Сопротивление заземления: методы измерения и периодичность
Основная цель измерения рабочих параметров защитного заземления – выявление соответствия их значений требованиям действующих нормативов (ПУЭ, в частности). Соблюдение этого условия является обязательной составляющей мероприятий по обеспечению безопасности эксплуатации электроустановок.
Изменение параметров заземлителей с течением времени
Потребность в том, чтобы периодически проверять сопротивление заземления, вызвана изменениями его реального значения с течением времени и в зависимости от климатических условий.
Последнее обстоятельство связано с их зависимостью от множества факторов, основными из которых являются:
- Ухудшение контакта в зонах сопряжения металлических элементов из-за повышенной влажности.
- Изменение состояния грунта в месте его обустройства в засушливые и знойные дни.
- Старение (износ) металлоконструкций и подводящих проводников, которые согласно ГОСТ должны иметь определенную толщину.
Проверять сопротивления заземления можно любым допустимым нормативами способом с привлечением подходящих для этих целей измерительных приборов. Рассмотрим самые известные из этих методик более подробно.
Методы измерения параметров заземляющих устройств
Известно несколько способов, воспользовавшись которыми удается проверить наличие и померить сопротивление заземлителя с достаточно высокой точностью. Рассмотрим каждый из этих подходов более подробно.
Применение мультиметра
Вопрос о том, как измерить сопротивление заземления мультиметром, не совсем корректен. Сделать это удается лишь при наличии профессионального измерительного оборудования.
Процедура замера сопротивления заземления мультиметром обычно сводится к простейшей проверке подключения заземляющего контакта розетки к защитному контуру. Как это можно проверить посредством тестера и утюга, например, уже было рассмотрено в соответствующей статье. Таким образом, при рассмотрении вопроса измерения заземлений мультиметром под данной процедурой понимают проверку его наличия. Кроме того, этот прибор может пригодиться для выявления скрытых обрывов в цепях или пропадании контактов.
Метод амперметра-вольтметра
При применении этого метода проверки сопротивления заземления потребуется собрать цепочку, одной из составляющих которой станет проверяемое заземляющее устройство. В нее дополнительно включается специальный токовый электрод, называемый «вспомогательным».
Помимо этого в указанной схеме предусматривается еще один – потенциальный электрод (зонд), предназначенный для снятия показаний падения напряжения. Его необходимо установить примерно на равном удалении, как от токового электрода, так и от заземленной точки. Вследствие такого расположения он находится в зоне с практически нулевым потенциалом (фото ниже).
Метод амперметра-вольтметра для измерения сопротивления заземленияСогласно данной схеме замеры сопротивлений заземлений сводятся к снятию показаний напряжения и тока и к последующему вычислению искомой величины по закону Ома R=U/I . Подобный способ испытаний оптимально подходит для загородных и частных домов. Для получения требуемого тока в измерительной цепи можно воспользоваться любым подходящим по мощности трансформаторным устройством. Как вариант, подойдут некоторые модели сварочных агрегатов.
Использование специализированных приборов
Как уже отмечалось, измерять сопротивление заземления простым тестером не представляется возможным (показать реально, сколько Ом составляет сопротивление заземлителя, он не способен). Это относится и к рассмотренной выше схеме с зондом и токовым электродом. Для работы с ними должны использоваться специальные аналоговые приборы следующих типов:
- Ф4103-М1
- ИСЗ-2016
- М-416 (измеритель многофункциональный)
- ИС-10 (микропроцессорный измеритель)
- ИС-20/1 (более усовершенствованный прибор)
- MRU-101 (профессиональный прибор
Для примера можно проследить, как измеряется сопротивление заземления посредством прибора М-416. При работе с ним необходимо действовать по следующему плану:
- Сначала следует убедиться в том, что в отсеке прибора имеются элементы питания (3 штуки по 1,5 Вольта, в сумме дающие питающее напряжение 4,5 Вольта).
- Затем приготовленный к работе прибор нужно расположить строго горизонтально и прокалибровать его.
- Для этого следует установить ручку с указателем в положение «контроль» и, надежно удерживая в нажатом положении кнопку красного цвета, выставить стрелочный указатель на «ноль».
Измерения сопротивления защитного заземления этим прибором осуществляются по той же схеме с двумя электродами.
Схема подключения прибора М-416После того, как колья вбиты в грунт – к ним подсоединяются провода согласно приведенной схеме (контакты прибора 1, 2, 3 и 4). Затем указатель приборного переключателя «Диапазон» устанавливается в «х1» (фото ниже).
Установка ручки прибора М-416 в положение х1Потом следует нажать на контрольную кнопку и поворачивать ручку «Реохорд» до того момента, пока стрелка на индикаторе не покажет «ноль». Указанную на шкале реохорда цифру нужно умножить на выбранный диапазон, что и даст в результате измеренное значение.
Обратите внимание: В ситуации, когда показания прибора превышают 10 Ом, переключатель множителя (диапазон) следует установить на более высокое значение: «X5», «X20» или «X100», а затем повторить все описанные ранее операции. Величина сопротивления в этом случае определяется путем умножения показания «Реохорд» на новый масштаб.
Для проведения измерений этим методом могут применяться и более «продвинутые» цифровые приборы, отличающиеся простотой измерений и максимальной точностью. С их помощью можно не только снимать показания, но и сохранять данные измерений во внутренней памяти.
При проведении проверок посредством мегаомметра действовать необходимо согласно инструкции (она похожа на описанные выше процедуры для М-416). Однако перед тем как проверить сопротивление заземления мегаомметром, следует знать, что погрешность снятия показаний в этом случае будет намного выше. Данный факт объясняется заметным отличием исследуемых систем от привычного сопротивления изоляции. Этот прибор больше подходит для проверки сопротивления изоляции электросетей заземляемого оборудования, надежность которой также влияет на безопасность его эксплуатации.
При нарушениях изоляции может наблюдаться неприятный эффект, который объясняется тем, что сопротивление тела человека является достаточно большим для появления на нем опасного потенциала. При случайном прикосновении к оголенному проводнику через тело потечет ток, величина которого достаточна для того, чтобы нанести ему серьезную травму.
Измерение токовыми клещами
Особенность метода замера сопротивления заземления посредством типовых измерительных клещей состоит в следующем:
- В этом случае отпадает необходимость в отключении заземляющего устройства от обслуживаемого оборудования.
- Вспомогательные электроды в данной ситуации также не нужны.
- Появляется возможность оперативно контролировать весь процесс снятия показаний.
Принцип измерения токовыми клещами следующий: протекающий по заземляющему проводнику или шине (являющимися в данном случае вторичной обмоткой) испытательный ток оценивается токовыми клещами по своей величине. После этого посредством вольтметра снимается показание действующего в цепи напряжения.
Для вычисления искомого сопротивления нужно будет разделить полученное значение напряжения в вольтах на измеренную посредством клещей величину тока в амперах.
Измерения переходного сопротивления
При измерении параметров контура заземления особое внимание уделяется так называемым «переходным» зонам, образующимся по всей площади непосредственных сочленений элементов конструкции (включая их контакт с почвой и сам грунт). Для этих участков вводится понятие «переходного сопротивления», в значительной мере влияющего на суммарное значение. Все рассмотренные выше методы измерения касались и этой части общего сопротивления системы (за исключения сопротивления материала заземляющих проводников и штырей).
По его величине можно судить о скорости стекания опасного заряда в землю, а также о тех препятствиях, которые встречаются на пути. В действующих системах эта составляющая вносит ощутимый вклад в формирование общего показателя для всего ЗК.
Как измерять переходное сопротивление
Перед тем как измерять заземление в переходных зонах потребуется приготовить специальный прибор, называемый миллиомметром. Для проведения этих испытаний сгодится любой другой прибор для измерения заземления из той же серии (иногда для этого используются универсальные аппараты М-416). Независимо от типа выбранного прибора для этих целей должна использоваться только сертифицированная измерительная техника, прошедшая государственную поверку. В противном случае проведенные на приборе измерения не будут считаться соответствующими действующим нормам и ГОСТам.
При проведении таких замеров прибор, выбранный в качестве измерительного устройства с заряженным питающим аккумулятором, подключается своими зажимными клеммами по обе стороны контролируемого соединения. Независимо от типа элементов контура переходное сопротивление между ними не должно превышать 0,05 Ома. Если проведенное таким методом измерение переходного сопротивления заземления дало неудовлетворительный результат – эксплуатацию установки прекращают до выявления причин и их устранения. Схема измерений переходной проводимости представлена на фото ниже.
Схема измерения переходного сопротивленияПеред тем как проверить контур заземления – необходимо ознакомиться с существующими методиками его расчета. В подавляющем большинстве случаев они сводятся к простейшим вычислениям по закону Ома (путем деления измеренного напряжения на снятые в соответствующей цепи токовые показания).
Дополнительная информация: Перед расчетом удельного сопротивления заземления важно учесть все звенья цепочки стекания аварийного тока, включая контактные зоны.
Полученный в итоге результат полностью характеризует конструкцию на ее соответствие нормируемым показателям.
Как часто замеряется
Сроки проверки заземления электроустановок устанавливаются согласно следующим требованиям нормативам:
- Визуальные осмотры – каждые полгода.
- Поверка качества соединений металлических элементов в их стыках – раз в год.
Возможны и внеплановые проверки переходного сопротивления заземлителя, которые проводятся обычно после реставрации контура, а также при внесении в его конструкцию серьезных коррективов. Испытания также могут проводиться и при сдаче вновь запускаемой системы заземления в эксплуатацию.
При организации очередных или внеочередных проверок необходимо руководствоваться общими положениями по расчету удельного сопротивления заземления.
Сопротивление повторного заземления
является важнейшим элементом комплексной системы защиты от поражения электрическим током. Оно устанавливается на приемной стороне питающей линии при наличии в подводке в ней нулевого провода РЕ или РЕN.
Важно! Это требование справедливо для сетей, работающих по схеме ТN с глухо заземленной нейтралью.
Как правило, в качестве повторного заземления используются как естественные, так и искусственно созданные элементы. Однако сопротивление естественных заземлителей зависят от очень многих факторов (включая климатические условия), так что с течением времени оно постоянно меняет свое значение.
В связи с этим при обустройстве этого типа заземлений предпочтение отдается искусственно созданным системам, имеющим вполне конкретные показатели.
Повторное заземление коттеджаЗаземляющий провод такого устройства выводится от ЗК в сторону вводного щитка с установленной в ней главной заземляющей шиной (ГЗШ).
Необходимость в повторном заземлении своими руками монтируемом на стороне потребителя, объясняется следующими причинами:
- Его наличие исключает опасные ситуации, возникающие в питающей сети при обрыве нейтрального или заземляющего провода, идущего от силовой подстанции (фото выше).
- В данном случае оно может работать как самостоятельное заземление, обеспечивающее безопасные условия эксплуатации электроустановок на стороне потребителя.
- При нем в квартире или частном доме можно обустроить электропроводку с третьей (заземляющей) жилой.
Наличие повторного заземления специально оговаривается в ПУЭ, отдельные положения которых предписывают его обязательную установку и испытание.
Какая периодичность измерений
Перед тем как замерить сопротивление заземления тем или иным способом – важно учесть требования ПУЭ в части периодичности проведения этих испытаний. Согласно основным положениям этого документа они могут проводиться в следующих формах:
- плановые обследования;
- внеочередные проверки;
- пусковые испытания.
Периодичность каждой из этих разновидностей проверок определяется теми целями, которые они перед собой ставят. Периодичность проверок сопротивления изоляции станционного оборудования обычно согласуется с обследованием самого ЗК. Рассмотрим различные их виды более подробно.
Плановые проверки
Сроки проведения плановых мероприятий оговариваются инструкцией РД-34. 22.121-87, а также требованиями ПУЭ. Из этих документов можно узнать, какова периодичность визуального осмотра видимых частей устройств заземления, которая согласно им организуется не реже одного раза в полгода. Помимо этого из этих же нормативов следует, что не реже чем раз в 12 лет должны проводиться обследования конструкции со вскрытием грунта вокруг нее. Измерение сопротивления контуров заземления согласно тем же документам должно проводиться не реже раза в 6 лет.
Ответственными за проведение таких проверок являются лица, уполномоченные на это соответствующими органами. Владелец частного дома должен заранее оформить заявку на их проведение с последующей оплатой. По завершении испытаний он обязан предоставить в местную энергетическую службу протокол измерений сопротивлений контактов между элементами ЗК.
Внеочередные
Внеочередные измерения параметров контура должны проводиться в следующих внештатных ситуациях:
- После внесения в конструкцию изменений, не предусмотренных проектом, но влияющих на сопротивление растеканию току (измерение заземления в частном доме должно проводиться при переносе его на другое место).
- После аварийного разрушения и последующего восстановления ЗК.
- По завершении ремонтных работ.
Периодичность их проведения по понятным причинам не регламентируются.
Пусковые или вводные
Пусковые или вводные проверки заземления и измерения сопротивления организуются сразу же по окончании монтажа защитного контура (то есть накануне сдачи его представителю местной энергетической службы). Для этого потребуется пригласить специалиста от электрической лаборатории или другой организации, имеющей лицензию на право проведения таких испытаний.
По итогам проверки оформляется акт приемки, являющийся основанием для последующего пуска устройства в эксплуатацию и подтверждением того, что все питающие линии в частных домах заземлены.
Условия проведения испытаний
При организации мероприятий по проверке заземления важно обратить внимание на те условия, в которых предполагается их проведение. Они должны учитываться еще на стадии подготовки испытаний, а по их окончании вноситься в особый журнал. Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты. Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения.
При проведении контрольных замеров допустимых сопротивлений в осеннюю сырую погоду, например, полученные результаты будут в значительной степени искажены. Это объясняется тем, что пропитанный влагой грунт существенно увеличивает показатель проводимости почвы. Для того чтобы избежать всех этих сложностей и получить значение близкое к реальной величине – проще всего воспользоваться услугами профессионалов. Для этого необходимо обратиться в специальную электротехническую лабораторию, имеющую лицензию на проведение соответствующих работ.
Специалисты по прибытию на место выявят все факторы и организуют испытания защитного оборудования в соответствие с требованиями действующих нормативов. По завершении всего испытательного цикла ими же будет оформлен протокол измерения сопротивления заземления образец которого представлен ниже.
Протокол проверки сопротивлений заземлителейИтоги
Подводя итог всему описанному в предыдущих главах, необходимо отметить следующие основные моменты:
- Систематические проверки заземляющих контуров позволяют убедиться в их полной работоспособности.
- При решении проблемы касающейся того, каким прибором следует снимать показания – предпочтение отдается специальным многофункциональным устройствам, обеспечивающим высокую точность измерений.
- В процессе их проведения важно придерживаться общепринятых методик определения точных значений измеряемых величин.
- С полной формулой определения суммарного сопротивления всей заземляющей конструкции можно ознакомиться в соответствующих разделах ПУЭ.
В дополнение к статье предлагаем для просмотра видео материалы, в которых показывают как измеряется сопротивление заземления с помощью различных многофункциональных приборов.
В заключительной части обзора отметим, что для более подробного ознакомления со всеми рассмотренными вопросами следует обратиться к многочисленным источникам, широко представленным в сети. Там же можно найти большое количество тематических подборок и видео обзоров, позволяющих узнать о том, как проверить и точно измерить сопротивление заземляющих конструкций самого различного типа и класса.
Как проверить тестером сопротивление – каковы варианты? + видео
У кого-то такой прибор есть дома, достался в наследство и лежит в шкафу… Мы постараемся частично раскрыть его потенциал, и для начала разберем, как проверить тестером сопротивление!
Как замерить тестером сопротивление и где необходимы такие операции?
Под тестером измерения сопротивления заземления понимается измерительный прибор со встроенным микропроцессорным управлением. С его помощью можно узнать не только сопротивления заземлений, но также и удельное сопротивление грунта. Им хорошо определяются имеющиеся паразитные напряжения в почве. Последние модели тестеров полностью автоматические и удобны в работе. Обычно их используют для измерений систем заземлений на электростанциях, на многих промышленных предприятиях, а также в тех отраслях, где есть распределительные сети.
Обычно стандартные приборы состоят из следующих элементов: корпуса измерителя, передней и базовой панелей, панели с соединительными разъемами, клавиш обозначений органов индикации, а также управления измерителя. Последние модели таких приспособлений являются переносными приборами с внутренним источником питания. Измерение сопротивления тестером заземляющих устройств должно осуществляться так, чтобы они соответствовали общим европейским стандартам. Обычно тестеры имеют в комплекте все основные принадлежности, которые нужны для выполнения испытательных работ.
Современные приборы оборудованы электронной частью. Производители используют при изготовлении SMD-технологии, а значит, в работе не нужно дополнительное обслуживание. Дисплей ЖК выполнен по традиционной разработке, и с его помощью легко считывается вся получаемая в процессе информация. Тестеры легки и просты в использовании. Операторам не надо проходить специальное обучение и подготовку, достаточно будет только внимательно изучить инструкцию, как померить сопротивление тестером.
Прежде, чем мы узнаем, как замерить тестером сопротивление, разберем основные сферы применения этого прибора и самые частые операции, которые им выполняются. С помощью данного прибора можно осуществлять следующие работы: тестировать безопасность электроустановок, машин и механизмов, испытывать и сертифицировать структурированные кабельные сети, измерять, регистрировать и анализировать системы электрораспределения, фиксировать параметры окружающей среды, электропроводки внутри помещений и контролировать работы климатического оборудования.
Смысл проведения работ, связанных с заземлением не только закрытых, но и открытых проводящих частей электронагрузок, в том, чтобы рассчитать возможные электрические потенциалы, которые могут возникнуть на электрических нагрузках, когда имеется неисправность, к потенциалу земли.
Как проверить тестером сопротивление – методы изысканий
Есть много разных методов измерений системы заземления, которые встречаются среди пользователей. Многие из них имеют свои преимущества и ограничения. Наиболее часты следующие методы:
- с использованием внутреннего генератора и 2-мя электродами;
- используя внешнее измерительное напряжение без подключения вспомогательных измерительных электродов;
- используя внешнее напряжение и вспомогательные электроды;
- используя внутренний генератор и 2 измерительных электрода, или с помощью одних измерительных клещей;
- бесстержневой метод, в котором используются два измерительных клеща.
Если работа проводится методом с внутренним генератором и с применением двух измерительных электродов, в данном случае будет использоваться синусоидальный измерительный сигнал. Этот сигнал – идеальный вариант, в отличие от прямоугольного. Чаще используется именно синусоидальный сигнал, если измерение системы заземления имеет индуктивные компоненты как дополнение к активным сопротивлениям. Такой метод применим там, где заземление делается с помощью металлических полос, которые обходят вокруг объектов работы. Также этот подход наиболее предпочтителен тогда, когда все условия, в том числе и физические, позволяют его реализовать.
Методом, где используется внешнее измерительное напряжение без включения вспомогательных измерительных электродов, обследуют, если необходимо измерить заземления в системах ТТ. Основным преимуществом данного метода является то, что в работе не нужно использовать вспомогательные измерительные электроды. Это очень ценное условие для городов, так как мало свободного пространства на земле для того, чтобы разместить испытательные электроды. Методом, где используется не только внешнее измерительное напряжение, а также и вспомогательные электроды, активно обследуют в отдаленных населенных пунктах, в сельской местности. Для работы таким методом надо много свободного пространства.
Метод, где используется внутренний генератор и 2 измерительных электрода, или же с помощью одних измерительных клещей, работает тогда, когда не нужно разъединять электроды заземления. Часто эти электроды могут быть параллельно соединены с испытательными электродами. Бесстрежневым методом работают тогда, когда нужно проводить измерения в непростых заземляющих системах (особенно, если это множественные параллельные электроды заземления). Также этот метод используют при наличии вторичной системы с малым сопротивлением заземления. Благодаря этому методу, можно выполнять измерения без вспомогательных электродов. Важным преимуществом является то, что нет нужды разрывать шины заземлений.
Измерение сопротивления тестером – особенности процесса
А теперь обсудим самое любопытное – как измерить сопротивление заземления тестером. Любая подобная работа должна начинаться с внешнего осмотра всех элементов заземляющих контуров. Обязательно нужно проверить не только качество сварочных работ, но и качество болтовых соединений. Если при осмотре не было серьезных замечаний, то можно смело начинать выполнять измерения. Обычно помимо основного прибора в работе необходимо наличие специальных электроизмерительных агрегатов.
Чтобы полноценно и правильно измерить сопротивление заземлений, нужно знать и выполнять все общие правила работы. Важно вначале работы обратить внимание на то, чтобы прибор находился в горизонтальном положении, и были установлены все элементы питания. Надо следить за стрелкой прибора: если положение переключателя диапазона находится в необходимом состоянии, то она должна быть на нуле. Все провода нужно подключать только по специальным схемам.
Если проводится непосредственное измерение сопротивлений и применяются, помимо зонда, и дополнительные электроды в виде металлических стержней, то они должны быть заглублены в грунт на расстоянии около 0,5 м. Все проверки сопротивлений любых заземляющих устройств должны проводиться по графику, который утверждается на предприятии. Обычно они проводятся один раз в полгода. Если самостоятельно провести анализ невозможно, то необходимо обращаться за помощью к специализированным организациям. Важно при выполнении измерений максимально обеспечивать безопасность при пользовании электричеством.
Как проверить заземление в частном доме мультиметром?
Как проверить заземление .Проверить сопротивление контура заземления.
Как проверить заземление .Проверить сопротивление контура заземления.
Все мы, так или иначе, знакомы с понятием заземления. Еще со школьной скамьи известно, что это понятие тесно связано с безопасностью и имеет отношение к каждому частному дому. Мужчины представляют, как должен выглядеть защитный провод в электрическом щитке и даже, возможно, владеют парой способов, как проверить заземление самостоятельно, но даже женщинам знаком «третий» контакт в стандартной трехконтактной розетке.
Устройство проверки сопротивления — мегаомметр
Защите от утечек тока в квартире подлежат электрические щиты, части корпусов и детали бытовой техники, а также металлические предметы, попадание электрического тока на которые довольно вероятно (полотенцесушитель, ванна и т. п.).
Заземление – это целенаправленное соединение с землей частей электроустановки. Оно необходимо для безопасного использования электроприборов в случае несанкционированного попадания напряжения на проводящие ток детали.
Защитный контур состоит из следующих частей:
- проводник;
- соединения;
- заземлитель;
- грунт вблизи него.
Заземлитель – это металлическая конструкция, часть защитного контура, обеспечивающая контакт его с грунтом вокруг дома. Электрод может быть естественным и искусственным. В первом случае контакт с почвой достигается посредством использования, например, части железобетонной конструкции здания или рельс железных дорог, во втором – отдельно выведенном на фасад проводом.
Можно использовать в качестве заземлителя и трубы подземных водопроводов, но запрещается включать в защитный контур водопроводные трубы в квартире, так как их контакт с землей не является подтвержденным фактом.
Почему проверять заземление важно?
Почти все современные розетки имею три контакта – «ноль» и «фаза» проводником соединены с электростанцией, «земля» — с грунтом. Реализуется это через щиток в квартире, куда выведены соответствующие провода из распределителя дома.
В случае нарушения изоляции и утечки электрического тока избыточное напряжение с металла направляется в землю до срабатывания защитной аппаратуры.
Измерение сопротивления растекания тока контура заземления
Тем не менее, намеренно или по ошибке строители и электрики часто осуществляют схему заземления неверно. Нередко соединения этого контура со временем приходят в негодность, и их эффективность стремится к нулю. Для безопасного использования электрического тока посредством защитной схемы необходимо проверять работоспособность контура заземления, а именно:
- грунт и электроды в нем;
- проводник и заземляющая шина;
- соединения в цепи, так называемые металлосвязи.
В зависимости от назначения помещения проверка заземления осуществляется с разной периодичностью. Для жилых и сопутствующих строений приемлемая регулярность – раз в три года.
Проверка металлосвязей
Для проверки целостности всех металлосвязей необходимо убедиться в сохранности каждой визуально. Рекомендуется при этом использовать молоточек с изолированной ручкой. О целостности контакта говорит легкое дребезжание проводника. Кроме того, важно убедиться в соответствии нормам сопротивлении каждого металлического соединения с помощью омметра или мультиметром.
Проверка целостности всех металлосвязей с помощью мультиметра
Показания прибора не должны превышать 0,05 Ома. Проверка сопротивления заземления одинаково важна как для квартиры, так и для частного дома. Требования одинаковы.
Проверка грунта
Проверка грунта проводится в наиболее сухое время года, за исключением случаев контроля молниезащиты. Тест проводится с применением специального оборудования. Наибольшую важность эта процедура имеет на этапе проектирования частного дома и его электрической сети.
Если почва на месте строительства не соответствует требованиям безопасности, следует выбрать иное место для строительства или вывести контур заземления в более пригодный грунт.
Проверка проводников в квартире. Метод 1.
В частном доме или квартире должны быть заземлены все металлические предметы от ванны до батарей. Также защите подлежат все розетки, но просто наличия третьего контакта в них для этого недостаточно: необходимо проверить, является ли этот контакт частью правильно налаженной схемы заземления. Известно несколько простых способов это сделать. Один из способов основан на использовании обычной отвертки, тестера, а также изолированного провода с двумя щупами на концах и выглядит следующим образом:
- Сначала необходимо проверить, под напряжением ли сама розетка. Обычно это делается тестером, но подойдет и простейший электроприбор, например, настольная лампа, зарядное устройство для мобильного телефона или что-то подобное. Обратите внимание, что вставлять вилку в розетку нужно очень аккуратно, не касаясь провода заземления, так, как еще не известно, является ли он таковым.
- Когда вы убедились с работоспособности этой розетки, необходимо отключить ее через устройство защитного отключения (УЗО) в щитке. Не выключая электроприбора, переключите «автомат» – прибор отключится. Теперь с розеткой можно работать.
- Вытащите вилку и снимите крышку розетки. Посмотрите, к какому проводу подключен ее контакт заземления. Надеяться, что в электрической цепи вашей квартиры или частного дома реализована схема заземления, можно в том случае, если контакт заземления соединен с отдельным проводом, уходящим в стену. Иначе применен принцип зануления (если контакт заземления соединен с одной из клемм, см. ниже) или этот вопрос оставлен электриками без решения (если контакт заземления вообще не подключен). Соберите розетку, включите УЗО в щитке.
- Если выяснилось, что розетка заземлена, необходимо это проверить. Во-первых, тестером или индикаторной отверткой убедитесь, что заземляющий контакт был «кинут» не на фазу. Во-вторых, проверьте, заземлен ли провод, с которым соединен этот контакт. Этой же отверткой или тестером найдите в розетке фазу, уберите с нее палец и поместите на сенсор один из щупов изолированного провода – индикатор отвертки не должен гореть. Второй конец того же провода соедините с заземляющим контактом. В случае правильного заземления лампочка на отвертке сразу же загорится или станет ярче. В противном случае следует вызвать электрика.
Проверка проводников в квартире. Метод 2.
Если есть длинный провод, можно провести более подробную проверку контура заземления. Инструменты те же, что и в предыдущем методе, последовательность действий следующая:
- Откройте электрический щит и с помощью индикаторной отвертки убедитесь в отсутствии напряжения в контуре заземления – провод желто-зеленой расцветки.
- Найдите «ноль» — провод синего цвета – и подсоедините к нему один из щупов заранее приготовленного проводника. Другим щупом прикоснитесь желто-зеленого провода. Если «автомат» сработал, то контур заземления на входе электрощита в порядке. В этом случае стоит проверить, в каком он состоянии после щита.
- Верните рычаг УЗО во взведенное положение. Оставьте один конец изолированного провода на «нуле», а другим поочередно касайтесь розеток и металлических предметов в каждой комнате. Если контур заземления в порядке, каждый раз будет срабатывать «автомат».
- Уделите особенное внимание ванной. На высоте примерно 50 см от пола здесь должен находиться бокс СУП – это небольшая пластиковая коробочка, в которой находится металлическая шина и провода. Напряжения здесь быть не должно, убедитесь в этом индикаторной отверткой и подтяните все болтовые соединения.
Щиток распределения электрического тока
Альтернатива заземлению
Зануление – это один из частных видов заземления. Применяется оно в том случае, если частный дом оборудован двухжильным проводником. Например, во время строительства подавляющего большинства хрущевок государственные стандарты регламентировали лишь заземление источников электрического тока.
К сегодняшнему моменту почти все такие схемы заменили более безопасными, но даже если этого не произошло в вашем доме, вы можете использовать зануление. Оно служит для гарантированного срабатывания «автоматов» — это главное отличие зануления от заземления, которое призвано свести риск поражения электрическим током к нулю.
Признаки нарушения контура заземления
Иногда выявить нарушение в электрической цепи можно, не прибегая к использованию специальных приборов. Более того, мы ежедневно сталкиваемся с этими указателями, но зачастую не умеем их распознать.
Схема с несколькими источниками питания и точками заземления
Например, о нарушении контура заземления может говорить бьющийся током корпус стиральной машины или холодильника. Поводом проверить защитную схему электрической цепи может стать пыль, оседающая на батареях отопления особенно толстым слоем. Посторонний шум в наушниках или аудиоколонках – он тоже говорит о том, что электрическая сеть вашего дома не в порядке.
Если что-то из вышеперечисленного вызвало вашу настороженность, настоятельно рекомендуем проверить заземление самостоятельно или обратиться к профессионалам
Как узнать, есть заземление в розетке или нет?
Методика проверки
Итак, чтобы узнать, есть ли заземление в доме для начала нужно отключить электроэнергию на вводном щитке и разобрать одну из розеток. После этого Вы должны визуально посмотреть, подключен ли желто-зеленый провод к соответствующей клемме на розетке, как показано на фото ниже:
Если к клеммам подключены только две жилы, к примеру, с синей и коричневой изоляцией (ноль и фаза, согласно цветовой маркировке проводов), тогда у Вас нет заземления в доме либо квартире. И еще один момент – если между нулем и заземляющей клеммой стоит перемычка, значит, до Вас в помещении сделали зануление электропроводки, что крайне опасно.
Итак, допустим, в винтовых зажимах находятся все три проводника, и Вы хотите проверить исправность заземления в розетке. Сначала рекомендуем выполнить проверку эффективности контура заземления мультиметром. Делается она очень просто:
- Включите электроэнергию на щитке.
- Переключите тестер в режим измерения напряжения.
- Замерьте напряжение между фазой и нулем.
- Выполните аналогичный замер между фазой и «землей».
Если в последнем случае мультиметр покажет напряжение, немного отличающееся от первого замера, значит, заземление в частном доме или квартире присутствует. На табло не появились цифры? Заземляющий контур отсутствует либо не работает. О том, как пользоваться мультиметром в домашних условиях, мы рассказывали в соответствующей статье!
Если же у Вас не тестера под рукой, можно проверить качество работы заземления с помощью контрольной лампочки, собранной из подручных средств. Итак, сделать самостоятельно контрольную лампу Вы можете по следующей схеме (1 — патрон, 2 — провода, 3 — концевики):
При помощи индикаторной отвертки Вам нужно проверить, где фаза, а где ноль. Не всегда подключение розетки выполнено по правилам. Возможно, то кто подключал контакты, перепутал их цветами и теперь фаза синего цвета, что не есть правильно.
Сначала дотроньтесь одним концом провода к фазной клемме, а вторым – к нулевой. Контрольная лампа должна загореться. После этого тот конец провода, которым Вы прикасались к нулю, переместите на усик заземления (показан на фото ниже).
Если лампочка горит – контур работает, тусклый свет – состояние заземляющего контура неудовлетворительное. Лампочка не горит, значит, «земля» не работает. Тут же следует отметить, что если цепь защищена устройством защитного отключения, при проверке надежности заземления может сработать УЗО, что также говорит о работоспособности заземляющего контура.
Если Вы прикоснулись проводами от контрольки к фазе и земле, но лампочка не горит, попробуйте с фазной клеммы переместить концевик на нулевую, чтобы проверить контур. Это тот случай, когда есть шанс, что подключение было неправильным и фаза не того цвета.
Косвенные доказательства
Вот еще несколько ситуаций, при возникновении которых Вы можете быть уверенным, что заземление в частном доме, квартире либо на даче не подключено или по крайне мере плохо работает:
- водонагреватель либо стиральная машинка бьется током;
- когда играет музыка в колонках, слышен небольшой шум.
Также рекомендуем просмотреть видео, в котором показано, как самому проверить сопротивление заземляющего контура специальным измерителем:
Вот по такой просто методике можно самостоятельно узнать состояние защитного контура. Надеемся, что теперь Вы знаете, как проверить заземление в частном доме либо квартире своими руками!
Будет интересно прочитать:
Как измерить заземление мультиметром
Электрические приборы используют в квартирах, коттеджах и дачных домиках. Процесс их эксплуатации предполагает создание определенных условий для прохождения тока. В целях защиты человека от поражения электричеством в домах и квартирах устанавливают заземление. Оно нужно для того, чтобы уровнять потенциалы корпуса электрического прибора и земли. Далее речь пойдёт о том, как проверяют заземление мультиметром и омметром.
Зачем проверять заземление
Проводить данную процедуру нужно для того, чтобы предотвратить поражение жильцов дома электрическим током. Используют для проверки заземления стационарное или мобильное оборудование. Оценив результаты измерений, можно сделать вывод о том, как функционирует изоляция и соответствует ли электрическая сеть установленным нормативам. Провести процедуру можно самостоятельно либо пригласить специалиста из электросети.
Не стоит думать, что, если установкой розеток и другого электрооборудования в вашей квартире занимались специалисты, заземление работает правильно и измерять ничего не нужно. Часто контур соединяют неверно, что приводит к его быстрому износу. Поэтому опытные мастера рекомендуют с определенной периодичностью проверять состояние грунта с находящимися в нём электродами, проводник, заземляющую шину и металлосвязи. В жилых домах эту процедуру рекомендуют проводить один раз в три года, а в промышленных зданиях работники должны её проводить каждый год.
Оценка состояния металлосвязей начинается с визуального осмотра. Мастера бьют по контактам молоточком с изолированной ручкой. Если всё в порядке, то вы услышите небольшое дребезжание проводника. Специалисты должны убедиться в том, что сопротивление всех металлических соединений соответствует установленным стандартам. Для этого применяют мультиметр или омметр. Прибор не должен выдавать больше 0,05 Ома. Данное требование должны соблюдать застройщики многоэтажных и частных домов. Оценкой состояния грунта занимаются в конце весны или летом. В это время меньше всего осадков. Удельное сопротивление земли измерить могут работники электросети с помощью специальной аппаратуры. Если полученные результаты сильно отличаются от принятых норм, заземление выводят на другой участок грунта.
Как оценить состояние заземляющего контура в квартире?
Для измерения сопротивления заземления применяют тестер либо конструкцию из контрольной лампы. Также вам понадобится отвёртка и изолированный провод с двумя щупами. Если у вас под рукой есть мультиметр, необходимо выполнить следующие действия:
Проверить напряжение в розетке. Просто подключите к ней настольную лампу или телевизор. Если прибор заработал, то всё в порядке.
Отключите электроэнергию в квартире. Для этого следует воспользоваться УЗО или автоматом (если у вас старый дом).
Аккуратно снимите крышку розетку. Найдите провод, соединенный с контактом заземления. Если в вашем доме электросеть работает по принципу заземления, то провод будет уходить в стену. Если же провод подключён к одной из клемм, то в доме применяется принцип зануления либо заземляющего контура нет вообще.
Если схема заземления была обнаружена, переключите тестер в режим проверки напряжения.
Необходимо измерить напряжение между фазой и нулём, а затем между фазой и землёй.
В идеале цифры напряжения между фазой и землёй должны быть больше величины напряжения между фазой и нулём. Бить тревогу нужно, если при втором измерении тестер показал ноль. Это значит, что заземление в квартире или доме не работает. Не все пользуются мультиметром в повседневной жизни, поэтому смысла покупать его не видят. В таких ситуациях для проверки заземления можно собрать контрольную лампу. Для этого вы должны найти патрон, провода, концевики и лампу. Точно измерить таким способом величину напряжения не получится, но зато вы узнаете, работает ли у вас заземление.
Предварительно нужно определить с помощью индикаторной отвёртки, где в розетке фаза, а где ноль. При соприкосновении с фазой лампочка в инструменте загорится, а при взаимодействии с нулём ничего не произойдёт. После того, как вы определите расположение контактов, совершите следующие действия:
Притроньтесь одним концом провода к фазе, а вторым к нулю. Лампочка должна загореться.
После этого переместите конец провода от нуля к усику заземления. Лампочка должна гореть ярко. Если она мигает либо свет тусклый, то контур работает плохо. Если тока нет совсем, то «земля» не работает.
При такой проверке в новых домах могут срабатывать УЗО. Это тоже свидетельствует о том, что заземление работает плохо.
Как измерить заземление в частном доме?
Техника измерения заземления в домах несколько отличается от проведения этой процедуры в квартире. Первым вашим шагом будет проверка целостности всех металлосвязей и грунта. Как это сделать, описано выше в статье. Чтобы измерить заземление, вам нужно будет приобрести тестер, индикатор, отвёртку и изолированный провод. Одну из розеток необходимо отсоединить от напряжения через автоматический выключатель или УЗО.
Перед проведением манипуляций с розеткой следует ещё раз проверить напряжение. Оно должно быть нулевым. Как только вы в этом убедитесь, можно раскручивать корпус розетки. Вы должны убедиться в том, что контакт заземления идёт к соответствующему проводу в стене. Если это так, то можете собрать розетку назад и измерить заземление проводника мультиметром. Если контакт заземления, идущий от розетки, не соединён с проводом, необходимо это исправить, а затем продолжить процедуру. В третьем случае вы можете увидеть, что перемычка розетки переводится на сопротивление. Это означает, что у вас применяется в доме зануление и нужно модернизировать сеть.
В первых двух случаях всё хорошо. Остаётся только собрать розетку, убедиться, что отсутствует ток на металлическом контакте. После этого можно измерить заземление. С помощью индикатора нужно найти фазу. Туда следует поместить свободный конец кабеля, а другой на заземляющий контакт. Если индикатор заработал, то заземляющий контур работает правильно.
Как понять, что заземляющий контур не работает?
Не обязательно измерять напряжение мультиметром, чтобы выявить проблемы в работе заземляющего контура. Возникновение шума в колонках, разряды тока от стиральной машинки говорят о том, что электричество в землю не уходит. Если у вас дома установлены старые обогревательные батареи, то возле них будет скапливаться пыль в большом количестве.
Если у вас не получилось самостоятельно измерить напряжение заземляющего контура, то пригласите электрика. При небольших перепадах проблемы с работой этого электрического соединения незаметны, но, если возникнет серьёзное замыкание, человек, контактирующий с техникой, может погибнуть, т.к. ток попадёт в него.
Как проверить заземление в частном доме: для чего нужна
Проверка целостности и работоспособности заземления в домах, особенно в частных — это важная составляющая безопасности.
Устройство для определения показателя — это мегомметр, этот прибор должен быть у каждого, имеющего частную собственность.
Необходимость проверки заземления
Практические все розетки, выполненные в специальном исполнении, имеют три основных контакта:
Первые два соединены со станцией, вырабатывающей электричество, а последний с грунтовым основанием. Все это обеспечивается через распредщит, расположенный в частном особняке.
Заземление в частном доме
При нарушении целостности изоляции электропроводов возникает утечка тока, при этом возникающее в линии избыточное напряжение отводится в землю до срабатывания системы защиты.
Не всегда при строительстве дома схема заземления соответствует нормативу или контур быстро становится неработоспособным. Чтобы обеспечить собственную безопасность следует проверять наличие заземления.
Проверка заземления необходима чтобы:
- Риск поражения электрическим током был исключен.
- Не было поломки электробытовых приборов.
Проверить исправность заземления, значит обеспечить защиту от напряжения человека и электрооборудования.
По каким признакам определяются нарушения контура
Несложно распознать нарушения целостности заземляющих проводников без использования приборов. Они находятся на видном месте и не заметить их невозможно.
Перечень внешних признаков:
- Нарушение целостности сварных и болтовых соединений шин.
- Оборванные или взлохмаченные провода заземления.
- Удар электрическим током от бытовых приборов, например от холодильника или стиральной машины.
- Присутствие посторонних шумов, исходящих от телевизора, колонок или наушников.
При наличии хотя бы одного из признаков рекомендуется выполнить проверку заземления.
Методы проверки контура
Как проверить заземление в частном доме? Перед проверкой следует обеспечить безопасность:
- произвести отключение электропитания на общем щитке
- разобрать одну из розеток
Далее можно удостовериться практически, что заземление существует: это проводок желтовато-зеленоватого цвета, подсоединенный в одной из клемм. При подсоединении к клеммам проводов синего и коричневого оттенка это означает, что заземления нет. Не менее важно посмотреть на присутствие в конструкции перемычки между нулевым проводом и заземляющей клеммой, обеспечивающей зануление проводки. Этот факт только подтверждает безопасность.
При наличии в зажимах всех трех проводников имеется смысл приступать проверки заземления, используя методику.
Как проверить заземление мультиметром
Проверка заземления мультиметром
Последовательность эффективности заземления:
- Включение питания в щитке.
- Нужно подготовить тестер для проверки напряжения в контуре.
- Измерить напряжение в промежутке фазы и нуля.
- Выполнить замер показателя напряжения на участке между землей и фазой.
- Когда при замере тестер показывает результаты, отличающиеся от первоначальных, то это только подтверждает о наличии заземления. И, напротив, если не было никаких показаний отмечено, то заземления тоже не существует.
Если тестера нет, то можно воспользоваться простой конструкций, состоящей из патрона, проводов и контрольной лампочкой. С помощью специализированной отвертки проверить фазу и ноль, то есть одни конец провода подвести к фазной клемме, а второй с нулю. Лапочка должна загореть, если контур действительно работает. Бывает, что на лампочке установлена специальная защита отключения и если она срабатывает, то на основании этого факта можно сделать заключение, что заземление функционирует.
Как измерить сопротивление заземления
Как проверить заземление мегаомметром? Работа прибора основана на компенсационным способе и для этого понадобится дополнительный заземлитель и элемент, выполняющий роль потенциального электрода.
Как проверить заземление мегаомметром
Алгоритм выполнения задачи:
- Устройство разместить на горизонтальном основании.
- Произвести настройку, то есть, выбрав режим контроля нажать кнопку и продолжать удерживание пока стрелка не перейдет в положение «ноль».
- Часть показателя сопротивления имеется у соединительных проводов на расстоянии между выводами. Прибор следует расположить ближе к заземлителю, чтобы влияние электромагнитных полей было меньше.
Далее нужно выбрать, по какой схеме необходимо выбирать подключение. Для грубых показателей сопротивления достаточно обеспечить подключение прибора по схеме, состоящей из трех зажимов, соединенными между собой перемычками. Если требует более точно определить значения, то необходимы дополнительные провода., то есть применяется схема подключения с четырьмя зажимами по снятой перемычкой.
Необходимо забить в грунт электрод и зонд на 1/2 метра, при этом основание должно быть плотным. Чтобы обеспечить четкое забивание, то следует использовать кувалду, а не молоток. Обязательно следует выполнить зачистку проводников в месте заземления от краски. Для проводников подойдут медные жилы провода поперечным сечением около 1,5 мм2. При применении трехзажимной схемы, напильник будет играть роль щупа, соединяющего вывод и заземлитель, а с иной стороны будет подсоединен провод с поперечным сечением в 2,5 мм 2.
Для измерения сопротивления нужно установить первый диапазон, и нажав на красную кнопку, при этом обеспечивая вращение ручки, а стрелку установить на ноль. Если сопротивление больше указанного, то можно установить и больший показатель диапазона. Цифра, показанная на шкале, будет равна замеру сопротивления.
Нюансы по проведению замеров
Время года никаким образом не влияет на показатели замеров, они должны всегда быть в норме:
При трехфазных источниках тока (В) | При однофазных источниках тока (В) | Показатель сопротивления, (Ом) |
660 | 380 | 2 |
380 | 220 | 4 |
220 | 127 | 8 |
При выполнении замеров земля должна быть достаточно плотной. Самое подходящее время — это середина летнего периода, когда грунт сухой или середина зимы, когда земля промерзла.
Если земля сырая, то это обстоятельство оказывает влияние на растекание тока, и выполненные измерения будут сильно искажены. Так что не планировать это мероприятие при повышенной влажности воздуха.
Неплохим решением будет производить измерение сопротивления специальными токопроводящими клещами, но лучше обратиться к специалистам. Аккредитованная лаборатория превосходно справится с данной работой, и все данные отразятся в протоколе. В последнем будут указаны сведения о:
- месте проведения замеров
- характере выполненных работ
- удельном сопротивлении основания
- величин замеров с учетом поправочного коэффициента
Проверку сопротивления изоляции также выполняют по мере необходимости, исходя из выявленных показателей короткого замыканий или пробоев изоляции. Не менее важно обращать внимание на наличие изоляции проводки, в том числе производить визуальный осмотр на предмет нагрева или искрообразования.
Как сделать контур заземления в частном доме и проверить его простым способом — на видео:
Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.
Как проверить заземление в розетке: способы проверки с помощью приборов
Электрические розетки – привычные для потенциального пользователя аксессуары. Их используют повсеместно: в доме, на работе, в общественных местах и т.д. Согласно техническим нормативам, розетки обязаны иметь заземление – это обезопасит домочадцев от удара тока при поломке электроприборов.
Однако, согласитесь, вряд ли кто-то из потребителей может с уверенностью сказать, что все розетки в доме или квартире заземлены. Чтобы выяснить расположение проводов в электропроводке, необходимо провести ряд тестов.
Мы расскажем вам, как проверить заземление в розетке различными способами – по внешним признакам и с использованием специальных инструментов.
Типовая конструкция розетки
Использование техники проверки наличия розеточного заземления может потребоваться в любой момент. Особенно тем людям, кому придётся работать с конкретными электрическими розетками неоднократно.
Эта деталь электрической сети (бытовой или промышленной) имеет простейшую конструкцию.
Состоит розетка электрическая из плато круглой или прямоугольной формы. Сделано плато на основе материалов, которые не проводят электричество.
Обычно для изготовления плато розеток применяют:
Задняя часть плато имеет ровную поверхность, а на передней части имеются фигурные посадочные площадки под электрические контакторы. Материал контакторов, как правило, медь. Закрепляются контакторы на плато жёстко – при помощи клёпок, плюс внедряются в тело плато.
Для соединения с электрической проводкой на контакторах имеются крепёжные винты. Вся эта конструкция закрывается крышкой, имеющей два проходных отверстия под электрическую вилку.
Виды электрических розеток
Промышленностью выпускаются два вида изделий:
- оснащённые шиной заземления;
- не имеющие шины заземления.
Первый вид конструкций часто называют «евро-розетка». Эта конструкция полностью удовлетворяет требованиям электробезопасности. При смене электропроводки рекомендуют устанавливать розетки с заземлением.
Второй вид изделий считается устаревшей модификацией, но до сих пор встречается на практике. Особенно много розеток устаревшего образца эксплуатируется в зданиях старой постройки.
Оба вида изделий делаются для внутренней или внешней установки. Согласно новым рекомендациям ПЭБ, модификации розеток под внутреннюю инсталляцию должны иметь в составе конструкции биметаллические пластины с контактором заземления.
Для электрических розеток под внешнюю установку рекомендации те же, но в отдельных случаях их использования допускается двухпроводный интерфейс.
Заземление розетки и способы проверки
Проверка наличия заземления на электрических сетях может потребоваться в разных случаях:
- при смене места жительства;
- на случай аренды какой-либо недвижимости;
- когда покупают офис или бизнес;
- когда делают работу на сторонней территории и т.д.
Рассмотрим общепринятые способы проверки.
Проверка по внешним признакам
Первоначальная и простейшая проверка присутствия заземления делается визуально по внешним признакам. Потенциальному пользователю достаточно оценить внешний интерфейс электрической розетки, чтобы сделать для себя определённые выводы.
Так, если внутри розеточной чаши присутствуют характерные детали, указывающие наличие заземляющей шины, тестирование на 50% можно считать успешным. Такими деталями являются специальные прорези в корпусе изделия и проглядывающие сквозь эти прорези контактные биметаллические пластины.
Располагаются эти «усы» заземления обычно в верхней и нижней области розеточной чаши.
Анализ внутренней “начинки”
Чтобы удостовериться в наличии заземления розетки с вероятностью на 75%, придётся вскрыть корпус изделия – отвернуть один винт, удерживающий розеточную крышку и снять её.
Но перед тем как выполнить эту работу, следует обесточить электрические коммуникации – выключить автомат ввода электроэнергии, который обычно устанавливается внутри монтажной щитовой коробки, что находится на лестничной клетке подъезда (вариант для муниципального жилья).
После вскрытия розетки перед пользователем откроется вся существующая раскладка проводников, подключенных к монтажным клеммам прибора.
Для схемы под исполнение «евро» характерным признаком разводки является наличие трёх проводников:
Могут отличатся цвета проводов первых двух проводников. Правда, согласно установленным спецификациям, фаза обычно подводится проводом с цветами изоляции коричневый или белый, а нуль с цветами изоляции синий или чёрный. Но на практике всё может быть совсем иначе.
Третий проводник – заземляющий, конкретно окрашивается в зелёный цвет или в жёлто-зелёный. К тому же этот провод, как правило, имеет увеличенное сечение. Заземляющий проводник внутри корпуса розетки соединяется с контактом шины, которая, в свою очередь, имеет прямую связь с биметаллическими пластинами «евро» интерфейса.
Так вот, наличие подключенного провода (жёлто-зелёной, зелёной окраски) на шине «земли» – это уже 75% гарантии на тот счёт, что заземление в розетке выполнено.
Останется только проверить работоспособность (целостность) заземляющей шины с помощью специальных приборов.
Тестирование с помощью приборов
Методика тестирования контрольными приборами даёт 100%-ую гарантию присутствия заземления в розетке. Но сам способ проверки с помощью специальных приборов разрешается применять только лицам, имеющим соответствующие допуски. Это важный момент, ведь тестирование приборами, как правило, выполняется при подключенном напряжении.
Розетки бытовые питаются напряжением 220 В (иногда напряжением 110 В). При подключенном питании становится реальной опасность для лиц, тестирующих элементы электросети. Тем более для тех, кто не имеет понятия о принципе действия электрических сетей.
Тест лампой накаливания
Первый простой способ проверки делается с помощью обычной лампы накаливания, рассчитанной под напряжение существующей сети.
Проверяющему лицу для работы нужно изготовить несложную оснастку:
- Взять электрический патрон для лампы.
- Подключить к патрону двухжильный провод (20-30 см).
- Ввернуть в патрон лампу накаливания.
Концы проводников патрона необходимо зачистить на 7-10 мм от кромки. Если проводники многожильные, следует плотно скрутить жилы зачищенных концов. Для большей безопасности можно оснастить провод наконечниками. На этом подготовка оснастки завершается, можно приступать непосредственно к тесту.
Наглядно процесс определения заземления с применением лампочки продемонстрирует следующая фото-галерея:
Включают автомат питания электроцепи, куда входит розетка. Берут патрон с лампой и подсоединяют концы провода на привычные контакторы розетки (фаза – ноль). Лампа должна ярко светить. Такое подключение свидетельствует о целостности электрической цепи, а также об исправности сделанной оснастки. Этот шаг теста следует выполнять обязательно.
Далее проверяют работу заземления. Конец любого проводника от патрона с лампой соединяют с контактором шины заземления, а оставшийся свободным конец поочерёдно подключают на контакторы розетки.
Если любое из двух подключений зажигает лампу, это значит, шина заземления исправна и подключена к «земле». Тест пройден успешно. В противном случае, заземление розетки отсутствует.
Тестирование стрелочным (цифровым) вольтметром
Для второй методики тестирования заземляющей шины потребуется стрелочный или электронный прибор, измеряющий напряжение. Здесь подойдёт стандартный тестер, например, модели Ц4353.
Диапазон измерений прибора по напряжению (переменному) должен иметь верхнюю границу не менее 600 В. Сам же принцип тестирования аналогичен проверке лампой. Только вместо подсветки для контроля уже будет использоваться шкала прибора.
Пошаговое исполнение проверки стрелочным тестером:
- Установить режим измерения переменного напряжения.
- Диапазон измерений установить на 600 В.
- Подключить щупы прибора на контакторы розетки (фаза – ноль).
- Зафиксировать показания прибора на бумаге.
- Подключить один щуп прибора на контактор заземления.
- Поочерёдно подключить второй щуп прибора на контакторы розетки.
- Показания зафиксировать на бумаге.
Теперь следует сравнить записанные показания, полученные в процессе проверки на шаге 6. Если любое из двух показаний равно или немного меньше, чем значение, полученное на шаге 4, это значит – шина заземления работает. Отсутствие каких-либо показаний прибора свидетельствует о нерабочей или оборванной «земле».
Аналогичным образом процедура выполняется цифровым вольтметром, оборудованным жидкокристаллическим дисплеем. Здесь единственное отличие в работе – более удобное восприятие результата измерений. Цифровой аналог стрелочного прибора – мультиметр. Удобен тем, что выводит результат измерений на экран в виде цифровых значений. Между тем, по степени надёжности и точности измерений уступает стрелочному прибору.
Подробная инструкция проверки напряжения в розетке представлена в этой статье.
Когда необходимо вскрыть розетку
По большому счёту, все вышеизложенные методы тестирования наличия заземления можно выполнить без съёма розеточной крышки. Но тогда гарантии на 100% не представляются возможными по одной простой причине.
Нередко на практике встречаются примеры, когда шину заземления чьи-то «умелые ручки» соединяют с шиной нуля. Делается это проводной перемычкой, установленной между нулём и контактором «земли».
Без демонтажа крышки такое «произведение искусств» не обнаружить. Вместе с тем, проверка приборами будет показывать наличие земли. Есть риск ошибки. Поэтому вскрытие крышки актуально всегда на случай проверки.
С точки зрения безопасности для пользователей розетками, соединение «нуля» с «землёй» выглядит крайне неудачным и недопустимым действием.
Земляная шина по правилам электрического монтажа всегда рассматривается отдельно взятой линией коммуникаций, косвенно привязанной к схеме электропроводки в квартире или доме.
А нулевой проводник в любой момент по неосторожности или неопытности обслуживающего персонала может быть перемещён на место фазного провода. Последствия понятны без лишних слов.
Использование в быту заземлённых электрических розеток постепенно становится нормой. Теперь уже каждая современная постройка оснащается электрическим хозяйством, где предусмотрен обязательный монтаж элементов схемы с подводкой к ним шины заземления.
Так обеспечивается высокая степень безопасности для лиц эксплуатирующих здания, пользующихся розетками для работы с разной бытовой техникой.
Выводы и полезное видео по теме
С нюансами установки розетки с заземлением можно ознакомиться с помощью видеоматериала:
Кстати будет замечено: при наличии заземляющей шины в розетках увеличивается степень надёжности бытовой техники. Особо критично на отсутствие «земли» реагирует цифровая аппаратура, а таковая сейчас присутствует повсеместно.
Расскажите, какой способ вы используете для проверки заземления в розетках. Делитесь с читателями собственными навыками, участвуйте в обсуждениях и задавайте вопросы. Блок для комментариев расположен ниже.
Простые способы, как проверить контур заземления в розетке
Методики проверок
Существует несколько вариантов, как проверить заземление в квартире. Методы достаточно просты, для чего требуются нехитрые приборы и приспособления. Самый простой из них – это вскрыть розетку и посмотреть, подключен ли к одной из клемм провод желто-зеленого цвета. Если к розетке подключены всего два проводника, то схема PE в вашей квартире или доме отсутствует.
Есть специальная цветовая маркировка проводников, используемая в электроразводке, которая определяет назначение того или иного провода, что облегчает не только монтаж, но и определение жил в схемах подключения.
- Фаза обычно имеет коричневую изоляционную обмотку.
- Нуль синюю.
- Заземляющий провод желто-зеленую.
В электрической разводке квартир старой постройки использовался двойной провод одного цвета, так что здесь определить, какой из них фазный, а какой нулевой чисто визуально нельзя. Как найти их? Для этого придется использовать индикаторную отвертку. Дотроньтесь концом отвертки сначала до одной клеммы розетки, если она не горит, то это ноль. Если загорелась, то это фаза. Нередко в таких квартирах после проведения ремонта устанавливался контур заземления путем прокладки провода до розеток от распределительного щита. Если электрик знает цветовую маркировку проводников, то он уложил на заземление желто-зеленый кабель, что облегчит его определение.
Но даже наличие желто-зеленого проводника не говорит о том, что сам контур PE работает. Поэтому рассмотрим другие варианты, как проверить контур заземления.
Внимание! Можно в розетке встретить установленную перемычку между клеммами ноля и заземления. Таким образом, электрик пытался сделать своеобразный контур PE. Делать этого нельзя, потому что при обрыве нулевого провода (такое иногда случается, и причины могут быть разные) ток потечет по заземляющему контуру. А это обязательно приведет к его нагреву (он меньше в сечении), а здесь и до пожара недалеко.
Проверка с помощью мультиметра
После открытия розетки в ней оказалось три провода, и даже соблюдены нормы цветового оформления. Необходимо узнать, есть ли заземление, то есть, работает ли оно. Как это делается.
- Включается в щитке питание на квартиру или дом.
- Прибор включается в режим проверки напряжения.
- Один щуп устанавливается на фазу, второй на ноль. Производится замер напряжения.
- Теперь щуп от ноля нужно переставить на PE. Если в такой позиции будет показана величина равной или чуть меньше предыдущего показателя, то контур PE работает. Если индикаторное табло на измерительном приборе показало «ноль» или цифры вообще не появились, то где-то произошел обрыв. То есть, система заземления в квартире не работает.
Проверка контрольной лампочкой
Это нехитрое приспособление можно использовать, если тестер отсутствует. Что собой представляет этот самодельный прибор.
- Обычная лампочка накаливания на 220 вольт.
- Патрон под нее.
- Медный изолированный провод, который разрезается на две части для двух соединительных элементов.
- Два щупа.
Сначала надо соединить к патрону два медных провода. Затем к ним по одному щупу, после чего вкрутить лампочку в патрон. Прибор для проверки контура заземления в квартире готов. Обязательное условие – хорошая изоляция контактов между всеми элементами самодельного тестера.
Проверка проводится точно так же, как и в предыдущем случае. Одни щуп устанавливается на фазу в розетке, второй на ноль. Лампочка должна загореться. Затем щуп от нулевого подключения переставляется на заземляющий. Если лампочка горит, то контур в исправном состоянии, если нет, значит, где-то есть обрыв проводки или не проведено подключение в распределительном щитке. Иногда в такой позиции лампочка горит слабо, это говорит о том, что заземляющая схема в неудовлетворительном состоянии.
В настоящее время в PE устанавливаются устройства защитного отключения (УЗО). Так вот при проверке этот прибор может сработать, что говорит о прекрасном состоянии системы.
Отсутствие цветового оформления проводки создает трудности в определении фазы и нуля. Если под рукой не оказалось индикаторной отвертки, то тестирование проводников контрольной лампочкой придется проводить наугад. То есть, один щуп устанавливается на клемму заземления, а второй прикладывается сначала к одному свободному подключению, затем ко второму. В каком случае источник света загорится, значит, там расположена фаза. Если в обоих случаях он не горит, то схема PE не работает. Если соединяются предполагаемые фаза и ноль, и лампочка в данном случае тоже не горит, тогда надо проверить:
- не перегорела ли она сама;
- хорошо ли собран самодельный тестер, придется проверить все контакты;
- включено ли питание в распределительном щитке;
- не произошло ли обрыва в фазном или нулевом контуре.
Косвенные доказательства отсутствия PE
Существуют некоторые ситуации, которые косвенно подтверждают, что PE схема не работает, не подключена или работает очень плохо.
- Бытовые приборы, связанные с водой, бьют слегка током. К ним можно отнести стиральную и посудомоечную машинку, водонагреватель, электрический чайник и прочие.
- При воспроизведении музыки в колонках появляется шум.
Вот такие простые способы, как определить, работает ли проводная система PE или нет. И еще одно предупреждение. Соединять ее с громоотводом или сажать на отопление нельзя. Ни та, ни другая система не предназначены для этих нужд.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Как правильно сделать измерение сопротивления заземляющего устройства?
Установка заземления—это очередной фактор, повышающий безопасность вашего дома или иного помещения. Обустройство данной конструкции принято проводить не только при помощи специальных организаций и опытных сотрудников, но еще и своими руками. Для собственноручной работы требуется лишь знание навыков в работе и обращении с электрическими сетями. После сооружения данного приспособления потребуется провести измерение сопротивления заземляющего устройства, зачастую здесь и возникают сложности.
Важно! Измерение сопротивления заземления требуется проводить исключительно после капитального ремонта, профилактических проверок либо первоначального строения.
Принцип проведения измерения
Чтобы не упустить важные моменты, стоит провести точное измерение. Для этого понадобится создать искусственную электрическую сеть, по которой будет протекать напряжение. После, неподалеку от контура заземления, который будет подвергаться эксперименту нужно расположить вспомогательное заземляющее устройство. Чаще его называют токовым электродом, он аналогично основному заземлению подключается к напряжению. Также в области нулевого потенциала, стоит расположить еще и потенциальный электрод, при помощи которого можно измерить падение напряжения сети.
Обратите внимание, получить высокоточные и достоверные результаты удастся лишь при оптимальных погодных условиях, а также на момент максимального удельного сопротивления почвы. Более эффективной оказывается методика замеров, основанная на нескольких полюсах.
Действуйте строго по следующим правилам:
- располагайте потенциальный зонд между заземляющим приспособлением и вспомогательным электродом;
- старайтесь учитывать глубину закладки заземлителя, так как расстояние от заземления, проходящего испытание до вспомогательного электрода должно до пяти раз превышать глубину;
- если вам требуется провести измерение сопротивления системы заземлителей, в этих случаях отталкиваются от диагонали с наибольшей длиной.
Важно! Иногда необходимо проводить еще и дополнительные мероприятия, касающиеся измерений сопротивления заземлений. Такой вариант характерен для сложных подземных коммуникаций.
Схема защитного заземления
Помимо всех проведенных манипуляций рекомендуется проводить замеры сопротивления изоляции.
Способы и инструкция измерения сопротивления заземляющих устройств
Ответы на вопрос, как замерить сопротивление заземления, могут быть самыми неожиданными и многочисленными. Из нашей статьи вы узнаете не только точность проведения операции, но еще и некоторые важные рекомендации.
Изначально, как и во всех других проверках в сфере электричества проводятся подготовительные этапы. В них относят: визуальный осмотр целостности устройств, связанных с заземлением, прочность сварочных швов, если они на месте, расстояние от помещения, наличие всех крепежных деталей; а самое главное, подтверждают отсутствие утечек тока с шины.
Для проведения испытаний в домашних условиях обычно используют измеритель сопротивления заземления, данный этап мы будем рассматривать на примере прибора М416.
Внимание! Значения, полученные в процессе замеров, должны соответствовать нормам ПУЭ.
- Делаем проверку напряжения, если оно отсутствует—можно установить комплект питательных элементов, например, аккумуляторов или батареек. Важно, чтобы они имели параметры 3х1,5, при этом, соблюдайте полярность.
- Берем в руки прибор и ставим его на ровную горизонтальную плоскость. Обязательно, чтобы все углы и вершины аппаратуры находились на одном уровне.
- Далее, следует процедура калибровки М416. На панели инструментов приспособления имеется переключатель диапазона. Ставим его в положение «контроля». Теперь зажимаем красную кнопку и при помощи вращающейся ручки приводим стрелку циферблата к нулевому значению. Шкала должна показать 5±0,3. В противном случае прибор подлежит ремонту. Измерение сопротивления заземления в домашних условиях
- Располагаемся ближе к заземлению и выбираем нужную схему, в которой будет работать прибор.
- Проводим вычисления. К примеру, вам необходимы грубые показания прибора с некоторой погрешностью, значит необходимо выводы 1 и 2 соединить с перемычкой. Приспособление М416 переключается в трехзажимную схему.
- Если вам потребуется проводить замеры по четырехзажимной схеме, посмотрите, как это делается прямо на корпусе прибора.
- Стержень зонда и вспомогательный электрод вбиваем в грунт с высокой плотностью, при этом придерживайтесь стандартных требований, не забывайте, что минимальная глубина должна составлять не менее 0,5м.
Схема контура заземления для дома
Важно! Для дополнительного заземлителя и зонда можно использовать гладкие прутья диаметром от 5 мм.
В ходе забивания, применяйте только ровные удары, это позволит снизить сопротивление между основным и вспомогательным заземлителями. Продолжим нашу инструкцию.
- Провода, примыкающие к заземлению, очищаются от всех примесей грязи, краски и пыли. Для этого используется напильник, на который с обратной стороны крепится кабель, имеющий сечение заземляющего проводника 2, 5 кв. мм.
- После того, как все действия выполнены: выбрана схема и рабочее положение прибора, переходим к практическим действиям, то есть вычислениям.
Схема измерения сопротивления прибором
- Ставим переключатель на уровне отметки «х1», вращаем ручку и приводим стрелку к нулю.
- На шкале окажется значение, которое стоит умножить на один. Объясняем, если рычаг переключения находится на другой отметке, например, «х5», «х10» и т.д., соответственно умножаем на 5 или 10.
Данный эксперимент показывает, что сопротивление заземляющего устройства составляет 1, 8, значит умножаем это число на один, и получаем сопротивление 1, 8 Ом. В итоге, обязательно нужно занести данные в специальный акт.
Внимание! Работая с прибором, обязательно нужна спец одежда и резиновые перчатки.
Как измерить сопротивление контура заземления мультиметром?
Сразу, хотелось бы заверить, что использование даже самого многофункционального мультиметра не предназначено для столь масштабных проверок, как измерение заземления.
Однако, для домашних работ и при использовании стандартных методов замеров, подтвержденных нормативными актами, прибор остается полезным.
Перед работой, как обычно, выполняется калибровка и выявление неисправностей. Сюда же относят ревизию заряда батареи. Важно учитывать, что слишком низкая емкость питания, приведет к увеличению погрешностей на шкале. Для изучения всех подробностей вычисления сопротивления заземляющего устройства прилагаем схему.
Цели проведения измерений
Схема вычислений сопротивления заземлителей прибором
Замер сопротивления заземляющего устройства принято проводить в первую очередь с целью безопасности. Известно много случаев, при которых даже с рабочим заземлением происходило поражение человека электрическим током.
Кроме того, значение исследований показывает возможность возникновения пожарной опасности, и, конечно же, проверка сопротивления доказывает, соответствует ли конструкция нормам и стандартам ПУЭ.
Важно! Измерение сопротивления защитного и рабочего заземления должно проводится, опираясь на факторы окружающей среды.
Рабочее и защитное заземление
Каждая разновидность грунта является отличным проводником электрического тока. Устройство заземления, которое принято монтировать на определенную глубину грунта спасает человека от неблагоприятного воздействия со стороны электрической системы домашнего обслуживания.
Данный тип измерений обязательно проводится сложным методом, поэтому для него одних навыков будет недостаточно, следовательно, требуется привлечение профессиональной рабочей силы. Рассмотрим, что представляют из себя оба вида заземлений.
Схема устройства заземляющего приспособления
- Рабочее заземление—устройство, которое при наступлении чрезвычайного происшествия в электрической сети, выполняет защитную роль. За счет этого, работа бытовых приборов и оборудования стабилизируется, следовательно, снижается риск выхода их из строя. Существует и постоянное рабочее заземляющее устройство, однако его приемлемо использовать в сетях промышленного масштаба. Для пользования бытовой техникой достаточно произвести установку заземлителей в розетку.
- Защитное заземление—это приспособление, которое способно предотвратить поражение человека электрическим током, кроме того напрямую защищает оборудование от возгорания. Неоднократно случаются пробои электрического тока на корпус аппаратуры, в этом случае защитный заземлитель предупредит поломку и даст знать о нарушении изоляции, спасет от сверхтоков и короткого замыкания.
Чем лучше вычислить сопротивление заземления? Технические характеристики прибора
Каждый уважающий себя хозяин беспокоится о безопасности в собственном доме, и чтобы обеспечить ее полностью, требуется еще и защитить все электрооборудование. Для этого, как мы знаем, сооружается заземлительное устройство, однако оно требует регулярных проверок, рассмотрим прибор, который хорошо справляется с этой задачей.
Fluke 1625-2 GEO—это измеритель нового поколения, предназначенный для использования в бытовых и отраслевых условиях. Преимуществом подобного прибора считается его возможность хранить данные и передавать их на компьютер. Также аппарат способен проводить вычисление сопротивления заземления, используя только зажимы. Плюсом является возможность работы без дополнительной установки электродов.
Приспособление будет работать безошибочно, если имеется полностью укомплектованная система заземления. Если в вашем доме имеется заземление, созданное из одного контура, беспроводной способ не подойдет в качестве замера.
Технические особенности
- Внутренняя память устройства позволит сохранить данные в пределах до 15 тыс. единиц.
- Обладает жидкокристаллическим дисплеем с улучшенными качествами графики.
- Имеется поворотный механизм и клавиши управления функциями.
- Работает при диапазоне температур от -10 до +50°С.
- В функции безопасности включается возможность дополнительной изоляции.
- В базовую комплектацию входят 6 батареек мощностью 1,5 В на основе щелочного состава.
- Погрешность прибора в измерениях составляет ±5%.
- Аппарат выполняет не менее четырех вычислений в секунду.
- Внутреннее сопротивление составляет 1,5 Ом.
- Автоматический выбор диапазонов для проведения вычислительных работ.
Прибор для измерения сопротивления М416
Заключение и выводы
Вычисление приборами следует выполнять исключительно в условиях подходящих погодных условий. Целесообразно это делать в середине летнего периода и в середине зимы. Считается, что в эти моменты, грунт считается наиболее плотным, а значит и увеличивается его удельное сопротивление.
В домашних условиях следует проводить замеры с периодичностью один раз в полтора года. Для предприятий, мероприятия по вычислению выполняются строго по установленному графику и все результаты заносятся в техническую документацию, которая заверяется печатью и подписью руководства.
На данном видеоуроке Вы можете посмотреть процесс измерения контура заземления:
Вас могут заинтересовать:
Проверка контуров заземления в СПб
Зачем нужна проверка заземления
Рассмотрим землю в качестве общего гигантского проводника для всех электрических процессов. К ней можно присоединиться в любой части планеты — как с помощью промежуточной среды, так и напрямую. Земля используется в качестве нейтрального проводника, а также для защиты от поражения током. В соответствии с Правилами устройства электроустановок (ПУЭ), заземление является преднамеренным соединением токоведущих или проводящих частей электрических установок с землей. Учитывая, что это устройство призвано защищать жизнь и здоровье человека при возникновении нестандартной ситуации, проверка заземления — дело важное и актуальное. Под нестандартной ситуацией имеется в виду несанкционированное попадание напряжения на проводящие ток детали.
Что в первую очередь защищают в квартире от утечек тока? Электрощиты, корпуса бытовой техники (холодильника, стиральной машины и пр.), ванну, полотенцесушитель и другие металлические предметы. Защитный контур состоит из проводника, соединения, заземлителя и грунта. Каждая розетка включает три контакта — «ноль», «фаза», «земля»: первая пара соединяется с электростанцией, а последняя уходит в грунт. Электрощит объединяет все провода распределителя в доме.
Случаи нарушения изоляции и утечки электричества не так редки, как кажется. Избыточное напряжение из металлических частей должно перенаправляться в землю, пока не сработает защитное оборудование. Практика доказывает, что нельзя на 100% доверять строителям и электрикам, осуществляющим схему заземления, также в самом контуре со временем снижается эффективность действия. Поэтому раз в три года выполняют проверку исправности заземления (рекомендованная периодичность для жилых помещений). Кроме того, для организации внеплановой проверки цепи заземления достаточно уловить несколько настораживающих сигналов:
- металлические корпуса бытовой техники бьются током;
- на отопительных батареях толстым слоем оседает пыль;
- в аудиоколонках и наушниках слышится посторонний шум.
Как проверять контуры заземления
Выполняется проверка контура заземления путем определения работоспособности элементов:
- электродов и грунта;
- заземляющей шины и проводника;
- соединений в цепи, то есть металлосвязей.
Для проверки грунта подходит сухое время года, кроме контроля защиты от молний. Такая потребность возникает на этапе проектирования частного дома, а именно на стадии продумывания электрокоммуникаций. Самой важной частью заземления считается сопротивление земли, его определяют с помощью специального прибора — измерителя сопротивления заземления. Чтобы провести проверку состояния заземления, потребуется очистка шины для достижения достаточного контакта, внедрение в грунт двух стержней на 0,5 — 1 метр в глубину, фиксация оборудования на стержнях и шине, а также замеры показателей по инструкции. Важный момент: для повышения точности измерений стержни не размещают около подземных коммуникаций.
Целостность металлосвязей проверяют визуально, с применением молоточка с изолированной рукояткой. Незначительное дребезжание проводника указывает на целостность контакта. Сопротивление каждого металлического соединения должно соответствовать нормативам: проверка
работы заземления на данном этапе проводится с применением омметра или мультиметра. Если значения не превышают 0,05 Ом, значит проверка целостности заземления продемонстрировала хорошие результаты.
Что делать, если проверка выявила отсутствие заземления
Если застройщиком не предусмотрено обустройство заземления, есть несколько вариантов решения проблемы. Например, в качестве временного варианта защиты следует подключить УЗО — устройство защитного отключения — которое выключит питание электроприбора или группы розеток при утечке электричества. Также специалисты советуют заменить домашнюю проводку на трехжильную: если инструментальная проверка наличия цепи заземления покажет отсутствие таковой, с новой проводкой вы будете готовы к оперативному подсоединению провода РЕ к этажной шине в щите. Модернизация электропроводки — хороший вариант.
Еще вариант — монтаж индивидуального заземляющего контура. Для этих целей крайне желательно заказать услуги электролаборатории по проверке заземления в СПб. Дело в том, что самодеятельность может закончиться весьма плачевно, в том числе и в правовом поле. Понадобится вмешательство в утвержденный проект, согласование действий с управляющей компанией. Спокойнее для всех жильцов дома, если работу берут на себя мастера — с использованием профильных точных инструментов, отчетностью и всей необходимой документацией.
Особенно хочется предостеречь любителей выборочной проверки состояния контура заземления с тягой к экспериментам. К пагубным последствиям может привести решение соединить третий провод с системой отопления или водопровода (подробнее в ПУЭ 1.7.110). Опасность заключается в том, что пробой тока происходит на металлический корпус прибора, далее напряжение переходит по стоякам батарей и водоснабжения других квартир, а простое прикосновение к трубе или текущей воде из-под крана может привести к травме или гибели человека.
Будьте осторожны, небезопасной организацией заземления считается еще несколько вариантов:
- «зануление» чревато неприятными последствиями при обрыве нулевого провода в сети;
- недопустимо заземлять приборы последовательно, то есть друг через друга;
- нельзя подсоединять несколько проводов к одной клемме шины РЕ, следуйте правилу — одна контактная площадка = один проводник.
Как самостоятельно проверить качество заземления в квартире
Для проверки системы заземления своими руками есть два метода. Первый основан на применении отвертки, тестера и изолированного провода с парой щупов на концах. Второй требует наличия длинного провода и предполагает детальную проверку сопротивления контура заземления (инструментарий для этого способа берут тот же). Отталкивайтесь от норматива: в квартире и частном доме должны заземляться все розетки и металлические предметы. Последовательность тестирования приводим в таблице.
Первый метод | Второй метод проверки защитного заземления |
1. Проверка на заземление контакта в розетке. Определите тестером или подключением бытового прибора, находится ли розетка под напряжением. Если напряжение есть, отключите его в щитке через УЗО, не выключая прибор. | 1. Возьмите индикаторную отвертку и с ее помощью проверьте в щите желто-зеленый провод. Это контур заземления, и он должен быть без напряжения. |
2. Дальше необходимо вытащить вилку прибора из отключенной с помощью автомата розетки. Снимите крышку и обратите внимание, куда подсоединен контакт заземления. Визуально проверка наличия заземления определяется по контакту заземления: он должен уходить к отдельному проводу, ведущему в стену. Также заземляющий контакт может быть не подключен вовсе или соединятся с одной из клемм. Соберите розетку и вновь подключите устройством защитного отключения в щитовой. | 2. Синий провод — это «ноль», к нему подключите щуп проводника. Другой щуп подсоединяется к желто-зеленому проводу. «Автомат» должен сработать, тогда делаем вывод о нормальном состоянии заземляющего контура на входе. |
3. После визуальной проверки заземления и зануления тестируем прибором или индикаторной отверткой: требуется выяснить, не брошен ли заземляющий контакт на фазу. Потом проверяем заземление провода, с которым соединен контакт. Отверткой-индикатором ищете фазу в розетке, убираете с нее палец и на сенсор кладете щуп изолированного провода — в норме индикатор не светится. Другой конец провода доведите до заземляющего контакта: если лампочка-индикатор загорелась, проверка монтажа заземления прошла успешно. | 3. В третьей фазе испытаний попытаемся провести проверку заземления на выходе щитка. Рычаг УЗО возвращается во взведенное состояние. Один конец изолированного провода остается на «0», а второй исследует по очереди каждую розетку и металлические предметы в помещении. При касании каждый раз сработает «автомат» — это признак нормы |
4. Если тест показал другой результат, вызовите мастера-электрика. | 4. В идеале ванная комната оборудована системой уравнивания потенциалов (СУП). В этом пластиковом боксе укладывают металлические шины и провода, и в этом месте напряжение должно отсутствовать. При проверке надежности заземления не обходите вниманием эту зону: протестируйте индикатором на отсутствие напряжения и подтяните болты. |
Проверка сопротивления заземления мультиметром.
Если электрическая часть в квартире или доме уже смонтирована, в бытовых условиях проверка эффективности контура заземления определяется мультиметром — это один из многочисленных вариантов диагностики. Начинается процесс с визуального осмотра. Квартирный вводный автомат отключают, одну розетку разбирают и осматривают. К клемме должен подходить заземляющий проводник, желто-зеленый по цвету. Если это так, заземление в розетке присутствует, но если там находятся только провода синего и коричневого цвета, соответствующие нулю и фазе, защитного заземления нету. При этом проверка исправности защитного заземления все равно потребуется, даже при наличии желто-зеленого провода.
Теперь о том, как провести проверку контура заземления мультиметром. Сначала включают автомат в распределителе, чтобы в розетках появилось напряжение. На приборе следует выставить режим замеров напряжения. Щупами обеспечиваем контакт с фазой и нулем и наблюдаем, какое значения напряжения покажет прибор. Показатели должны приближаться к 220 В.
Такое же измерение надо выполнить между заземляющим и фазным контактами. Незначительное отличие от 220 В допустимо, главное просто увидеть какие-либо цифры на экране: это значит, что удалось проверить наличие заземления и измерить напряжение между контактами. Если цифровое значение на экран не выводится, контур заземления неисправен или его нет вообще.
При отсутствии мультиметра можно сделать самодельный тестер из патрона, лампочки, проводов и концевиков. Получится так называемая “контролька”, она же контрольная лампочка. Чтобы
воспользоваться самодельным тестером, следует дотронуться одним щупом к фазному контакту, а другим — к нулевому. В идеале при этом лампочка светится. Далее концевик с нуля перенесите на усик контакта-заземлителя. Свечение лампочки свидетельствует о работоспособности контура, слабый свет говорит о его изношенности, а отсутствие света — о неработоспособности защиты или перепутывании ноля с фазой при установке розетки.
Кроме описанных выше устройств, интернет-форумы рекомендуют проверять сопротивление защитного заземления аналоговыми приборами МС-08, ИСЗ-2016, Ф4103 (М1), М-416 или цифровыми MRU 105, 120, 200. Отметим, что в профессиональной среде для официальных замеров не используют популярные в народе мультиметры и мегаомметры, так как они дают лишь приблизительные значения сопротивлений. Эксперты используют специальную тестирующую аппаратуру, точность которой заверена лабораторными поверками.
Профессиональная проверка и испытания заземления
Преимущества обращения к специалистам за проверкой исправности цепи заземления неоспоримы:
- квалифицированные мастера разбираются в нормативах, регламентированных в ПУЭ, правилах электробезопасности, нормах по защите персонала и подключенных устройств от поражения током;
- проверка сопротивления заземления проводится с привлечением современных устройств — FLUKE 1653b, Megger DET14C, точность которых подтверждается ежегодными лабораторными поверками;
- особый вид работ — проверка целостности цепи заземления на производстве; к оборудованию допускают обученных сотрудников электроизмерительной лаборатории с разрешением;
- по результатам работ по профессиональной проверке и испытаниям заземления заказчик получает протокол измерения.
В процессе учитывают климатические условия на момент испытаний (температура, влажность, давление), вид и характер грунта, тип заземляющего устройства и режим нейтрали, удельное сопротивление грунта. Испытания проводятся на базе технических нормативов ПУЭ. В конечной документации отражена информация по объекту проведения мероприятий, назначению заземлителя, сезонному поправочному коэффициенту, расстоянию между электродами, а также допустимое, измеренное и приведенное сопротивление заземляющих устройств.
Рассмотрим диагностику заземления на примере прибора М-416: на этапе завершения монтажа, а также для контроля текущего состояния готового контура. Контролируется целостность стержня, оценивается необходимость реконструкции при усилении нагрузки на сеть. Критически важно выяснить номинал сопротивления, если в цепь электропитания не вмонтированы защитные устройства (УЗО, АВ).
Принцип проверки контура заземления прибором М-416:
- перед началом работ подберите прибор с наивысшим классом точности, смените батарейку и откалибруйте;
- прибор ставится строго горизонтально, а также в режиме «Контроль» устройство проверяют на пригодность (после установки переключателя на «Контроль» вращают рукоятку и наблюдают за движением стрелки, которая при нормальном функционировании приходит к отметке 5 (±0,3)).
- отыщите металлический основной штырь заземления возле дома, расположение обычно помечено настенным знаком, а сверху тянется проволока из металла;
- для проверки заземления и измерения сопротивления следует дождаться благоприятной погоды, вбить в землю основной и дополнительный электроды на глубину не менее 50 см; замеры суммарного сопротивления заземляющего стержня и грунта производят между основным и дополнительным штырями — предварительно убедитесь в отсутствии напряжения, используя указатель напряжения на корпусе электроустановки и заземляющем (зануляющем) проводнике;
- значение R-заземления на стрелочном указателе не должно превышать 10 Ом, погрешность метода не превышает 15%.
Благоприятными условиями для проведения испытаний и измерений сопротивления заземления считается светлое время суток, температура окружающей среды от -30⁰С до +40⁰С, относительная влажность воздуха не должна превышать 90% (влажность замеряется при 30⁰С). Внешних магнитных полей быть не может, кроме естественного поля земного магнетизма. На момент проверки исправности защитного заземления схема цепи должна быть смонтирована и полноценно укомплектована.
В каких случаях нельзя работать с приборами над проверкой заземления и измерением сопротивления? Недопустимо приступать к работе при наличии визуальных дефектов в целостности соединений, швов и иных частях контура.
Если вас интересуют замеры контура заземления, такие услуги в СПб предоставляет передвижная Электролаборатория Элтек. Услуги электролаборатории по замеру сопротивления контура заземления осуществляются в СПБ и Ленинградской области. Просто оставьте заявку на почте или по телефону на проведение испытаний по проверке заземления и лаборатория свяжется с вами. После согласования сроков проведения и стоимости работ клиент получает команду опытных мастеров для проверки защитного заземления и других услуг. После оплаты протокольная отчетность по объекту будет доставлена заказчику.
Как измерить сопротивление заземления
Защитное заземление существенно повышает безопасность людей, проживающих в квартире или частном доме, а также работников предприятий, связанных с электроустановками и оборудованием. Данные системы разрабатываются и создаются квалифицированными специалистами, а в определенных условиях могут быть устроены и собственными силами. Чаще всего приходится решать задачу, как измерить сопротивление заземления, поскольку от этого параметра во многом зависит работоспособность всей системы. Его величина не должна превышать установленного максимального предела, определяемого Правилами устройства электроустановок, в противном случае защита не сможет в полной мере выполнять свои функции.
Как работают заземляющие системы
Действие защитных заземляющих систем основано на свойстве электрического тока, в соответствии с которым он стремится течь по проводникам, обладающим минимальным сопротивлением. Человеческое тело относится к категории хороших проводников, его сопротивление условно считается 1000 Ом. Следовательно, для того чтобы ток уходил в сторону заземления, его сопротивление должно быть намного меньше, чем у человека. В соответствии с ПУЭ данное значение не превышает 4 Ом.
В случае неисправности какого-либо электрического прибора, например, из-за пробоя изоляции, на его корпус попадает ток, то есть, в этом месте появляется потенциал. В случае касания рукой этой части, ток пойдет в землю по направлению от руки-через тело-в сторону ноги. В таких случаях человек подвергается смертельной опасности, поскольку даже 100 мА могут привести к необратимым процессам. Установка защитного заземления, измеряемого в дальнейшем, дает возможность максимально снизить вероятность негативных последствий.
Каждый современный электрический прибор оборудуется внутренним заземлением, когда отдельный контакт вилки соединяется с корпусом. При включении такого прибора в розетку, получается соединение с общей системой заземления. В случае какого-то нарушения или повреждения, ток утечки буде уходить в землю через заземляющий провод с небольшим сопротивлением. Поэтому замеры сопротивления имеют большое значение, позволяя контролировать его величину и не допускать выхода за пределы установленных значений.
Для чего нужны проверки заземления
Для того чтобы заземление в полной мере выполняло свои функции, необходимо поддерживать исправность заземляющего контура. С этой целью выполняются периодические замеры сопротивления мультиметром, по результатам которых определяется состояние всей системы.
Если контур находится в исправном состоянии, то при возникновении аварийной ситуации ток по заземляющему проводнику будет уходить к токоотводящим электродам. Поскольку они контактируют с грунтом всей своей поверхностью, все проходящие токи быстро и равномерно уйдут в землю.
Однако, продолжительное нахождение в грунте и постоянный контакт с землей приводит к образованию на металлических поверхностях окисной пленки, постепенно переходящей в коррозию. В результате, создаются препятствия нормальному прохождению тока, сопротивление элементов конструкции возрастает. На некоторых участках ржавчина становится более ярко выраженной, в связи с наличием в этих местах химически активных веществ, постоянно контактирующих с металлом. Поэтому начинать проверку следует с определения технического состояния элементов системы.
Постепенно коррозия превращается в отдельные чешуйки, которые начинают отслаиваться от металла и препятствовать в этом месте электрическому контакту. В дальнейшем количество таких мест возрастает, вызывая увеличение сопротивления всего контура. В заземляющем устройстве наступает потеря электрической проводимости, и оно уже не в полной мере отводит в землю опасные токи. Таким образом, снижаются общие защитные свойства системы.
Установить реальное состояние контура возможно только с помощью замера сопротивления. Техническая сторона этого процесса основывается на законе Ома для участка цепи. Данная процедура проводится с помощью источника напряжения с заранее известным точным значением. После того как будет измерена сила тока, можно легко определить сопротивление. На практике все не так просто, как в теории, поскольку существуют определенные методики и правила замеров, которые требуют точного соблюдения.
Общие правила проведения замеров сопротивления
Стандартная проверка заземления включает в себя следующие методы:
- Визуально проверяются болтовые и сварные соединения.
- Проводятся замеры сопротивления контура заземления мультиметром.
- Проверяется удельное сопротивление грунта.
Все измерения выполняются с помощью специальных приборов. Рекомендуется пользоваться мегомметрами, которые больше всего подходят для этих целей. Существует специальный прибор М-416 переносного типа, работающий на основе компенсационного метода с использованием потенциального электрода и вспомогательного заземлителя. Нижний и верхний пределы измерений составляют 0,1-1000 Ом, температурный диапазон – от минус 25 до плюс 60С. Питание прибора осуществляется тремя батарейками по 1,5В.
Измерение сопротивления заземления осуществляется в следующем порядке:
- Прибор нужно установить на ровную горизонтальную поверхность и откалибровать. С этой целью в режиме контроля нажимается красная кнопка, затем она удерживается, а стрелка устанавливается в нулевое положение. Измерительное устройство нужно расположить максимально близко к заземлителю, поскольку соединительные провода сами обладают некоторым сопротивлением.
- Перед тем как проверить сопротивление, выбирается требуемая схема подключения. Она может быть трех- или четырехзажимной, обозначенной на крышке прибора.
- В землю забивается стержень зонда и вспомогательный электрод на глубину не ниже 50 см. Грунт должен иметь естественную плотность и не быть насыпным, а удары наносятся кувалдой точными прямыми ударами.
- Место подключения заземляющего проводника к электроду зачищается от старой краски. Сечение медных проводов составляет 1,5 мм2.
- Непосредственное измерение защитных устройств начинается с выбора диапазона х1. После нажатия на красную кнопку нужно вращать ручку, чтобы установить стрелку на нулевое значение. Большие значения сопротивлений измеряются в соответствующих диапазонах х5 или х20. Для замеров заземления вполне достаточно диапазона х1, который и выдаст требуемое сопротивление на шкале прибора. Измерения должны выполняться при определенной погоде с максимальной плотностью грунта.
Аналогичные замеры проводятся и в зимнее время при сильных морозах при сильно замороженном грунте. Не рекомендуется измерять сопротивление при влажной погоде, поскольку полученные данные будут сильно искажаться.
Измерения амперметром и вольтметром
Во время проведения замеров оценивается контактная поверхность контура, поскольку именно она плотно соприкасается с землей. Для того что бы измерить заземление, на расстоянии примерно 20 м от защитного устройства в грунт забиваются основной и дополнительный электроды. Затем к ним подается переменный ток со стабильными показателями. В результате, образуется электрическая цепь, состоящая из источника напряжения, проводов и электродов, по которой будет протекать ток. Его величина измеряется амперметром, а не мультиметром.
Поверхность заземляющего контура и контакт основного электрода перед тем, как их померить тщательно очищаются от металла, после чего к ним подключается вольтметр и на этом участке измеряется падение напряжения. Полученное значение следует разделить на силу тока, измеренную амперметром, в результате получится сопротивление на данном участке цепи. Если требуются неточные грубые замеры заземлителей, можно вполне ограничиться этими полученными данными.
Более точные результаты получаются путем корректировки, когда из полученного значения отнимается сопротивление соединительных проводов. Одновременно учитываются диэлектрические свойства грунта и их воздействие на токи растекания внутри почвенной структуры.
Более качественно замерить сопротивление заземления могут только квалифицированные специалисты, использующие современную усовершенствованную технологию. При их выполнении применяются промышленные высокоточные метрологические приборы, а также основной и вспомогательный электроды, помещаемые в почву, как и при замерах предыдущим способом.
Они устанавливаются на одной линии, с интервалом от 10 до 20 метров, охватывая измеряемый заземляющий контур. Шина контура соединяется с измерительным зондом максимально короткими проводниками. Сам прибор для измерения через клеммы соединяется с основным и дополнительным электродами, находящимися в земле.
Подача переменной ЭДС осуществляется через вспомогательный электрод, находящийся в грунте. В эту же цепочку входит сама земля, соединительные проводники и первичная обмотка трансформатора тока, обозначенного на рисунке символами ТТ. В результате, на вторичной обмотке трансформатора возникает ток I1. С помощью специального реостата – реохорда выставляются равные напряжения, то есть, U1 = U2. Подобное равенство достигается за счет установки нулевого значения показаний измерительного устройства V, соединенного с реохордом через измерительный трансформатор ИТ.
Для расчетов сопротивления заземления RЗ применяется система уравнений, состоящая из следующих компонентов: U1 = I1 х Rз; U2 = I2 х Rаб; U1 = U2; I1 = I2. Если решить эту систему, то получится, что сопротивление заземления будет равно заземлению участка аб: Rз = Rаб. Величина Rаб определяется стрелкой, которая подвижной частью ручки устанавливается на неподвижной шкале. После этого можно легко найти сопротивление заземления.
Как проверить заземление в домашних розетках
После покупки жилья нередко оказывается, что все электромонтажные работы уже выполнены, и возникает проблема проверки заземления в розетках. Начинать проверку до измерения сопротивления заземления рекомендуется с визуального осмотра. Нужно обесточить квартиру и разобрать любую из розеток. Она должна быть оборудована необходимой клеммой с подключением заземлительного проводника желто-зеленого цвета. Если же в наличии только два провода коричневого и синего цвета (фаза и ноль), это значит, что заземление отсутствует.
Однако присутствие третьего проводника еще не означает, что заземление исправно и может полностью выполнять свои функции. Поэтому следует выполнить специальную проверку мультиметром. Все действия производятся в следующем порядке:
- Вводный автомат нужно включить, чтобы в розетках было напряжение.
- Тестер устанавливается в режим напряжения.
- Касаетесь щупами фазного и нулевого замеренных контактов и измеряете напряжение между ними. Если все в порядке, на табло высвечивается 220В.
- Точно такие же действия выполняются мультиметром относительно фазного и заземляющего контактов. Показатель напряжения будет немного отличаться, но его наличие уже свидетельствует о том, что заземление есть. Когда на экране прибора цифры отсутствуют, это значит, что контура заземления нет вообще или он неисправен.
При отсутствии измерительных приборов, проверку можно выполнить подручными средствами. Самодельный тестер состоит из патрона с лампочкой, проводов и концевиков со щупами. По сути, это обычная контролька, которую используют многие электрики.
Одним щупом нужно коснуться фазного, а другим – нулевого провода. При этом лампочка загорается. Далее щуп, прикасавшийся к нулю, нужно переместить на выступающий контакт заземления. Если лампочка вновь загорится, следовательно, защитная система находится в рабочем состоянии. Слабый свет указывает на плохое состояние контура, а отсутствие свечения – на его неисправность.
Как измерить заземление?
Несмотря на то, что цепь заземления не находится под постоянным напряжением, и поэтому даже прокладывается открыто в промышленных условиях, ее корректная работа в нужный момент сможет уберечь, не только от травмы, но и возможно от смерти.
Принцип действия заземления прост – электрический ток всегда следует по наименьшему сопротивлению, а так как человеческое тело является хорошим проводником, то сопротивление заземления должно быть значительно меньше.
Как измерить сопротивление заземления
В работы по проверке заземления входят:
- · визуальный осмотр целостности сварных и болтовых соединений;
- · проверка сопротивления заземляющего контура;
- · проверка удельного сопротивления грунта
Для измерения используются специальные приборы, как современные цифровые, так и советского образца – мегомметры, также применяемые и для определения сопротивления изоляции.
Уровень сопротивления заземления должен соответствовать требованиям ПУЭ, в зависимости от типа оборудования, например, для молниеотвода, оно не должно превышать 10 Ом.
Вначале производят замер сопротивления от заземленного объекта до ближайшего заземлителя и если расстояние небольшое, то просто подсоединяют измерительные провода в этих двух точках и контролируют показания прибора.
Если же расстояние значительное, то замеряют сопротивление на участке от объекта до общей заземляющей шины, а поскольку сама шина сохраняет свои свойства всегда одинаковыми, то остается сделать замер между самой шиной и ближайшим заземлителем, убедившись в соблюдении нормативов.
В последнюю очередь выполняется измерение удельного сопротивления грунта, с помощью погруженных в него измерительных электродов и пропускании тока между ними и электродами заземляющего контура. Таким образом узнают, способен ли грунт вобрать в себя электрический ток, для точности показаний, замеры проводятся в сухую погоду или в сильный мороз, когда грунт промерзает.
Как измерить сопротивление контура заземления
Заземление может использоваться, как в промышленных целях, так и в быту и естественно, требования предъявляемые к конструкции могут разниться в зависимости от его предназначения. В основном они касаются величины сопротивления, которая не должна превышать граничного предела.
Что же касается своего личного жилья, то здесь необходимо руководствоваться нормами ПУЭ для жилого дома (не более 30 Ом) и принципом, чем оно ниже, тем лучше.
Сопротивление самого провода минимально, при условии, что вы используете медный одножильный или многожильный кабель, основные потери могут происходить на механических контактах, когда в квартире провода сводятся в распределительную коробку, соединяясь в единую магистраль, выходящую к электрощиту.
Именно поэтому следует вначале обратить внимание на все механические контакты, и только после этого проводить электрические замеры.
В домашних условиях достаточно бытового тестера с пределом измерений до 1000 Ом и медного кабеля такой длины, чтобы стало возможным подключить щупы прибора одновременно к клемме заземления или зануления на электрическом щите и к заземляющей клемме прибора или розетки.
Как измерить сопротивление заземления тестером
Несмотря на то, что замер сопротивления заземления производится на линии не находящейся под напряжением, здесь также потребуется точность и осторожность.
Во-первых – исходя из характера объекта, необходимо узнать, какая величина сопротивления допускается в данной цепи, если например, это бытовое заземление в квартире, то допуск составляет не более 30 Ом. Для промышленных условий, например, заземление станка в цеху, эти условия будут уже другими.
Во-вторых, проверка заземления осуществляется только при выключенном устройстве, в противном случае, ток измерительного прибора может попасть на само устройство, как и тот, кто измеряет сопротивление, оказаться под действием внезапно появившегося на заземляющей линии потенциала.
Для измерения могут использоваться цифровые или аналоговые приборы, но если в быту можно применять и обычный тестер, то на производстве, когда результаты замеров ложатся в основу каких-то расчетов, обязательно чтобы прибор числился в государственном реестре измерительной техники и был поверенным.
Смотрите также:
Как сделать заземление в квартире? http://euroelectrica.ru/kak-sdelat-zazemlenie-v-kvartire/.
Интересное по теме: Как заземлить дачу?
Советы в статье “Как работает заземление” здесь.
Дома, замер сопротивления заземления, а чаще зануления, осуществляют между точкой соединения нулевых проводов с корпусом электрощита и поочередно всеми розетками или теми местами, где есть вывод заземляющей линии.
Регулятор устанавливается в положение необходимого предела сопротивления, а поверхности контактируемые со щупами должны быть очищены от грязи и ржавчины, после чего выполняется сам замер.
Устранение неисправностей контуров заземления с помощью клещевого мультиметра |
Обычный способ устранения проблем с контурами заземления в аудиосистемах – прослушивание аудиосигнала на микшере в наушниках. Если в микшере присутствует гудение, выполните следующие действия: Один за другим отключите входы и выходы от микшера и обратите внимание, уменьшится ли гудение. Этот же метод подключения и отключения проводов можно использовать на других компонентах аудио- и видеосистем.
Отсоединение, а затем повторное подсоединение кабелей требует больших усилий.Это привело к тому, что контуры заземления затрудняют поиск и устранение неисправностей в больших системах с большим количеством кабелей.
Я обнаружил, что мультиметр клещевого типа может помочь в поиске неисправностей контура заземления. Шум контура заземления обычно вызывается дополнительным шумовым током, протекающим по экранам и заземляющим проводам кабелей. Этот шумовой ток обычно представляет собой частоту сетевого напряжения (50 Гц / 60 Гц) или его гармоники. Обычно сигнальные кабели не должны пропускать какой-либо (или очень небольшой) ток сетевой частоты, поэтому, измеряя этот вид тока, протекающего по кабелю, можно определить, где протекает шумовой ток.Мультиметр зажимного типа – очень хороший инструмент для проведения измерений, потому что вы можете легко измерить шумовой ток, протекающий по кабелю, без необходимости отсоединять кабель или нарушать сигнал внутри кабеля. Это означает, что вы можете устранять неисправности действующей системы с помощью токоизмерительных клещей в диапазоне переменного тока.
Провода, по которым протекает значительный ток, являются частью контура заземления. Провода с наибольшим током проталкивают наибольший шумовой ток во всю систему. Поэтому сначала найдите провода, в которых протекает самый высокий или очень высокий ток.Затем вы можете попытаться отключить их и проверить, останавливает ли это шум. Обычно есть один или несколько кабелей, которые вызывают весь или большую часть тока контура заземления в системе. Этот шумовой ток обычно протекает по разным кабелям в системе, вызывая более или менее шумовые проблемы здесь и там по всей системе. Затем реальный источник или источники шума отключаются, и внезапно вся система становится свободной от шума. Когда вы обнаружите источник проблемы, просто добавьте подходящее средство для этого соединения (обычно трансформатор развязки сигналов или подобное устройство).
Зажим на мультиметре позволяет легко измерять ток в кабелях. Просто закрепите измеритель на аудиокабеле и получите показания переменного тока. Если вы хотите, вы можете зажать несколько аудио / видео кабелей внутри зажима и получить показание суммы их шумовых токов (помните, что есть вероятность, что если есть два кабеля с точно таким же шумовым сигналом, но в другом направлении, вы получите нулевое показание) . Крепление глюкометра к нескольким сигнальным кабелям ускоряет процесс поиска и устранения неисправностей при большом количестве кабелей, например, возле аудиомикшера.Если группа кабелей, которую вы измерили с помощью клещей, показывает значительный шумовой ток, измерьте кабели по отдельности, чтобы определить, по какому из них течет наибольший ток. Если в группе кабелей не было значительного тока, продолжите измерение следующей группы кабелей. Помимо аудиокабелей, вы можете проводить измерения с помощью видеокабелей, сетевых кабелей и других сигнальных кабелей.
Есть несколько моментов, которые следует учитывать при выборе мультиметра клещевого типа. Сначала мультиметру необходимо измерить переменный ток зажимом.Вам не нужна возможность измерения постоянного тока, хотя наличие токоизмерительных клещей с возможностью измерения постоянного тока может сделать его более полезным для других приложений (обычно токоизмерительные клещи с поддержкой постоянного тока дороже, чем токоизмерительные клещи только переменного тока). Второе, что нужно учитывать, – это разрешение измерителя. Токи контура заземления, которые вы обычно хотите измерить, находятся в диапазоне от нескольких мА до 1 А (в некоторых тяжелых случаях ток может быть значительно больше). Желательно иметь токоизмерительные клещи, способные измерять токи до нескольких мА.К сожалению, многие измерители с таким хорошим разрешением обычно довольно дороги.
Обычно дешевые мультиметры клещевого типа имеют разрешение 10 мА или 100 мА, что означает, что они не могут обнаруживать ничего ниже 10 мА или 100 мА. Мультиметр с разрешением 100 мА практически бесполезен при решении проблем контура заземления, потому что ток контура заземления более 100 мА наблюдается нечасто. Мультиметр с разрешением 10 мА уже полезен для устранения проблем контура заземления, но в большинстве случаев он не раскроет вам все детали.Обычно ток в кабеле от 100 мА до 1 А означает очень серьезную проблему шума в аудио- и видеосистемах, токи в диапазоне 10-100 мА вызывают некоторые проблемы с шумом. Обычно при токе ниже 10 мА значительных проблем с шумом не возникает.
Я успешно использовал токоизмерительные клещи с током 10 мА для устранения проблем с контуром заземления, но при использовании этого мне хотелось бы иметь измеритель, который может показывать даже более низкие токи до 1 мА или меньше. Поэтому, если вы покупаете токоизмерительные клещи, постарайтесь получить как можно более хорошее разрешение за те деньги, которые вы готовы их потратить.При поиске мультиметра для этого приложения фактическая точность измерения (обещанные проценты погрешности измерения) не важна, мы просто проверяем, течет ли ток или нет, и его приблизительную величину (только некоторое приближение относительно того, сколько тока достаточно).
На этом рисунке показан самый дешевый из известных мне работающих клещей-клещей, который может измерять токи переменного тока вплоть до нескольких мА. Измеритель имеет разрешение 1 мА в диапазоне измерения 2 А (дисплей начал показывать ток выше 2 мА).Вы можете получить этот 1,3-дюймовый ЖК-мультиметр с зажимом в футляре от Dealextreme примерно за 20 долларов США.
Тестирование петли автоматизированного шлюза • American Access Company
Как только вы начнете процесс установки дорожного покрытия или петли для пропила, вы всегда должны проверять петлю перед установкой.
Петли для дорожного покрытия или петли для распиловки
Сначала вы должны определить, какой шлейф вы будете устанавливать. При выборе типа петли для установки вы должны посмотреть, насколько далеко вы продвинулись в своем проекте.Петля для дорожного покрытия будет установлена в дорожном покрытии, независимо от того, прикреплена ли она к арматурной решетке или размещена на земле и вымощена.
Петли для дорожного покрытияПеред тем, как проложить петлю, вы захотите протестировать петлю омметром, поместив один провод на один из проводов петли, а другой провод от омметра к другому проводу петли. Посредством этого процесса вы проверяете непрерывность цикла.
Если у вас нет непрерывности в шлейфе, шлейф может быть неисправным.Если петля размещается на сетке арматурного стержня, вам не нужно связывать ее на одной линии с арматурным стержнем. Это означает смещение петли так, чтобы она не следовала за сеткой арматурных стержней. Это повлияет на то, как петля будет реагировать на металлический объект поверх нее, когда проект будет завершен. Если вы кладете петлю на землю, а затем прокладываете ее поверх, вы должны прикрепить петлю к земле таким образом, чтобы она не двигалась при заливке дорожного покрытия сверху.
Пила по петлеПри выборе петли для пропила, это можно сделать до или после заливки дорожного покрытия, но установка может произойти только после заливки дорожного покрытия.Пила в петле устанавливается так же, как и звучит, пропила в тротуаре и затем запаивается. Вам нужно будет использовать подходящее пильное полотно, предназначенное для тротуара, в который вы будете помещать петлю. Например: для бетона вам понадобится лезвие, предназначенное для резки бетона. Для асфальта вы захотите использовать лезвие, предназначенное для асфальта, или комбинированное лезвие, которое можно использовать как для бетона, так и для асфальта. Если вы собираетесь использовать электрическую циркулярную пилу, убедитесь, что лезвие предназначено для сухой резки. Не забудьте респиратор, защитные очки и перчатки!
Затем пропил необходимо очистить с помощью щетки или воздуходувки. Очистив пропил от пыли и мусора, поместите петлю в пропил в соответствии с инструкциями производителя. Затем проверьте контур с помощью омметра, поместив один вывод на один из проводов контура, а другой провод от омметра к другому проводу контура. Вы проверяете непрерывность цикла.
Чувствительность контура
Итак, вы установили петлю на мостовую или в пропил и хотите проверить ее на чувствительность к металлу. Есть несколько тестовых измерителей, которые вы можете использовать для проверки различных аспектов цикла. Один из них будет омметром или мультиметром, который будет проверять ом. Для этого нужно удалить концы проводов для петлевого детектора и затем поместить один из концов проводов от измерителя к одному из концов провода петли, а затем поместить второй конец провода от измерителя к другому концу провода. петля.Многие мультиметры будут иметь тон, который будет звучать, когда есть непрерывность. Если на вашем глюкометре нет тонального сигнала, еще одним признаком является то, что стрелка глюкометра выскакивает. Это указывает на то, что в шлейфе нет обрыва проводки.
Еще один способ проверить изоляцию контура – мегомметр. Этот измеритель измеряет электрическое сопротивление изоляторов. Это поможет определить, есть ли разрез в изоляции петли или вода попадает в петлю, вызывая ее заземление и выход из строя.Оба конца вывода этого измерителя не войдут в петлю. Один конец вывода будет соединен с землей или землей корпуса, а другой конец провода будет помещен на один конец петли. Это измеритель, который выдает мощность, поэтому при тестировании контура не касайтесь обоих выводов одновременно. При тестировании контура вы ищите высокое показание 45–2000 Мегаом. Диапазон от 0 до 10 МОм означает, что изоляция контура плохая, а 10-44 МОм означает, что изоляция контура сомнительна.
Найдите и устраните контуры заземления
В моем домашнем развлекательном центре все было хорошо – включая телевизор, усилитель объемного звука, AM / FM-тюнер, ROKU и проигрыватель CD / DVD / BlueRay – пока я не подключил свой рабочий стол ПК, на одном из жестких дисков которого хранятся многие мои музыкальные и видеофайлы.При подключенном ПК динамики издают раздражающий низкий гул с частотой 60 Гц – явное указание на контур заземления. Все мои аудио- и видеоустройства являются относительно новыми, качественными, фирменными продуктами, оснащенными двухконтактными шнурами питания, поэтому, даже если у ПК есть трехконтактная вилка, не должно быть многократных возвратов сигнала, вызывающих замыкание на землю. . В этой статье описывается подход к устранению контуров заземления в аналоговых AV-системах.
КОНТУРА ЗАЗЕМЛЕНИЯ
По определению, контуры заземления вызывают нежелательные токи, протекающие через два или более обратных пути сигнала.Таким образом формируются индукционные катушки, обычно только с одним витком. Эти петли улавливают сигналы помех из окружающей среды. Поскольку каждый проводник имеет конечный импеданс, между двумя подключенными точками возврата сигнала возникает потенциал напряжения – Vi = Ig (R1 + R2). Это напряжение является источником помех: гудение, шипение, шум, воспринимаемый высокочастотными сигналами (например, местная AM-станция) и т. Д. Упрощенный пример показан на рисунке 1.
РИСУНОК 1: Причина помех контура заземления.Источник аудиосигнала VS на Рисунке 1 – например, звуковая карта внутри ПК – подключается к усилителю через экранированный кабель. Экран заземлен с обоих концов на шасси обоих устройств. Трехконтактные вилки питания подключают шасси обоих AV-компонентов к заземляющему проводу распределения питания в доме. Считаем заземление усилителя точкой отсчета. (Неважно, какую точку в петле мы выберем.) Петля, состоящая из экрана кабеля и заземляющего провода распределения питания, улавливает все виды сигналов, вызывая протекание петлевого тока Ig и, как следствие, напряжение помехи Vi. сгенерировано.
Vi добавляется к сигналу звуковой карты. Индуцированный в петлю ток Ig поступает из многих потенциальных источников. Это может быть вызвано в заземляющем проводе током, протекающим в горячем и обратном нейтральном проводе переменного тока, действующем как трансформатор. Могут быть утечки, индукция магнитными полями, емкостная связь или индукция электромагнитных помех (EMI) в контуре. Как только Vi добавляется к сигналу, его, как правило, невозможно отфильтровать.
Для большей части электрического оборудования требуется третий контакт питания для безопасности.Он подключается к шасси, а электрическая распределительная панель – к нейтрали (белый провод) и местной земле – обычно это металлический стержень, закопанный в землю. Заземление предназначено для рассеивания ударов молнии, но не влияет на контуры заземления, которые мы обсуждаем.
Основное назначение заземляющего провода – безопасность плюс переходные процессы и отвод молнии на землю. В нормальных условиях по этому проводу не должен протекать ток. Если внутренняя неисправность в устройстве подключает нейтральный (белый) или горячий (черный или красный) провод к шасси, зеленый провод шунтирует шасси на землю.Прерыватели замыкания на землю (GFI) сравнивают ток через горячий провод с обратным током через нейтраль. Если не идентичны, GFI отключается.
Производители звукового оборудования знают, что заземление чувствительного оборудования в разных местах вдоль провода заземления приводит к множественным возвратным сигналам, вызывающим контуры заземления. Это способствует проникновению помехового шума в систему. С точки зрения электробезопасности малыми токами, индуцированными в контуре заземления, можно пренебречь. К сожалению, они достаточно велики, чтобы нанести ущерб чувствительной электронике.Самое простое решение этой дилеммы – избежать создания контуров заземления, не заземляя AV-оборудование. Таким образом, в таком оборудовании использовались двухконтактные вилки. Для удовлетворения требований безопасности оборудование спроектировано с двойной изоляцией, что означает, что даже в случае внутренней неисправности человек не может прикоснуться к металлической части под напряжением, коснувшись любого места на поверхности оборудования.
Мой компьютер, как и большинство настольных компьютеров, оборудован трехконтактной вилкой. На рисунке 2 показано расположение.ПК заземлен через шнур питания. К сожалению, кабельное телевидение (CATV) вводит второе заземление через коаксиальный разъем. Я измерил сопротивление между коаксиальным экраном, когда он входит в дом, и проводом заземления распределения питания дома. Сопротивление составляло 340 мОм, что указывало на жесткое соединение между экраном коаксиального кабеля и землей дома, что является причиной образования контура заземления. Мне не удалось установить, где была эта связь, но она не через землю.
РИСУНОК 2: Контур заземления в моей развлекательной системеВ компьютерной системе может быть несколько контуров заземления, если у вас есть жестко подключенные периферийные устройства с трехконтактными вилками, такие как некоторые принтеры, сканеры и т. Д.Цифровые схемы гораздо менее чувствительны к контурам заземления, чем аналоговые, но рекомендуется минимизировать потенциальные петли, подключив все периферийные устройства, кроме беспроводных, к одной панели питания.
Контуры заземления также могут образовываться при использовании длинных экранированных кабелей для сопряжения ПК и домашнего кинотеатра. Два экранированных кабеля, необходимые для стерео, представляют собой два возвратных сигнала, создающих собственный контур заземления. А еще есть видеокабели. Еще один шлейф. К счастью, разъемы на задней панели ПК и AV-оборудования расположены очень близко друг к другу, что означает минимальную разницу потенциалов между ними на низких частотах.Стереокабели сохраняют небольшой размер петли. Чтобы свести к минимуму все области контуров для захвата помех, я связал интерфейсные кабели очень близко друг к другу пластиковыми стяжками. В тяжелых ситуациях может потребоваться изменение маршрута кабелей, использование металлического кабелепровода или беспроводных интерфейсов, чтобы устранить помехи.
ИСПРАВЛЕНИЯ
После отключения кабеля кабельного телевидения от телевизора гул пропал. Кроме того, временная замена ПК на ноутбук, который не имеет заземления, также устранила проблему.Так как еще мы можем исправить те, которые нарушают многократные возвраты?
Очевидный ответ – разорвать цикл. Я настоятельно рекомендую вам не отсоединять ПК от земли, используя переходник с двумя штырями или просто отрезая заземляющий штырь. Это сделает вашу систему небезопасной. Вам понадобится изолятор заземления. Например, Jensen Transformers продают изоляторы, такие как VRD-IFF или PC-2XR, для разрыва заземления, но вы можете построить их за небольшую часть покупной цены. На рисунках 3 и 4 показано, как это сделать.
РИСУНОК 3: Изолятор заземления для коаксиального кабеля CATVЧтобы разорвать контур заземления, вызванный кабельным телевидением, вы можете сделать небольшую штуковину, показанную на рисунке 3. J1 и J2 – широко доступные розетки кабельного телевидения. Конденсаторы C1 и C2, помещенные между ними, должны быть примерно по 0,01 мкФ каждый. Для сборки не требуется печатная плата. Вы можете поместить его в крошечную коробку или просто спаять все вместе, обернуть изолентой и положить куда-нибудь в сторону. Помните, что рабочее напряжение конденсаторов должно как минимум вдвое превышать напряжение распределения питания.Это 250 В в Северной Америке и более 500 В в других странах мира.
РИСУНОК 4: Изолятор заземления для устройств с трехконтактным питаниемНа рисунке 4 показано, как отключить заземление таких устройств, как ПК, с помощью трехконтактных вилок. Вы можете встроить эту схему в компьютер или другое устройство, но я считаю, что лучше построить ее как независимую коммутационную коробку. Диоды обеспечивают разомкнутый контур для сигналов примерно до 1,3 Впик. Гул обычно имеет существенно меньшую амплитуду. C1, 0,01 мкФ, обеспечивает обход для высокочастотных электромагнитных помех на землю.Петля будет замкнута для напряжений выше 1,3 VPP, например, из-за нарушения изоляции горячего провода к шасси. Для распределения 120 В переменного тока D1, D2 и C1 должны быть рассчитаны как минимум на 250 В. В ответвлении цепи с автоматическим выключателем или предохранителем на 15 А диоды должны быть рассчитаны минимум на 20 А, чтобы выключатель сработал до того, как диоды перегорят. Если прибор потребляет только часть номинального тока предохранителя, скажем 2 А, вы можете использовать диоды на 5 А и включить дополнительный предохранитель на 2 А.Для стран с питанием 230 В переменного тока компоненты должны иметь соответствующие характеристики.
Вы также можете разорвать контур заземления, используя силовой изолирующий трансформатор между силовой линией и ПК или качественные сигнальные трансформаторы на сигнальных линиях. Обратной стороной этого является то, что хорошая изоляция и сигнальные трансформаторы дороги и широко не доступны. Оборудование, питаемое от настенных бородавок, особенно с оптически связанными входами и выходами, распространенными сегодня, по своей природе непроницаемо для контура заземления.
ИСПЫТАНИЕ И ОШИБКА
В этой статье описывается подход к устранению контуров заземления в аналоговых AV-системах. Хотя вам необходимо понять, как возникают контуры заземления, их обнаружение и устранение их последствий может оказаться делом разочаровывающих проб и ошибок.
Джордж Новачек – профессиональный инженер со степенью в области кибернетики и замкнутого управления. Выйдя на пенсию, он совсем недавно был президентом международного производителя встроенных систем управления для аэрокосмических приложений.Джордж написал 26 тематических статей для Circuit Cellar с 1999 по 2004 год. Свяжитесь с ним по [email protected], указав в теме письма «Circuit Cellar».
Эта статья появилась в Circuit Cellar 301 августа 2015 года.
Редакционная группа Circuit Cellar состоит из профессиональных инженеров, технических редакторов и специалистов по цифровым медиа. Вы можете связаться с редакционным отделом по адресу [email protected], @circuitcellar и facebook.com/circuitcellar
Общие сведения о контурах заземления – Примечание по применению
Контуры заземления могут быть настоящей помехой в системах сбора данных HVAC, поскольку их трудно обнаружить.В большинстве случаев они не причиняют вреда, но могут вызвать непредсказуемые проблемы спустя годы после установки!
Что такое контур заземления?
Контур заземления образуется, когда между клеммами «заземления» на двух или более единицах оборудования имеется более одного токопроводящего пути. Проводящая петля образует большую рамочную антенну, которая легко улавливает токи помех. Чем больше петля, тем больше помех; если вы используете стальной каркас здания в качестве основания, то петля может быть такой же большой, как и все здание.Сопротивление заземляющих проводов превращает токи помех в колебания напряжения в системе заземления. Земля больше не стабильна; поэтому сигналы, которые вы пытаетесь измерить, относящиеся к этой земле, также нестабильны и неточны.
Наземные символыНаземная мифология
Универсальная концепция, которой преподают в технических школах и инженерных колледжах, заключается в том, что «земля» всегда имеет нулевое напряжение, может бесконечно поглощать электрический ток и мгновенно безвредно рассеивать ток.Однако идеальная почва – это лабораторная абстракция, которой не существует в реальном мире.
Настоящее заземление – это проводник, поэтому между всеми точками заземления существует определенное сопротивление электрическому току. Это сопротивление может изменяться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Сопротивление всегда может позволить электрическому напряжению существовать на нем. Большие токи, проходящие через землю, вызовут падение напряжения в проводниках заземления, и потребуется время, чтобы рассеяться.
Департамент сельскохозяйственной инженерии Университета штата Мичиган измерил сопротивление заземления на входах в электрические сети и обнаружил, что на территории здания может изменяться напряжение до 2 вольт. Фактически, Национальный электротехнический кодекс (NEC) допускает изменение заземления на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока (см. «Ссылки» ниже, чтобы получить дополнительную информацию об исследовании штата Мичиган в США и NEC. код).
Понимание того, что идеального заземления не существует в реальном мире, является первым шагом к устранению помех контура заземления, когда они возникают.Если вы помните, что каждое заземление в здании имеет разный и произвольный «нулевой» потенциал, то вы можете спроектировать надлежащие системы заземления.
Если основание такое испорченное, зачем вообще заземление?
Земля необходима по двум причинам: безопасность и безопасность.
Статья 250 NEC устанавливает, что изолированные вторичные обмотки понижающих распределительных трансформаторов должны быть заземлены на входе в здание. Земля представляет собой медный стержень, вбитый как минимум на 8 футов в землю.NEC требует, чтобы конструкционная стальная рама, водопроводные трубы и другие крупные металлические предметы были соединены с землей входа в здание. Если изоляция провода выходит из строя или провод непреднамеренно отсоединяется и соприкасается с металлическим предметом, большие токи короткого замыкания протекают от распределительного трансформатора к земле. Эти чрезмерные токи размыкают предохранители и автоматические выключатели, предотвращая нахождение оборудования под более высоким потенциалом, чем у ближайшей раковины или строительной конструкции. Если заземление в распределительном щитке по какой-либо причине отключается, то заземление на входе электропитания здания на трансформаторе обеспечивает протекание чрезмерного тока короткого замыкания, размыкая предохранители и автоматические выключатели.Защита здания от огня и находящихся в нем людей от поражения электрическим током является основной функцией системы заземления распределения электроэнергии.
Вторая проблема безопасности заключается в том, чтобы поддерживать оборудование в пределах его нормального рабочего диапазона напряжения. Большинство современных прямых цифровых контроллеров (DDC) будут работать правильно без заземления где-либо. Единственная загвоздка в том, что незаземленное оборудование может накапливать большие статические заряды из-за утечки изоляции. Первый человек, который подходит и касается оборудования, испытывает ужасный шок.Если статический заряд становится достаточно высоким, он разряжается до ближайшего проводника с более низким потенциалом. Мгновенные токи разряда могут достигать нескольких тысяч ампер и разрушать электронные компоненты системы. Заземление системы позволяет зарядам рассеиваться без повреждений.
Помехи сигналам от контуров заземления
Контуры заземления позволяют электрическим и магнитным помехам создавать источники напряжения шума. Эти источники напряжения добавляют к измеряемому сигналу и неотличимы от правильного сигнала.Контроллер, не зная, что он считывает неправильное значение, выполняет неправильное управляющее действие. Это может создать неудобные условия для пассажиров. Он также может приводить в движение механическое оборудование, вызывая преждевременный износ оборудования.
Помехи сигналам от магнитной индукции
Основными источниками этих шумов являются магнитная индукция и дисбаланс грунта.
Любая петля из проводящего материала образует однооборотный трансформатор, если присутствует магнитное поле, и магнитные поля возможны везде, где используется напряжение переменного тока.Магнитные поля создаются переменным напряжением, текущим по проводу, двигателями или люминесцентными лампами. В цепях очень низкого уровня оборванные провода, движущиеся в магнитном поле земли, могут даже вызвать проблемы. Магнитное поле заставляет ток течь в петле из проводящего материала, а сопротивление петли создает напряжение из этого тока.
Чем сильнее магнитные поля или чем выше частота магнитных полей, тем сильнее протекает ток. Закон Ома гласит, что ток, умноженный на сопротивление, равен напряжению.Таким образом, чем больше ток, тем больше источник шума напряжения.
На левом рисунке ниже показан контур заземления под действием магнитного поля. Магнитное поле заставляет электрический ток течь в контуре заземления. Сопротивление контура преобразует ток в источник напряжения между входом заземления контроллера и клеммой заземления датчика, как показано на правом рисунке ниже.
Контур заземления в магнитном поле (вверху слева) и напряжение датчика и напряжение контура заземления (вверху справа)Помехи сигналам из-за дисбаланса грунта
Электрические нагрузки могут варьироваться в зависимости от здания, создавая различные токи в системе заземления.Если в системе заземления протекает большой ток и датчик помещен в цепь с заземлением, которая также имеет контур заземления, то к сигналу добавляется разница напряжений между двумя точками заземления.
На рисунке ниже слева показан источник тока повреждения, подающий ток в систему заземления. Если, как в исследовании штата Мичиган, напряжение в системе заземления составляет два вольта, то к сигналу датчика добавляется напряжение повреждения в два вольта, как показано на рисунке ниже справа.
Закрытие
Контуры заземления могут сделать лучшую систему управления неэффективной. Если вы считаете, что контуры заземления могут вызывать проблемы с вашей системой HVAC / R, позвоните своему представителю BAPI или загрузите Примечание по применению BAPI: Избегайте контуров заземления с нашего веб-сайта по адресу www.bapihvac.com
Список литературы
ANSI / NFPA 70, Национальный электротехнический кодекс 2002 – Национальная ассоциация противопожарной защиты
Стратегии строительства для минимизации паразитного напряжения на молочных фермах, Университет штата Мичиган
Генри Отт, Методы снижения шума в электронных системах, 2-е издание, Wiley and Sons, Нью-Йорк, Нью-Йорк , 1988
Michigan State Univ.Исследование и код NEC
Департамент сельскохозяйственной инженерии Мичиганского государственного университета измерил сопротивление заземления на входах в электрические сети и обнаружил:
«Если заземляющий стержень сервисной панели вбить на 8 футов во влажную землю, которая не является настоящим песком, сопротивление между заземляющим стержнем и землей может быть всего 20 Ом. Предположим, что когда в здании используется электроэнергия, одна десятая ампера нейтрального тока течет на землю через заземляющий стержень. Основной электрический закон, называемый законом Ома, гласит, что ток, умноженный на сопротивление, равен напряжению.Умножение тока заземляющего стержня (0,1 ампера) на сопротивление заземляющего стержня (20 Ом) дает 2 вольта. Если один щуп вольтметра касается заземляющего стержня, а другой щуп вольтметра вдавливается в землю настолько далеко от заземляющего стержня, насколько дотягиваются провода, измеритель будет показывать примерно 2 вольта ».
Код NEC
Национальный электротехнический кодекс (NEC) также не помогает решить эту проблему. Статья 250 NEC требует, чтобы параллельные цепи заземлялись до ближайшего местного заземления здания, где бы в здании ни находились панели ответвительных цепей.Цифры в статье 250 показывают заземление на строительную сталь. Как указано в статье штата Мичиган, “территория” здания может варьироваться в зависимости от их измерений на величину до 2 вольт. Статья 647.4 (D) NEC (статья 647 называется «Чувствительное электронное оборудование») позволяет заземлению изменяться на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока.
Версия этого документа в формате pdf для печати
Общие сведения о заземлении гитары и распространенных ошибках
Практика игры на гитаре делает вас лучшим гитаристом.Понимание гитарной проводки сделает вас лучшим мастером тембра. А правильное заземление электроники гитары делает ее настолько тихой, насколько это возможно. В сегодняшней статье мы углубимся в мир заземления: основы, распространенные мифы и лучшие практики!
ОСНОВЫ:
Соединение Земля (или Земля ) – это термин, который относится ко множеству тем, связанных с электротехникой. Для наших намерений и целей правильное соединение Ground является важной частью проводки вашей гитары.Заземление соединяет каждый кусок металла на вашей гитаре и действует как обратный путь к усилителю. Частично заземление гитары помогает удалить нежелательные шумы и имеет важное значение для безопасности – оно позволяет электричеству безопасно поступать в усилитель и рассеиваться.
Ваша гитара окружена множеством вещей, которые излучают или производят EMI или электромагнитные помехи. Оглянитесь вокруг – вы, вероятно, находитесь перед компьютером, возле источника света и, скорее всего, рядом с электрическими линиями.
Это все источники EMI, и их тысячи вокруг нас. Ваша гитара уловит их множество. Однако, если вы правильно заземлите свою гитару, вы можете сделать ее настолько тихой, насколько это возможно (одиночные катушки по-прежнему будут гудеть), и не вводить звук из-за неправильного заземления.
Мифы об основании гитары:
Есть несколько мифов о заземлении гитары, которые мы хотим развеять:
БОЛЬШЕ – ЛУЧШЕ:Определенно нет. Правильное заземление означает, что необходимо правильно подключить к земле только один раз . Многократное заземление предметов создает несколько проблем. Во-первых, использование провода для заземления ряда электролизеров по кругу создает однооборотную катушку . Если вы читали нашу статью о хамбакерах, то знаете, что электромагнитные помехи обычно попадают в катушку, а не через магнитное поле. Создание петли заземления внесет шум в ваш сигнал.
Взгляните на следующие изображения.Вы увидите неправильный и правильный способ заземления Gibson Les Paul®.
Это неправильный способ заземления Les Paul или Telecaster Deluxe. Добавление дополнительного провода заземления завершает контур заземления, вызывая шум. Это правильный способ заземления Gibson Les Paul или Telecaster Deluxe. Каждый горшок, сохраняя форму «Подковы», заземляется один раз. ВЫ ЗАЗЕМЛЯЙТЕ СТРУНЫ:Заземление струн необходимо для получения более тихой гитары.Если вы когда-нибудь замечали, что звук вашей гитары становится тише, когда вы касаетесь струн, вы могли подумать, что ваше тело заземляется на части гитары. Вы ошиблись, если бы это сделали. Оказывается, человек делает довольно хорошие антенны EMI (электромагнитные помехи)! Ваше тело – это антенна для всех видов электромагнитных помех, поэтому, когда вы касаетесь струн гитары, гитара заземляет вас! Довольно круто, правда?
«ЗВЕЗДНОЕ» ЗАЗЕМЛЕНИЕ: ХОРОШО ИЛИ ПЛОХО?Заземление звездой относится к методу заземления, при котором все заземления подключаются к единой точке .Например, представьте себе заднюю часть горшка Strat Volume Pot: он обычно является центральным узлом для заземления. Некоторые инженеры-электрики заявляют, что звездное заземление не имеет значения, но Линди предпочитает этот метод. Его рассуждения? Все заземляющие соединения в любом случае подключаются к муфте выходного гнезда. Кроме того, сложнее создать контур заземления, практикуя заземление звездой.
НАИЛУЧШИЕ ПРАКТИКИ: ПОДКЛЮЧАЙТЕ ВСЕ, НО СОЕДИНЯЙТЕ ЕГО ОДИН РАЗ.
Взгляните на следующее изображение Strat – обратите внимание, как каждая часть соединяется с землей один раз.Заметили перемычки? Shielding на задней панели накладок соединяет все. Если бы вы добавили перемычки между электролизерами, вы бы создали «контур заземления» и внесли бы шум в вашу схему.
Это метод «звездного заземления». Вы можете видеть, что Volume Pot более или менее является центральным узлом для всех точек соприкосновения с землей. Добавление дополнительных перемычек заземления к деталям создаст больше путей заземления и внесет шум. Однако есть один главный выход – рукав выходного разъема. Если у вашей накладки нет экрана: вам нужно добавить экранирование или перемычки для заземления электроники гитары.
Prewired Strat Pickguard
Не соглашайтесь на универсальную универсальную накладку. Создайте свой собственный из материалов высочайшего качества в отрасли. Наши предварительно зашитые накладки Strat – идеальный продукт для всех, кто хочет мгновенно получить оттенок Fralin Tone. Мы используем лучшие доступные материалы: от CTS® Pots, AllParts® Pickguards и CRL® Switches.
345–362 долл. США
ОБРАТИТЕ ВНИМАНИЕ НА ВАШУ ОКРУЖАЮЩУЮ СРЕДУ:Многие ошибки при заземлении возникают из-за того, что не проверяют свое окружение. Если ваши детали устанавливаются на металлическую пластину или экран, скорее всего, они уже подключены электронным способом. В этой ситуации установка дополнительных перемычек приведет к чрезмерному заземлению вашей электроники.
Плата управления Telecaster, изображенная ниже, соединяет всю электронику. Подключив только один провод заземления от потенциометра к выходному разъему , вы тщательно заземлите свои детали.
См. Ниже:
На изображении слева показан неправильный способ заземления контрольной пластины Telecaster. Изображение справа правильное!Если винты вашего бриджевого звукоснимателя ввинчиваются в стальную пластину, как у нас, этого должно быть достаточно, чтобы заземлить струны, поскольку стальная пластина соединяется с землей. Кроме того, еще раз убедитесь, что под седловой пластиной нет лишних проводов заземления.
Предварительно смонтированная панель управления Telecaster
Настройте и модернизируйте свой Telecaster мгновенно с помощью панели управления Lindy Fralin Telecaster Control Plate.Имея более 150 доступных комбинаций, вы можете выбрать свои варианты, и мы подключим их так, как вам нравится. Установка включает в себя пайку нескольких проводов на место. Как всегда, мы используем только самые качественные детали, произведенные в США, которые только можно найти.
100–110 долл. США
ОХОТА НА ПРОБЛЕМЫ НА ЗЕМЛЕ:
Если у вас возникли проблемы с грунтом на вашей гитаре, есть простой способ их найти. Если у вас его еще нет, инвестируйте в мультиметр – вы можете купить приличный за 25 долларов.Выполните следующие шаги здесь:
- Открыв электронные гнезда гитары, поверните мультиметр в положение постоянного сопротивления постоянного тока, около 20 К.
- Возьмитесь за одну клемму на задней панели регулятора громкости ( B на изображении выше стратгард)
- Используйте свободный вывод, чтобы прикоснуться к каждому металлическому предмету, и обратите внимание на показания мультиметра.
Если ваш мультиметр показывает «0,0», у вас надежное соединение – между двумя частями отсутствует сопротивление.Если ваш мультиметр показывает «0.L», у вас разорвано соединение, и это, по крайней мере, одна из ваших проблем. Вам нужно будет установить перемычку заземления, чтобы убедиться, что деталь правильно заземлена.
Примечание: Убедитесь, что вы выполняете это на каждой части гитары, включая Bridge, Switch и вкладку Output Jack Sleeve.
Note 2: Если в вашей гитаре все работает, начните искать кабель . Убедитесь, что муфта вашего кабеля правильно заземлена.
И наконец, Примечание 3: Если у вас Shielding или Conductive Paint, убедитесь, что есть заземление.
Вот и все на данный момент! Заземлить очень просто: убедитесь, что все заземлено, но только один раз. Не переусердствуйте!
Контуры заземления и неизолированные общие элементы
Любой установщик оборудования для управления промышленными процессами скажет вам, что контуры заземления являются одной из самых неприятных ошибок подключения сигналов, которые необходимо диагностировать и исправить.Шаги, необходимые для их устранения, часто приравниваются к чему-то столь же загадочному, как магические заклинания. Аналогичные взгляды рассматриваются на проблемы, связанные с совместным использованием неизолированных общин. Проблемы с совместным возвратом сигнала часто даже путают с контурами заземления. Контуры заземления и общие общие могут вызвать непредсказуемые сигналы и сделать ваш текущий контур непригодным для использования.
Лучший и наиболее практичный способ исправить эти проблемы с сигналом – предотвратить их возникновение, в первую очередь, путем планирования правильной разводки устройств и следования конкретным передовым методам.Однако, если вы подозреваете, что у вас есть проблемы с сигналом, связанные с контурами заземления или общим общим доступом в существующей сети, нет необходимости вытаскивать книгу и волшебную палочку «Наземные петли и неизолированные общие ресурсы», есть некоторые предсказуемые симптомы, которые вы можете ищите, чтобы диагностировать проблему.
Прежде всего, вам необходимо знать определение контуров заземления и общих общих линий. Контур заземления – это поток тока от одной сигнальной земли к другой из-за разницы напряжений между двумя заземлениями.Это может произойти, если два устройства в сети заземлены в разных местах, и в одном из этих мест сигнальная земля испытывает более высокий потенциал напряжения. Любой инженер-электрик скажет вам, что любой перепад напряжения приведет к протеканию тока. Именно этот ток вызывает симптомы замыкания на землю.
Общий неизолированный общий провод может стать проблематичным при неправильном подключении. Устройства с несколькими входами и выходами, особенно те, через которые проходит более одного цикла, печально известны трудностями, связанными с общим доступом.Их обычно называют «контурами заземления» из-за схожести их симптомов, но они не являются настоящими контурами заземления, поскольку они не возникают из-за проблем с заземлением. Проблемы такого рода возникают, когда узлы создаются, намеренно или нет, до достижения всех применимых устройств в цепи, требующих чистого, предсказуемого сигнала. Это приведет к смешанному потоку тока и усреднению сигнала, что приведет к появлению непригодного для использования сигнала процесса.
На рисунке 1 выше показан источник питания 24 В постоянного тока, обеспечивающий напряжение в токовой петле.Этот контур подключается параллельно к двум парам датчик уровня / локальный дисплей, предположительно, на разных резервуарах в совершенно разных местах на промышленном объекте. Два датчика используют подаваемое на них напряжение для генерации технологического сигнала 4–20 мА, который затем проходит по проводу, соединяющему их с локальным дисплеем, отображающим переменную процесса. Схема замыкается путем возврата к источнику питания.
Все это звучит как типичная функциональная токовая петля, пока вы не заметите, что оба входа питания локальных дисплеев заземлены в своих отдельных местах.Заземление 2, поскольку среда, в которой он расположен, испытывает больше шума и имеет худшие соединения для его заземляющих шин, чем другое место, имеет более высокий потенциал напряжения, чем земля 1. Это приводит к протеканию тока, обозначенному выше IGND. Этот ток проходит по тем же проводам, которые должны передавать на дисплеи только технологический сигнал 4-20 мА, в результате чего два тока смешиваются, и технологический сигнал становится непредсказуемым и, следовательно, непригодным для использования.
В примере, показанном на Рисунке 1, это было устройство в контуре 4–20 мА, которое вводило ток заземления в контур.Однако возможно, что причиной может быть устройство, не расположенное на шлейфе. Подумайте, подключено ли какое-либо устройство в контуре через неизолированный RS-485 или через вход / выход питания к устройству, имеющему потенциал земли с более высоким напряжением. Как правило, лучше избегать многоточечного заземления устройств в токовой петле. Потенциалы заземления часто не равны из-за различных электрических шумов, сопротивления пути заземления и плохой первоначальной установки шины питания.
Замыкание заземления также может возникнуть в системе с одноточечным заземлением.Рассмотрим систему, в которой не используются изолированные провода витой пары, например, показанная на рисунке 2. Могут быть внесены любые электрические помехи, воспринимаемые заземляющим проводом, такие как паразитные магнитные поля или помехи от источника питания переменного тока 50/60 Гц. на токовый контур и приведет к непредсказуемому сигналу. Этот тип контура заземления чаще всего возникает из-за неправильной прокладки пути и отсутствия экранированной витой пары.
На рис. 3 показана правильно смонтированная токовая петля, а на рис. 4 – неправильно смонтированная токовая петля.На рисунке 3 потенциал напряжения, подаваемый источником питания, вызывает прохождение тока к каждому из трех параллельных передатчиков. Этот ток используется для создания токового сигнала 4-20 мА, который отправляется на локальные дисплеи, отображающие переменную процесса.
На рисунке 4 устройства были подключены бессистемно, потому что в последовательной электрической цепи порядок устройств обычно не имеет значения. Однако на общем общем устройстве с несколькими входами был создан узел, соединяющий текущие сигналы.Это приводит к смешиванию и усреднению токов технологического сигнала, в результате чего на всех дисплеях отображается одно и то же значение. На этих изображениях проблема такого типа кажется тривиальной для устранения
: просто удалите дополнительный переход из цепи. Однако, когда сложная сеть оборудования сталкивается с той же проблемой, решение не всегда бывает таким интуитивно понятным.
Проблемы, подобные этой, чаще всего вызываются включением неизолированных устройств с несколькими входами, таких как недорогие ПЛК.Поскольку устройство имеет несколько физических токовых входов, установщик может предположить, что каждый вход изолирован. Однако, если эти входы соединены внутри, токовые сигналы сливаются, что приводит к усреднению тока перед продолжением по цепи. Эта проблема также может быть вызвана неправильной разводкой трехпроводных устройств или сложных многоконтурных сетей.
Из-за природы проблем с подключением сигналов и уникальных переменных, присутствующих на промышленных объектах, симптомы, вызванные этими проблемами, также будут уникальными.Тем не менее, есть некоторые общие признаки, на которые можно обратить внимание, если вы подозреваете, что испытываете одну из этих проблем с существующей сетью.
НЕПРЕДСКАЗУЕМЫЕ КОЛЕБАНИЯ СИГНАЛА 4-20 МА
Непредсказуемые колебания сигнала – верный признак того, что что-то мешает работе вашего токового контура. Вероятно, это результат электрических помех или замыкания на землю.
ДОБАВЛЯЕТ, ОБНАРУЖИВАЕТ ИЛИ ВЫВОДИТ ДИСПЛЕЙНЫЙ СИГНАЛ ЗА ПРЕДЕЛЫ ДИАПАЗОНА
Сигнал может также испытывать сложение или вычитание на некоторое значение от одной точки цикла к другой.Это сложение или вычитание может даже вывести сигнал за пределы диапазона устройств, предназначенных для измерения сигнала.
ОБЩИЕ ОБЩИЕ ОБЩИЕ, ВЫЗЫВАЮЩИЕ УСРЕДНИЕ СИГНАЛА
Проблемы с общими неизолированными общими объектами обычно усредняют сигнал процесса, вызывая регистрацию одной и той же переменной значения на устройствах, которые должны получать разные переменные процесса.
ФИЗИЧЕСКОЕ ПОВРЕЖДЕНИЕ КОМПОНЕНТОВ
Наиболее серьезным (и, к счастью, редким) признаком этих проблем является физическое повреждение устройств в сети.Если, например, разница напряжений между двумя заземлениями окажется значительной, это может привести к перегрузке чувствительной сигнальной электроники таких устройств, как сигнальные входы и выходы. Повреждение электроники более высокого уровня, такой как блоки питания и реле, чрезвычайно редки из-за их способности выдерживать очень высокие потенциалы напряжения.
Как упоминалось ранее, лучший способ восстановить контуры заземления – это вообще избегать их. Проблемы с многоточечным заземлением можно решить, используя только одноточечное заземление.Любые два места заземления будут иметь разные потенциалы напряжения, хотя серьезность этой разницы зависит от среды, в которой они расположены. По возможности используйте плавающие (незаземленные) устройства. Если возникает ситуация, когда несколько устройств в сети должны быть заземлены (по соображениям безопасности и т. Д.), Убедитесь, что заземление выполнено по всей системе, по возможности, по экранированному кабелю через кабелепровод.
Все провода в системе должны быть экранированной витой парой, в которой используются оба провода.По возможности и в рамках бюджета все сигналы должны быть изолированы с помощью устройств с изолированными входами и выходами. Наконец, всегда помните о неизолированных многоконтурных устройствах и проявляйте особую осторожность при планировании проводки. Следуя этим нескольким передовым методам установки всякий раз, когда вы устанавливаете оборудование для управления технологическим процессом, вы можете избавить себя от головной боли, пытаясь диагностировать и устранять эти проблемы в будущем.
Контуры заземления и неизолированные общие контуры могут доставлять неудобства как установщикам оборудования управления производственными процессами, так и обслуживающему персоналу, но их можно легко избежать с помощью правильного планирования и установки.Контуры заземления создают проблемы для систем, когда несколько устройств заземлены в разных местах, которые имеют разные потенциалы напряжения, или при неправильном подключении заземленных устройств возникает шум, создаваемый их заземлением. Неизолированные общие ресурсы общего пользования могут стать проблемой, когда текущие пути пересекаются и становятся непредсказуемыми. Эти две проблемы с подключением сигналов могут привести к непредсказуемым, неправильным, выходящим за пределы диапазона или усредненным сигналам процесса и, в редких случаях, к повреждению устройств. Всего этого можно избежать, не используя магические заклинания, а следуя стандартным передовым методам установки, которые могут уменьшить или потенциально устранить текущее затруднительное положение.
Если у вас есть идея для будущей темы, которая будет представлена в «Текущем затруднительном положении», свяжитесь с Precision Digital по телефону [адрес электронной почты защищен]
Саймон Паонесса – технический писатель, Precision Digital Corporation
Загрузите это приложение Примечание в формате PDF.
Контуры заземления – обзор
1.10 Контуры заземления и излучаемые помехи
Ранее указывалось, что контуры заземления могут вносить значительный вклад в излучаемые электромагнитные помехи.Это важно, потому что такой излучаемый шум может влиять на другие чувствительные схемы аналогового или цифрового характера. Рассмотрим, например, сценарий, изображенный на рисунке 1.33.
Рисунок 1.33. Иллюстрация контуров заземления между разъемами карты.
На этом рисунке два разъема (разъем 1 и разъем 2) используются для реализации двух конфигураций платы драйвера / приемника. В разъеме 1 обратный ток от драйвера 1 может возвращаться через ближайший контакт заземления; некоторые из них, особенно на высоких частотах, могут вернуться через гораздо более удаленный заземленный контакт, ближайший к драйверу n. Площадь контура 1 (0) (драйвер 1 и контакт заземления 0), образованная обратным током драйвера 1 через его ближайший заземляющий контакт, намного меньше, чем площадь контура 1 ( n ) (драйвер 1 и контакт заземления n ), вызванный некоторым обратным током, использующим контакт n разъема 1 в качестве его возврата. Также возможны другие сценарии использования обратным током других заземляющих контактов в разъеме 1. Поскольку область петли 1 ( n )>> область петли 1 (0), излучаемое излучение от соединителя 1 может значительно увеличиться, особенно на высоких частотах, где значительная часть обратного тока может выбрать контакт n в качестве обратного. дорожка.Величина электрического поля от тока контура прямо пропорциональна не только самому току, но и площади контура, через которую проходит этот ток.
На рисунке мы также наблюдаем другой сценарий, очень распространенный на высоких частотах: емкостная связь между заземляющим контактом n в разъеме 1 и металлическим корпусом разъема ( C C3 , C C4 ). Дальнейшая связь приведет к емкостному соединению обоих разъемов 1 и 2. Часть тока заземления от разъема 1 будет течь в разъем 2 и его заземляющие штыри через емкостную связь.Общая площадь петли теперь становится суммой площадей петли, площадь петли 1 ( n ) + площадь петли 2 ( n ), что может создать еще большую проблему излучаемых выбросов. Количество излучаемых излучений, создаваемых областями контуров сигнальных / обратных токов, равно
(1,74) EV / м = 263 × 10−16F2HzAm2IampsRm,
, где F (Гц) – интересующая частота, A (м 2 ) – это площадь контура, образованная управляющим сигналом и обратным током, I (амперы) – величина тока, а R (м) – расстояние в метрах, на котором должно быть вычислено электрическое поле.
Предполагая, например, сценарий на рисунке 1.33, полное излучаемое электрическое поле можно приблизительно рассчитать для наихудшего сценария как
(1,75) | EtotalV / m | = | E10 | + | E1n | + | E2n |,
, где E 1 (0) , E 1 ( n ) и E 2 ( n ) – электрические поля, создаваемые областями контура заземления через контакт 0, контакт n разъема 1 и контакт n разъема 2:
(1.76) E10V / m≅263 × 10−16f2Hzlooparea10Ig1ampsRm
(1,77) E1nV / m≅263 × 10−16f2Hzlooparea1nIg2ampsRm
(1.78) E2nV / m≅263 × 10−16f2Hzlooparea.
При вычислении I gl , I g 2 , I g3 и I g 4 , мы знаем, что
= 1.79 + Ig2 = Ig1 + Ig3 + Ig4,и максимум I 1 можно приблизительно рассчитать, используя выражение
(1.80) I1 = 5VZ0ohms.
Ток в I gl определяется как
(1.81) Ig1 = 5,0VZ0ohmsLg10Lg1n,
, где L g1 (0) и L g1 ( n) индуктивность контура заземления через контакт (0) в разъеме 1 (область контура 1 (0)) и L g1 ( n ) – индуктивность контура заземления через контакт n в разъеме 1 (контур площадь l ( n )) соответственно.Также таким же образом
(1,82) Ig2 = Ig3 + Ig4 = 5,0VZ0ohmsLg1nLg0n.
Обозначения L g1 ( n ) и L g0 ( n ) получаются из индуктивности вывода, заданной по формуле
(1,83) LpinnH = 10,16dlnLr + L Lndr,
, где d – расстояние между сигналом и землей в дюймах. Член d будет либо d 1 , либо d 2 , как показано на рисунке 1.33 для расчетов L g0 ( n ) и L g1 ( n ) соответственно. L – длина штифта в дюймах, а r – радиус штифта. Таким же образом, вычислив I g2 , мы можем вычислить I g3 и I g4 следующим образом:
(1,84) Ig3 = Ig2Lg3Lg4Ig4 = Ig2Lg4Lg3, где
(1,84) g3 , L g4 можно рассчитать по уравнению (1.84), используя d 3 , d 4 , показанный на рисунке 1.33.
Один из самых тривиальных выводов предыдущего анализа заключается в том, что добавление большего количества контактов заземления к разъему приблизит заземление к каждому сигналу и снизит индуктивность всего обратного пути. Другие вещи, которые можно сделать, – это переместить разъемы ввода-вывода как можно ближе друг к другу, никогда не направлять сигналы заземления от одного и того же источника на отдельные разъемы и обеспечивать более медленное время нарастания для драйверов.
Проблема паразитной емкости не только влияет на обратный путь тока земли, но ее совокупное воздействие от многих разъемов может искажать передаваемые сигналы. Поэтому очень желательны проводники с минимальной паразитной емкостью. Влияние паразитной емкости на разъемы показано на рисунке 1.34.
Рисунок 1.34. Влияние паразитной емкости на разъемы.
При передаче сигнала общая паразитная емкость земли на каждом ответвлении шины будет обеспечивать некоторые паразитные искажения.Эта кумулятивная емкость, представленная на рисунке 1.34, может быть результатом (1) межконтактной емкости разъема на печатной плате, (2) емкости трассировки от разъема к локальным драйверам и приемникам или ( 3) входная емкость местного приемника плюс выходная емкость драйверов.
Емкость трассы определяется как
(1,85) CpF / дюйм = tdZ0,
, где t d – это распространение трассы в пс / дюйм, а Z 0 – полное сопротивление трассы в омах.Один из примеров правильного расположения выводов сигнала и заземления в разъеме показан на рисунке 1.35.
Рисунок 1.35. Правильное расположение выводов сигнала и заземления (темные) в разъеме.