Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

правда или миф, возможности и перспективы, линейный двигатель своими руками

Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет — вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.

  • Что такое магнитный двигатель
    • Устройство магнитного двигателя
    • Принцип работы
  • Линейный двигатель своими руками
  • Плюсы и минусы магнитных двигателей

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Устройство магнитного двигателя

Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:

  • Сам двигатель;
  • Статор с электромагнитом;
  • Ротор с установленным постоянным магнитом.

На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе». Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Линейный двигатель своими руками

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Плюсы и минусы магнитных двигателей

Плюсы:

  • Экономия и полная автономия;
  • Возможность собрать двигатель из подручных средств;
  • Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
  • Способен на любой стадии износа выдавать максимальную мощность.

Минусы:

  • Негативное влияние магнитных полей на человека;
  • Большинство экземпляров не могут пока что работать в нормальных условиях. Но это дело времени;
  • Сложности в подключении даже готовых образцов;
  • Современные магнитные импульсные моторы имеют довольно высокую цену.

Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.

Двигатель на постоянных магнитах – схема синхронного устройства, принцип действия и изготовление своими руками

Двигатели на протяжении многих лет используются для преобразования электрической энергии в механическую различного типа. Эта особенность определяет столь высокую его популярность: обрабатывающие станки, конвейеры, некоторые бытовые приборы – электродвигатели различного типа и мощности, габаритных размеров используются повсеместно.

  • Устройство ↓
  • Принцип работы ↓
  • Виды ↓
  • Преимущества и недостатки ↓
  • Как сделать своими руками? ↓
  • Рекомендации ↓

Основные показатели работы определяют то, какой тип конструкции имеет двигатель. Существует несколько разновидностей, некоторые пользуются популярностью, другие не оправдывают сложность подключения, высокую стоимость.

Двигатель на постоянных магнитах используют реже, чем асинхронный вариант исполнения. Для того, чтобы оценить возможности этого варианта исполнения, следует рассмотреть особенности конструкции, эксплуатационные качества и многое другое.

Устройство

устройство

Электродвигатель на постоянных магнитах не сильно отличается по виду конструкции.

При этом, можно выделить следующие основные элементы:

  1. Снаружи используется электротехническая сталь, из которой изготавливается сердечник статора.
  2. Затем идет стержневая обмотка.
  3. Ступица ротора и за ней специальная пластина.
  4. Затем, изготовленные из электротехнической стали, секции редечника ротора.
  5. Постоянные магниты являются частью ротора.
  6. Конструкцию завершает опорный подшипник.

Как любой вращающийся электродвигатель, рассматриваемый вариант исполнения состоит из неподвижного статора и подвижного ротора, которые при подаче электроэнергии взаимодействую между собой. Отличие рассматриваемого варианта исполнения можно назвать наличие ротора, в конструкцию которого включены магниты постоянного типа.

При изготовлении статора, создается конструкция, состоящая из сердечника и обмотки. Остальные элементы являются вспомогательными и служат исключительно для обеспечения наилучших условий для вращения статора.

Принцип работы

Принцип работы рассматриваемого варианта исполнения основан на создании центробежной силы за счет магнитного поля, которое создается при помощи обмотки. Стоит отметить, что работа синхронного электродвигателя схожа с работой трехфазного асинхронного двигателя.

К основным моментам можно отнести:

  1. Создаваемое магнитное поле ротора вступает во взаимодействие с подаваемым током на обмотку статора.
  2. Закон Ампера определяет создание крутящего момента, который и заставляет выходной вал вращаться вместе с ротором.
  3. Магнитное поле создается установленными магнитами.
  4. Синхронная скорость вращения ротора с создаваемым полем статора определяет сцепление полюса магнитного поля статора с ротором. По этой причине, рассматриваемый двигатель нельзя использовать в трехфазной сети напрямую.

В данном случае, нужно в обязательном порядке устанавливать специальный блок управления.

Виды

В зависимости от особенностей конструкции, существует несколько типов синхронных двигателей. При этом, они обладают разными эксплуатационными качествами.

По типу установки ротора, можно выделить следующие типы конструкции:

  1. С внутренней установкой – наиболее распространенный тип расположения.
  2. С внешней установкой или электродвигатель обращенного типа.

Постоянные магниты включены в конструкцию ротора. Их изготавливают из материала с высокой коэрцитивной силой.

Эта особенность определяет наличие следующих конструкций ротора:

  1. Со слабо выраженным магнитным полюсом.
  2. С ярко выраженным полюсом.

Равная индуктивность по перечным и продольным осям – свойство ротора с неявно выраженным полюсом, а у варианта исполнения с ярко выраженным полюсом подобной равности нет.

Кроме этого, конструкция ротора может быть следующего типа:

  1. Поверхностная установка магнитов.
  2. Встроенное расположение магнитов.

Кроме ротора, также следует обратить внимание и на статор.

По типу конструкции статора, можно разделить электродвигатели на следующие категории:

  1. Распределенная обмотка.
  2. Сосредоточенная обмотка.

По форме обратной обмотке, можно провести нижеприведенную классификацию:

  1. Синусоида.
  2. Трапецеидальная.

Подобная классификация оказывает влияние на работу электродвигателя.

Рассматриваемый вариант исполнения имеет следующие достоинства:

  1. Оптимальный режим работы можно получить при воздействии реактивной энергии, что возможно при автоматической регулировке тока. Эта особенность обуславливает возможность работы электродвигателя без потребления и отдачи реактивной энергии в сеть. В отличие от асинхронного двигателя, синхронный имеет небольшие габаритные размеры при той же мощности, но при этом КПД значительно выше.
  2. Колебания напряжения в сети в меньшей степени воздействую на синхронный двигатель. Максимальный момент пропорционален напряжению сети.
  3. Высокая перегрузочная способность. Путем повышения тока возбуждения, можно провести значительное повышение перегрузочной способности. Это происходит на момент резкого и кратковременного возникновения дополнительной нагрузки на выходном валу.
  4. Скорость вращения выходного вала остается неизменной при любой нагрузке, если она не превышает показатель перегрузочной способности.

К недостаткам рассматриваемой конструкции можно отнести более сложную конструкцию и вследствие этого более высокую стоимость, чем у асинхронных двигателей. Однако в некоторых случаях, обойтись без данного типа электродвигателя невозможно.

Как сделать своими руками?

Провести создание электродвигателя своими руками можно только при наличии знаний в области электротехнике и наличия определенного опыта. Конструкция синхронного варианта исполнения должна быть высокоточной для исключения возникновения потерь и правильности работы системы.

Зная то, как должна выглядеть конструкция, проводим следующую работу:

  1. Создается или подбирается выходной вал. Он не должен иметь отклонений или других дефектов. В противном случае, возникающая нагрузка может привести к искривлению вала.
  2. Наибольшей популярностью пользуются конструкции, когда обмотка находится снаружи. На посадочное место вала устанавливается статор, который имеет постоянные магниты. На валу должно быть предусмотрено место для шпонки для предотвращения прокручивания вала при возникновении серьезной нагрузки.
  3. Ротор представлен сердечником с обмоткой. Создать самостоятельно ротор достаточно сложно. Как правило, он неподвижен, крепится к корпусу.
  4. Механической связи между статором и ротором нет, так как в противном случае, при вращении будет создавать дополнительная нагрузка.
  5. Вал, на котором крепится статор, также имеет посадочные места для подшипников. В корпусе имеется посадочные места для подшипников.

Большая часть элементов конструкции создать своими руками практически невозможно, так как для этого нужно иметь специальное оборудование и большой опыт работы. Примером можно назвать как подшипники, так и корпус, статор или ротор. Они должны иметь точные размеры. Однако, при наличии необходимых элементов конструкции, сборку можно провести и самостоятельно.

Электродвигатели имеют сложную конструкцию, питание от сети 220 Вольт обуславливает соблюдение определенных норм при их создании. Именно поэтому, для того, чтобы быть уверенным в надежной работе подобного механизма, следует покупать варианты исполнения, созданные на заводах по выпуску подобного оборудования.

В научных целях, к примеру, в лаборатории для проведения испытаний по работе магнитного поля часто создают собственные двигатели. Однако они имеют небольшую мощность, питаются от незначительно напряжения и не могут быть применены в производстве.

Рекомендации

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид, год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделять корпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Статья была полезна?

0,00 (оценок: 0)

Понимание двигателей с постоянными магнитами | Техника управления

Управление скоростью двигателей переменного тока в большинстве случаев осуществляется с помощью частотно-регулируемого привода (ЧРП). Хотя многие сценарии предполагают использование частотно-регулируемых приводов с асинхронными двигателями с обмотками статора для создания вращающегося магнитного поля, они также могут обеспечить точное управление скоростью, используя датчики обратной связи по скорости или положению в качестве эталона для частотно-регулируемого привода.

В некоторых ситуациях можно получить сравнительно точное управление скоростью без использования датчиков обратной связи. Это стало возможным благодаря двигателю с постоянными магнитами (PM) и процессу, называемому «метод подачи высокочастотного сигнала».

Асинхронные машины

Асинхронная машина переменного тока (АД) также обычно называется двигателем переменного тока. Вращающееся поле создается обмоткой статора. Вращающееся поле индуцирует ток в стержнях ротора. Генерация тока требует разницы скоростей между ротором и магнитным полем. Взаимодействие между полем и током создает движущую силу. Поэтому асинхронные машины переменного тока являются преобладающими двигателями, управляемыми приводами с регулируемой скоростью.

Двигатели с постоянными магнитами

Двигатель с постоянными магнитами — это двигатель переменного тока, в котором используются магниты, встроенные или прикрепленные к поверхности ротора двигателя. Магниты используются для создания постоянного потока двигателя вместо того, чтобы требовать, чтобы поле статора генерировало его путем связи с ротором, как в случае с асинхронным двигателем. Четвертый двигатель, известный как двигатель с постоянными магнитами с линейным пуском (LSPM), сочетает в себе характеристики обоих двигателей. Двигатель LSPM включает в себя магниты двигателя с постоянными магнитами внутри ротора и стержни ротора двигателя с короткозамкнутым ротором для максимального увеличения крутящего момента и эффективности (см. Таблицу 1).

Поток, потокосцепление и магнитный поток

Чтобы понять работу двигателей с постоянными магнитами, важно сначала понять понятия магнитного потока, потокосцепления и магнитного потока.

Поток: Поток тока через проводник создает магнитное поле. Поток определяет скорость потока свойства на единицу площади. Ток потока – это скорость тока, протекающего через заданную площадь поперечного сечения проводника.

Потокосцепление: Потокосцепление возникает, когда магнитное поле взаимодействует с материалом, как это происходит, когда магнитное поле проходит через катушку провода. Потокосцепление определяется количеством витков и потоком, где ϕ используется для обозначения мгновенного значения изменяющегося во времени потока. Потокосцепление определяется следующим уравнением:

Магнитный поток: Магнитный поток определяется как скорость магнитного поля, протекающего через заданную площадь поперечного сечения проводника. Поле магнитного потока создается постоянным магнитом внутри или на поверхности двигателя с постоянными магнитами.

Катушка индуктивности: Катушка индуктивности представляет собой элемент цепи, состоящий из проводящего провода, обычно в форме катушки. Проводник, по которому течет постоянный ток, будет генерировать постоянное магнитное поле. Можно показать, что магнитное поле и ток, который его создал, связаны линейной зависимостью. Изменение магнитного поля индуцирует напряжение в близлежащем проводнике, пропорциональное скорости изменения тока, создавшего магнитное поле. Напряжение в проводнике определяется следующим уравнением:

 

Индуктивность: Индуктивность (L) — это константа пропорциональности, которая определяет отношение между напряжениями, индуцированными скоростью изменения тока во времени, которое создает магнитное поле. Проще говоря, индуктивность — это потокосцепление на единицу тока. Следует пояснить, что индуктивность является пассивным элементом и является чисто геометрическим свойством. Индуктивность измеряется в Генри (Гн) или вебер-витках на ампер.

Ось d и ось q: В геометрических терминах оси «d» и «q» представляют собой однофазные представления потока, вносимого тремя отдельными синусоидальными фазовыми величинами при одной и той же угловой скорости. Ось d, также известная как прямая ось, представляет собой ось, по которой поток создается обмоткой возбуждения. Ось q или квадратурная ось — это ось, на которой создается крутящий момент. По соглашению, квадратурная ось всегда электрически опережает прямую ось на 90 градусов. Проще говоря, ось d является основным направлением потока, а ось q является основным направлением создания крутящего момента.

Магнитная проницаемость: В электромагнетизме проницаемость — это мера способности материала поддерживать формирование магнитного поля внутри себя. Следовательно, это степень намагниченности, которую материал приобретает в ответ на приложенное магнитное поле.

Эквивалентная схема двигателя с постоянными магнитами: Двигатель с постоянными магнитами может быть представлен несколькими различными моделями двигателей. Одним из наиболее распространенных методов является модель двигателя d-q.

Индуктивность двигателя с постоянными магнитами по осям d и q: Индуктивности по осям d и q представляют собой индуктивности, измеряемые при прохождении потока через ротор относительно магнитного полюса. Индуктивность по оси d представляет собой индуктивность, измеренную при прохождении потока через магнитные полюса. Индуктивность по оси q является мерой индуктивности, когда поток проходит между магнитными полюсами.

В асинхронной машине потокосцепление ротора будет одинаковым между осью d и осью q. Однако в машине с постоянным магнитом магнит уменьшает доступное железо для потокосцепления. Проницаемость магнита близка к воздухопроницаемости. Поэтому магнит можно рассматривать как воздушный зазор. Магнит находится на пути потока, когда он проходит через ось d. Путь потока, проходящий через ось q, не пересекает магнит. Следовательно, больше железа может быть связано с путем потока по оси q, что приводит к большей индуктивности. Двигатель со встроенным магнитом будет иметь большую индуктивность по оси q, чем индуктивность по оси d. Двигатель с магнитами для поверхностного монтажа будет иметь почти одинаковые индуктивности по осям q и d, потому что магниты находятся вне ротора и не ограничивают количество железа, связанного полем статора.

Магнитная заметность: Важность или значимость — это состояние или качество, благодаря которому что-то выделяется по сравнению с соседями. Магнитная заметность описывает взаимосвязь между индуктивностью основного потока ротора (ось d) и индуктивностью основного потока (ось q). Магнитная заметность изменяется в зависимости от положения ротора по отношению к полю статора, где максимальная заметность возникает при 90 электрических градусах от оси основного потока (ось d) (см. Рисунок 1).

Ток возбуждения: Ток возбуждения — это «ток в обмотках статора, необходимый для создания магнитного потока в сердечнике ротора». В машинах с постоянными магнитами не требуется ток возбуждения в обмотке статора, потому что магниты двигателя с постоянными магнитами уже создают постоянное магнитное поле.

Вторичный ток: Вторичный ток, также известный как «ток, создающий крутящий момент», представляет собой ток, необходимый для создания крутящего момента двигателя. В машине с постоянными магнитами токи, создающие крутящий момент, составляют большую часть потребляемого тока.

Втягивающий ток: В отличие от согласованного набора усилителя и сервопривода, предназначенного для управления движением, обычный ЧРП не имеет информации о положении магнитного полюса ротора двигателя. Без знания положения магнитного полюса в статоре невозможно создать поле для максимального создания крутящего момента. Таким образом, частотно-регулируемый привод может обеспечивать постоянное напряжение, чтобы зафиксировать магнитное поле в известном положении. Потребляемый ток, необходимый для втягивания ротора, называется «ток втягивания».

Высокочастотная инжекция: Высокочастотная инжекция — это метод инвертора, используемый для определения положения магнитного полюса двигателя с постоянными магнитами. Метод начинается с того, что инвертор подает высокочастотный низковольтный сигнал в двигатель на произвольной оси. Затем инвертор меняет угол возбуждения и контролирует ток.

В зависимости от угла впрыска сопротивление ротора меняется. Импеданс клемм двигателя с внутренними постоянными магнитами (IPM) уменьшается, когда ось подачи высокочастотного сигнала и ось магнитного полюса (ось d) совпадают, т. е. при 0 град. Импеданс максимален при ±90 град. Используя эту характеристику, привод может определять положение ротора без импульсных энкодеров, подавая высокочастотное переменное напряжение/ток на двигатель IPM. Кроме того, метод подачи высокочастотного сигнала можно использовать для определения скорости в области низких скоростей, где обычно управление крутящим моментом при полной нагрузке очень затруднено из-за слишком низкого уровня напряжения противо-ЭДС двигателя.

Форма сигнала противо-ЭДС

Противо-ЭДС — это сокращение от противоэлектродвижущей силы, но также известное как противоэлектродвижущая сила. Обратная электродвижущая сила — это напряжение, возникающее в электродвигателях при относительном движении между обмотками статора и магнитным полем ротора. Геометрические свойства ротора определяют форму волны обратной ЭДС. Эти формы волны могут быть синусоидальными, трапециевидными, треугольными или чем-то средним между ними.

И асинхронные машины, и машины с постоянными магнитами генерируют сигналы обратной ЭДС. В асинхронной машине форма волны обратной ЭДС будет затухать по мере медленного затухания остаточного поля ротора из-за отсутствия поля статора. Однако в машине с ПМ ротор генерирует собственное магнитное поле. Следовательно, в обмотках статора может индуцироваться напряжение всякий раз, когда ротор находится в движении. Напряжение противо-ЭДС будет расти линейно со скоростью и является решающим фактором при определении максимальной рабочей скорости.

Понимание крутящего момента машины с постоянными магнитами

Крутящий момент электрической машины можно разбить на две составляющие: магнитный крутящий момент и реактивный крутящий момент. Момент сопротивления — это «сила, действующая на магнитный материал, которая стремится выровняться с основным потоком, чтобы минимизировать сопротивление». Другими словами, реактивный крутящий момент — это крутящий момент, создаваемый выравниванием вала ротора с магнитным полем статора. Магнитный момент — это «крутящий момент, создаваемый взаимодействием между магнитным полем магнита и током в обмотке статора».

Момент сопротивления: Момент сопротивления относится к крутящему моменту, создаваемому выравниванием ротора, который возникает, когда магнитное поле создает желаемый прямой поток от северного полюса статора к южному полюсу статора.

Магнитный момент: Постоянные магниты создают магнитное поле в роторе. Статор создает поле, которое взаимодействует с магнитным полем ротора. Изменение положения поля статора по отношению к полю ротора вызывает смещение ротора. Сдвиг из-за этого взаимодействия представляет собой магнитный момент.

SPM в сравнении с IPM

Электродвигатели с постоянными магнитами можно разделить на две основные категории: двигатели с поверхностными постоянными магнитами (SPM) и двигатели с внутренними постоянными магнитами (IPM) (см. рис. 3). Ни один из типов конструкции двигателя не содержит стержней ротора. Оба типа генерируют магнитный поток постоянными магнитами, прикрепленными к ротору или внутри него.

Двигатели SPM имеют магниты, прикрепленные к внешней поверхности ротора. Из-за такого механического крепления их механическая прочность ниже, чем у двигателей IPM. Ослабленная механическая прочность ограничивает максимальную безопасную механическую скорость двигателя. Кроме того, эти двигатели имеют очень ограниченную магнитную заметность (L д ≈ L q ). Значения индуктивности, измеренные на выводах ротора, постоянны независимо от положения ротора. Из-за отношения заметности, близкого к единице, конструкции двигателей SPM в значительной степени, если не полностью, зависят от магнитной составляющей крутящего момента для создания крутящего момента.

Двигатели IPM имеют постоянный магнит, встроенный в сам ротор. В отличие от их аналогов SPM, расположение постоянных магнитов делает двигатели IPM очень надежными с механической точки зрения и подходящими для работы на очень высоких скоростях. Эти двигатели также отличаются относительно высоким коэффициентом значимости магнитного поля (L q > L d ). Из-за своей магнитной заметности двигатель IPM может генерировать крутящий момент, используя преимущества как магнитной, так и реактивной составляющих крутящего момента двигателя (см. Рисунок 4).

Моторные конструкции PM

Моторные конструкции PM можно разделить на две категории: внутренние и поверхностные. Каждая категория имеет свое подмножество категорий. Поверхностный двигатель с постоянными магнитами может иметь свои магниты на поверхности ротора или быть вставленным в него, чтобы повысить надежность конструкции. Расположение и конструкция внутреннего двигателя с постоянными магнитами могут сильно различаться. Магниты двигателя IPM можно вставлять в виде большого блока или располагать в шахматном порядке по мере приближения к сердечнику. Другой метод заключается в том, чтобы встроить их в узор со спицами.

Изменение индуктивности двигателя с постоянными магнитами в зависимости от нагрузки

Только определенное количество потока может быть связано с куском железа для создания крутящего момента. В конце концов, железо насыщается и больше не позволяет флюсу связываться. Результатом является уменьшение индуктивности пути, пройденного полем потока. В машине с постоянными магнитами значения индуктивности по осям d и q будут уменьшаться с увеличением тока нагрузки.

Индуктивности осей d и q двигателя SPM почти идентичны. Поскольку магнит находится вне ротора, индуктивность по оси q будет падать с той же скоростью, что и индуктивность по оси d. Однако индуктивность двигателя IPM будет уменьшаться по-разному. Опять же, индуктивность по оси d, естественно, ниже, потому что магнит находится на пути потока и не создает индуктивного свойства. Следовательно, по оси d насыщается меньше железа, что приводит к значительно меньшему уменьшению потока по отношению к оси q.

Ослабление/усиление потока двигателей с постоянными магнитами

Поток в двигателе с постоянными магнитами создается магнитами. Поле потока следует по определенному пути, который можно усиливать или противодействовать. Повышение или усиление поля потока позволит двигателю временно увеличить выработку крутящего момента. Противодействие полю потока сведет на нет существующее магнитное поле двигателя. Уменьшенное магнитное поле ограничит создание крутящего момента, но уменьшит напряжение противо-ЭДС. Уменьшенное напряжение противо-ЭДС высвобождает напряжение, чтобы подтолкнуть двигатель к работе на более высоких выходных скоростях. Оба типа работы требуют дополнительного тока двигателя. Направление тока двигателя по оси d, заданное контроллером двигателя, определяет желаемый эффект.

Угол возбуждения

Угол возбуждения — это угол, под которым векторная сумма сигналов по осям d и q подается на двигатель относительно оси d. Ось d всегда рассматривается как место, где находится магнит. Максимальный магнитный поток достигается на оси q, которая находится на расстоянии 90 электрических градусов от оси d. Поэтому в большинстве эталонов угла возбуждения уже учитывается разница в 90 градусов от оси d к оси q.

Фазовый угол и крутящий момент

Магнитный крутящий момент максимален, когда поле статора возбуждает ротор двигателя на 90 электрических градусов от оси d (положение магнита двигателя). Момент нежелания следует по другому пути и достигает максимума на 45 электрических градусов за осью q. Максимальный магнитный момент использует как магнитное сопротивление двигателя, так и магнитный момент. Дальнейшее смещение от оси q уменьшает магнитный крутящий момент, но его значительно перевешивает усиление реактивного момента. Максимальный комбинированный магнитный и реактивный момент возникает около 45 электрических градусов от оси q, но точный угол будет варьироваться в зависимости от характеристик двигателя с постоянными магнитами.

Плотность мощности двигателя с постоянными магнитами

Мощность двигателя с постоянными магнитами зависит от конфигурации магнитов двигателя и результирующей заметности двигателя. Двигатели с высоким коэффициентом заметности (Lq > Ld) могут повысить КПД двигателя и выработку крутящего момента за счет включения реактивного крутящего момента двигателя. Инвертор можно использовать для изменения угла возбуждения относительно оси d, чтобы максимизировать как реактивный момент, так и магнитный момент двигателя.

Типы магнитов двигателя PM

В настоящее время для электродвигателей используется несколько типов материалов с постоянными магнитами. Каждый вид металла имеет свои преимущества и недостатки.

Размагничивание постоянными магнитами

Постоянные магниты едва ли являются постоянными и имеют ограниченные возможности. На эти материалы можно воздействовать определенными силами, чтобы размагнитить их. Другими словами, можно удалить магнитные свойства материала постоянного магнита. Вещество с постоянными магнитами может размагнититься, если материал подвергается значительной деформации, нагреванию до значительных значений или подвергается воздействию сильных электрических помех.

Во-первых, натяжение постоянного магнита обычно осуществляется физическими средствами. Магнитный материал может размагнититься, если не ослабнуть, если подвергнется сильным ударам/падениям. Ферромагнитный материал обладает присущим ему магнитным свойством. Однако эти магнитные свойства могут излучать в любом множестве направлений. Одним из способов намагничивания ферромагнитных материалов является приложение к материалу сильного магнитного поля для выравнивания его магнитных диполей. Выравнивание этих диполей направляет магнитное поле материала в определенную ванну. Сильное воздействие может нарушить выравнивание атомов магнитных доменов материала, что ослабит силу предполагаемого магнитного поля.

Во-вторых, температура также может влиять на постоянный магнит. Температуры заставляют магнитные частицы в постоянном магните волноваться. Магнитные диполи способны выдерживать некоторое тепловое возбуждение. Однако длительное перемешивание может ослабить силу магнита, даже если он хранится при комнатной температуре. Кроме того, все магнитные материалы имеют порог, известный как «температура Кюри», который представляет собой порог, определяющий температуру, при которой тепловое возбуждение приводит к полному размагничиванию материала. Такие термины, как коэрцитивная сила и удерживающая способность, используются для определения способности магнитного материала сохранять прочность.

Наконец, сильные электрические помехи могут привести к размагничиванию постоянного магнита. Эти электрические помехи могут быть вызваны взаимодействием материала с сильным магнитным полем или прохождением через материал большого тока. Точно так же, как сильное магнитное поле или ток можно использовать для выравнивания магнитных диполей материала, другое сильное магнитное поле или ток, приложенный к полю, создаваемому постоянным магнитом, может привести к размагничиванию.

Самоопределение в сравнении с работой в замкнутом контуре

Последние достижения в технологии приводов позволяют стандартным приводам переменного тока «самообнаруживать» и отслеживать положение магнита двигателя. Система с обратной связью обычно использует канал z-pulse для оптимизации производительности. С помощью определенных процедур привод узнает точное положение магнита двигателя, отслеживая каналы A/B и корректируя ошибки с помощью z-канала. Знание точного положения магнита позволяет создать оптимальный крутящий момент, что приведет к оптимальной эффективности.

Серводвигатели

Серводвигатели — это двигатели с постоянными магнитами, используемые для управления движением. Как правило, в конструкции двигателя с внутренними / внутренними постоянными магнитами эти двигатели работают в паре со специальным усилителем как часть согласованного набора для достижения максимальной производительности. Усилитель был точно настроен производителем на двигатель с постоянными магнитами для достижения оптимальной производительности. Конфигурация усилителя движения/сервопривода обычно использует обратную связь двигателя, которая также обеспечивает обратную связь по положению магнитного полюса и скорости.

Кристофер Яшольт — специалист по управлению продуктами приводов в Yaskawa America Inc. Он имеет более чем девятилетний опыт работы в области управления движением. Помимо своей нынешней должности, Ящольт работал инженером технической поддержки и инженером по применению. Он имеет степень бакалавра наук Университета Северного Иллинойса, ДеКалб, Иллинойс.

Эта статья опубликована в приложении Applied Automation к Control Engineering
и Plant Engineering.

Есть ли у вас опыт и знания по темам, упомянутым в этом содержании? Вам следует подумать о том, чтобы внести свой вклад в нашу редакционную команду CFE Media и получить признание, которого вы и ваша компания заслуживаете. Нажмите здесь, чтобы начать этот процесс.

Что такое двигатель постоянного тока и как он работает

Электродвигатели в основном производят движение за счет электроэнергии. Двигатели имеют решающее значение для множества видов деятельности, от производства до транспорта и даже игрушек. Двигатель постоянного тока с постоянными магнитами представляет собой усовершенствованный тип двигателя, аналогичный асинхронным двигателям. Он использует силу электромагнитных принципов для создания крутящего момента. Как следует из названия, в этом двигателе используется постоянный магнит для создания магнитного поля для работы двигателя постоянного тока.

Компоненты двигателя PMDC

Двигатель постоянного тока состоит из двух основных компонентов

Статор

Статор — это внешняя часть двигателя постоянного тока, составляющая его корпус. Магниты установлены на внутренней стороне статора таким образом, что северный и южный полюсы магнитов попеременно обращены к якорю. Помимо размещения магнитов, статор также служит обратным путем с низким магнитным сопротивлением для магнитного потока. На случай, если магниты каким-то образом потеряют свою мощность, для компенсации этого предусмотрена дополнительная катушка возбуждения.

Якорь

Якорь — это движущаяся часть двигателя с постоянным током, состоящая из обмотки, сердечника и коллектора и соединенная с выходным валом двигателя. В других двигателях ротор генерирует собственное магнитное поле с помощью источника питания постоянного тока или индукции. В других случаях он просто состоит из ферромагнитного металла. Однако двигатели PMDC имеют другой механизм.

Сердечник арматуры состоит из пластин стальных листов с круговыми прорезями и лаковой изоляцией. Защитные листы уменьшают потери на вихревые токи в роторе.

Якорь содержит пазы с обмоткой якоря. Пригород якоря будет снабжаться током от щеток. Затем он будет преобразовывать электрическую энергию в движение. Якорь питается от подключения клемм щеток к источнику постоянного тока.

Двигатель постоянного тока считается синхронным двигателем, поскольку магниты внутри двигателя способны развивать скорость, равную току возбуждения.

Магниты, используемые в двигателях с постоянным током

Магниты, используемые в двигателях PMDC, изготовлены из трех типов материалов

Магниты Alnicos

Alnicos отличаются высокой плотностью остаточного потока и низкой коэрцитивной интенсивностью намагничивания. Следовательно, они в основном используются в приложениях, где требуется малый ток при высоком напряжении.

Ферритовые магниты
Ферритовые магниты, как правило, менее затратны и используются в двигателях постоянного тока с постоянными магнитами для экономичных устройств, таких как холодильники, блоки переменного тока или компрессоры.

Задние заземляющие магниты

Задние заземляющие магниты состоят из неодима-железа-бора или самария-кобальта. Они отличаются высокой коэрцитивной интенсивностью намагничивания и высоким остаточным потоком. Эти магниты не имеют проблем с размагничиванием из-за реакции якоря.

Материалы для заднего заземляющего магнита довольно дороги. Среди них неодим-железо-бор стоит дешевле самария-кобальта, а также может выдерживать высокие температуры. Задние заземляющие магниты используются в двигателях постоянного тока с постоянными магнитами для чувствительных к размеру устройств, включая автомобили, промышленные сервоприводы и большие промышленные двигатели.

Принцип работы двигателя постоянного тока с постоянными магнитами

Между основным принципом работы двигателя постоянного тока нет большой разницы. Когда электрический проводник помещается в магнитное поле, проводник испытывает механическую силу. Направление этой силы определяется правилом левой руки Флеминга.

В случае двигателя постоянного тока якорь находится в пределах магнитного поля, создаваемого постоянными магнитами, расположенными внутри статора. Затем якорь будет вращаться в соответствии с создаваемой силой. Якорь имеет ряд проводников, на каждый из которых действует сила, которая затем преобразуется в крутящий момент, заставляя якорь вращаться.

Как правило, двигатель постоянного тока с постоянным током работает от напряжения постоянного тока 6 В, 12 В или 24 В, которое может обеспечиваться выпрямителями или батареями. Крутящий момент создается взаимодействием между осевыми токонесущими проводниками ротора и магнитным потоком, создаваемым постоянным магнитом.

Положение между статорами и якорем может быть уменьшено, так как якорь вращается за счет крутящего момента, создаваемого магнитным полем. Изменение положения может изменить крутящий момент при повороте на 90 градусов. Коллектор, установленный на валу ротора двигателя постоянного тока, поддерживает крутящий момент, воздействующий на ротор.

Подача тока к статору активирована пригородным транспортом. Это помогает поддерживать постоянный угол 90 градусов между двумя полями. Поскольку поток тока часто активируется между обмотками, такими как витки ротора, то ток в каждой обмотке статора действительно меняется с частотой, соответствующей количеству магнитных полюсов двигателя, а также скорости.

Преимущества двигателя с постоянным током

Двигатели с постоянным током имеют множество преимуществ, среди прочего, с точки зрения эффективности, размера и стоимости.

  1. Меньший размер: двигатели PMDC намного меньше по размеру, что делает их пригодными для использования в широком диапазоне применений
  2. Низкие производственные затраты: инновации последних лет значительно снизили производственные затраты на двигатели PMDC покупатели: Двигатели PMDC дешевле по сравнению со многими другими двигателями на рынке.
  3. Простота эксплуатации: для работы двигателей с постоянным током возбуждения не требуется обмотка возбуждения
  4. Высокий КПД: двигатели с постоянным током постоянного тока эффективно снижают вихревые токи и потери в цепях возбуждения, обеспечивая высокий КПД.
  5. Гибкость: Двигатели PMDC могут иметь любой размер и мощность в диапазоне от нескольких долей энергии до нескольких единиц лошадиных сил в зависимости от применения.

Недостатки двигателей постоянного тока

  • Размагничивание: Невозможно компенсировать реакцию якоря двигателя постоянного тока. Следовательно, магнитная сила двигателя уменьшается со временем, поскольку реакция якоря размагничивается. Когда якорь начинает работать, реверсируется или перегружается, магнитные полюса подвергаются риску необратимого размагничивания.
  • Отсутствие контроля: Невозможно контролировать скорость двигателя PMDC, потому что поле в воздушном зазоре внутри двигателя фиксировано и не может управляться извне.

Области применения

Двигатели постоянного тока используются в ряде применений в домашнем хозяйстве, а также в промышленности. В случае промышленного использования двигатели PMDC могут быть разработаны для обеспечения мощности до 200 кВт. В основном двигатели PMDC используются в автомобильном секторе, где они используются для привода стеклоочистителей, электрических стеклоподъемников и вентиляторов в автомобильных обогревателях или кондиционерах.

Другие важные области применения двигателей PMDC включают

  • Игрушки
  • Компьютерные приводы
  • Переносные электрические инструменты, такие как сверлильные станки
  • Холодильники и блоки переменного тока

Заключение

Двигатели постоянного тока BLDC в основном используются в приложениях, где основным требованием является низкое тепловыделение и низкий уровень шума. Их долговечность также позволяет использовать их в машинах, которые работают в непрерывном режиме.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *