Как работают импульсные блоки питания: 7 правил
Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.
Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.
Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.
Содержание статьи
Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.
Они подразделяются на трансформаторные и импульсные изделия.
Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.
Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.
Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение
Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.
За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.
Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).
Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.
Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.
Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.
Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.
После силового трансформатора наступает очередь работы выходного выпрямителя.
Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.
Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.
Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.
Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.
Накопительная емкость сглаживает пульсации.
Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.
Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.
Разберем все эти части подробнее.
Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций
Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.
Важно понимать, что импульсы высокой частоты играют двоякую роль:
- в/ч помехи могут приходить из бытовой сети в блок питания;
- импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.
Причины появления помех в бытовой сети:
- апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
- работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
- последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.
Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.
Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.
Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.
Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)
Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.
Работу дросселя эффективно дополняют емкостные сопротивления.
Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.
Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.
Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.
Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.
Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.
У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.
Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.
Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.
У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.
Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.
Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.
Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.
Сетевой выпрямитель напряжения: самая популярная конструкция
Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.
В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.
Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.
Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками
Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.
Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.
На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.
Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).
Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.
ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.
Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.
За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.
Импульсный трансформатор: принцип работы одного импульса в 2 такта
Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.
Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.
Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.
Его энергия расходуется:
- вначале на намагничивание сердечника магнитопровода;
- затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.
Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.
Однотактная схема импульсного блока питания: состав и принцип работы
На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.
Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.
В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.
При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.
Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.
Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.
Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.
Двухтактная схема импульсного блока питания: 3 варианта исполнения
Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.
Простейший вариант исполнения двухполупериодной методики показан на картинке.
Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.
Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.
Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.
Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.
Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.
Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.
Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.
В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:
- уменьшенного падения напряжения на прямом включении;
- и повышенного быстродействия во время обработки высокочастотных импульсов.
3 схемы силовых каскадов двухтактных ИБП
По порядку сложности их исполнения генераторы выполняют по:
- полумостовому;
- мостовому;
- или пушпульному принципу построения выходного каскада.
Полумостовая схема импульсного блока питания: обзор
Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.
К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.
Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.
Мостовая схема импульсного блока питания: краткое пояснение
Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).
Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.
Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.
Пушпульная схема: важные особенности
Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.
Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.
Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.
К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.
Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.
Выходной выпрямитель: самое популярное устройство
Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.
Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.
Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.
Схема стабилизации напряжения: как работает
Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.
Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.
С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.
Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.
В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.
Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.
Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.
Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.
Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.
Устройство и принцип работы импульсного блока питания, основные характеристики, конструктивные исполнения достоинства и область применения
Блок питания – это устройство, преобразующее сетевое напряжения до уровня, необходимого для работы электрических схем различных приборов. Вторичные источники электропитания часто используются для бытовой техники и промышленных установок, содержащих электронику.
Изначально источники вторичного напряжения строились по схеме, которую принято называть трансформаторной. Принцип её работы состоит в трансформации сетевого напряжения до необходимого уровня с последующим его выпрямлением и стабилизацией.
Типовая схема традиционного источника электропитания состоит из следующих элементов:
- силовой понижающий трансформатор, содержащий одну или несколько вторичных обмоток, в зависимости от потребностей питаемой схемы; выпрямительный блок, как правило, выполняется по схеме диодного моста;
- конденсатор фильтра, включенный между положительным и отрицательным выводами моста и необходимый для сглаживания пульсаций выпрямленного напряжения, иногда для улучшения параметров фильтра, в схему добавляется дроссель;
- стабилизатор выходного напряжения, построенный на основе специализированной микросхемы или содержащий ключевой транзистор и небольшую схему управления.
Эти схемы надёжны в работе, не создают высокочастотных помех, обеспечивают гальваническую развязку между первичными и вторичными цепями. Тем не менее есть ряд причин по которым они уступают блокам питания импульсного типа.
Трансформаторы, преобразующие напряжение с частотой 50 герц, отличаются относительно большими габаритами и весом. Это свойство трансформаторных источников электропитания вступило в противоречие с общими принципами миниатюризации бытовых и промышленных электроприборов.
Проблему удалось решить путём создания импульсных или инверторных блоков. Такие параметры трансформатора, как сечение магнитопровода, количество витков обмотки и сечение провода, существенно уменьшаются с увеличением частоты преобразуемого напряжения.
Это также относится к ёмкости, следовательно, и к габаритам фильтрующих конденсаторов. Этот базовый принцип электротехники был послужил основой при создании вторичных источников питания нового типа.
КАК РАБОТАЕТ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ
Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:
- выпрямление входного напряжения;
- инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
- трансформация высокочастотных импульсов до требуемого уровня;
- выпрямление и фильтрация полученного напряжения.
Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).
Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.
Тор обычно изготавливается штамповкой из пермаллоя – сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.
Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.
Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.
Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.
Раньше, компонентов, отвечающих этим требованиям, просто не существовало. Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET.
Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.
Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.
Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.
Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера. Принцип работы обратной связи – при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.
Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.
Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.
Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:
- малые габариты и вес по сравнению с трансформаторными источниками питания;
- схемотехническая простота, обусловленная применением интегральных электронных компонентов;
- возможность работы в широком диапазоне изменения значений входного напряжения.
ПРИМЕНЕНИЕ ИМПУЛЬСНЫХ БЛОКОВ
Источники вторичного напряжения инверторного типа используются повсеместно, как в быту, так и в промышленной технике. Перечень устройств и бытовых приборов, в которых реализована схема электропитания, работающая по принципу инверторного преобразователя:
- все виды компьютерной техники;
- телевизионная и звуковоспроизводящая аппаратура;
- пылесосы, стиральные машины, кухонная техника;
- источники бесперебойного электроснабжения различного назначения;
- системы видеонаблюдения, комплексы охранной сигнализации.
Исполнение инверторных источников зависит от условий эксплуатации и назначения. Блоки питания, встроенные в электроприбор, выполняются бескорпусными. Они могут располагаться внутри основного изделия на отдельной плате, или быть интегрированы в общую плату электроприбора.
Существуют источники электропитания для автономного применения, к ним могут подключаться различные потребители. Примером могут служить зарядные устройства, источники электропитания систем видеонаблюдения, охранной и пожарной сигнализации. Такие блоки питания размещаются в отдельном корпусе и комплектуются штекерами и проводами для подключения.
* * *
© 2014-2022 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.
Как работают импульсные блоки питания, блок за блоком
Введение
Хотя вы указываете и используете блоки питания в своих проектах, они могут быть «черным ящиком» с неизвестным внутренним устройством. Хотя вам не нужно быть экспертом по проектированию блоков питания, есть преимущества в понимании основных внутренних блоков блоков питания. В этой статье мы представим топологию источника питания и обсудим каждый из внутренних функциональных блоков, чтобы дать общее представление об основных цепях, внутренних для источников питания.
Внутри блоков питания
Блок-схема на рис. 1 представляет многие блоки питания переменного/постоянного или постоянного/постоянного тока. Разница в блок-схеме между входными источниками переменного и постоянного тока по сравнению с источниками постоянного тока заключается в выпрямителе с диодным мостом. Схема выпрямителя (диоды D1, D2, D3, D4) требуется в источниках питания переменного/постоянного тока и не требуется для источников питания постоянного/постоянного тока, в противном случае топологии источников питания могут быть идентичными.
Рис. 1: Упрощенная блок-схема импульсного источника питания переменного/постоянного токаФильтр EMI/EMC
Блок фильтра EMI/EMC может быть либо компонентом, размещенным внутри источника питания разработчиком источника питания, либо добавленным в качестве внешнего компонента пользователем источника питания.
- Минимизация излучаемых и кондуктивных помех на входе источника питания
- Свести к минимуму влияние переходных процессов напряжения от источника входного напряжения
- Минимизировать входной импульсный ток при первой подаче напряжения на вход источника питания
- Защита входного источника питания и проводников в случае отказа источника питания
Если компоненты EMI/EMC являются внутренними для источника питания, группа разработчиков источника питания выбирает компоненты на основе максимального номинального выходного тока при резистивной нагрузке. Ваше приложение, вероятно, не будет работать в тех условиях, в которых оценивалась команда разработчиков. Таким образом, может возникнуть потребность в дополнительных внешних компонентах, чтобы ваша система соответствовала нормативным требованиям EMI/EMC, даже если в комплект поставки уже входят внутренние компоненты EMI/EMC.
Рис. 2: Входной фильтр EMI/EMCДиодный мостовой выпрямитель
Как упоминалось ранее, диодный мостовой выпрямитель используется для преобразования входного переменного напряжения в постоянное напряжение для использования в источнике питания. Схема выпрямителя отсутствует в источнике питания, рассчитанном только на входное напряжение постоянного тока, поскольку постоянное напряжение уже присутствует. Однако многие источники питания, рассчитанные на входное напряжение переменного тока, также питаются от входного напряжения постоянного тока. Если постоянное напряжение подается с диодным мостом на входе источника питания, постоянное напряжение может быть подключено в любой полярности и будет проходить через диоды и появляться на входном объемном конденсаторе.
Рис. 3: Диодный мостовой выпрямительВходной конденсатор большой емкости
Входной конденсатор большой емкости фильтрует постоянное напряжение от диодов выпрямителя в источниках питания переменного/постоянного тока и действует как входной фильтр в источниках питания постоянного/постоянного тока. Когда входное напряжение впервые подается на источник питания, напряжение на входном конденсаторе большой емкости будет равно 0 В. Эта разница в напряжении между приложенным напряжением и напряжением на конденсаторе большой емкости может вызвать большой входной импульсный ток во время зарядки конденсатора большой емкости. к входному напряжению. Этот пусковой ток может быть проблемой, так как он может в 100 раз превышать нормальный входной рабочий ток. Часто ограничитель пускового тока, который может быть простым резистором небольшого номинала, подключается последовательно с клеммой входного напряжения для ограничения пускового тока.
При питании постоянным током входной объемный конденсатор может помочь компенсировать импеданс входных проводников и стабилизировать динамический входной импеданс источника питания. Эта веб-страница содержит более подробную информацию о входном сопротивлении источника питания и о том, как это может вызвать колебания источника питания.
Рис. 4: Входной объемный конденсаторВходной переключатель питания
Электронный переключатель (нарисованный как полевой МОП-транзистор) преобразует входное постоянное напряжение в переменное, чтобы мощность могла проходить через изолирующие магниты (трансформатор или связанные катушки индуктивности). Рабочий цикл входного управляющего сигнала и, следовательно, выходного сигнала от ключа питания зависит от топологии источника питания, входного напряжения, выходного напряжения и выходного тока нагрузки. В источниках переменного/постоянного тока причиной преобразования входного переменного напряжения в постоянное, а затем обратно в переменное является то, что внутренняя частота переменного тока намного выше (от десятков килогерц до десятков мегагерц) и, следовательно, можно использовать меньшие магнитные изоляторы и компоненты выходного фильтра. выбрано. Кроме того, внутренняя форма волны переменного тока может модулироваться как часть топологии преобразования энергии.
Рис. 5: Входной выключатель питанияМагнитная изоляция
Общим элементом, используемым для магнитной изоляции, является либо трансформатор, либо связанные катушки индуктивности. В случае трансформатора или связанных катушек индуктивности имеется одна или несколько обмоток как на первичной, так и на вторичной сторонах изолирующего барьера. В физической конструкции изолирующих магнитов будет паразитная емкость между первичной и вторичной обмотками. Эта паразитная емкость может быть источником проблем EMI/EMC, которые необходимо решить и которые будут обсуждаться в отдельной веб-статье. Диаграмма на рисунке 6 представляет паразитную емкость, связанную с обмотками. Следует отметить, что на практике емкость не является сосредоточенным элементом, как показано на диаграмме, а скорее распределяется по обмоткам и между ними.
Рис. 6: Изолирующие магниты с сосредоточенным конденсатором, представляющим паразитную емкостьВыходной выпрямитель
Выходное напряжение изолирующих магнитов имеет форму волны переменного тока и нуждается в выпрямлении для получения выходного напряжения постоянного тока. Для выпрямления можно использовать либо пассивную схему (диоды), либо активную схему (полевые транзисторы). Схема выпрямления может быть полуволновой, двухполупериодной или другой конфигурации, в зависимости от требований к выходному напряжению и конструкции изолирующего магнита. Диодные выпрямители недороги и просты в конструкции, но рассеиваемая мощность будет больше, чем если бы была реализована активная схема выпрямителя на полевых транзисторах.
Рис. 7: Выходной выпрямительВыходной фильтр
Выходной выпрямитель вырабатывает постоянное напряжение, на которое накладывается переменное напряжение. Без выходной фильтрации размах шума переменного тока будет равен напряжению постоянного тока, что неприемлемо для большинства приложений. Базовый выходной фильтр представляет собой один или несколько конденсаторов, помещенных параллельно выходному напряжению. Выходную фильтрацию можно улучшить, добавив последовательную катушку индуктивности для создания фильтра «L» или фильтра «Pi». Выходной фильтр иногда применяется для подавления электромагнитных помех/электромагнитных помех. Выходные фильтры наиболее эффективны, когда компоненты расположены близко к нагрузке источника питания. Размещение компонентов фильтра близко к нагрузке сводит к минимуму падение напряжения на проводниках, вызванное колебаниями тока нагрузки.
Рисунок 8: Конденсатор выходного фильтраКонтроль напряжения, тока и температуры
Цепи для регулирования выходного напряжения, выходного тока и максимальной температуры источника питания также включены в блоки питания переменного/постоянного и постоянного тока. Эти схемы управления имеют сложный набор характеристик и обсуждаются в отдельной веб-статье.
Заключение
В этом обсуждении на высоком уровне были рассмотрены внутренние функции источников питания переменного/постоянного и постоянного тока. В других статьях мы обсуждаем функции, включенные для регулирования выходной мощности источника питания, методы, используемые для защиты источника питания и нагрузки от аварийной работы, компоненты, необходимые для соответствия нормативным требованиям EMI и EMC, а также влияние модификаций на спецификации источника питания. Если у вас есть вопросы относительно того, как они относятся к источнику питания, выбранному для вашего проекта, обратитесь в отдел продаж и поддержки клиентов CUI для получения дополнительной информации по темам, затронутым в этом обсуждении.
Категории: Основы , Выбор продукта
Вам также может понравиться
Вопросы электромагнитной совместимости для импульсных источников питания
Технический документ
Отрицательное сопротивление и почему ваш преобразователь постоянного тока может работать неправильно –
Блог о мощности
Сравнение изолированных и неизолированных преобразователей мощности
Блог о мощности
Есть комментарии по этому посту или темам, которые вы хотели бы видеть в будущем?
Отправьте нам письмо по адресу powerblog@cui. com
Импульсный источник питания Принцип работы и конструкция
Работа импульсного источника питания сильно отличается от работы линейного источника питания. Несмотря на сложность, более высокую стоимость материалов и большее количество деталей, импульсный источник питания по-прежнему остается предпочтительной топологией на рынке в настоящее время. Основная причина – более высокий КПД и более высокая удельная мощность. Более высокая эффективность просто означает, что только небольшая часть входной мощности тратится впустую, в то время как более высокая плотность мощности означает, что более высокая мощность возможна при меньшем форм-факторе или размере.
Обзор линейного источника питания постоянного и переменного токаТрансформатор 50/60 Гц
Это может быть шаг вверх или вниз в зависимости от использования. Обычно это понижающая версия, поскольку обычное требуемое выходное напряжение ниже, чем входной уровень.
Выпрямитель
Преобразует переменный ток в пульсирующий постоянный. Как показано на схеме, наиболее часто используемый выпрямитель представляет собой двухполупериодный мостовой выпрямитель.
Фильтр
Простой фильтр представляет собой электролитический конденсатор. Это повысит среднеквадратичное значение или уровень постоянного тока выпрямленного сигнала.
Регулятор
Поддерживает чистый постоянный ток на выходе, чтобы не создавать проблем для чувствительных нагрузок или системы.
Общие проблемыЭффективность и размер являются общей проблемой, связанной с линейным источником питания AC-DC. Он также ограничен только для маломощных приложений. Для работы с большой мощностью трансформатор 50/60 Гц будет очень большим и дорогим. Отфильтрованное вторичное выпрямленное напряжение всегда должно быть значительно выше выходного, чтобы регулятор мог работать правильно. По этой причине избыточное напряжение будет поглощаться регулятором, что приведет к огромным потерям мощности при умножении на ток нагрузки. Вот почему эффективность очень низкая. Линейный источник питания AC-DC также не может обеспечить широкий входной диапазон. Например, трансформатор рассчитан на переменное напряжение от 220 В до 20 В переменного тока, вы больше не можете использовать его для 110 В переменного тока, так как вы больше не можете получить 20 В переменного тока на вторичной обмотке.
Обзор линейного источника питания постоянного токаВыше приведена схема базового линейного источника постоянного тока постоянного тока. Это просто и очень просто, поскольку компонентов всего несколько. Однако его основным недостатком по-прежнему является эффективность, ограниченная только приложениями с низким энергопотреблением. Чтобы линейный регулятор регулировался должным образом, его входное напряжение должно быть выше его выходного напряжения с запасом. Разница во входном и выходном напряжении, кстати, называется падением напряжения. В настоящее время на рынке уже есть линейные регуляторы с низким падением напряжения. Низкое падение напряжения по-прежнему приведет к огромным потерям мощности при работе с более высоким током.
Блок-схема импульсного источника питания переменного/постоянного токаНиже представлена блок-схема двухкаскадного импульсного источника питания переменного/постоянного тока. Первый блок представляет собой мостовой выпрямитель, предназначенный для преобразования переменного тока в пульсирующий постоянный. В отличие от линейного источника питания переменного/постоянного тока, этот мостовой выпрямитель требует высокого номинального напряжения, так как он непосредственно измеряет входное напряжение. Импульсный преобразователь первой ступени в большинстве случаев представляет собой повышающий преобразователь, который работает как схема коррекции коэффициента мощности или PFC. Повышающий преобразователь имеет выход выше, чем его вход. Коррекция коэффициента мощности необходима для коммутации силовых цепей, чтобы скорректировать форму тока и минимизировать гармоники. Повышающий преобразователь является лучшей схемой активной коррекции коэффициента мощности из-за его способности потреблять ток со входа в обоих состояниях Q1 (включено или выключено). Импульсный преобразователь второй ступени обычно называется секцией постоянного тока производителями или разработчиками источников питания. Для DC-DC доступно множество топологий, таких как резонансная (LLC, последовательная, параллельная), прямая (ITTF, TTF, один транзистор), мостовая и полная мостовая, и это лишь некоторые из них. На приведенной ниже схеме секция DC-DC представляет собой резонансный преобразователь LLC. Последний блок — это выходной выпрямитель и фильтр. Для приложений с высокой мощностью вместо диодов используются NMOS.
Приведенная ниже схема обычно используется для маломощных автономных адаптеров и зарядных устройств. В секции DC-DC используется только один импульсный преобразователь, который представляет собой обратноходовой преобразователь. Преобразователь обратного хода эффективен до номинальной мощности 100 Вт. В некоторых случаях Flyback используется до 200 Вт, если выполняются требования, особенно к эффективности. Ступени PFC больше нет, поскольку типичная или номинальная мощность этой конфигурации составляет около 80–120 Вт, а требования к коэффициенту мощности для этого диапазона мощности не такие строгие. Обратноходовой преобразователь очень популярен для маломощных автономных импульсных источников питания из-за его простоты и меньшего количества деталей.
Импульсный источник питания постоянного тока
Существует несколько топологий, которые можно использовать для создания импульсного источника питания постоянного тока. Ниже схема представляет собой понижающий преобразователь постоянного тока или широко известный как понижающий преобразователь. Понижающий преобразователь имеет выходное напряжение, которое ниже его входного.
Другим решением для источника питания с переключением постоянного тока является повышающий преобразователь, схема которого приведена ниже. Повышающий преобразователь имеет выход выше, чем его вход.
Комбинация понижающего и повышающего преобразователя также возможна в повышающе-понижающей топологии. Ниже приведено инвертирующее повышающе-понижающее решение. Его можно настроить на работу, когда его вход ниже, чем выход, или наоборот. Неинвертирующий повышающе-понижающий также является вариантом, но он имеет несколько компонентов, чем инвертирующий повышающе-понижающий.
Как работают импульсные источники питания
Выше мы показываем некоторые разновидности импульсных источников питания как в форме AC-DC, так и DC-DC. Что именно делает SMPS? Чем он отличается от обычного линейного источника питания?
Импульсный источник питания — это тип источника питания, в котором в качестве силовой части используется импульсный преобразователь. Это может быть несколько переключающих преобразователей в каскадной или параллельной работе или один. Импульсные преобразователи являются сердцем импульсных источников питания.
Импульсный преобразователь работает по принципу непрерывного включения и выключения полупроводникового переключателя. Включение означает работу полупроводникового переключателя, такого как MOSFET, в режиме насыщения, а выключение означает работу MOSFET в режиме отсечки. При насыщении не будет падения напряжения (в идеале) на канале MOSFET, поэтому потери мощности не будет. С другой стороны, при отключении ток не течет, поэтому потери мощности нет. Благодаря этому принципу достигается очень высокая эффективность.
В действительности потери мощности небольшие из-за сопротивления МОП-транзистора в открытом состоянии и задержки выключения, которая вызывает небольшое пересечение между напряжением и током.
Привод полупроводникового переключателя в режим насыщения и отсечки возможен с помощью ШИМ-контроллера. ШИМ-контроллер может быть аналоговой специализированной ИС (ASIC) или цифровым решением, таким как MCU, DSC и DSP. Контроллер также является тем, кто устанавливает регулирование и другие защиты цепи.
Как выход получает регулировкуЧтобы обсудить это хорошо, давайте рассмотрим понижающий преобразователь, как показано ниже. Принцип одинаков для всех импульсных преобразователей.
Возможно, вы уже слышали о системах с открытым и замкнутым контуром. Система с разомкнутым контуром не имеет возможности регулировки в зависимости от выходного поведения, а система с замкнутым контуром имеет. Например, в приведенной выше схеме (понижающий преобразователь) возможно регулирование с разомкнутым контуром за счет обеспечения фиксированного входного напряжения, фиксированной нагрузки и фиксированного рабочего цикла. Для понижающего преобразователя идеальное соотношение входного и выходного напряжения определяется рабочим циклом. Для понижающего преобразователя уравнение рабочего цикла равно 9.0005
Для получения подробной информации о расчете коэффициента заполнения понижающего преобразователя см. статью «Расчет рабочего цикла понижающего преобразователя».
Например, входное напряжение составляет 20 В, а желаемое выходное напряжение составляет 10 В, рабочий цикл можно установить на фиксированное значение 50%. Таким образом, сигнал ШИМ в приведенной выше схеме должен иметь 50% времени. Это может быть хорошо, пока вход фиксирован, а нагрузка также постоянна. Однако, когда есть небольшое возмущение, выход легко становится сумасшедшим, поэтому рекомендуется иметь замкнутый контур управления.
Для управления с обратной связью нужен хороший контроллер (стандартный контроллер), или, если вы очень хорошо разбираетесь в системе управления, вы можете разработать собственное аналоговое или цифровое управление.
Замкнутый контур для получения нормативных требованийНиже приведена схема понижающего преобразователя постоянного тока, который может работать от входного напряжения 30-60 В с выходной мощностью 24 В, 75 Вт. Силовая часть включает NMOS Si7852, диод SS3H9 и дроссель 47мкГн. Резистор делителя 93,1 кОм и 4,99 кОм составляют цепь обратной связи для управления по замкнутому контуру. Напряжение на 4,9Резистор 9k сравнивается с внутренним эталоном на выводе V FB контроллера.
Выход не может отклоняться от установленного уровня из-за замкнутого контура. Выше приведено простое решение, благодаря доступным контроллерам на рынке в настоящее время. Принцип управления замкнутым контуром очень технический, но о нем забывают, поскольку на рынке доступно множество простых решений.
Для быстрой реакции контура необходима компенсационная сеть. В приведенной выше схеме компоненты, подключенные к V 9Вывод 0207 C составляют компенсационную сеть.
Подробнее об эксплуатации SMPSСхемы, из которых состоят импульсные источники питания, представляют собой импульсные преобразователи. Понимание работы импульсного преобразователя также прояснит работу импульсного источника питания. Позвольте мне рассмотреть схему повышающего преобразователя ниже. Когда ШИМ имеет высокий уровень (MOSFET Q1 насыщается), переключатель Q1 включится, и на этот раз катушка индуктивности L1 будет заряжаться. Диод D1 будет смещен в обратном направлении, и нагрузка будет зависеть только от заряда конденсатора C1.
Когда сигнал ШИМ низкий, транзистор Q1 отключается. Индуктор будет сопротивляться внезапному изменению тока, поэтому он изменит свою полярность, чтобы поддерживать то же направление тока. В результате D1 будет смещен в прямом направлении, а C1 пополнит свой заряд, и нагрузка будет получать питание от входа. Изменение полярности катушки индуктивности создает уровень напряжения выше входного (буст-эффект). На приведенной ниже диаграмме показаны формы тока катушки индуктивности, диода и полевого МОП-транзистора в зависимости от состояния ШИМ.
Эффективность импульсного источника питания
Основной причиной популярности этого типа источника питания является способность обеспечивать более высокую эффективность. Ниже приведена таблица эффективности, достижимой для импульсного источника питания, согласно стандарту 80 plus.
Присвойте это 80 Plus
Эффективность рассчитывается как
Ploss – это общие потери источника питания. Ранее я упомянул нулевое рассеивание мощности, когда переключатель находится в состоянии насыщения или отсечки. В идеале, но такой идеальной системы не существует. Потери питания в импульсном режиме происходят из-за RDSon полевого МОП-транзистора, потерь при переключении, потерь на диодах, потерь смещения и потерь, связанных с катушкой индуктивности.
Руководство по проектированию SMPS1.Знание приложения
Определите приложение. Например. для какого приложения используется источник питания, каковы окружающие условия, рабочие температуры и определить, является ли принудительное воздушное охлаждение или естественная конвекция. Принудительный воздух и естественная конвекция имеют разный подход к проектированию.
2. Определение мощности
Если вашему приложению требуется 100 Вт, не проектируйте блок питания мощностью 100 Вт. Всегда включайте запас не менее 40 % на случай внезапных перегрузок. Если позволяет бюджет, вы можете спроектировать блок питания мощностью 200 Вт, чтобы ваша нагрузка всегда составляла половину мощности блока питания. По результатам испытаний импульсный блок питания имеет наибольшую эффективность при нагрузке 50-60%.
3. Выберите топологию
После получения целевой мощности выберите используемую топологию. Для номинальной мощности менее 150 Вт Flyback является экономичным решением. Однако для более высоких требований к эффективности Flyback не является хорошим вариантом. Вы можете рассмотреть резонансное решение. Для приложений с высокой мощностью, скажем, в киловаттном диапазоне, вы можете рассмотреть полный мост в секции DC-DC. Для приложений DC-DC используйте режим buck, если вы стремитесь к более низкому выходному напряжению, режим повышения для более высокого выходного напряжения или режим buck-boost, если необходимо объединить их.
4. Решите, нужно ли включать цепь коэффициента мощности
Это зависит от технических характеристик и приложений. Для зарядных устройств и маломощного адаптера нет необходимости в дополнительной ступени PFC. Для высокой мощности или если вы хотите конкурировать на рынке и иметь сертифицированный источник питания, вам необходимо включить схему PFC, такую как повышающий преобразователь.
5. Вы хотите, чтобы продукт был сертифицирован органами EMC?
Если да, включите в конструкцию фильтр электромагнитных помех.
6. Используйте синхронные выпрямители, параллельные МОП-транзисторы
Если вам требуется очень высокая эффективность, рассмотрите возможность использования синхронного выпрямителя. Вы также можете запараллелить полевые МОП-транзисторы, чтобы еще больше снизить потери проводимости, связанные с RDson.
7. Выберите Control
Вы можете использовать аналоговые контроллеры для конкретных приложений или выбрать цифровое решение, такое как MCU, DSC или DSP.