Однофазный асинхронный двигатель: принцип работы
Особенности устройства и работы
Двигатель имеет простое устройство. Статор укомплектован двумя обмотками: первая обмотка — основная, т.е. рабочая, вторая обмотка — пусковая, которая работает только во время запуска мотора.
Если сравнивать с другими двигателями, у однофазного асинхронного мотора нет момента впуска. Если присмотреться, ротор внешне напоминает клетку для грызунов. Ток одной фазы создает магнитное поле, которое состоит из двух полей. При включении двигателя ротор остается без движения.
Расчет результирующего момента при неподвижном роторе находится в основе магнитных полей, которые образуют два вращающих момента.
Расчет:
Mn = М1 – М2
М – противоположные моменты;
n – частота вращения.
Асинхронный однофазный двигатель: принцип работы
При задействовании неподвижной части наступает вращающий момент. Поскольку он возникает только после запуска, мотор укомплектован отдельным пусковым устройством.
У однофазного асинхронного мотора есть немало отличий от, к примеру, трехфазных. Если говорить об основных, стоит отметить особенности статора. На пазах предусмотрена двухфазная обмотка: основная, т.е. рабочая, и пусковая.
Магнитные оси расположены друг к другу перпендикулярно. При работе основная фаза не вызывает вращение ротора, ось магнитного поля остается неподвижной.
Для расчета обмоток статора разработаны специальные программы.
Какие бывают типы однофазных двигателей
На сегодня существуют следующие типы однофазных асинхронных моторов: с конденсаторным и бифилярным механизмом. У каждого из механизмов свои особенности, достоинства и недостатки.
Бифилярный пуск
Бифилярная обмотка в постоянном режиме не используется, поскольку при таком использовании падает значение КПД. С увеличением оборотов, она обрывается. Обмотка пуска включается на пару секунд, расчет работы по 3 сек до 30 раз в час. Если будет превышен запуск, витки перегреются.
Конденсаторный пуск
Фаза расщепленная, цепь вспомогательной обмотки начинает работать при запуске. Для того, чтобы был достигнут пусковой момент, необходимо создать круговое магнитное поле. Для наилучшего пускового момента используется конденсатор. Моторы с включенными конденсаторами в цепи называются конденсаторными и работают на основе вращения поля магнитов. У конденсаторного мотора предусмотрено две катушки, которые находятся под постоянным напряжением.
Основные принципы работы
В основе принципа работы находится короткозамкнутый ротор. Магнитное поле имеет вид двух кругов с противоположными последовательностями, они двигаются в разные стороны с одинаковой скоростью. Достаточно разогнать ротор в нужную сторону, чтобы он продолжил движение в ту же сторону.
Именно поэтому для запуска однофазного асинхронного двигателя используют кнопку пуска. С ее нажимом статор начинает работу. Токи заставляют вращаться магнитное поле, в воздушном зазоре появляется магнитная индукция. Всего спустя несколько секунд разгон ротора равняется номинальной скорости.
Если кнопку пуска отпустить, электродвигатель переходит с режима двух фаз на одну фазу. Однофазный режим поддерживается за счет переменного поля магнитов, которое из-за скольжения вращается быстрее ротора.
Схема центробежного выключателя
Для эффективной работы однофазного асинхронного двигателя принято встраивать центробежный выключатель, а также реле с замыкающими контактами. Выключатель прерывает пуск статорной обмотки при достижении номинальной скорости ротора. Тепловое реле отключает двухфазную обмотку при перегреве. Это оптимальная комплектация мотора, которая обеспечит безопасную и надежную работу оборудования на долгие годы.
Изменение направления роторного вращения происходит при перемене направления тока в любой из фаз обмотки при запуске. Для этого достаточно нажать пусковую кнопку и переустановить одну или две металлические пластины. Для образования фазового сдвига необходимо добавить в цепь конденсатор или дроссель, резистор.
При запуске двигателя работает две фазы, потом – только одна. Как видите, асинхронный однофазный двигатель принцип работы имеет достаточно простой и понятный. В отличие от других моторов, с ним просто и легко работать.
В чем достоинства однофазного асинхронного двигателя:
- доступная цена;
- простая конструкция;
- небольшой вес, компактность;
- большая двигательная способность из-за отсутствия коллектора;
- питание от синусоидальной сети.
В чем недостатки однофазного асинхронного двигателя:
- небольшой диапазон регулировки частоты вращения;
- отсутствие или небольшой пусковой момент, низкий КПД.
Однофазный асинхронный электродвигатель: устройство, принцип работы, подключение
Практически всем хорошо известны трехфазные электродвигатели, они широко применяются в промышленности, позволяют решать самые различные задачи. Да и принцип получения переменного тока, как физической величины мы привыкли рассматривать на примере тех же трехфазных асинхронных генераторов. Но как быть в бытовых условиях, где присутствует только одна фаза, народные умельцы научились выполнять подключение трехфазных электрических машин, но это не обязательно. На практике давно используется однофазный асинхронный электродвигатель, который может выполнять все свои функции даже в домашней сети переменного тока.
Конструктивные особенности
Если сравнивать однофазный электродвигатель с другими электрическими машинами, то конструктивно он также состоит из подвижного и неподвижного элемента — статора и ротора. Статор, за счет протекания электрического тока по его обмоткам, создает магнитное поле, вступающее во взаимодействие с ротором. В результате электромагнитного взаимодействия ротор приводится во вращение.
Рис. 1. Конструкция однофазного асинхронного электродвигателяОднако все не так просто, как может показаться на первый взгляд, если бы вы убрали из обычного трехфазного электродвигателя лишние две обмотки и подключили в розетку, вращение бы не началось. Мотору попросту не хватит момента для вращения ротора. Поэтому конструкция однофазного асинхронного электродвигателя имеет ряд особенностей.
Ротор
Ротор однофазного электродвигателя представляет собой такой же металлический вал, который оснащается обмоткой. На валу собирается ферромагнитный каркас из шихтованной стали по ее внешней поверхности проделываются пазы. В пазах на валу ротора устанавливаются стержни из меди или алюминия, которые выступают в роли обмотки, проводящей электрический ток. На концах стержни соединяются двумя кольцами, из-за такой конструкции его также называют беличьей клеткой.
При воздействии электромагнитного потока от статора на короткозамкнутые обмотки ротора в беличьей клетке начинает протекать ток. Ферромагнитная вставка на валу помогает усилить поток, проходящий через него. Однако далеко не во всех моделях существует магнитный проводник, в некоторых он выполняется из немагнитных сплавов.
Статор
Конструкция статора в однофазном электродвигателе имеет такой же состав, как и в большинстве электрических машин:
- металлический корпус;
- установленный внутри магнитопровод из ферромагнитного материала;
- обмотка статора, представленная медными проводниками.
Обмотки статора такого электродвигателя подразделяются на две – основную, она же рабочая, через которую осуществляется постоянная циркуляция нагрузки и пусковая, которая задействуется только в момент запуска. Обе обмотки однофазного двигателя расположены под углом 90° друг относительно друга. Такая конструкция делает их схожими с двухфазными электродвигателями, где также применяются две обмотки.
Но их объем, относительно всего пространства асинхронного двигателя отличается, основная составляет только 2/3 от общего числа пазов, а пусковые обмотки занимают 1/3.
Принцип работы
Принцип действия однофазного асинхронного электродвигателя заключается в создании пульсирующего магнитного потока от протекания электрического тока по основной обмотке статора, если рассматривать вариант пуска от вспомогательного витка. Таким образом, подключение однофазного мотора к сети мы рассмотрим на примере одно витка.
Рис. 2. Принцип формирования магнитного потока в статореКак видите на рисунке выше, переменный электрический ток, протекая по проводнику, согласно правила буравчика, создает концентрические магнитные потоки. При появлении максимума синусоиды магнитный поток также достигнет своего максимума. Однако в сети однофазного переменного электрического напряжения ток меняет свое направление движения в витке с частотой в 50 Гц. Это означает, что как только кривая пересечет ось абсцисс, ток будет протекать по витку обмотки в противоположном направлении и создаваемый ним магнитный поток получит противоположные полюса и направленность результирующего вектора:
Рис. 3. Формирование потока обратного направленияС физической точки зрения оба потока равнозначны, поэтому их смена с периодичностью 100 раз в секунду даст нулевой результат при сложении. Прямой магнитный поток окажется равным обратному:
Фпр = Фобр
Это означает, что если в таком поле окажется ротор электродвигателя, вращаться он не будет. 100 раз в минуту в нем произойдет смена магнитного потока, и короткозамкнутый ротор будет просто гудеть, оставаясь на месте. Однако ситуация в корне измениться, если возникнет импульс к начальному движению. В таком случае появиться скольжение, которое и приведет к постоянному вращению вала:
Sпр = (n1 — n2) / n1, где
- n1 – частота вращения магнитного поля однофазного электродвигателя;
- n2 – частота вращения ротора асинхронного электродвигателя;
- S – величина скольжения однофазного индукционного мотора.
При смене магнитного потока направление вращения и поля статора и ротора электродвигателя совпадут, поэтому скольжение получит иное выражение для вычисления:
Sобр
= (n1 — ( — n2)) / n1, гдеПопеременное пересечение стержней магнитными потоками разного направления создаст в них ЭДС, которая сгенерирует электрический ток в роторе и ответный магнитный поток. А он, в свою очередь, также вступит во взаимодействие с полем статора однофазного электродвигателя, как показано на рисунке ниже.
Рис. 4. Получение ЭДС в ротореКак видите, чтобы подключить трехфазный электродвигатель, достаточно подать на него напряжение, но с однофазным такой вариант не сработает.
Для запуска мотора необходим первичный импульс, который на практике может быть получен посредством:
- раскрутки вала вручную;
- кратковременного введения пусковой катушки;
- расщепления магнитного поля короткозамкнутым контуром.
Из вышеприведенных способов сегодня первый используется только в лабораторных экспериментах, из практического применения он вышел из-за опасности травмирования оператора.
Схемы подключения
Для получения базового импульса вращения могут использоваться различные схемы подключения. Со временем, некоторые из них утрачивали свою актуальность и сменялись более прогрессивными, поэтому далее мы рассмотрим наиболее эффективные, которые применяются и сейчас.
С пусковым сопротивлением
Так как в индукционных электродвигателях сопротивление обмоток имеет комплексную форму, вектор магнитного потока можно легко сместить, если в пусковую обмотку добавить сопротивление. Наличие активной составляющей даст необходимый угол сдвига между рабочими катушками однофазного электродвигателя и пусковой, от 15° до 50°, что и обеспечит разницу для начального вращения.
Рис. 5. Схема с пусковым сопротивлениемС конденсаторным запуском
В отличии от предыдущего способа, в схеме с конденсаторным пуском электродвигателя применяется емкостной элемент, который позволяет сместить электрические величины в основной и пусковой катушках на 90°, обеспечивая максимальное усилие.
Рис. 6. Схема с конденсаторным пускомНа практике пусковой конденсатор вместе с дополнительной обмоткой вводятся кнопкой пуска одновременно с подачей основного питания. Пусковая кнопка устроена таким образом, что контакт Cn возвращается пружиной в изначальное положение, сразу после окончания конденсаторного запуска.
С расщепленными полюсами
В отличии от конденсаторных двигателей, такой способ пуска предусматривает наличие особой конструкции статорного магнитопровода. В этом случае каждый полюс разделяется на два, один из которых комплектуется короткозамкнутым витком, изменяющим характеристики магнитного потока.
Рис. 7. Схема с расщепленными полюсамиСущественным недостатком этого метода пуска однофазного электродвигателя является постоянная потеря мощности и снижение КПД мотора. Поэтому его применяют только в электрических машинах до 100 кВт.
Область применения
Однофазные электродвигатели находят широкое применение в бытовых устройствах или промышленных аппаратах малой механизации. Они охватывают относительно маломощное однофазное оборудование, которое питается от 220В.
Это различные станки для обработки древесины, металла, пластика и т.д. Также однофазные электродвигатели используются в установках сельскохозяйственной отрасли для смешивания зерновых, изготовления бетона и т.д. В быту их применяют в некоторых моделях микроволновок, вытяжек, стиральных машин и куллеров, питающихся от однофазного источника.
Видео по теме
Двигатель Однофазный Переменного Тока: Принцип Работы
Простое и крайне надежное устройство
Любой электрический двигатель – это устройство, способное преобразовывать электрическую энергию в кинетическую, то есть энергию вращения, которая по цепям передается на ведомые устройства. Применяются электрические двигатели сегодня практически везде. Эти устройства, которые практически не изменились за последние 150 лет, можно встретить даже в зубных щетках.
Сегодня мы поговорим с вами про электродвигатели переменного тока однофазные, узнаем, как они устроены и за счет каких сил приводятся в движение.
Основная информация
Синхронный однофазный двигатель переменного тока работает от общественной сети
Итак, особенностью однофазного двигателя является то, что он способен запитываться от стандартной электрической сети с частотой 50 Гц и напряжением 220 В.
- Ставят такие электромоторы в основном в устройствах небольшой мощности, так как по эффективности они существенно уступают двухфазным и трехфазным аналогам.
- Мощность данных агрегатов варьируется от 5 Вт до 10 кВт.
- Однофазная схема подключения двигателя существенно влияет на его КПД, который приблизительно равен 70% от показателей такого же по мощности двигателя, но трехфазного. Также у них меньше пусковой момент, а перегрузочная способность выше.
Электрический двигатель в разрезе
- На самом деле, если разобрать строение такого двигателя, то он будет иметь 2 фазы, но так как задействуется, фактически, лишь одна из них, то и называют его однофазным.
- Строение мотор имеет самое что ни наесть классическое – подвижная часть (ротор или якорь) и неподвижная часть (статор).
- Вращение подвижных частей двигателя происходит за счет взаимодействия магнитных полей – подробнее об этом чуть дальше.
- Несомненным плюсом такого мотора можно считать простую и надежную конструкцию с короткозамкнутым ротором.
- А главным минусом можно посчитать неспособность самостоятельно выработать магнитное поле, что не позволяет ему самостоятельно запускаться при подключении к сети питания.
- Считается, что для того чтобы ротор пришел в движение требуется минимум 2 обмотки, а также смещение одной относительно второй на определенный градус.
Асинхронный двигатель переменного тока
- Если сопоставить все эти моменты, то можно понять следующее.
- На статоре однофазного электромотора располагается пусковая обмотка, которая смещена по отношению к рабочей, основной обмотке на 90 градусов.
- В цепь, питающую обмотку, включаю фазосдвигающее устройство – конденсаторы, катушки индуктивности, резисторы активного типа.
- То есть, фактически мы говорим про те же моторы двух- и трехфазного типа, только сдвиг фазы достигается не за счет подключения, а за счет схем согласования.
Принцип действия однофазного двигателя
Однофазный синхронный двигатель переменного тока
Теперь давайте попробуем систематизировать то, что мы понаписали в предыдущей главе, чтобы принцип работы таких устройств стал понятен каждому.
Как работает асинхронный электродвигатель однофазный
- Итак, при подключении питания, ток начинает бежать по обмоткам статора. Движение тока порождаем пульсирующее магнитное поле. Почему пульсирующее, да потому что ток в общественных сетях имеет частоту в 50 Гц, то есть за секунду 50 раз меняет направление своего движения. Соответственно меняются и параметры магнитного поля
- Мы все знаем про такое явление, как электромагнитная индукция. Если кто-то не знает, то бегом читать – вкратце, это явление порождает электрический ток в проводнике, который перемещается поперек магнитного поля, причем нет никакой разницы, что будет двигаться – проводник или поле.
- Если устройство не будет иметь пусковых механизмов, то ротор останется неподвижным, так как в нем до сих пор нет тока, а значит и магнитного поля, а магнитные поля от тока в статора равнозначны, и тянут, так сказать, в разных направлениях, как лебедь, рак и щука.
- Но если ротору дать толчок в любую из сторон, в нем моментально начнет расти электродвижущая сила (ЭДС), которая начнет генерировать свое магнитное поле. В результате взаимодействия этих полей двигатель продолжит вращаться в туже сторону, несмотря на то, что основное магнитное поле постоянно меняет свое направление.
Однофазный коллекторный электродвигатель переменного тока – принцип работы
- Заставляет сдвинуться с места ротор пусковая обмотка, которую мы уже упоминали. Точнее делает это результирующее магнитное поле от основной и пусковой обмоток.
- Эта обмотка требует включения только при пуске мотора.
Интересно знать! В маломощных моторах пусковая обмотка является короткозамкнутой.
- Момент включения пусковой обмотки связан с пусковой кнопкой – обычно ее необходимо удерживать на протяжении нескольких секунд, пока двигатель не начнет вращаться с нормальной скоростью.
- Когда контакт на кнопке размыкается, двигатель переходит полностью в однофазный режим.
- Важно помнить, что пусковая фаза не предназначается для долгой работы – обычно время ее активного состояния составляет около 3 секунд. Если попытаться превысить данное значение обмотка начнет перегреваться, что может привести к выходу элемента из строя.
- Становится понятным, что ручной контроль за пуском двигателя неэффективен и малонадежен, поэтому данный процесс в современных устройствах автоматизирован. В них устанавливаются тепловые реле и центробежные выключатели.
- Первый элемент контролирует нагрев обеих обмоток и отключает питание, если температура достигает критического значения.
- Второй отключает питание пусковой фазы, как только ротор разгонится до нужных оборотов.
Подключение двигателя
Как подключается коллекторный однофазный электродвигатель переменного тока
Итак, мы уже поняли, что для работы такому мотору требуется всего одна фаза на 220 В, то есть включается он в обыкновенную розетку, что, собственно, и делает эти устройства такими популярными несмотря на низкий КПД и прочие недостатки.
Интересно знать! Практически все бытовые приборы оборудованы именно такими двигателями.
Различные варианты подключения
- Однофазные двигатели переменного тока по подключению делят на три типа: вариант с пусковой обмоткой и рабочим конденсатором.
- В первом пусковая обмотка запитана через конденсатор только во время старта – собственно, его мы описали в предыдущей главе.
- Во втором она подключена через конденсатор постоянно.
- В третьем вместо конденсатора используется сопротивление.
Коллекторный однофазный двигатель переменного тока от стиральной машины
- Для последнего типа подключения может использоваться пусковой резистор, который подключается к пусковой обмотке последовательно. За счет этого удается получить сдвиг фаз на 30 градусов, чего вполне хватает для раскрутки двигателя.
- Также дополнительная обмотка может сама по себе иметь высокое активное сопротивление.
- Сдвиг фаз также может быть получен за счет того, что пусковая фаза будет иметь высокое сопротивление и меньшую индуктивность.
Конденсаторный пуск имеет следующие особенности:
- Чтобы достигнуть максимального значения пускового момента, достаточного для старта двигателя, нужно вращающееся круговое магнитное поле. Таковое возникает, когда обмотки сдвинуты относительно друг друга на 90 градусов – сразу становится понятно, что ни резистор, ни дроссель не смогут задать такое значение. А вот если правильно подобрать емкость конденсатора – ну вы поняли…
- Конденсатор необходимо подбирать по потребляемому току.
Конденсатор и переменный ток
Интересно знать! На нашем сайте есть очень познавательная статья про то, как конденсаторы ведут себя в цепи переменного тока. Если интересно, обязательно ознакомьтесь.
Кстати, если вы пытаетесь самостоятельно подключить такой двигатель в сеть, но не знаете, какие выводы к какой обмотке относятся, просто замерьте их сопротивление. Для основной оно составит где-то 12 Ом, а для пусковой – 30.
Строение асинхронного однофазного двигателя
Однофазный коллекторный двигатель переменного тока
Итак, мы вами в первой части статьи разобрали общие понятия об однофазных двигателях, принципе их работы и подключении. Такой информации хватило бы для поверхностного изучения, но нас такой подход не совсем устраивает. Для любителей технических подробностей, давайте разберем теперь все детальнее.
Асинхронный двигатель
Электрические моторы бывают синхронными и асинхронными. Разница между ними состоит в том, что в синхронном, скорость вращения якоря совпадает с вращением магнитного поля, а в асинхронном ротор несколько отстает.
- Последний вариант является самым распространенным, так как имеет более простую конструкцию и очень надежен. Синхронные применяются лишь в тех сферах, где очень важен контроль за оборотами двигателя.
- Вы уже, наверное, обратили внимание на то, что словом фаза называются разные понятия – и количество питающих проводов, и обмотки на статоре и сдвиг по углам. И мы даже сказали, что однофазные двигатели, фактически имеют две фазы, но называются они таковыми именно по количеству питающих проводов.
- Мы также писали, что мотор имеет подвижную и неподвижную части. Давайте разберем их строение подробнее.
Коллекторные электродвигатели переменного тока однофазные
- Ротор агрегата представляет собой вал, который держится в корпусе двигателя при помощи подшипников вращения. За счет них же он свободно крутится вокруг своей оси. Строение этого элемента будет отличаться в зависимости от того является двигатель коллекторным или бесколлекторным. Давайте начнем со второго.
- На валу бесколлекторного фазного ротора закреплен магнитопровод, который набирается из шихтованных стальных пластин.
- Снаружи магнитопровода имеются пазы, в которых находятся стержни обмоток – обычно из меди.
Двигатель с ротором фазного типа
- С концов стержни соединяются с кольцами, которые накоротко их замыкают – их называют замыкающими кольцами.
Строение фазного ротора
- Внутри данной обмотки будет течь ток, который индуктируется магнитным полем статора – никаких внешних подключений он не имеет.
- Магнитопровод служит для лучшего прохождения магнитного поля, которое создается в роторе.
- Для таких устройств характерна высокая надежность, так как они не имеют трущихся деталей. Управление скоростью вращения двигателя осуществляется только за счет тока на основной обмотке статора.
- Коллекторный двигатель переменного тока однофазный по своему строению мало чем отличается от ротора двигателя постоянного тока. Собственно, такие двигатели являются универсальными и могут запитываться как переменным, так и постоянным током.
- Фазы ротора подключаются к питающей сети через коллектор, который контактирует со щетками, которые в свою очередь уже соединяются с питающей цепью.
- Строение таких двигателей более сложное, также их надежность будет ниже, но они являются более гибкими в управлении.
На фото – статор электродвигателя
- Статор является пассивной частью электромотора – он неподвижен и состоит из магнитопровода и обмотки.
- Назначение этого элемента – генерирование неподвижного или вращающегося магнитного поля.
- У однофазного двигателя от статора будет отходить четыре вывода – два для рабочей обмотки и два для пусковой. Как их отличить мы уже писали.
Помимо этих элементов двигатели имеют следующие составляющие:
- Станина и корпус устройства, которые удерживают в себе все рабочие части и позволяют закрепить устройство на поверхности;
- Внешняя электрическая цепь – кнопка включения, устройство регулировки оборотов, провода и устройства для шунтирования дополнительной обмотки;
- Крыльчатка – активное охлаждение двигателя, располагается также на валу;
- Подшипники вращения.
Что происходит в обмотках при включении
Чтобы лучше понять принцип взаимодействия магнитных полей, давайте представим, что у нашего двигателя обмотка имеет всего один виток. Провод при этом уложен в магнитопроводе так, что его части разведены на 180 градусов, то есть уложены друг напротив друга.
- Подключаем питание, и по нашему проводу начинает течь синусоидальный или переменный ток.
Полный период синусоидального тока
- Период синусоидального тока состоит из двух полупериодов, при которых ток двигается в разных направлениях. Именно это изображено на схеме выше.
- Как вы можете видеть, изначально значение тока равно нулю, затем он растет, достигая пика, после чего падает до нулевой отметки и опять возрастает, но уже в другом направлении.
- Давайте представим, что ток и магнитное поле от него замерли в какой-то точке. Представьте, что смотрите на виток сбоку – он будет похож на букву «С».
- Ток протекает в верхней горизонтальной части обмотки влево, соответственно, в нижней – вправо. При этом ток одинаков и получается так, что создаваемое им магнитное поле противодействует друг другу. Почему ротор и находится в неподвижном состоянии.
- Итак, ток течет, меняется его величина и направление, как и у магнитного поля, но они всегда остаются в противовесном состоянии, поэтому ротор так и продолжает стоять.
Как же создается сила, заставляющая ротор вращаться?
Инструкция по работе однофазного двигателя переменного тока
- Как вариант можно толкнуть его рукой и этого будет достаточно, чтобы совершить пуск, но мы же говорим про техническое решение вопроса!
- Ну ладно, мы уже знаем, что нам потребуется еще одна обмотка.
- Обмотка сделана из более толстого провода, чтобы она смогла пропустить большие токи. Фаза тока в этой обмотке отстает от основной на 90 градусов, то есть когда ток в основной обмотке уже опустился до нуля, здесь он буден на пике (отстает на четверть периода). В итоге разница магнитных полей придает ротору первый вращающий импульс. Направление вращения зависит от полярности подключения концов пусковой обмотки.
- Как только ротор начинает вращаться, в нем создается ЭДС.
- Направление тока в стержнях будет противоположно направленным, так как на них воздействуют разные магнитные поля.
- За счет возникновения вращающего момента двигатель моментально подхватит направление вращения и начнет раскручивать ротор до достижения им максимальных оборотов. Но почему не происходит торможения, когда ток в статоре меняет свое направление на обратное?
- Дело в том, что, по сути ничего не меняется. Просто подталкивающая вращение сила будет переходить с верхней части обмотки на нижнюю и обратно. А так как двигатель уже получил смещение в одну из сторон, а противодействующая сила может лишь уравновесить, то коэффициент ускорения будет несколько сильнее торможения.
То есть, в роторе будут наводиться токи с разной частотой, которые будут создавать моменты сил с разными направлениями, именно поэтому якорь продолжит вращаться в том же направлении.
На этом закончим наш материал. Мы узнали, как устроены электродвигатели переменного тока однофазные, если тема вам интересно, то посмотрите следующее увлекательное видео.
Однофазные двигатели ~ Электропривод – информационный ресурс по электроприводу
Однофазные асинхронные двигатели чаще всего применяются в бытовой технике. Система электроснабжения построена так, что в наш дом подводится только однофазная электрическая сеть. Поэтому в бытовых сетях широко используются однофазные асинхронные двигатели. Однофазные асинхронные электродвигателям переменного тока отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания. Промышленность выпускает однофазные двигатели на небольшие мощности (до 0,5 кВт). Их сфера применения включает в себя вентиляторы, компрессоры холодильников, приводы барабанов стиральных машин, и другая бытовая техника, где не требуется высокая скорость вращения.
Устройство однофазного асинхронного двигателя
Однофазный асинхронный двигатель, обычно имеет на статоре как минимум две обмотки. Друг от друга они сдвинуты на 90 электрических градусов по току, для получения пускового момента Одна из них выступает как рабочая, другая как пусковая. Двигатели получили название однофазных, так как они предназначены для питания от однофазной сети переменного тока.
Кроме того, существует много схем питания трехфазных двигателей от однофазной сети. Для получения вращающегося магнитного поля пусковую обмотку питают через фазосдвигающее устройство, в качестве которого используется резистор или конденсатор. В качестве резистора иногда используют пусковую обмотку, намотанную тонким проводом и большим числом витков, для увеличения сопротивления. В двигателях с пусковым резистором магнитное поле эллиптическое; в двигателях с пусковым конденсатором поле ближе к круговому. Сразу после запуска, пусковая обмотка отключается и двигатель работает как однофазный однообмоточный. Его результирующее поле резко эллиптическое.
По этой причине однофазные двигатели имеют низкие энергетические показатели и малую перегрузочную способность. В двигателях с постоянно включенным конденсатором емкость последнего выбирается, как правило, из условий обеспечения кругового поля в номинальном режиме. Для улучшения пусковых свойств параллельно рабочему конденсатору на время пуска подключается пусковой конденсатор.
В электроприводах с легкими условиями пуска часто применяются однофазные АД с экранированными полюсами. В таких двигателях роль вспомогательной фазы играют размещаемые на явно выраженных полюсах статора короткозамкнутые витки. Поскольку пространственный угол между осями главной фазы (обмотки возбуждения) и витка много меньше 90°, поле в таком двигателе резко эллиптическое. Поэтому пусковые и рабочие свойства двигателей с экранированными полюсами невысоки. Используются однофазные асинхронные двигатели с короткозамкнутым ротором: с повышенным сопротивлением пусковой фазы, с пусковым конденсатором, с рабочим конденсатором, с тем и другим, а также двигатели с экранированными полюсами. Однофазный асинхронный электродвигатель имеют тот же принцип действия, что и трёхфазный электродвигатель. Основным его недостатком является более низкий пусковой момент.
Принцип работы однофазных асинхронных электродвигателей
Однофазный асинхронных электродвигатель, как и трехфазный, работает по принципу электромагнитной индукции. Однако между ними есть и различия:
— однофазные электродвигатели, обычно работают при более низком напряжении 220 В;
— поле статора однофазного двигателя не вращается;
В каждом полупериоде синусоиды, напряжение меняет свой знак и соответственно от отрицательного к положительному меняются полюса. В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это объясняет, почему однофазный асинхронный электродвигатель не может быть пущен самостоятельно.Однако, его можно было бы запустить механически, провернув вал ротора с последующим немедленным подключением питания, как это делалось в старых проигрывателях грампластинок. Сейчас такой способ запуска не применяется, а пуск всех электродвигателей осуществляется автоматически.
Ограничения применения однофазных асинхронных двигателей
При использовании однофазных электродвигателей необходимо помнить, что существуют некоторые ограничения при их применении:
- Однофазные электродвигатели нельзя использовать в режиме холостого хода. Так как при малых нагрузках они сильно перегреваются;
- Не рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки;
- Так как у электродвигателя вращающееся магнитное поле асимметрично, то полный ток в одной или двух обмотках может превышать полный тока в сети. Такие токи приводят к перегреву обмоток и выходу их из строя;
О напряжении
Важно напомнить о том, что величина напряжения на пусковой обмотке электродвигателя может превышать значение сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы.
Однофазный асинхронный двигатель: его устройство и принцип действия
Дмитрий Левкин
Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.
Основные части однофазного двигателя: ротор и статор
Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.
Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.
Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.
Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга
Принцип работы однофазного асинхронного двигателя
Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.
Проанализируем случай с двумя обмотками имеющими по оному витку
Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.
Пульсирующее магнитное поле
Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.
Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:
- где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
- nобр – частота вращения магнитного поля в обратном направлении, об/мин,
- f1 – частота тока статора, Гц,
- p – количество пар полюсов,
- n1 – скорость вращения магнитного потока, об/мин
Разложение пульсирующего магнитного потока на два вращающихся
Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение.
Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока.
В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.
Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:
- где sпр – скольжение ротора относительно прямого магнитного потока,
- n2 – частота вращения ротора, об/мин,
- s – скольжение асинхронного двигателя
Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока
Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр
- где sобр – скольжение ротора относительно обратного магнитного потока
Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:
- где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц
- где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц
Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.
Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,
скольжение ротора относительно прямого магнитного потока sпр = 0,04;частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;скольжение ротора относительно обратного магнитного потока sобр = 1,96;частота тока наводимого обратным магнитным потоком f2обр = 98 Гц
- Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент
- ,
- где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
- сM — постоянный коэффициент, определяемый конструкцией двигателя
Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:
,
- где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м
Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,
,
Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.
При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно.
Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления.
Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.
,
- где r2 — активное сопротивление стержней ротора, Ом,
- x2обр — реактивное сопротивление стержней ротора, Ом.
Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.
Действие пульсирующего поля на неподвижный ротор
При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .
Пуск однофазного двигателя. Как создать начальное вращение?
Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов.
Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга.
Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].
После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.
Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.
Подключение однофазного двигателя
С пусковым сопротивлением
Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].
Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.
Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.
Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.
Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.
С конденсаторным пуском
Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.
Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.
Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.
Однофазный электродвигатель с экранированными полюсами
Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.
Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения.
Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток.
Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.
При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса.
Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk.
Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.
Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.
Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.
Однофазный электродвигатель с асимметричным магнитопроводом статора
Источник: https://engineering-solutions.ru/motorcontrol/induction1ph/
Двигатель асинхронный однофазный — устройство, принцип работы и схема подключения
Никто глубоко не задумывался о том, как бы жили люди без такого изобретения, как электродвигатель асинхронный однофазный. Казалось бы, что такое умное слово никого не касается и витает где-то в заоблачной дали. Но этот большой помощник в быту встречается на каждом шагу.
Скажите, как можно обходиться без холодильника или пылесоса. А ведь не будь двигателя, всего этого не было бы сейчас. Предлагаем в статье узнать все подробности об этом устройстве, а дочитавшим до конца будет бонус в виде полезного справочника по асинхронным двигателям
Так выглядит однофазный асинхронный двигатель.
История возникновения
Более 60 лет понадобилось многим ученым, пока однофазный асинхронный двигатель начал покорять просторы земного шара. Началось все с 1820-х годов, когда Джозеф Генри и Майкл Фарадей – открыли явления индукции и начали первые эксперименты.
В 1889-1891годах русский электротехник, поляк по происхождению, Михаил Осипович Доливо-Добровольский придумал ротор в виде “беличьей клетки”. К этому изобретению его подтолкнул доклад Феррариса «О вращающемся магнитном поле». С началом ХХ века пришло широкое внедрение электромеханических устройств.
Применение однофазных асинхронных двигателей
Известно, что однофазные двигатели уступают трехфазным по некоторым характеристикам. Однофазные моторы имеют в основном бытовое назначение:
- пылесосы;
- вентиляторы;
- электронасосы;
- холодильники;
- машины для переработки сырья.
Будет интересно➡ Что такое трехфазный двигатель и как он работает
Для того, чтобы выполнить подключение асинхронного двигателя нужна однофазная сеть переменного тока. Такие двигатели работают при напряжении 220 Вольт и частоте 50 Гц.
Прилагательное «асинхронный» указывает на то, что скорость вращения якоря отстает от магнитного поля статора.
Однофазные двигатели имеют две независимых цепи, но работают они в основном на одной, отсюда и название. Основные части двигателя:
- Статор (неподвижный элемент).
- Ротор (вращающаяся часть).
- Механическое соединение этих двух частей.
- Поворотные подшипники.
Соединение состоит из внутренних колец, установленных на закрепленных втулках вала ротора, наружных колец в защитных боковых крышках, прикрепленных к статору.
Для запуска однофазного асинхронного двигателя с пусковой обмоткой установлена другая катушка. Обмотка стартера установлена со смещением от рабочей катушки на 900 С. Для создания сдвига тока, в цепи однофазного двигателя имеется схема сдвига фаз. Сдвиг можно получить при помощи различных элементов. Это могут быть:
- Активное сопротивление.
- Емкостное.
- Индуктивное.
В видео, представленном ниже, показан принцип работы однофазных асинхронных двигателей.
Принцип действия
Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.
Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.
Принцип работы однофазного асинхронного двигателя.
Момент запуска
Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.
Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.
Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.
Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.
Возможно, вам будет интересно также почитать все, что нужно знать о шаговых электродвигателях в другой нашей статье.
Варианты подключения
Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.
Известны два типа однофазных двигателей в зависимости от способа подключения:
- Однофазный асинхронный двигатель с пусковой обмоткой.
- Однофазный двигатель с конденсатором.
Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.
Схема подключения однофазного асинхронного двигателя с помощью конденсаторов.
Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.
Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.
Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.
Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.
Схемы включения однофазного асинхронного двигателя.
Различные варианты подключения:
- временное включение электрического тока на стартовую обмотку через конденсатор;
- подача на пусковое устройство через резистор, без конденсатора;
- запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.
Расчет проводной принадлежности
Для расчета проводов, соединяющих рабочую и пусковую обмотки, понадобится омметр. Измеряется сопротивление обмоток. R рабочей обмотки должно быть ниже, чем у стартера. Например, если измерения составили 12 Ом для одной обмотки и 30 Ом для другой, то сработают обе. У рабочей обмотки поперечное сечение больше, чем у выходной.
Выбор емкости конденсатора
Чтобы определить емкость конденсатора, необходимо знать ток потребления электродвигателя. Если ток 1,4 А, то понадобится конденсатор емкостью 6 микрофарад. Также можно ориентироваться на таблицу расчета емкости конденсатора, приведенную ниже.
Таблица расчета емкости конденсаторов.
Проверка работоспособности
Тестирование начинается с визуального осмотра. Возможные неисправности:
- Если опорная часть на устройстве была сломана, это может привести к неисправностям.
- При потемнении корпуса в средней части идет перегрев. Бывает попадание в корпус различных посторонних предметов, это способствует перегреванию. При износе и загрязнении подшипников возможен перегрев.
- Когда однофазный электродвигатель на 220 вольт имеет в схеме подключения конденсатор увеличенного размера, он начинает перегреваться.
Запустить двигатель минут на пятнадцать, а затем проверить, не прогрелся ли он. Если двигатель не греется, причиной являлась увеличенная емкость конденсатора. Необходимо установить конденсатор, имеющий меньшую емкость.
Для лучшего понимания механизма работы двигателей, рекомендуем также подробнее прочитать, что такое трехфазный двигатель и как он работает.
Достоинства и недостатки
Основными плюсами являются:
- простота конструкции;
- повсеместная доступность однофазных сетей переменного тока 220 В при частоте 50 Гц (практически во всех районах).
К минусам можно отнести следующие обстоятельства:
- невысокий пусковой момент двигателя;
- низкая эффективность.
Основные достоинства и недостатки однофазных асинхронных двигателей
Заключение
Маломощные однофазные электродвигатели выпускаются в разной модификации и для разного назначения. Перед приобретением необходимо точно знать некоторые характеристики. Подробно с устройством данного типа двигателей можно ознакомиться, скачав книгу Алиева И. И. Асинхронные двигатели в трехфазном и однофазном режимах.
Российские производители предлагают некоторые серии устройств, имеющие мощность от 18 до 600 Вт, частоту вращения 3000 и 1500 об/мин. Все они предназначены для подключения в сеть с напряжением 127, 220 или 380 Вольт и частотой 50 Гц.
Источник: https://ElectroInfo.net/jelektricheskie-mashiny/odnofaznye-asinhronnye-dvigateli-na-sluzhbe-chelovechestva.html
Асинхронный двигатель — принцип работы и устройство
8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.
Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение.
Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.
Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.
Асинхронный двигатель — это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный.
При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.
Устройство
- На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.
- Основными частями асинхронного двигателя являются статор (10) и ротор (9).
Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.
Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.
Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали.
В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«.
В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.
Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам.
С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.
Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.
Принцип работы
При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.
Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС.
Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.
Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.
Скольжение это крайне важная величина.
В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента.
В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения.
Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.
Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.
Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.
Рекомендуем к прочтению — однофазный асинхронный двигатель.
1 1 1 1 1 1 1 1 1 1 4.73 (440 Голоса)
Источник: https://electroandi.ru/elektricheskie-mashiny/asdvig/asinkhronnyj-dvigatel-printsip-raboty-i-ustrojstvo.html
Асинхронный двигатель
Содержание:
Среди устройств, преобразующих электрическую энергию в механическую, несомненным лидером является трехфазный асинхронный двигатель – простой и надежный в эксплуатации агрегат.
Благодаря своим качествам, он получил широкое применение в промышленности и других областях, где используются механизмы. Название двигателя связано с основным принципом его работы.
У этих устройств магнитное поле статора вращается с частотой, превышающей частоту вращения ротора. Работа агрегата осуществляется от сети переменного тока.
Где применяются
Асинхронные двигатели активно используются во многих отраслях промышленности и сельского хозяйства.
Они потребляют примерно 70% всей энергии, предназначенной для преобразования электричества во вращательное или поступательное движение.
Асинхронные двигатели зарекомендовали себя наиболее эффективными в качестве электрической тяги, без которой не обходятся многие технологические операции.
Асинхронные двигатели обладают множеством положительных качеств. Простая конструкция позволяет изготавливать наиболее дешевые и надежные устройства. Минимальные расходы по эксплуатации обеспечиваются отсутствием скользящего узла токосъема, что одновременно повышает и надежность агрегата.
Данный тип электродвигателей может быть трехфазным или однофазным, в зависимости от количества питающих фаз. В случае необходимости и при соблюдении определенных условий, трехфазный агрегат может питаться и работать от однофазной сети.
Эти устройства применяются не только в промышленности, но и в бытовых условиях, а также на садовых участках или домашних мастерских.
Однофазные двигатели обеспечивают работу и вращение вентиляторов, стиральных машин, небольших станков, водяных насосов и электроинструмента.
Для нормального действия асинхронного агрегата необходимо выбирать наиболее рациональную схему управления. Трехфазный двигатель будет работать в однофазном режиме при условии правильного расчета конденсаторов, выбора типа и сечения проводов, аппаратуры защиты и управления.
Устройство асинхронного двигателя
Понятие асинхронный означает не совпадающий по времени, неодновременный. В связи с этим, ротор такого двигателя вращается с частотой, меньшей чем частота вращения электромагнитного поля статора.
Подобное отставание называется скольжением и обозначается символом S в формуле, применяемой для расчетов:
- S = (n1 – n2)/n1 – 100%, где n1 является синхронной частотой магнитного поля статора, а n2 – частотой вращения вала.
Конструктивно, стандартный асинхронный электродвигатель включает в себя следующие элементы и детали:
- Статор с обмотками. Эту функцию также может выполнять станина, внутри которой помещается статор с обмотками.
- Короткозамкнутый ротор. Если используется фазный – он может называться якорем или коллектором.
- Подшипники различного типа – качения или скольжения. На двигателях повышенной мощности в передней части установлены крышки для подшипников с уплотнениями.
- Металлический или пластмассовый охлаждающий вентилятор, помещенный в кожух с прорезями для подачи воздуха.
- Подключение кабелей осуществляется с помощью клеммной коробки.
Данные конструктивные элементы могут незначительно изменяться, в зависимости от модификации электродвигателя.
Как уже отмечалось, асинхронные двигатели бывают трехфазными или однофазными. Первый вариант, в свою очередь, выпускается с короткозамкнутым или фазным ротором. Наибольшее распространение получили трехфазные асинхронные электродвигатели с короткозамкнутым ротором, поэтому их следует рассмотреть более подробно.
Статор обладает круглой формой и собирается из специальных стальных листов, изолированных между собой. В результате, конструктивно образуется сердечник с пазами, в которые укладываются обмотки.
Для этих целей используется обмоточный медный провод, изолированный лаком. В мощных агрегатах обмотки делаются в виде шины. При укладке они сдвигаются между собой на 120 градусов.
Соединение осуществляется по схеме звезды или треугольника.
Конструкция самого короткозамкнутого ротора изготавливается в виде вала с надетыми на него стальными листами. Этот набор листов образует сердечник с пазами, заливаемые расплавленным алюминием. Равномерно растекаясь по пазам, алюминий образует стержни, края которых замыкают алюминиевые кольца.
Фазный ротор состоит из вала с сердечником и трех обмоток. С одного конца они соединяются звездой, а с другого – соединяются с токосъемными кольцами, на которые с помощью щеток подается электрический ток. Во время запуска образуется большой пусковой ток асинхронного двигателя. Его можно уменьшить путем добавления к фазным обмоткам нагрузочного реостата.
Принцип работы
Устройство и конструктивные особенности асинхронного двигателя определяют и принцип действия данного агрегата. Когда на обмотку статора подается напряжение, в ней образуется магнитное поле.
Такая подача напряжения приводит к изменениям магнитного потока и всего магнитного поля статора. Измененные магнитные потоки поступают к ротору, приводят его в действие, после чего он начинает вращаться.
Для того чтобы статор и ротор работали асинхронно, требуется, чтобы значения напряжения и магнитного потока были равны переменному току, используемому в качестве источника питания.
Сам двигатель работает следующим образом:
- Вращающееся магнитное поле воздействует на короткозамкнутую обмотку, специально приспособленную для вращения.
- Поле пересекает проводники роторной обмотки, индуктируя в них электродвижущую силу.
- Под воздействием силы в проводниках ротора начнется течение электрического тока, взаимодействующего с вращающимся магнитным полем. Это приводит к появлению электромагнитных сил, воздействующих на обмотку ротора.
- В сумме, действия приложенных сил вызывают появление вращающего момента, приводящего во вращение ротор в направлении магнитного поля.
Величина индуктированной ЭДС зависит от частоты пересечения проводников вращающимся магнитным полем. То есть, чем выше разница между n1 и n2, тем больше будет величина ЭДС. Ротор будет вращаться с частотой n2, которая всегда будет отставать от синхронной частоты поля статора n1.
Эта разница между обеими частотами и будет частотой скольжения ∆n= n1- n2. Данное неравенство является необходимым условием появления электромагнитного вращающегося момента в асинхронном двигателе.
Поэтому агрегат так и называется, поскольку вращение ротора происходит несинхронно с полем статора.
Что такое скольжение
Понятие скольжения представляет собой отношение частоты вращения к частоте поля. Данная величина S берется в процентном отношении от частоты вращения магнитного поля. В соответствии с формулой, рассмотренной ранее, частота вращения ротора, определяемая с помощью скольжения составит: n2 = n1 x (1 – S).
Ротор асинхронного двигателя вращается в том же направлении, что и его магнитное поле. В свою очередь, направление вращения поля зависит от последовательности фаз трехфазной сети.
Изменить направление вращения ротора возможно за счет изменения направления вращения поля, создаваемого статором. В этом случае изменяется порядок поступления импульсов тока к отдельным обмоткам.
В случае необходимости может быть задано вращение по часовой или против часовой стрелки.
Важным моментом считается пуск асинхронного двигателя, при котором происходит пересечение обмотки ротора вращающимся магнитным полем. В результате, индуктируется большая ЭДС, создающая высокий пусковой ток. Подобное состояние компенсируется специальной нагрузкой, снижающей скорость вращения ротора.
Источник: https://electric-220.ru/news/asinkhronnyj_dvigatel/2017-12-09-1400
Принцип действия асинхронного двигателя — Asutpp
Электродвигатель предназначен для преобразования, с малыми потерями, электрическую энергию в механическую.
Предлагаем рассмотреть принцип действия асинхронного электродвигателя с короткозамкнутым ротором, трехфазного и однофазного типа, а также его конструкцию и схемы подключения.
Строение двигателя
Основные элементы электродвигателя это – статор, ротор, их обмотки и магнитопровод.
Преобразование электрической энергии в механическую происходит во вращающейся части мотора — роторе.
У двигателя переменного тока, ротор получает энергию не только за счет магнитного поля, но и при помощи индукции. Таким образом, они называются асинхронными двигателями. Это можно сравнить с вторичной обмоткой трансформатора. Эти асинхронные двигатели еще называют вращающимися трансформаторами. Чаще всего используется модели рассчитанные на трех фазное включение.
Конструкция асинхронного двигателя
Направление вращения электродвигателя задается правилом левой руки буравчика: оно демонстрирует связь между магнитным полем и проводником.
Второй очень важный закон – Фарадея:
- ЭДС наводиться в обмотке, но электромагнитный поток меняется во временем.
- Величина наведенной ЭДС прямо пропорциональна скорости изменения электрического потока.
- Направление ЭДС противодействует току.
Принцип действия
При подаче напряжения на неподвижные обмотки статора, оно создает магнитное в статора. Если подается напряжение переменного тока, то магнитный поток, созданный им, изменяется. Так статор производит изменение магнитного поля, и ротор получает магнитные потоки.
Таким образом, ротор электродвигателя принимает эти поток статора и, следовательно, вращается. Это основной принцип работы и скольжения в асинхронных машинах. Из вышеизложенного следует отметить, что магнитный поток статора (и его напряжение) должно быть равно переменному току для вращения ротора, так что асинхронная машина может работать только от сети переменного тока.
Принцип работы асинхронного двигателя
Когда такие двигатели действуют в качестве генератора, они будет генерировать непосредственно переменный ток. В случае такой работы, ротор вращается с помощью внешних средств скажем, турбины.
Если ротор имеет некоторый остаточный магнетизм, то есть некоторые магнитные свойства, которые сохраняет по типу магнита внутри материала, то ротор создает переменный поток в стационарной обмотке статора.
Так что это обмотки статора будут получать наведенное напряжение по принципу индукции.
Индукционные генераторы используются в небольших магазинах и домашних хозяйствах, чтобы обеспечить дополнительную поддержку питания и являются наименее дорогостоящими из-за легкого монтажа.
В последнее время они широко используется людьми в тех странах, где электрические машины теряют мощность из-за постоянных перепадов напряжения в питающей электросети.
Большую часть времени, ротор вращается при помощи небольшого дизельного двигателя соединенного с асинхронным генератором переменного напряжения.
Как вращается ротор
Вращающийся магнитный поток проходит через воздушный зазор между статором, ротором и обмоткой неподвижных проводников в роторе.
Этот вращающийся поток, создает напряжение в проводниках ротора, тем самым заставляя наводиться в них ЭДС.
В соответствии с законом Фарадея электромагнитной индукции, именно это относительное движение между вращающимся магнитным потоком и неподвижными обмотками ротора, которые возбуждает ЭДС, и является основой вращения.
Двигатель с короткозамкнутым ротором, в котором проводники ротора образовывают замкнутую цепь, в следствии чего возникает ЭДС наводящая ток в нем, направление задается законом Ленса, и является таким, чтобы противодействовать причине его возникновения.
Относительное движение ротора между вращающимся магнитным потоком и неподвижным проводником и является его действием к вращению. Таким образом, чтобы уменьшить относительную скорость, ротор начинает вращаться в том же направлении, что и вращающийся поток на обмотках статора, пытаясь поймать его.
Частота наведенной на него ЭДС такая же, как частота питания.
Гребневые асинхронные двигатели
Когда напряжение питания низкое, возбуждение обмоток короткозамкнутого ротора не происходит.
Это обусловлено тем что, когда число зубцов статора и число зубьев ротора равное, таким образом вызывая магнитную фиксацию между статором и ротором.
Этот физический контакт иначе называется зубо-блокировкой или магнитной блокировкой. Данная проблема может быть преодолена путем увеличения количества пазов ротора или статора.
Подключение
Асинхронный двигатель можно остановить, просто поменяв местами любые два из выводов статора. Это используется во время чрезвычайных ситуаций. После он изменяет направление вращающегося потока, который производит вращающий момент, тем самым вызывая разрыв питания на роторе. Это называется противофазным торможением.
- Видео: Как работает асинхронный двигатель
- Для того чтобы этого не происходило в однофазном асинхронном двигателе, необходимо использование конденсаторного устройства.
- Его нужно подключить к пусковой обмотке, но предварительно обязательно проводится его расчет. Формула
- QC = Uс I2 = U2 I2 / sin2
Схема: Подключение асинхронного двигателя
Из которой следует, что электрические машины переменного тока двухфазного или однофазного типа, должны снабжаться конденсаторами с мощностью, равной самой мощности двигателя.
Аналогия с муфтой
Рассматривая принцип действия асинхронного электродвигателя, используемого в промышленных машинах, и его технические характеристики, нужно сказать про вращающуюся муфту механического сцепления .
Крутящий момент на валу привода должен равняться крутящему моменту на ведомом валу.
Кроме того, следует подчеркнуть, что эти два момента являются одним и тем же, поскольку крутящий момент линейного преобразователя вызывается трением между дисков внутри самой муфты.
Электромагнитная муфта сцепления
Похожий принцип действия и у тягового двигателя с фазным ротором. Система такого мотора состоит из восьми полюсов (из которых 4 – основные, а 4 – добавочные), и остовы. На основных полюсах расположены медные катушки.
Вращение такого механизма обязано зубчатой передаче, которая получает крутящий момент от вала якоря, так же называемого сердечником. Включение в сеть, производится четырьмя гибкими кабелями.
Основное назначение многополюсного электродвигателя – приведение в движение тяжелой техники: тепловозы, тракторы, комбайны и в некоторых случаях, станки.
Достоинства и недостатки
Устройство асинхронного двигателя является практически универсальным, но так же, у данного механизма есть свои плюсы и минусы.
Преимущества асинхронных двигателей переменного тока:
- Конструкция простой формы.
- Низкая стоимость производства.
- Надежная и практичная в обращении конструкция.
- Не прихотлив в эксплуатации.
- Простая схема управления
Эффективность этих двигателей очень высока, так как нет потерь на трение, и относительно высокий коэффициент мощности.
Недостатки асинхронных двигателей переменного тока:
- Не возможен контроль скорости без потерь мощности.
- Если увеличивается нагрузка – уменьшается момент.
- Относительно небольшой пусковой момент.
Источник: https://www.asutpp.ru/princip-dejstviya-asinxronnogo-dvigatelya.html
Однофазный асинхронный двигатель: принцип работы
Особенности устройства и работы
Двигатель имеет простое устройство. Статор укомплектован двумя обмотками: первая обмотка — основная, т.е. рабочая, вторая обмотка — пусковая, которая работает только во время запуска мотора.
Если сравнивать с другими двигателями, у однофазного асинхронного мотора нет момента впуска. Если присмотреться, ротор внешне напоминает клетку для грызунов. Ток одной фазы создает магнитное поле, которое состоит из двух полей. При включении двигателя ротор остается без движения.
- Расчет результирующего момента при неподвижном роторе находится в основе магнитных полей, которые образуют два вращающих момента.
- Расчет:
- Mn = М1 — М2
- М — противоположные моменты;
- n — частота вращения.
Асинхронный однофазный двигатель: принцип работы
При задействовании неподвижной части наступает вращающий момент. Поскольку он возникает только после запуска, мотор укомплектован отдельным пусковым устройством.
У однофазного асинхронного мотора есть немало отличий от, к примеру, трехфазных. Если говорить об основных, стоит отметить особенности статора. На пазах предусмотрена двухфазная обмотка: основная, т.е. рабочая, и пусковая.
Магнитные оси расположены друг к другу перпендикулярно. При работе основная фаза не вызывает вращение ротора, ось магнитного поля остается неподвижной.
Для расчета обмоток статора разработаны специальные программы.
Какие бывают типы однофазных двигателей
На сегодня существуют следующие типы однофазных асинхронных моторов: с конденсаторным и бифилярным механизмом. У каждого из механизмов свои особенности, достоинства и недостатки.
Бифилярный пуск
Бифилярная обмотка в постоянном режиме не используется, поскольку при таком использовании падает значение КПД. С увеличением оборотов, она обрывается. Обмотка пуска включается на пару секунд, расчет работы по 3 сек до 30 раз в час. Если будет превышен запуск, витки перегреются.
Конденсаторный пуск
Фаза расщепленная, цепь вспомогательной обмотки начинает работать при запуске. Для того, чтобы был достигнут пусковой момент, необходимо создать круговое магнитное поле.
Для наилучшего пускового момента используется конденсатор. Моторы с включенными конденсаторами в цепи называются конденсаторными и работают на основе вращения поля магнитов.
У конденсаторного мотора предусмотрено две катушки, которые находятся под постоянным напряжением.
Основные принципы работы
В основе принципа работы находится короткозамкнутый ротор. Магнитное поле имеет вид двух кругов с противоположными последовательностями, они двигаются в разные стороны с одинаковой скоростью. Достаточно разогнать ротор в нужную сторону, чтобы он продолжил движение в ту же сторону.
Именно поэтому для запуска однофазного асинхронного двигателя используют кнопку пуска. С ее нажимом статор начинает работу. Токи заставляют вращаться магнитное поле, в воздушном зазоре появляется магнитная индукция. Всего спустя несколько секунд разгон ротора равняется номинальной скорости.
Если кнопку пуска отпустить, электродвигатель переходит с режима двух фаз на одну фазу. Однофазный режим поддерживается за счет переменного поля магнитов, которое из-за скольжения вращается быстрее ротора.
Схема центробежного выключателя
Для эффективной работы однофазного асинхронного двигателя принято встраивать центробежный выключатель, а также реле с замыкающими контактами.
Выключатель прерывает пуск статорной обмотки при достижении номинальной скорости ротора. Тепловое реле отключает двухфазную обмотку при перегреве.
Это оптимальная комплектация мотора, которая обеспечит безопасную и надежную работу оборудования на долгие годы.
Изменение направления роторного вращения происходит при перемене направления тока в любой из фаз обмотки при запуске. Для этого достаточно нажать пусковую кнопку и переустановить одну или две металлические пластины. Для образования фазового сдвига необходимо добавить в цепь конденсатор или дроссель, резистор.
При запуске двигателя работает две фазы, потом — только одна. Как видите, асинхронный однофазный двигатель принцип работы имеет достаточно простой и понятный. В отличие от других моторов, с ним просто и легко работать.
В чем достоинства однофазного асинхронного двигателя:
- доступная цена;
- простая конструкция;
- небольшой вес, компактность;
- большая двигательная способность из-за отсутствия коллектора;
- питание от синусоидальной сети.
В чем недостатки однофазного асинхронного двигателя:
- небольшой диапазон регулировки частоты вращения;
- отсутствие или небольшой пусковой момент, низкий КПД.
Источник: http://www.poroselectromotor.ru/stati/odnofaznij-asinhronnij-dvigatel-princip-raboti
Однофазные асинхронные электродвигатели INNOVARI – серия асинхронных электродвигателей с короткозамкнутым ротором для общепромышленного и бытового применения. Электродвигатели предназначены для питания от однофазной сети напряжения 230 В, 50 Гц, и продолжительного (S1) режима работы при классе нагревостойкости изоляции F (фактическая температура до 155°С). Класс защиты корпуса IP55 – пылевлагозащищенный. Конструктивно электродвигатели выполнены в вариантах фланцевого присоединения типов В5 и В14. Для последнего варианта предусматривается 8 крепежных отверстий, чтобы исключить присоединение к редуктору с углом поворота. Обмотка статора разных исполнений двигателей может быть 2-х и 4-х полюсной, с синхронными скоростями соответственно 3000/1500 об/мин. Серия адаптирована для работы с преобразователями частоты. Для исключения протекания паразитных токов через вал и станину двигателя, вал ротора устанавливается на изолированных подшипниках. Модельный ряд однофазных асинхронных двигателей INNOVARI Основные модели и электромеханические характеристики однофазных асинхронных двигателей с короткозамкнутым ротором серии INNOVARI.
Технические характеристики однофазных асинхронных двигателей INNOVARI
Габаритные размерыСопутствующие товары к асинхронным двигателямПрименение однофазных асинхронных двигателей INNOVARI В основном однофазные асинхронные электродвигатели с короткозамкнутым ротором INNOVARI предназначены для применения в промышленных электрических приводах малой мощности. Относительная дешевизна и надежность двигателей с короткозамкнутым ротором обеспечивают очень широкий спектр применения: устройства промышленной автоматики, манипуляторы, электроинструмент, вентиляторы, насосы, компрессоры, бытовая техника. Преимущества применения однофазных асинхронных двигателей INNOVARI:
Принцип работы однофазных асинхронных двигателей с короткозамкнутым Магнитная система однофазного асинхронного электродвигателя состоит из сердечников статора и ротора, выполняемых из листов электротехнической стали. Сердечник статора фиксируется в станине двигателя, которая неподвижно закрепляется на фундаменте. Сердечник ротора насаживается на вал двигателя, а концы вала опираются на подшипники, расположенные в станине. В пазах статора размещается, как правило, двухфазная многополюсная обмотка, питаемая от однофазного источника напряжения. В пазах ротора располагается короткозамкнутая обмотка типа беличьей клетки. Между статором и ротором имеется небольшой воздушный зазор. Чтобы обмотка статора создавала вращающееся магнитное поле, фазы обмотки сдвинуты в пространстве на некоторый угол и запитываются токами, сдвинутыми по фазе во времени. Для этого последовательно или параллельно с одной из обмоток включается конденсатор определенной ёмкости, располагающийся непосредственно на двигателе. Вращающийся магнитный поток, пересекая витки обмотки ротора, индуцирует в ней электродвижущую силу и электрический ток, частота и величина которого зависит от разности скоростей – синхронной и механической скорости вращения ротора. В результате взаимодействия тока ротора с магнитным потоком в зазоре между ротором и статором, возникает электромагнитный момент, заставляющий ротор вращаться и приводить в движение нагрузку двигателя – трансмиссию и рабочий механизм. Сертификаты
| г. Москва, г. Москва, Новости 01 ТМ1 – Ваш бесконтактный помощник 29 Экономичные pH ОВП метры от нового поставщика 22 Официальный представитель Siemens 18 Бюджетный мембранный датчик INNOLevel MS 15 Подводим итоги розыгрыша «Цветик-семицветик» |
Однофазные асинхронные двигатели, конструкция и принцип работы
16.10.2018
Однофазный асинхронный двигатель– это электродвигатель, работающий в сети однофазного переменного тока. Такое устройство способно работать без применения преобразователя, а в основном режиме работы (после запуска) использует лишь одну обмотку статора. Фактически такой тип двигателя является двухфазным, но поскольку рабочей считается одна обмотка то электродвигатель называют однофазным.
Принцип действия и устройство однофазного двигателя.
На рисунках изображены поперечный разрез статора однофазного асинхронного двигателя (а) и направления вращающих моментов, действующих на его ротор (б). Обмотка на статоре (а) размещена в пазах, которые занимают пространство около двух третей от его общей окружности, соответствующей паре полюсов.
В результате распределение магнитодвижущей силы и индукции в воздушном зазоре близко к синусоидальному принципу. Благодаря переменному току, проходящему по обмотке, МДС производит скачки во времени с частотой сети. Таким образом, в представленном типе электродвигателя, обмотка статора создает неподвижный поток, который меняется во временных рамках, вместо кругового вращающегося, как в трехфазных двигателях при симметричном питании.
Прямые и обратные поля
Для анализа свойств однофазного представим замену неподвижного пульсирующего потока на сумму идентичных круговых полей, которые будут вращаться в противоположных направлениях и иметь одинаковые частоты их вращения. Свойства можно сравнить через анализ совместного действия каждого из вращающихся полей. Иными словами, однофазный двигатель можно представить в виде двух одинаковых двигателей, роторы которых жестко связаны между собой (б), при встречном направлении вращения магнитных полей и создаваемых ими моментов.
Поле, направление вращения которого совпадает с направлением вращения ротора, принято называть прямым, а поле обратного направления — инверсным (обратным). Электромагнитные моменты, образуемые прямым и обратным полями, направлены в противоположные стороны, а суммарный момент однофазного двигателя будет равен их разности при условии одной и той же частоты вращения ротора.
Сравнение однофазного и трехфазного типов
Однофазный двигатель имеет меньший КПД в отличие от устройства трехфазного типа. При анализе зависимостей моментов прямых и обратных полей можно вывести несколько отличий:
- Однофазный двигатель не имеет пускового момента и вращается в ту сторону, в которую направлена внешняя сила.
- Частота вращения при холостом ходу у однофазного двигателя уступает трёхфазному из-за тормозящего момента, который образуется обратным полем.
- По рабочим характеристикам однофазный двигатель также уступает трехфазному аналогу, так как имеет повышенное скольжение на номинальных нагрузках и меньшую перегрузочную способность. Это также объясняется наличием обратного поля.
Помимо этого стоит учесть, что мощность однофазного двигателя составит приблизительно 2/3 от аналогичного показателя трехфазного того же габарита. Из-за того что в первом случае рабочая обмотка занимает всего две трети пазов статора.
Область применения асинхронного двигателя
Моторы небольшой мощности от 15 до 600Вт применяют в устройствах автоматики, а также в бытовых приборах. В повседневной жизни они используются при работе насосов и другого подобного оборудования, которое не требует постоянной регулировки частоты вращения.
В электроприборах зачастую и автоматических системах применяют однофазные микродвигатели, так как эти приборы получают питание из однофазной сети переменного тока.
Подписывайтесь на наши обновления:
Как работает однофазный двигатель?
Чтобы понять, как работает однофазный асинхронный двигатель переменного тока, полезно понять основы работы с трехфазным асинхронным двигателем.
Ток в статоре трехфазного двигателя (неподвижные катушки в двигателе) создает вращающееся магнитное поле. Магнитное поле вращается из-за сдвига фазы на 120 ° в каждой фазе источника питания. Это вращающееся магнитное поле индуцирует ток в стержнях ротора.Ток в роторе создает собственное магнитное поле. Взаимодействие между магнитными полями статора и ротора заставляет ротор вращаться. Для трехфазных двигателей следует отметить одну важную вещь: поскольку они работают на трех фазах, которые смещены друг относительно друга, они самозапускаются. (См. Верхний рисунок.)
Как он «вращается»
Однофазные двигатели работают по тому же принципу, что и трехфазные двигатели, за исключением того, что они работают только от одной фазы. Одна фаза создает колеблющееся магнитное поле, которое движется вперед и назад, а не вращающееся магнитное поле (см. Нижний рисунок).Из-за этого у настоящего однофазного двигателя нулевой пусковой момент. Однако, как только ротор начинает вращаться, он продолжает вращаться в результате колебательного магнитного поля в статоре.
На протяжении многих лет инженеры изобретали умные способы запуска однофазных двигателей. Большинство из них связано с созданием второй фазы, которая помогает создавать вращающееся магнитное поле в статоре. Эту фазу часто называют стартовой или вспомогательной.
Типы однофазных двигателей
Некоторыми из различных типов однофазных двигателей являются двигатель с экранированными полюсами, двигатель с расщепленной фазой, двигатель с постоянным разделенным конденсатором (также называемый двигателем с однофазным конденсатором) и двигатель с двумя конденсаторами.Основное различие в конструкции этих двигателей заключается в том, как производится вторая фаза. В двигателях с экранированным полюсом и в двигателях с разделенной фазой конденсатор не используется, в то время как в двигателях с постоянным разделенным конденсатором (PSC) и двумя номинальными конденсаторами используется. Двигатели с разделенной фазой и конденсаторные двигатели с двумя номиналами могут использовать центробежный переключатель для отключения фазы запуска, когда двигатели набирают скорость, в то время как двигатели с экранированным полюсом и двигатели PSC не имеют переключателя.
У каждого из этих двигателей также есть свои компромиссы в производительности.Двигатели с экранированными полюсами – это очень простые двигатели и обычно недорогие, но они имеют низкий КПД и, как правило, предназначены для маломощных устройств. Двигатели с расщепленной фазой, как правило, недорогие, но у них низкий пусковой момент и высокий пусковой ток. Двигатели PSC обеспечивают более высокий пусковой момент и более высокий КПД, чем двигатели без конденсатора.
>> Хотите узнать больше об асинхронных двигателях? Прочтите в нашем блоге о синхронных и асинхронных двигателях или посмотрите наше видео о том, как выбрать мотор-редуктор.
Принцип работы однофазного асинхронного двигателя
Однофазный асинхронный двигатель состоит из однофазной обмотки, которая установлена на статоре двигателя, и обмотки клетки, размещенной на роторе. Пульсирующее магнитное поле создается, когда обмотка статора однофазного асинхронного двигателя, показанного ниже, получает питание от однофазного источника питания.
Слово «Пульсация» означает, что поле, нарастающее в одном направлении, падает до нуля, а затем нарастает в противоположном направлении.В этих условиях ротор асинхронного двигателя не вращается. Следовательно, однофазный асинхронный двигатель не запускается самостоятельно. Для этого требуются специальные пусковые средства.
Если 1 фазная обмотка статора возбуждена и ротор двигателя вращается с помощью вспомогательных средств, а пусковое устройство затем снимается, двигатель продолжает вращаться в том направлении, в котором он был запущен.
Характеристики однофазного асинхронного двигателя анализируются с помощью двух теорий. Один известен как теория двойного вращающегося поля , а другой – теория перекрестного поля .Обе теории схожи и объясняют причину возникновения крутящего момента при вращении ротора.
Теория двойного вращающегося поля однофазного асинхронного двигателя
Теория двойного вращающегося поля однофазного асинхронного двигателя утверждает, что пульсирующее магнитное поле разделяется на два вращающихся магнитных поля. Они равны по величине, но противоположны по направлениям. Асинхронный двигатель реагирует на каждое из магнитных полей отдельно. Чистый крутящий момент в двигателе равен сумме крутящего момента каждого из двух магнитных полей.
Уравнение переменного магнитного поля имеет вид
Где βmax – максимальное значение плотности потока синусоидально распределенного воздушного зазора, создаваемого правильно распределенной обмоткой статора, по которой проходит переменный ток с частотой ω, а α – пространственный угол смещения, измеренный от оси обмотки статора.
Как известно,
Итак, уравнение (1) можно записать как
Первый член правой части уравнения (2) представляет вращающееся поле, движущееся в положительном направлении α.Это поле известно как поле прямого вращения. Точно так же второй член показывает вращающееся поле, движущееся в отрицательном направлении α и известное как поле обратного вращения.
Направление, в котором первоначально запускается однофазный двигатель, называется положительным направлением. Оба вращающихся поля вращаются с синхронной скоростью. ω с = 2πf в обратном направлении. Таким образом, пульсирующее магнитное поле разделяется на два вращающихся магнитных поля. Оба они равны по величине и противоположны по направлению, но с одинаковой частотой.
В состоянии покоя наведенные напряжения в результате равны и противоположны; два момента также равны и противоположны. Таким образом, чистый крутящий момент равен нулю, и, следовательно, однофазный асинхронный двигатель не имеет пускового крутящего момента.
Однофазные асинхронные двигатели– конструкция и принцип работы
Однофазные асинхронные двигатели:
Однофазный источник питания переменного тока обычно используется для освещения магазинов, офисов, домов, школ и т. Д.Следовательно, вместо двигателей постоянного тока двигатели, которые работают от однофазного переменного тока. поставка широко используются. Эти двигатели переменного тока называются однофазными асинхронными двигателями . Большое нет. отечественных приложений используют однофазные асинхронные двигатели . Здесь мы узнаем , как работает однофазный асинхронный двигатель .Номинальная мощность этих двигателей очень мала. Некоторые из них представляют собой даже двигатели с дробной мощностью, которые используются в таких устройствах, как маленькие игрушки, маленькие вентиляторы, фены и т. Д.Эта статья объясняет конструкцию , принцип работы однофазных асинхронных двигателей .
Конструкция однофазных асинхронных двигателей:
Подобно двигателю постоянного тока, однофазный асинхронный двигатель также имеет две основные части: одну вращающуюся, а другую неподвижную. Стационарная часть однофазных асинхронных двигателей – это статор , а вращающаяся часть – это ротор .
Обмотка статора намотана на определенное количество полюсов. Это означает, что при возбуждении от однофазного источника переменного тока статор создает магнитное поле, которое создает эффект определенного количества полюсов.Количество полюсов, на которые наматывается обмотка статора, определяет синхронную скорость двигателя. Синхронная скорость обозначается как Ns, и она имеет фиксированное отношение к частоте питания f и количеству полюсов P.
Ns = 120f / p об / мин
Учебник «Электрические машины» П.С. Бхимбхры является лучшим в отрасли. Возьмите его сейчас по очень низкой цене.
Обязательно к прочтению:
Асинхронный двигатель никогда не вращается с синхронной скоростью, а вращается со скоростью, немного меньшей, чем синхронная скорость.Конструкция ротора – беличья клетка. Этот ротор состоит из неизолированных медных или алюминиевых стержней, вставленных в пазы.
Шины постоянно закорочены на обоих концах с помощью токопроводящих колец, называемых концевыми кольцами. Вся конструкция выглядит как клетка, отсюда и название ротор с короткозамкнутым ротором. Конструкция однофазных асинхронных двигателей показана на рисунке ниже:
Принцип работы однофазных асинхронных двигателей:
Для двигательного действия должны существовать два потока, которые взаимодействуют друг с другом для создания крутящего момента.В двигателях постоянного тока обмотка возбуждения создает основной поток, в то время как питание постоянного тока, подаваемое на якорь, отвечает за создание потока якоря. Главный магнитный поток и магнитный поток якоря взаимодействуют, создавая крутящий момент.
Этот ток ротора создает другой магнитный поток, называемый потоком ротора, необходимый для движения. Таким образом, второй поток создается по принципу индукции из-за наведенной ЭДС, поэтому двигатель называется асинхронным двигателем . В отличие от этого в двигателе постоянного тока для создания магнитного потока якоря требуется отдельное питание якоря. Это важное различие между d.c двигатель и асинхронный двигатель.
Ключевой момент : Еще одно важное различие между ними заключается в том, что – постоянный ток. двигатели самозапускаются, а однофазные асинхронные двигатели не запускаются автоматически. Давайте разберемся с , почему однофазные асинхронные двигатели не являются самозапускающимися с помощью теории, называемой двухоборотной теорией поля .
Настоящее учебное пособие «Электрические машины» П.S. Bhimbhra “является лучшим в отрасли. Купите его сейчас по очень низкой цене.
Обязательно к прочтению:
Теория двойного вращающегося поля в однофазных асинхронных двигателях:
Согласно этой теории, любая переменная величина может быть разделена на два вращающихся компонента, которые вращаются в противоположных направлениях, и каждая имеет величину, равную половине максимальной величины переменной величины. В случае однофазных асинхронных двигателей обмотка статора создает переменное магнитное поле с максимальной величиной Φ1m.
В соответствии с теорией поля с двойным вращением или y, рассмотрите две составляющие потока статора, каждая из которых имеет величину, равную половине максимальной величины магнитного потока статора, то есть (Φ1m / 2). Оба этих компонента вращаются в противоположных направлениях с синхронной скоростью Ns, которая зависит от частоты и полюсов статора.
Пусть Φf – это прямая составляющая, вращающаяся против часовой стрелки, а Φb – обратная составляющая, вращающаяся по часовой стрелке.Результат этих двух составляющих в любой момент дает мгновенное значение потока статора в этот момент. Таким образом, результатом этих двух является исходный магнитный поток статора. На рисунке ниже показан поток статора и его две составляющие Φf и Φb.
Вначале оба компонента показаны на рисунке (а) напротив друг друга. Таким образом, результирующее ΦR = 0. Это не что иное, как мгновенное значение магнитного потока статора в начале. После 90 °, как показано на рисунке (b), два компонента поворачиваются таким образом, что оба указывают в одном направлении.
Следовательно, результирующий ΦR является алгебраической суммой величин двух компонентов. Таким образом, ΦR = (Φ1m / 2) + (Φ1m / 2) = Φ1m. Это не что иное, как мгновенное значение потока статора при 0 = 90 °, как показано на рисунке (c). Таким образом, непрерывное вращение двух компонентов дает исходный переменный магнитный поток статора.
Оба компонента вращаются и, следовательно, режутся проводниками ротора. Из-за отсечения флюса в роторе индуцируется ЭДС, которая циркулирует ток ротора.Ток ротора создает магнитный поток ротора. Этот поток взаимодействует с передающей составляющей Φf для создания крутящего момента в одном конкретном направлении, например, против часовой стрелки. В то время как поток ротора взаимодействует с обратной составляющей Φb, создавая крутящий момент по часовой стрелке. Таким образом, если вращающий момент против часовой стрелки положительный, то вращающий момент по часовой стрелке отрицательный.
Характеристики крутящего момента и скорости однофазных асинхронных двигателей:
Два противоположно направленных крутящих момента и результирующий крутящий момент могут быть эффективно показаны с помощью характеристики крутящий момент-скорость .
Видно, что при пуске N = 0, и в этот момент результирующий крутящий момент равен нулю. Таким образом, однофазные асинхронные двигатели не запускаются самостоятельно. Однако, если ротор получает начальное вращение в любом направлении, результирующий средний крутящий момент увеличивается в направление, в котором изначально вращается ротор, и двигатель начинает вращаться в этом направлении.
Но на практике невозможно придать начальный крутящий момент ротору извне, поэтому в конструкцию однофазных асинхронных двигателей внесены некоторые изменения, чтобы сделать их самозапускающимися.Другая теория, которая также может быть использована для объяснения , почему однофазный асинхронный двигатель не запускается автоматически , – это теория перекрестного поля.
Теория кросс-поля в однофазных асинхронных двигателях:
Рассмотрим однофазный асинхронный двигатель с неподвижным ротором, как показано на рисунке ниже. Обмотка статора возбуждается однофазным переменным током. Этот источник питания создает переменный магнитный поток Φs, который действует вдоль оси обмотки статора.Из-за этого потока в проводниках ротора индуцируется ЭДС из-за действия трансформатора.Поскольку ротор замкнут, эта ЭДС обеспечивает циркуляцию тока по проводникам ротора. Направление тока ротора показано на рисунке ниже. Направление тока ротора таково, чтобы противостоять причине, вызывающей его, которой является статор поток Φs. Теперь можно использовать правило левой руки Флеминга, чтобы найти направление силы, действующей на проводники ротора. Можно видеть, что, когда Φs действует в направлении вверх и увеличивается положительно, проводники слева испытывают силу слева направо, а проводники справа. испытывайте силу справа налево.Таким образом, в целом сила, испытываемая ротором, равна нулю, следовательно, на ротор отсутствует крутящий момент, и ротор не может начать вращаться.
Мы видели, что должны существовать два потока, разделенных некоторым углом, чтобы создать вращающееся магнитное поле. Согласно теории перекрестного поля , поток статора можно разделить на две составляющие, которые взаимно перпендикулярны. Один действует вдоль оси магнитного поля. обмотка статора и др. действует перпендикулярно ей.
Теперь предположим, что ротор получает первоначальный толчок против часовой стрелки.Из-за вращения ротор физически сокращает поток статора, и в роторе индуцируется динамическая ЭДС. Это называется ЭДС скорости или ЭДС вращения. Направление такой ЭДС может быть получено с помощью правила правой руки Флеминга, и эта ЭДС находится в фазе с потоком статора Φs.
Направление ЭДС показано на рисунке ниже. Эта ЭДС обозначается E2N. Эта ЭДС обеспечивает циркуляцию тока через ротор, равный I2N. Этот ток создает собственный поток, называемый потоком ротора Φr. Эта ось Φr находится под углом 90 ° к оси потока статора, поэтому этот поток ротора он назвал поперечным полем.
Учебник «Электрические машины» П.С. Бхимбхры является лучшим в отрасли. Возьмите его сейчас по очень низкой цене.
купить сейчас
Обязательно к прочтению:
Направление этого вращающегося магнитного поля будет таким же, как направление начального толчка.Таким образом, ротор испытывает крутящий момент в том же направлении, что и вращающееся магнитное поле, то есть в направлении первоначального толчка. Таким образом, в рассматриваемом случае ротор ускоряется против часовой стрелки и в установившемся режиме достигает подсинхронной скорости.
Заключение:
Сегодня мы обсудили принцип работы и конструкцию однофазных асинхронных двигателей . Вы можете скачать эту статью в формате pdf, ppt.
Комментарий ниже для любых запросов.
| Принцип работы | Ресурсы для инженеров
Универсальные моторы
Универсальный двигатель – это однофазный последовательный двигатель, который может работать как от переменного (ac), так и от постоянного (dc) тока, а характеристики одинаковы как для переменного, так и для постоянного тока. Обмотки возбуждения последовательных двигателей соединены последовательно с обмотками якоря
.Основные принципы Universal Motors
Областями электрического проектирования универсального двигателя являются магнитная цепь, обмотки возбуждения и якоря, коммутатор и щетки, изоляция и система охлаждения.
Процесс коммутации универсальных двигателей
Тактико-технические характеристики универсальных двигателей
Двигатели с экранированными полюсами
Двигатель с экранированными полюсами – это однофазный асинхронный двигатель переменного тока. Вспомогательная обмотка, состоящая из медного кольца, называется затеняющей катушкой. Ток в этой катушке задерживает фазу магнитного потока в этой части полюса, чтобы обеспечить вращающееся магнитное поле. Направление вращения – от незатененной стороны к закрашенному кольцу.
Основные принципы двигателя с экранированными полюсами
- Это устройство затеняющей катушки (кольца) смещает ось затененных полюсов от оси основных полюсов
- Когда питание подается на статор, магнитный поток в основной части полюса индуцирует напряжение в затеняющей катушке, которая действует как вторичная обмотка трансформатора.
- Так как ток во вторичной обмотке трансформатора не совпадает по фазе с током в первичной обмотке.
- Ток в затеняющей катушке не в фазе с током в основной обмотке возбуждения.
- Таким образом, поток затеняющего полюса не совпадает по фазе с потоком основного полюса.
Вращающееся поле двигателя с экранированными полюсами
Синхронные двигатели
Синхронные двигатели переменного тока – это электродвигатели с постоянной скоростью, которые работают синхронно с частотой сети. Скорость синхронного двигателя определяется количеством пар полюсов и всегда является отношением частоты сети.
- Статор снабжен двумя простыми катушками, которые можно напрямую подключить к сети.
- Ротор состоит из цилиндрического постоянного двухполюсного магнита, диаметрально намагниченного.
Основные принципы синхронных двигателей Принцип работы асинхронного двигателя
– однофазный и трехфазный асинхронный двигатель
Асинхронный двигатель представляет собой электрическую машину переменного тока, которая преобразует электрическую энергию в механическую. Асинхронный двигатель широко используется в различных областях, от основных бытовых приборов до тяжелой промышленности.У машины так много применений, что трудно сосчитать, и вы можете представить масштаб, зная, что почти 30% электроэнергии, производимой во всем мире, потребляется самими асинхронными двигателями. Эта удивительная машина изобретена великим ученым Николой Тесла, и это изобретение навсегда изменило ход человеческой цивилизации.
Вот нескольких применений однофазных и трехфазных асинхронных двигателей , которые мы можем найти в повседневной жизни.
Применение однофазных асинхронных двигателей:
- Электровентиляторы бытовые
- Станки сверлильные
- Насосы
- Шлифовальные машины
- Игрушки
- Пылесос
- Вытяжные вентиляторы
- Компрессоры и электробритвы
Применение трехфазных асинхронных двигателей:
- Малые, средние и крупные производства.
- Подъемники
- Краны
- Станки токарные приводные
- Маслоэкстракционные заводы
- Роботизированное оружие
- Конвейерная ленточная система
- Дробилки тяжелые
Асинхронные двигатели бывают разных размеров и форм с соответствующими характеристиками и электрическими характеристиками. Они различаются по размеру от нескольких сантиметров до нескольких метров и имеют номинальную мощность от 0,5 до 10000 л.с. Пользователь может выбрать наиболее подходящую из множества моделей, отвечающих его запросам.
Мы уже обсуждали “Основы двигателей” и их работу в предыдущей статье. Здесь мы подробно обсудим конструкцию и работу асинхронного двигателя .
Принцип работы асинхронного двигателяЧтобы понять принцип работы асинхронного двигателя, давайте сначала рассмотрим простую установку, показанную на рисунке.
Здесь,
- Берут два железных или ферритовых сердечника одинакового размера и подвешивают в воздухе на некотором расстоянии.
- Эмалированная медная проволока намотана на верхнюю жилу, затем на нижнюю и два конца отведены в сторону, как показано на рисунке.
- Сердечник здесь действует как среда для переноса и концентрации магнитного потока, генерируемого катушкой во время работы.
Теперь, , если мы подключим источник переменного напряжения к двум концам медного провода, у нас будет что-то вроде того, что показано ниже.
Во время положительного цикла AC :
Здесь в течение первого полупериода , положительное напряжение в точке «A» будет постепенно повышаться от нуля до максимума, а затем возвращается к нулю.В этот период ток в обмотке можно представить как.
Здесь,
- Во время положительного цикла источника питания переменного тока ток в обеих обмотках постепенно увеличивается от нуля до максимума, а затем постепенно возвращается от максимума к нулю. Это связано с тем, что согласно закону Ома ток в проводнике прямо пропорционален напряжению на клеммах, и мы много раз обсуждали это в предыдущих статьях.
- Обмотки намотаны таким образом, что ток в обеих обмотках течет в одном направлении, и мы можем видеть то же самое, что показано на схеме.
Теперь давайте вспомним закон, называемый законом Ленца, который мы изучили ранее, прежде чем двигаться дальше. Согласно закону Ленца, « Проводник, по которому течет ток, будет генерировать магнитное поле вокруг своей поверхности»,
, и если мы применим этот закон в приведенном выше примере, то магнитное поле будет генерироваться каждой петлей в обеих катушках. Если мы добавим магнитный поток, создаваемый всей катушкой, то он получит значительную величину. Весь этот поток появится на железном сердечнике, поскольку катушка была намотана на корпус сердечника.
Для удобства, если мы нарисуем линии магнитного потока, сосредоточенные на железном сердечнике на обоих концах, то у нас будет что-то вроде ниже.
Здесь вы можете увидеть концентрацию магнитных линий на железных сердечниках и их движение через воздушный зазор.
Эта интенсивность потока прямо пропорциональна току, протекающему в катушках, намотанных на обоих металлических корпусах. Таким образом, во время положительного полупериода поток изменяется от нуля до максимума, а затем снижается с максимума до нуля.После того, как положительный цикл завершится, напряженность поля в воздушном зазоре также достигнет нуля, и после этого у нас будет отрицательный цикл.
Во время отрицательного цикла AC :
Во время этого отрицательного цикла синусоидального напряжения положительное напряжение в точке «B» будет постепенно повышаться от нуля до максимума, а затем возвращается к нулю. Как обычно, из-за этого напряжения будет течь ток, и мы можем видеть направление этого тока в обмотках на рисунке ниже.
Поскольку ток линейно пропорционален напряжению, его величина в обеих обмотках постепенно увеличивается от нуля до максимума, а затем снижается от максимума до нуля.
Если мы рассмотрим закон Ленца, то вокруг катушек появится магнитное поле из-за протекания тока, аналогичного случаю, изученному в положительном цикле. Это поле будет сконцентрировано в центре ферритовых сердечников, как показано на рисунке. Поскольку интенсивность потока прямо пропорциональна току, протекающему в катушках, намотанных на обоих железных телах, этот поток также будет изменяться от нуля до максимума, а затем снижаться с максимума до нуля в зависимости от величины тока.Хотя это похоже на положительный цикл, есть разница, и это направление силовых линий магнитного поля. Вы можете наблюдать эту разницу в направлении потока на диаграммах.
После его отрицательного цикла следует положительный цикл, за которым следует другой отрицательный цикл, и так продолжается до тех пор, пока синусоидальное напряжение переменного тока не будет снято. И из-за этого цикла смены напряжения магнитное поле в центре на железных сердечниках постоянно меняется как по величине, так и по направлению.
В заключение, используя эту установку,
- Мы разработали область сосредоточения магнитного поля в центре железных сердечников.
- Напряженность магнитного поля в воздушном зазоре постоянно меняется как по величине, так и по направлению.
- Поле повторяет синусоидальную форму волны переменного напряжения.
Эта установка, которую мы обсуждали до сих пор, лучше всего подходит для реализации закона электромагнитной индукции Фарадея.Это связано с тем, что постоянно меняющееся магнитное поле является самым основным и важным требованием для электромагнитной индукции.
Мы изучаем этот закон здесь, потому что асинхронный двигатель работает по принципу закона электромагнитной индукции Фарадея.
Теперь, чтобы изучить явление электромагнитной индукции, давайте рассмотрим установку, представленную ниже.
- Берется проводник и формирует его квадрат с закороченными концами.
- Металлический стержень закреплен в центре квадрата проводника, который действует как ось установки.
- Теперь квадрат проводника может свободно вращаться вдоль оси и называется ротором.
- Ротор расположен в центре воздушного зазора, так что проводящая петля может испытывать максимальное поле, создаваемое катушками ротора.
Мы знаем, что согласно закону электромагнитной индукции Фарадея «, когда переменное магнитное поле разрезает металлический проводник, тогда в проводнике индуцируется ЭДС или напряжение» .
Теперь применим этот закон к , чтобы понять работу асинхронного двигателя:
- Согласно этому закону электромагнитной индукции, ЭДС должна индуцироваться в проводнике ротора, расположенном в центре, из-за изменяющегося магнитного поля, испытываемого им.
- Из-за этой наведенной ЭДС и короткого замыкания проводника по всему контуру протекает ток, как показано на рисунке.
- Вот ключ к работе асинхронного двигателя. Мы знаем, что согласно закону Ленца проводник с током создает вокруг себя магнитное поле, интенсивность которого пропорциональна величине тока.
- Поскольку закон универсален, проводящая петля ротора также должна генерировать магнитное поле, потому что ток течет через него из-за электромагнитной индукции.
- Если мы назовем магнитное поле, создаваемое обмотками статора и стальным сердечником, как основной поток или поток статора. Тогда мы можем назвать магнитное поле, создаваемое токопроводящей петлей ротора, потоком ротора.
- Из-за взаимодействия между основным потоком и потоком ротора на ротор действует сила. Эта сила пытается противодействовать индукции ЭДС в ротор, регулируя положение ротора. Следовательно, в это время мы увидим движение вала.
- Теперь магнитное поле продолжает изменяться из-за переменного напряжения, сила также постоянно регулирует положение ротора без остановки.
- Таким образом, ротор продолжает вращаться из-за переменного напряжения, и, таким образом, мы имеем механический выход на валу или оси ротора.
Таким образом, мы увидели, как из-за электромагнитной индукции в роторе возникает механический выход на валу. Таким образом, название, данное для этой установки, называется «Асинхронный двигатель».
До сих пор мы обсуждали принцип работы асинхронного двигателя, но помните, что теория и практика различны. А для работы асинхронного двигателя требуется дополнительная настройка, о которой мы поговорим ниже.
Однофазный асинхронный двигательАсинхронный двигатель, работающий от однофазного переменного тока, называется однофазным асинхронным двигателем .
Линия электропередачи, доступная для нас дома, – это однофазная линия переменного тока 240 В / 50 Гц, а индукционные двигатели, которые мы используем в повседневной жизни в наших домах, называются однофазными асинхронными двигателями.
Чтобы лучше понять принцип работы однофазного асинхронного двигателя, давайте рассмотрим конструкцию однофазного асинхронного двигателя.
Здесь,
- Возьмем несколько проводов и установим их на свободно вращающийся вал, как показано на рисунке.
- Кроме того, мы закоротим концы всех проводников металлическим кольцом, создав петли из нескольких проводников, которые мы изучили ранее.
- Эта установка ротора при ближайшем рассмотрении выглядит как беличья клетка, поэтому ее называют асинхронным двигателем с беличьей клеткой.Давайте посмотрим на трехмерную структуру ротора с короткозамкнутым ротором.
- Статор, который считался цельной железной частью, на самом деле представляет собой группу тонких листов железа, сложенных вместе. Они так плотно прижаты друг к другу, что между ними буквально не будет воздуха. Мы используем стопку железных листов вместо одной железной детали по той же причине, по которой мы используем прокатные железные листы в случае силового трансформатора, который предназначен для уменьшения потерь в стали. Используя метод стекирования, мы значительно снизим потери мощности при сохранении производительности.
Работа этой установки аналогична установке, использованной для объяснения принципа работы асинхронного двигателя.
- Сначала мы подадим напряжение переменного тока, и из-за этого напряжения ток течет через обмотку статора, намотанную как на верхнем, так и на нижнем сегментах.
- Из-за тока магнитное поле создается как на верхней, так и на нижней обмотке.
- Большая часть металлических листов действует как основная среда для переноса магнитного поля, создаваемого катушками.
- Это переменное магнитное поле, переносимое железным сердечником, концентрируется в центральном воздушном зазоре из-за преднамеренной конструкции.
- Теперь, когда ротор помещен в этот воздушный зазор, закороченные проводники, закрепленные на роторе, также испытывают это переменное поле.
- Из-за поля в проводниках ротора индуцируется ток.
- Поскольку ток проходит через проводники ротора, вокруг ротора также создается магнитное поле.
- При взаимодействии между генерируемым магнитным полем ротора и магнитным полем статора на ротор действует сила.
- Эта сила перемещает ротор вдоль оси и, таким образом, мы получаем вращательное движение.
- Поскольку напряжение постоянно изменяется, синусоидальное напряжение ротор также продолжает непрерывно вращаться вдоль своей оси. Таким образом, у нас будет непрерывный механический выход для данного однофазного входного напряжения.
Хотя мы предполагали, что ротор будет вращаться автоматически после подачи питания на однофазный двигатель, это не так.Поскольку поле, создаваемое однофазным асинхронным двигателем, представляет собой переменное магнитное поле, а не вращающееся магнитное поле. Таким образом, при запуске двигателя ротор блокируется в своем положении, потому что сила, испытываемая им из-за нижней и верхней катушек, будет одинаковой величины и противоположного направления. Таким образом, вначале результирующая сила, испытываемая ротором, равна нулю. Чтобы избежать этого, мы будем использовать вспомогательную обмотку для асинхронного двигателя, чтобы сделать его самозапускающимся. Эта вспомогательная обмотка будет обеспечивать необходимое поле для запуска ротора.Примером для этого случая является электрический вентилятор, который мы видим в нашей повседневной жизни, который запускает конденсатор и запускает асинхронный двигатель со вспомогательной обмоткой, соединенной последовательно с конденсатором.
Трехфазный асинхронный двигательАсинхронный двигатель, работающий от трехфазного переменного тока, называется трехфазным асинхронным двигателем. Обычно трехфазные асинхронные двигатели используются в промышленности и не подходят для домашнего использования.
Линия электропитания, доступная для промышленности, составляет 400 В / 50 Гц. Трехфазные четырехлинейные двигатели переменного тока и индукционные двигатели, которые работают от этого источника питания в промышленности, называются трехфазными асинхронными двигателями.
Для лучшего понимания принципа работы трехфазного асинхронного двигателя давайте рассмотрим конструкцию трехфазного асинхронного двигателя.
Здесь,
- Фаза A обмотка начинается с верхнего сегмента, за которым следует нижний сегмент, как показано на рисунке.
- Что касается двух концов фазы, одна обмотка подключена к линии питания фазы A трехфазного источника питания, а другой конец подключен к нейтрали тех же трех фаз четырехлинейного источника питания.Это возможно, потому что в трехфазном четырехлинейном источнике питания у нас есть первые три линии, несущие три линейных напряжения, а четвертая линия является нейтральной.
- Другие двухфазные обмотки следуют той же схеме, что и фаза A. На двух концах обмотки фазы B одна подключена к силовой линии фазы B трехфазного источника питания, а другой конец подключен к нейтрали тех же трех Фазы четырехполюсного питания.
- Конструкция ротора похожа на короткозамкнутый ротор и представляет собой тот же тип ротора, который используется в однофазном асинхронном двигателе.
Теперь, если мы подадим электроэнергию на трехфазные обмотки статора, то ток начнет течь по всем трем обмоткам. Из-за этого протекания тока катушками будет создаваться магнитное поле, и это поле будет проходить через путь с меньшим магнитным сопротивлением, обеспечиваемый многослойным сердечником. Здесь конструкция двигателя сконструирована таким образом, что магнитное поле, переносимое сердечником, концентрируется в воздушном зазоре в центре, где расположен ротор. Таким образом, магнитное поле, сосредоточенное сердечником в центральном зазоре, воздействует на проводники в роторе, вызывая в них ток.
При наличии тока в проводнике ротор также генерирует магнитное поле, которое взаимодействует с полем статора в любой момент времени. И из-за этого взаимодействия на ротор действует сила, которая приводит к вращению двигателя.
Здесь магнитное поле, создаваемое статором, имеет вращающийся тип из-за трехфазного питания, в отличие от переменного типа, который мы обсуждали в однофазном двигателе. И из-за этого вращающегося магнитного поля ротор начинает вращаться сам по себе даже при отсутствии первоначального толчка. Это делает трехфазный двигатель самозапускающимся типом , и нам не нужна дополнительная обмотка для этого типа двигателя.
Типы, конструкция, принципы работы однофазных асинхронных двигателейОднофазный асинхронный двигатель – один из самых известных представителей огромного семейства двигателей переменного тока. Этот тип двигателя предназначен для преобразования электрической энергии в механическую для выполнения некоторых физических задач. Для правильного выполнения своей работы этому асинхронному двигателю требуется только одна фаза питания.Они часто используются в приложениях с низким энергопотреблением, например, в быту и легкой промышленности. Легкая и простая конструкция, дешевая стоимость обслуживания, высокая надежность и низкая стоимость ремонта – вот некоторые из его значительных преимуществ.
Linquip собрал всю информацию, необходимую для знакомства с этим типом двигателя. В следующих разделах мы подробно остановимся на конструкции, принципе работы и типах однофазных асинхронных двигателей. Оставайтесь с нами.
Конструкция однофазного асинхронного двигателяДвумя основными компонентами однофазного асинхронного двигателя являются статор и ротор.Как вы, возможно, знаете и понимаете по названию, статор – это неподвижная часть этого двигателя. С другой стороны, ротор – это вращающийся компонент двигателя. однофазное переменное питание достигает обмотки статора. Ротор с помощью вала подключается к механической нагрузке. Ротор имеет многослойный железный сердечник со множеством перекошенных пазов. Эти пазы ротора бывают закрытого или полузакрытого типа. Обмотки ротора симметричны.
Между ротором и статором имеется воздушный зазор.Чаще всего этот двигатель используется в холодильниках, часах, дрелях, насосах, стиральных машинах и т. Д. Обмотка статора в асинхронных двигателях разделена на две части: основную обмотку и вспомогательную обмотку. положение этих двух типов обмоток таково, что вспомогательная обмотка перпендикулярна основной обмотке. В асинхронных двигателях основная обмотка – это обмотка с большим количеством витков, а другая называется вспомогательной обмоткой.
Принцип работы однофазного асинхронного двигателя
В предыдущем разделе вы получили некоторую информацию о конструкции и конструкции однофазных асинхронных двигателей.Теперь, когда вы знаете некоторые части этого типа асинхронного двигателя, давайте посмотрим, какой принцип работы определяет работу этой конструкции.
Как упоминалось ранее, на обмотку статора подается однофазный переменный ток. После того, как обмотка статора получает питание, создается магнитное поле, которое действует синусоидальным образом. Через некоторое время полярность магнитного поля меняется на противоположную, и переменный поток не может обеспечить необходимую силу вращения для двигателя. Как вы знаете, для работы любого электродвигателя нам нужны два потока.
Взаимодействие этих двух потоков создает требуемый крутящий момент. При подаче однофазного переменного тока на обмотку статора переменный ток начинает проходить через статор. Этот переменный ток создает переменный поток, который называется основным потоком. основной поток также связан с проводниками ротора.
Согласно закону электромагнитной индукции Фарадея, ЭДС индуцируется в роторе. Поскольку цепь ротора замыкается, ток начинает течь в роторе.Этот ток, называемый током ротора, создает свой поток, называемый потоком ротора. Поскольку этот поток создается по принципу индукции, двигатель, работающий по этому принципу, получил название асинхронного двигателя.
Типы однофазных асинхронных двигателей
В предыдущем разделе вы прочитали об условиях и принципах работы однофазного асинхронного двигателя в зависимости от них. Пришло время узнать больше о различных типах однофазных асинхронных двигателей. Основываясь на различных методах запуска однофазного IM, существует четыре основных различных типа, которые мы собираемся предоставить полезную информацию о каждом из них в следующих разделах.
Асинхронный двигатель с разделенной фазой
Этот тип однофазного электродвигателя IM также известен как электродвигатель с резистивным пуском. В этом типе основная обмотка и вспомогательная обмотка смещены на 90 градусов. Вспомогательная обмотка и центробежный выключатель включены последовательно. Работа этого переключателя заключается в отключении вспомогательной обмотки от главной цепи, когда скорость двигателя достигает 75-80 процентов от синхронной скорости.
Некоторые характеристики асинхронного двигателя с расщепленной фазой включают номинальную мощность от 60 до 250 Вт, постоянную скорость и высокий пусковой ток.Из-за невысокой стоимости обслуживания и ремонта двигателя он очень популярен на рынке. В некоторых бытовых применениях этот двигатель эффективно используется. Помните, что из-за низкого пускового момента он не может развивать мощность более 1 кВт.
Конденсаторный пусковой двигатель
В этом однофазном ИД вспомогательная обмотка имеет больше витков. электролитический конденсатор включен последовательно со вспомогательной обмоткой. Как и в предыдущем типе, также подключен центробежный переключатель, и две обмотки расположены под углом 90 градусов.Некоторые характеристики конденсаторного пускового двигателя заключаются в том, что стоимость обслуживания и ремонта высока, а номинальная мощность составляет от 120 до 7 кВт. Двигатели с конденсаторным пуском обычно используются в приложениях, где требуется высокий пусковой момент.
Конденсаторный пусковой двигатель и конденсаторный двигатель
Принцип работы и конструкция конденсаторного пускового устройства и конденсаторного пускового двигателя и конденсаторного пускового двигателя почти одинаковы. Двумя основными компонентами этого двигателя являются ротор с сепаратором и обмотки статора.Обмотки статора расположены под углом 90 градусов. В этом типе асинхронного двигателя используются два конденсатора, включенных параллельно. Здесь вы также можете найти центробежный выключатель. Запуск больших нагрузок, простота эксплуатации и конструкции, а также высокий КПД – вот некоторые из характеристик конденсаторного запуска и конденсаторного запуска двигателя. Этот двигатель выгоден как для домашнего, так и для промышленного применения.
Электродвигатель с экранированными полюсами
Двигатель с экранированными полюсами состоит из ротора с сепаратором и статора. Сам статор состоит из выступающих полюсов с возбуждающей катушкой.Каждый полюс обернут затеняющей катушкой. Вот почему полюса называются экранированными полюсами, а двигатель – электродвигателем с экранированными полюсами. Простая конструкция и конструкция, отсутствие центробежного переключателя и номинальная мощность 30 Вт – вот некоторые характеристики этого типа асинхронного двигателя. Из-за его низкой мощности этот двигатель обычно используется в приложениях с низким энергопотреблением.
Заключение
В этой статье мы попытались предоставить некоторую полезную информацию об однофазных асинхронных двигателях.Прежде всего, мы поговорили об общей конструкции и конструкции этого типа электродвигателя переменного тока. Затем мы перешли к принципу работы и, наконец, дошли до различных типов однофазных ИД. Мы будем очень рады, если у вас есть какие-либо мнения или опыт использования этого типа асинхронных двигателей, и вы захотите поделиться им с нами в комментариях. Кроме того, если у вас есть какие-либо вопросы, зарегистрируйтесь на нашем веб-сайте и позвольте нашим специалистам Linquip помочь вам. Надеюсь, вам понравилась эта статья.
Однофазный асинхронный двигатель: работа схем и применение
Поскольку требования к питанию систем с одной нагрузкой обычно невелики, все наши дома, офисы снабжены однофазным электродвигателем А.Только поставка. Чтобы обеспечить надлежащие условия работы при использовании этого однофазного источника питания, необходимо использовать совместимые двигатели. Помимо совместимости, двигатели должны быть экономичными, надежными и простыми в ремонте. Все эти характеристики легко найти в однофазном асинхронном двигателе. Подобно трехфазным двигателям, но с некоторыми модификациями, однофазные асинхронные двигатели являются отличным выбором для бытовой техники. Их простой дизайн и низкая стоимость привлекли множество приложений.
Однофазный асинхронный двигатель Определение
Однофазный асинхронный двигатель – это простые двигатели, которые работают от однофазного А.C. и в котором крутящий момент создается из-за индукции электричества, вызванного переменными магнитными полями. Однофазные асинхронные двигатели бывают разных типов в зависимости от условий запуска и различных факторов. Это-
1). Двигатели с расщепленной фазой.
- Электродвигатели с резистивным пуском.
- Двигатели емкостные пусковые.
- Двигатель с постоянным разделенным конденсатором.
- Двухзначный конденсаторный двигатель.
2). Асинхронные двигатели с расщепленными полюсами.
3).Асинхронный двигатель с резистивным пуском.
4). Отталкивание – пуск асинхронного двигателя.
Конструкция однофазного асинхронного двигателя
Основными частями однофазного асинхронного двигателя являются статор, ротор и обмотки. Статор – это неподвижная часть двигателя, на которую подается переменный ток. Статор содержит два типа обмоток. Одна – основная обмотка, другая – вспомогательная. Эти обмотки размещены перпендикулярно друг другу. К вспомогательной обмотке параллельно подключен конденсатор.
Поскольку питание переменного тока используется для работы однофазного асинхронного двигателя, необходимо учитывать определенные потери, такие как – потери на вихревые токи, потери на гистерезис. Для устранения потерь на вихревые токи статор имеет пластинчатую штамповку. Для уменьшения потерь на гистерезис эти штамповки обычно изготавливаются из кремнистой стали.
Ротор – это вращающаяся часть двигателя. Здесь ротор похож на ротор с короткозамкнутым ротором. Ротор не только цилиндрический, но и имеет по всей поверхности прорези.Чтобы обеспечить плавную и стабильную работу двигателя, предотвращая магнитную блокировку статора и ротора, пазы скошены, а не параллельны.
Жилами ротора являются алюминиевые или медные стержни, которые вставляются в пазы ротора. Торцевые кольца, изготовленные из алюминия или меди, замыкают проводники ротора. В этом однофазном асинхронном двигателе не используются контактные кольца и коммутаторы, поэтому их конструкция становится очень простой и легкой.
Эквивалентная схема однофазного асинхронного двигателя
На основе теории двойного вращающегося поля можно нарисовать эквивалентную схему однофазного асинхронного двигателя.Схема изображена в двух положениях – состояние покоя ротора состояние заблокированного ротора.
Двигатель с заблокированным ротором работает как трансформатор с короткозамкнутой вторичной обмоткой.
Эквивалентная схема однофазного асинхронного двигателяВ состоянии покоя ротора два вращающихся магнитных поля имеют противоположное направление с одинаково разделенными величинами и кажутся соединенными последовательно друг с другом. Цепь однофазного асинхронного двигателя
в состоянии покоя ротораПринцип работы однофазного асинхронного двигателя
Основная обмотка однофазного асинхронного двигателя питается от однофазного А.C. ток. Это создает флуктуирующий магнитный поток вокруг ротора. Это означает, что при изменении направления переменного тока изменяется направление генерируемого магнитного поля. Этого условия недостаточно, чтобы ротор вращался. Здесь применяется принцип теории двойного вращающегося поля.
Согласно теории двойного вращающегося поля, одиночное переменное поле возникает из-за комбинации двух полей равной величины, но вращающихся в противоположном направлении. Величина этих двух полей равна половине величины переменного поля.Это означает, что при приложении переменного тока создаются два поля половинной величины с равными величинами, но вращающимися в противоположных направлениях.
Итак, теперь в статоре течет ток, а на роторе вращается магнитное поле, таким образом, закон электромагнитной индукции Фарадея действует на ротор. Согласно этому закону вращающиеся магнитные поля производят электричество в роторе, которое создает силу «F», которая может вращать ротор.
Почему однофазный асинхронный двигатель не запускается автоматически?
Когда к ротору применяется закон электромагнитной индукции Фарадея, индуцируется электричество и создается сила на стержнях ротора.Но согласно теории двойного вращающегося поля, есть два магнитных поля с одинаковой величиной, но вращающихся в противоположном направлении. Таким образом, создаются два вектора силы с одинаковой величиной, но противоположными по направлению.
Таким образом, эти векторы силы, поскольку они имеют одинаковую величину, но противоположны по направлению, не вызывают вращения ротора. Таким образом, однофазные асинхронные двигатели не запускаются самостоятельно. Мотор в таком состоянии просто гудит. Чтобы предотвратить эту ситуацию и вращать ротор, необходимо приложить пусковое усилие для однофазного двигателя.Когда сила в одном направлении становится больше, чем сила в другом направлении, ротор начинает вращаться. В однофазных асинхронных двигателях для этой цели используются вспомогательные обмотки.
Способы пуска однофазного асинхронного двигателя
Однофазный асинхронный двигатель не имеет пускового момента, поэтому для обеспечения этого пускового момента требуется внешняя схема. Для этого в статоре этих двигателей имеется вспомогательная обмотка. Вспомогательная обмотка подключена параллельно конденсатору.Когда конденсатор включен, аналогично основной обмотке, на вспомогательной обмотке наблюдаются вращающиеся два магнитных поля одинаковой величины, но в противоположном направлении.
Из этих двух магнитных полей вспомогательной обмотки одно компенсирует одно из магнитных полей основной обмотки, а другое складывается с другим магнитным полем основной обмотки. Таким образом, в результате получается одно вращающееся магнитное поле большой величины. Это создает силу в одном направлении, следовательно, вращает ротор.Когда ротор начинает вращаться, он вращается, даже если конденсатор выключен.
Существуют различные способы определения однофазных асинхронных двигателей. Обычно эти двигатели выбираются в зависимости от способа их запуска. Эти методы можно классифицировать как
- Двухфазный пуск.
- Запуск с расщепленными полюсами.
- Пуск отталкивающего двигателя
- Пуск с противодействием.
При двухфазном пуске статор имеет два типа обмоток – основная обмотка и вспомогательная обмотка, соединенные параллельно.