздействует как электрическая, так и магнитная составляющая ЭМП.
Вокруг многих незаземленных бытовых электроприборов, а особенно компьютера, за которым человек, как правило, работает по многу часов кряду, уровень ЭМП в разы, а иногда и на порядок превышает допустимые значения. По данным Центра электромагнитной безопасности наиболее чувствительны к воздействию ЭМП являются нервная, иммунная, эндокринная и половая системы человека. Биологический эффект ЭМП в условиях длительного воздействия имеет свойство накапливаться. В результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови, опухоли мозга, гормональные заболевания.
Следовательно, схема подключения СВТ к электрической сети должна выполнять следующие взаимосвязанные функции:
1. Безусловную защиту персонала, работающего с СВТ, от поражения электрическим током;
2. Безусловную защиту персонала, работающего с СВТ, от вредного воздействия ЭМП;
3. Защиту СВТ и других потребителей от взаимных помех.
4. Обеспечить электрическое питание СВТ.
Подключение блока питания компьютера и основных видов СВТ выполняется по схеме, представленной на рисунке 1.
1 – фазные провода сети; цифрой
2 – совмещенный нулевой рабочий и защитный проводник;
3 – фазный проводник, подключенный к розетке;
4 – нулевой рабочий проводник;
5-трехпо-люсная розетка;
6 – полюс розетки, к которому присоединен нулевой рабочий проводник;
7 – проводник, соединяющий заземляющий полюс
8 розетки и полюс розетки, к которому присоединен нулевой рабочий проводник;
9 – полюс розетки, к которому подсоединен фазный проводки.
Конденсаторы С1 и С2 выполняют роль фильтра, исключающего проникновение помех из питающей сети в ПК.
В нашей стране присутствует множество объектов, в которых используется электрическая сеть с глухозаземленной нитралью, которая выполнена с использованием четырех проводной линии (три фазных проводника (L) и один глухозаземленный нулевой проводник (N)).
Применение розетки без подключенного заземляющего контакта приводит к снижению эффективности работы фильтра (С1, С2) и так как корпус СВТ не заземлен то отсутствует защита персонала от ЭМП. Конденсаторы С1 и С2 образуют делитель напряжения, создающий в средней точке, подключенной к корпусу СВТ, напряжение равное половине сетевого 110В. Что может привести к поражению электрическим током в случаи касания корпуса СВТ и заземленного оборудования (например, батареи отопления). Следовательно, данный способ подключения является потенциально опасным.
Подключение СВТ к розетке, к которой подходят два проводника, один из которых фазный, а второй нулевой рабочий и одновременно к ее заземляющему контакту, как показано на рисунке 3. Такой монтаж розетки является грубейшим нарушением требования правил электробезопасности и превращает розетку, предназначенную обеспечивать защиту от поражения электрическим током, в свою прямую противоположность, ибо создает повышенную опасность поражения электрическим током. Действительно, при любом повреждении нулевого рабочего проводника на всем своем протяжении на заземляющем (в кавычках) полюсе розетки, а, следовательно, и на корпусе «заземленного» таким образом электроприемника, появится, опасное для жизни человека электрическое, напряжение значением 220 В. Оно попадет туда через проводимость включенного в розетку однофазного электроприемника, например компьютера. Повреждение нулевого рабочего проводника может произойти, как уже говорилось, на всем его протяжении, и причин для таких повреждений может быть достаточно много.
Применение отдельного, «чистого» заземления, изолированное от системы заземления здания, подключенного к заземляющему контакту розетки, так же является ошибочным решением – защита от ЭМП обеспечивается, а электробезопасность нет.
Рассмотрим простую ситуацию. Допустим, для заземления компьютеров в каком-либо помещении была выполнена «чистая» система заземления, т.е. все металлические корпуса компьютерной техники, сетевых и прочих устройств присоединены к выделенному контуру заземления, не связанному с системой заземления здания
Рисунок 4 иллюстрирует путь тока при коротком замыкании (КЗ) между фазным проводником, питающим компьютер, и его корпусом, возникающем вследствие пробоя конденсатора в сетевом фильтре на входе в устройство. Обратный путь тока КЗ будет проходить через два контура: общий контур защитного заземления здания (ТП) и «компьютерное заземление». Сопротивление контура заземления трансформаторной подстанции (ТП) обычно составляет не более 4 Ом, сопротивление «чистого» заземления составляет порядка 10 Ом.
Этого тока будет недостаточно для срабатывания автоматического выключателя, установленного на поврежденной линии. Если на линии установлен автоматический выключатель с номинальным током 16 А, то для быстрого отключения тока КЗ должен сработать электромагнитный расцепитель (величина уставки 45–100 А и более). Следовательно, при протекании тока величиной 15,7 А устройство защиты просто «не поймет», что протекающий по нему ток является результатом аварийной ситуации, и не отключит поврежденную линию. При прикосновении к корпусу такого электрооборудования человек попадет под напряжение. Кроме того, небольшие по сечению соединительные провода и интерфейсные элементы оборудования будут интенсивно нагреваться. Нагрев происходит из-за разности потенциалов между корпусом и экранами сетевых кабелей. Таким образом, по ним будет протекать ток, что может привести к выходу их из строя и даже возгоранию.
Следовательно, при касании человеком корпуса возникнет разность потенциалов, равная 157 В. Через человека (сопротивление которого в среднем равно 1 кОм)
Хотя поражение электрическим током зависит от множества факторов (состояние нервной системы, состояние кожи и т.д.), тем не менее, из расчетов, очевидно, что при неотпускающем токе 20–30 мА протекающий через тело человека ток в 155 мА смертелен.
Наиболее полно обеспечивает защиту персонала от ЭМП и поражения электрическим током, а СВТ от помех обеспечивает пяти проводная электрическая сеть, содержащей кроме фазных проводников (L) и нулевого провода (N) дополнительный проводник – защитное заземление (PE).
Главная идея заключается в том, что все заземляемые части оборудования, нулевые защитные проводники, металлические трубопроводы коммуникаций, металлические части каркаса здания, металлические части централизованных систем вентиляции и кондиционирования, заземляющие устройства системы молниезащиты, заземляющие проводники рабочего заземления, металлические оболочки телекоммуникационных и сетевых кабелей должны быть объединены в основную систему уравнивания потенциалов (рисунок 5). Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине.
1726312.mya5.ru