Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Онлайн калькулятор для расчета электромагнитной силы

В процессе эксплуатации электрического оборудования львиная доля логических схем используют в своей работе в качестве исполнительного органа катушку с магнитным сердечником. Принцип работы данного устройства заключается в появлении магнитной силы внутри витков, которая притягивает соленоид и совершает механическую работу.

За счет такого воздействия происходит перемещение контактов реле, открытие или закрытие клапанов, механическое включение кнопок и прочие манипуляции. Возможность перемещения того или иного ферромагнитного сердечника определяется параметрами катушки, которые и обуславливают величину электромагнитной силы.

Катушка с сердечником

Чтобы рассчитать электромагнитную силу катушки, с которой та воздействует на соленоид, используется онлайн калькулятор. Для расчета силы введите данные в соответствующие поля калькулятора:

  • Укажите величину тока в амперах;
  • Внесите площадь сечения сердечника в квадратных метрах;
  • Проставьте значение количества витков в катушке;
  • Укажите величину зазора между магнитопроводом и соленоидом катушки;
  • Нажмите кнопку «Рассчитать» и в графе электромагнитной силы появится результат вычислений.

Если в результате расчета вы получили недостаточную величину силы и необходимо подобрать другие параметры для катушки, то просто сбросьте данные. Для этого используйте кнопку «Сбросить», которая обнулит нынешнее значение.

В калькуляторе для расчета электромагнитной силы используется такая формула:

Где

  • F – величина электромагнитной силы, создаваемой катушкой;
  • n – количество витков в этой катушке;
  • I – сила тока, протекающего по катушке;
  • m – магнитная постоянная;
  • S – величина площади поперечного сечения магнитопровода;
  • lср – величина зазора между элементами магнитной цепи.

Вышеприведенные расчеты применяются в случае выхода со строя катушки с магнитным сердечником, выполнявшей роль исполнительного органа какой-либо логической цепи, когда возникает вопрос о необходимости замены катушки или намотки новой. Калькулятор для расчета электромагнитной силы позволяет подбирать оптимальные параметры индуктивного элемента путем изменения каких-либо ее характеристик.

Калькулятор магнитной индукции соленоида • Магнитостатика, магнетизм и электродинамика • Онлайн-конвертеры единиц измерения

Определения и формулы

Соленоид представляет собой намотанную виток к витку катушку, длина которой значительно больше ее диаметра. Если через катушку соленоида протекает электрический ток, в ней образуется однородное магнитное поле. Соленоиды с ферромагнитными сердечниками часто используются в качестве исполнительных механизмов для преобразования электрической энергии в линейное перемещение сердечника. Самым привычным примером такого соленоида является реле стартера, которое выполняет две функции: подает напряжение на двигатель стартера и вводит шестерню двигателя стартера в зацепление с маховиком коленвала двигателя на время запуска.

Модуль магнитной индукции B длинного соленоида в воздухе без сердечника рассчитывается по формуле

где μ₀=4π × 10−7 Гн/м — магнитная постоянная, N число витков катушки соленоида, I протекающий через катушку ток и L — длина соленоида.

Соленоиды и ферромагнитные жидкости

Соленоидные исполнительные механизмы — довольно шумные устройства, поэтому иногда в зазор между сердечником и каркасом катушки вводят ферромагнитную жидкость. Она уменьшает или даже полностью устраняет шум при срабатывании соленоида, а также увеличивает силу притяжения, что позволяет уменьшить размеры соленоидных исполнительных устройств при сохранении их характеристик. Ферромагнитные жидкости также позволяют уменьшить утечку магнитного поля в магнитопроводе, а также улучшают охлаждение соленоида.

Еще одно применение ферромагнитных жидкостей в соленоидах — в качестве эластичного сердечника. Это позволяет изготовить эластичные соленоиды, которые можно использовать в современных гибких электронных устройствах, например, в носимых компьютерах и устройствах биомедицинского контроля.

Общие сведения

Синий и зеленый лазерные лучи хорошо видны через коллоидную смесь благодаря эффекту Тиндаля

В этой статье поговорим о занимательных и необычных ферромагнитных жидкостях. Если их намагнитить, воздействуя на них магнитным полем, то эти жидкости формируют интересные складки на поверхности. Ферромагнитные жидкости — это коллоидные системы, состоящие из наночастиц размером около 10 нм, распределенных во взвешенном состоянии в воде или в другой жидкости-носителе. Большая часть этих жидкостей-носителей — органические растворители, то есть такие жидкости, в которых можно растворить другое вещество.

Коллоидные вещества — это жидкости, представляющие собой смеси жидкости-носителя и частиц другого вещества. Обычно эти частицы не опускаются на дно в виде осадка, и это делает коллоидное вещество довольно однородным. Это свойство особенно относится к ферромагнитным жидкостям. Вдобавок к естественным свойствам частиц оставаться взвешенными в ферромагнитной жидкости, эти частицы покрыты особым веществом, называемым поверхностно-активным веществом, которое предотвращает слипание частиц, и помогает ферромагнитной жидкости оставаться жидкостью.

Пронаблюдать ван-дер-ваальсовы силы в действии можно, когда гекконы, ящерицы анолисы, сцинковые и некоторые насекомые перемещаются по вертикальным поверхностям стен, или даже по потолку

Зеленая ящерица анолис

Молекулы поверхностно-активного вещества присоединяются к наночастицам и окружают каждую частицу, создавая, таким образом, буфер вокруг частицы. Притяжение между наночастицами регулируется ван-дер-ваальсовыми силами, которые ослабевают при увеличении расстояния между этими частицами. Поэтому, когда расстояние между наночастицами увеличивается благодаря поверхностно-активному веществу, притяжение между этими частицами ослабевает.

Магнетит

В некоторых случаях поверхностно-активные вещества работают по-другому. Их молекулы присоединяются к наночастице так, что их наружная полярность одинакова по всей наружной поверхности (например, наружная оболочка приобретает положительный заряд). Таким образом, вокруг каждой наночастицы образуется оболочка с определенным зарядом.

Так как оболочки всех наночастиц заряжены одинаково, они отталкивают друг друга, потому что одинаковые заряды отталкиваются. Это и предотвращает слипание.

Магнетит, как естественный магнит

Мы немного поговорили о жидкостях-носителях. Но из чего же состоят сами наночастицы? Иногда для этого используют частицы магнетита — минерала с магнитными свойствами. Магнетит — минерал, встречающийся в природе, который легко намагнитить. Стоит заметить, что в некоторых особых случаях магнетит имеет свойства постоянного магнита, то есть в обычных условиях его магнитные свойства постоянны и неизменны. Частицы магнетита в ферромагнитных жидкостях не являются постоянным магнитом, то есть их можно намагнитить с помощью магнитного поля, но это намагничивание пропадает, как только магнитное поле перестает на них действовать. Также для изготовления ферромагнитных жидкостей используют высокодисперсные порошки металлов, обладающих магнитными свойствами и некоторые ферримагнитные материалы.

Свойства

Ферромагнитные жидкости под действием магнитного поля — завораживающее зрелище. На поверхности образуются складки похожие на конусы, и при перемещении магнитного поля эти складки движутся за полем. Они располагаются по силовым линиям, и их высота зависит от силы магнитного поля. Сила магнитного поля, в свою очередь, зависит от того, как близко расположен магнит относительно жидкости. Ниже мы обсудим различные применения ферромагнитных жидкостей. Все эти применения основываются на этом свойстве ферромагнитной жидкости двигаться за магнитным полем.

Разобранный гидродинамический подшипник накопителя на жестких магнитных дисках

Свойства ферромагнитных жидкостей изменяются с температурой. При очень высоких температурах, известных как температура или точка Кюри, наночастицы теряют магнитные свойства и ферромагнитная жидкость превращается в обычную жидкость. Также, со временем поверхностно-активное вещество теряет отталкивающие свойства, и наночастицы слипаются, так что при этом свойства ферромагнитной жидкости пропадают.

Использование ферромагнитных жидкостей

Ферромагнитные жидкости реагируют на магнит и следуют за ним, поэтому с помощью магнита их можно либо перемещать с места на место, либо удерживать в нужном месте. Благодаря этому они нашли широкое применение в науке, технике и медицине.

Как смазочные вещества

Ферромагнитные жидкости используют как смазки во вращающихся механизмах. Как и традиционные смазки, они помогают уменьшить трение между механическими деталями, но при этом их главное преимущество в том, что с помощью магнита или магнитного поля ферромагнитные жидкости легко удерживать в нужном положении.

Ферромагнитная жидкость под действием сильного магнита

В герметизирующих уплотнениях

В некоторых случаях герметизирующие уплотнения могут быть в виде жидкости — в этой ситуации очень удобно использовать именно ферромагнитные жидкости. Их используют, к примеру, чтобы герметизировать внутреннюю часть накопителя на жестком магнитном диске, в которой находятся электропривод шпинделя, сами жесткие диски и сервопривод блока головок. Магниты удерживают ферромагнитную жидкость в нужном месте, а она, в свою очередь, не пропускает пыль извне в гермозону жесткого диска, и помогает предотвратить повреждение дисков. Некоторые производители ферромагнитных жидкостей продают для этих целей саму жидкость, а некоторые разрабатывают и выпускают полный комплект магнитожидкостных уплотнений, и не продают саму жидкость отдельно, чтобы предотвратить ее неправильное использование.

В искусстве

Некоторые скульпторы и художники используют ферромагнитную жидкость для создания современных произведений искусства. Кроме объемных и подвижных скульптур, которые демонстрируют во всей красе игру складок ферромагнитной жидкости под действием магнита, художники создают также плоские картины из этой жидкости. Ферромагнитные жидкости не смешиваются с водой и красками на водной основе, поэтому такие краски и пигменты (например, люминесцентные) добавляют в ферромагнитную жидкость, а потом двигают ее магнитом для создания красочных форм. На сайте YouTube много интересных примеров картин и скульптур из ферромагнитной жидкости.

Ферромагнитная жидкость под действием сильного магнита

В системах звуковоспроизведения

В электродинамических громкоговорителях систем звуковоспроизведения ферромагнитную жидкость используют для охлаждения звуковой катушки. Из-за низкой энергетической эффективности звуковоспроизводящих систем, во время их работы большая часть электрической энергии преобразуется в тепловую, и это тепло может привести к выводу из строя звуковой катушки, если ее не охладить. Ферромагнитные жидкости отводят это тепло от звуковой катушки, а в зазоре их удерживает магнит, так же как и в других системах, описанных выше.

Ферромагнитные жидкости используют, также, для демпфирования диффузора с катушкой на резонансных частотах. Это сглаживает амплитудно-частотную характеристику динамика. Для этого ферромагнитные жидкости помещают в зазор между звуковой катушкой и магнитом.

При выборе ферромагнитной жидкости руководствуются знаниями о том, в какой среде ее будут использовать. Так, например, выбирая жидкость-носитель или при выборе вязкости ферромагнитной жидкости, учитывают такие факторы как влажность окружающей среды, в которой эта жидкость будет использоваться, или будет ли устройство, в котором используется ферромагнитная жидкость, соприкасаться с водой.

В медицине

В медицине у ферромагнитных жидкостей несколько применений. На данный момент ученые проводят исследования по использованию ферромагнитных жидкостей как носителей лекарств и других необходимых больным препаратов. С помощью магнита эти лекарственные препараты перемещают в определенный участок организма. Обычно в этом случае наночастицы покрывают слоем препарата, после чего ферромагнитную жидкость вводят в организм (чаще всего путем инъекции) и удерживают на месте с помощью магнита, пока препарат не окажет нужное действие. Существует ряд других методов локализированного введения лечебных препаратов, но ученные надеются, что этот метод обеспечит наибольшую точность.

Еще одно интересное применение ферромагнитных жидкостей в медицине — теплотерапия определенных участков тела. Чаще всего она используется для уничтожения раковых клеток. Для этого ферромагнитную жидкость вводят в организм, а после этого заставляют ферромагнитные частицы колебаться с высокой частотой, используя электромагниты. При этом выделяется большое количество тепла, и высокие температуры разрушают ткани на этом участке, убивая раковые клетки.

В диагностике магнитных носителей

Ферромагнитные жидкости используют для определения структуры магнитных доменов различных магнитных носителей, таких как накопители на магнитной ленте, жесткие диски и кредитные карты. Также с их помощью проверяют дефекты на поверхности материалов, не имеющих отношения к магнитным носителям, например сварочных швов, а также природных минералов и металлов. Это применяется, например, в производстве миниатюрных компонентов. Для этого поверхность материала покрывают ферромагнитной жидкостью, и она распределяется по этой поверхности в соответствии с магнитным полем материала. После того, как жидкость-носитель испарилась, на поверхности остаются ферромагнитные частицы, по которым и определяют структуру магнитного поля поверхности. Обычно для этого нужен микроскоп. Этот метод используют не только для проверки поверхности магнитных носителей и материалов, описанных выше, но и в судебно-медицинской экспертизе. Например, с помощью ферромагнитной жидкости можно определить удаленные в домашних условиях заводские номера на огнестрельном оружии.

В теплообменниках

Перегрев — широко распространенная проблема в радиоэлектронике. Чтобы избежать поломки, электронные приборы необходимо охлаждать. Ферромагнитные жидкости иногда используют в этих целях, например в громкоговорителях и некоторых микроэлектронных приборах. В начале этой статьи, когда мы обсуждали свойства ферромагнитных жидкостей, мы уже упоминали, что при высоких температурах (температурах Кюри) ферромагнитные жидкости теряют магнитные свойства. Эту особенность ферромагнитных жидкостей используют в системах охлаждения. Во время охлаждения ферромагнитная жидкость, удерживаемая возле детали, которую охлаждают, теряет свои магнитные свойства после того, как в ней достигнута температуры Кюри. Магнит перестает ее удерживать и ее замещает холодная ферромагнитная жидкость, у которой еще есть магнитные свойства. Новая жидкость нагревается, а нагретая — охлаждается, и процесс периодически повторяется. В этом случае магнит выступает в роли насоса, так как он помогает замещать менее намагниченную горячую жидкость более намагниченной холодной.

В заключение

В этой статье мы поговорили о том, что собой представляют ферромагнитные жидкости и о том, как их использовать. На них очень интересно смотреть, когда они под воздействием магнита, и мы очень советуем вам посмотреть примеры видео ферромагнитных жидкостей в интернете, например на сайте YouTube.

Автор статьи: Kateryna Yuri

Изготовление соленоида (электромагнитный возвратно-поступательный механизм) – Электроника

Кто изготавливал лично соленоиды? Столкнулся с трудностями в расчетах и решил выложить вопросы с рассуждениями сюда, заодно пригодится может кому.

 

Соленоид это електромагнит с подвижным якорем. Якорь играет роль возвратно поступательного механизма. Используются в електрозамках дверей машин и других областях. В моем случае соленоид выполняет функцию плавного регулятора давления в системе: Дроссель, електромагнит и левый конец пружины статически зафиксированы, правый конец пружины и рычаг крана соеденены. При подачи тока в катушку якорь втягивается, соотвественно тянет за собой рычаг, рычаг тянет пружыну и осуществляется плавный ход если добавлять ток. Если ток сбросит – рычаг вернется в исходное положение, которое задает пружина и поток будет перекрыт.

 

Альтернативой есть актуатор, это електродвигатель + винтовая передача. Видео на ютубе ищите. Минус в том, что оно слишком медленное.

 

В общем перелопатил я весь интернет в поисках информации по соленоидам и електромагнитам нашел тонны знаний, но без особой конкретики, или это мне так тяжело собрать все в кучу. Тем не менее точных понятных доступных формул я так и не нашел. Даже строители гаусганов пользуются фиксироваными парамтерами и подбирают все методом проб.

 

Вот что есть на данный момент:

 

R=U\I

R-требуемое сопротивление исходя из параметров источника питания

 

L=(SR)\g

L-длинна катушки

S-площадь проводника

g-удельное сопротивление меди 0,0175 ом*мм2/м

 

В нашем случае для примера источником питания является “крона”, 9 вольт напряжение и 500мАч емкость (I не указано на корпусе, взял стандарт с гугла)

 

Провод медный сечение 0. 8мм, значит радиус 0.4, площадь =piR2= 3.14*0.4*0.4 = 0.5024мм2

 

Ток в аккумуляторах высчитывается по формуле= емкость делено на 20 часов. Это значит, что полный расход произойдет за 20 часов с напряжением 9 вольт и током 0.025 А, I = 500\20=0.025A

 

Сопротивление системы равно = R=9\0.025=360Om

 

Значит длинна провода

 

L= (0.5024*360)\0,0175= 10335 мм = 10м

 

Надо так много провода на относительно маломощный соленоид. Что ж, попробуем.

 

В итоге получилась высота катушки 5см, внутренний диаметр 0.5см, внешний где-то 2см, и 6.5 слоев намотки провода. Витки не считал.

 

Результат вообще нулевой, вставив гвоздь в середину ели притянулась к гвоздю шайбочка маленькая. Отчаявшись решил сделать простой електромагнит – намотал 1 метр провода прямо на гвоздь в несколько слоев, так же результат мизерный.

 

Игорь Мухин сделал программу (http://imlab.narod.ru/M_Fields/Coil10/Coil10. htm ) для расчетов соленоида, исходные данные:

R1 – внутренний радиус соленоида

R2 – внешний радиус соленоида

H – высота соленоида

D – диаметр обмоточного провода

и напряжение

 

Результативные данные: Ток, Индуктивность, Сопротивление, Количество витков, индукция то есть тяга

(в софте надо изменить точки на запятые что бы заработало)

 

Вот в моем случае внутренний внешний радиусы не существенны, главное ток и длинна на которую тянет. Ток же нельзя регулировать, надо его вписать в исходные значения, а в программе нельзя. Написал автору на почту с просьбой скинуть формулы – ответа пока что нету…

 

Тема интересная, думаю пригодится не только мне

Все своими руками Электромагниты | Все своими руками

     Однажды, в очередной раз, перелистывая книгу, которую нашел у мусорного бачка, обратил внимание на простой, приблизительный расчет электромагнитов. Титульный лист книги показан на фото1.


      Вообще их расчет это сложный процесс, но для радиолюбителей, расчет, приведенный в этой книге, вполне подойдет. Электромагнит применяется во многих электротехнических приборах. Он представляет собой катушку из проволоки, намотанной на железный сердечник, форма которого может быть различной. Железный сердечник является одной частью магнитопровода, а другой частью, с помощью которой замыкается путь магнитных силовых линий, служит якорь. Магнитная цепь характеризуется величиной магнитной индукции — В, которая зависит от напряженности поля и магнитной проницаемости материала. Именно поэтому сердечники электромагнитов делают из железа, обладающего высокой магнитной проницаемостью. В свою очередь, от магнитной индукции зависит силовой поток, обозначаемый в формулах буквой Ф. Ф = В • S — магнитная индукция — В умноженная на площадь поперечного сечения магнитопровода — S. Силовой поток зависит также от так называемой магнитодвижущей силы (Ем), которая определяется числом ампервитков на 1см длины пути силовых линий и может быть выражена формулой:

Ф = магнитодвижущая сила (Ем) • магнитное сопротивление (Rм)
Здесь Ем = 1,3•I•N, где N — число витков катушки, а I — сила текущего по катушке тока в амперах. Другая составляющая:
Rм = L/M•S, где L — средняя длина пути силовых магнитных линий, М — магнитная проницаемость, a S — поперечное сечение магнитопровода. При конструировании электромагнитов весьма желательно получить большой силовой поток. Добиться этого можно, если уменьшить магнитное сопротивление. Для этого надо выбрать магнитопровод с наименьшей длиной пути силовых линий и с наибольшим поперечным сечением, а в качестве материала — железоматериал с большой магнитной проницаемостью. Другой путь увеличения силового потока путем увеличения ампервитков не является приемлемым, так как в целях экономии проволоки и питания следует стремиться к уменьшению ампервитков. Обычно расчеты электромагнитов делаются по специальным графикам. В целях упрощения в расчетах мы будем также пользоваться некоторыми выводами из графиков. Предположим, требуется определить ампервитки и силовой поток замкнутого железного магнитопровода, изображенного на рисунке 1,а и сделанного из железа самого низкого качества.

     Рассматривая график (к сожалению я его в приложении не нашел) намагничивания железа, нетрудно убедиться, что наиболее выгодной является магнитная индукция в пределах от 10 000 до 14 000 силовых линий на 1 см2, что соответствует от 2 до 7 ампервиткам на 1 см. Для намотки катушек с наименьшим числом витков и более экономичных в смысле питания для расчетов надо принимать именно эту величину (10 000 силовых линий на 1 см2 при 2 ампервитках на 1 см длины). В этом случае расчет может быть произведен следующим образом. Так, при длине магнитопровода L =L1+L2 равной 20 см + 10 см = 30 см, потребуется 2×30=60 ампервитков.
Если диаметр D сердечника (Рис.1,в)примем равным 2 см, то его площадь будет равна: S = 3,14xD2/4 = 3,14 см2. 0тсюда возбуждаемый магнитный поток будет равен: Ф = B х S= 10000 x 3,14=31400 силовых линий. Можно приближенно вычислить и подъемную силу электромагнита (P). P = B2 • S/25 • 1000000 = 12,4 кг. Для двухполюсного магнита этот результат следует удвоить. Следовательно, Р=24,8 кг = 25 кг. При определении подъемной силы необходимо помнить, что она зависит не только от длины магнитопровода, но и от площади соприкосновения якоря и сердечника. Поэтому якорь должен точно прилегать к полюсным наконечникам, иначе даже малейшие воздушные прослойки вызовут сильное уменьшение подъемной силы. Далее производится расчет катушки электромагнита. В нашем примере подъемная сила в 25 кг обеспечивается 60 ампервитками. Рассмотрим, какими средствами можно получить произведение N•J = 60 ампервиткам.
Очевидно, этого можно добиться либо путем использования большого тока при малом количестве витков катушки, например 2 А и 30 витков, либо путем увеличения числа витков катушки при уменьшении тока, например 0,25 А и 240 витков. Таким образом, чтобы электромагнит имел подъемную силу в 25 кг, на его сердечник можно намотать и 30 витков и 240 витков, но при этом изменить величину питающего тока. Конечно, можно выбрать и другое соотношение. Однако изменение величины тока в больших пределах не всегда возможно, так как оно обязательно потребует изменения диаметра применяемой проволоки. Так, при кратковременной работе (несколько минут) для проводов диаметром до 1 мм допустимую плотность тока, при которой не происходит сильного перегревания провода, можно принять равной 5 а/мм2. В нашем примере проволока должна быть следующего сечения: для тока в 2 а — 0,4 мм2, а для тока в 0,25 а — 0,05 мм2, диаметр проволоки будет 0,7 мм или 0,2 мм соответственно. Каким же из этих проводов следует производить обмотку? С одной стороны, выбор диаметра провода может определяться имеющимся ассортиментом проволоки, с другой — возможностями источников питания, как по току, так и по напряжению. Действительно, две катушки, одна из которых изготовлена из толстой проволоки в 0,7 мм и с небольшим числом витков — 30, а другая — из проволоки в 0,2 мм и числом витков 240, будут иметь резко различное сопротивление. Зная диаметр проволоки и ее длину, можно легко определить сопротивление. Длина проволоки L равна, произведению общего числа витков на длину одного из них (среднюю): L = N x L1 где L1 — длина одного витка, равная 3,14 x D. В нашем примере D = 2 см, и L1 = 6,3 см. Следовательно, для первой катушки длина провода будет 30 x 6,3 = 190 см, сопротивление обмотки постоянному току будет примерно равно ? 0,1 Ом, а для второй — 240 x 6,3 = 1 512 см, R ? 8,7 Ом. Пользуясь законом Ома, нетрудно вычислить необходимое напряжение. Так, для создания в обмотках тока в 2А необходимое напряжение равно 0,2В, а для тока в 0,25А — 2,2В.
Таков элементарный расчет электромагнитов. Конструируя электромагниты, надо не только производить указанный расчет, но и уметь выбрать материал для сердечника, его форму, продумать технологию изготовления. Удовлетворительными материалами для изготовления сердечников в кружках являются прутковое железо (круглое и полосовое) и различные. железные изделия: болты, проволока, гвозди, шурупы и т. д. Чтобы избежать больших потерь на токах Фуко, сердечники для приборов переменного тока необходимо собирать из изолированных друг от друга тонких листов железа или проволоки. Для придания железу «мягкости» его необходимо подвергать отжигу. Большое значение имеет и правильный выбор формы сердечника. Наиболее рациональные из них кольцевые и П-образные. Некоторые из распространенных сердечников показаны на рисунке 1.

Обсудить эту статью на – форуме “Радиоэлектроника, вопросы и ответы”.

Просмотров:37 005


Магнитное поле однослойного соленоида

Соленоид – это цилиндрическая обмотка из провода по которой протекает постоянный или переменный электрический ток. Обмотка может наноситься в один или несколько слоёв виток к витку. Если длинна соленоида значительно превышает его диаметр, то поле, создаваемое постоянным током сосредоточено внутри него и практически однородно.

Рис. 1: Магнитное поле, создаваемое серией кольцевых токов

Для вычисления индукции магнитного поля $\vec B$ внутри однослойного соленоида представим его в виде суперпозиции кольцевых токов лежащих на одной оси – оси соленоида (Рис.{N} I_i.\]

(1)

Если пренебречь краевыми эффектами, то первое и третье слагаемые в (1) будут равны нулю, так как магнитное поле перпендикулярно контуру и $B_l=0$. Если контур выбрать так, что $AD$ будет лежать на большом расстоянии от соленоида, где поле стремиться к нулю, то и четвёртое слагаемое в (1) также превратиться в нуль. Тогда, учитывая приближение однородности поля получим:

где $L$ – длина соленоида, $N$ – количество витков. Если ввести понятие плотности витков (число витков на единицу длины) $n=N/L$, то индукцию магнитного поля внутри соленоида (2) можно записать в виде:

Рис. 2: Соленоид с произвольными размерами $L$ и $R$.

Чтобы получить точное выражение для индукции магнитного поля в любой точке на оси конечного соленоида необходимо воспользоваться законом Био-Савара-Лапласа (Рис. 2), который приводит к следующему выражению:

\[B=\frac12\mu_0 nI (\cos\alpha_2-\cos\alpha_1).2}},\]

(5)

где $R$ – радиус соленоида. А на краю полубесконечного соленоида:

\[B=\frac12 \mu_0 nI.\]

(6)

Калькулятор

Индукция магнитного поля бесконечного соленоида (3)


Индукция магнитного поля конечного соленоида (5)


Распределение индукция магнитного внутри конечного соленоида (4)


10-б. Соленоид и электромагнит

      § 10-б. Соленоид и электромагнит

В предыдущем параграфе мы изучали магнитные поля прямых проводников. Рассмотрим теперь проводник, свёрнутый в виде спирали, по которому идёт ток – соленоид (греч. «солен» – трубка). Расположим вдоль его оси лист картона и посыплем его железными опилками. На рисунке отчётливо видно, что опилки выстроились в виде замкнутых линий, наиболее часто расположенных внутри витков соленоида. Следовательно, магнитное поле внутри соленоида сильнее, чем вне его.

Намотаем теперь проволочную спираль на каркасе, располагая витки вплотную друг к другу – мы получим катушку (см. рисунки ниже). Включим ток и поднесём к катушке мелкие гвоздики – часть из них примагнитится. Если в неё вставить железный или стальной стержень – сердечник, то примагнитится заметно больше гвоздиков. Другими словами, происходит усиление магнитного поля.

Катушка из изолированной проволоки с железным сердечником внутри называется электромагнитом. При прочих равных условиях магнитное поле электромагнита всегда сильнее магнитного поля соленоида или катушки без сердечника.

Объясним усиление магнитного поля. Сначала ток намагничивает сердечник. Намагнитившись, он создаёт собственное поле, которое, складываясь с полем соленоида, образует новое, более сильное поле. Об этом мы судим по количеству притянувшихся гвоздиков.

Рассмотрим другие причины, влияющие на силу магнитного действия электромагнита. Вспомним, что для наблюдения силовых линий поля прямого проводника (см. § 10-а) мы использовали ток силой 5–10 А. При меньшей силе тока опилки будут плохо намагничиваться, и картинка получится нечёткой. Следовательно, магнитное поле электромагнита усиливается при увеличении силы тока в его проводнике.

Кроме того, при одной и той же силе тока поле электромагнита можно усилить, увеличив число витков проводника в его обмотке. Это объясняется тем, что магнитные поля, создаваемые каждым из витков, накладываются друг на друга и тем самым образуют новое, более сильное магнитное поле.

Познакомимся с ещё одним свойством электромагнита или соленоида – запасать электроэнергию. Проделаем опыт (см. схему). Две одинаковые лампы подключены параллельно к источнику тока. Верхняя лампа – через реостат, а нижняя – через электромагнит или соленоид. У них есть общее название – катушка индуктивности.

При замыкании выключателя лампа, соединённая с катушкой индуктивности, загорается позже, чем лампа, соединённая с реостатом (левый рисунок). Теперь разомкнём выключатель. В этот момент обе лампы не погаснут, а вспыхнут ещё ярче, правда, на очень короткое время (правый рисунок).

Более позднее загорание ближней к нам лампы объясняется так. При включении тока его энергия идёт не только на нагревание спирали лампы, но и на создание магнитного поля вокруг электромагнита. Однако по прошествии некоторого времени энергия тока будет целиком превращаться в теплоту, разогревая спираль лампочки настолько, что она начинает светиться.

При размыкании цепи ток в нижнем её проводе прекращается, и с этого момента реостат, катушка индуктивности и обе лампочки оказываются соединёнными друг с другом последовательно (мы это показали красным цветом на схеме). Поскольку лампочки кратковременно ярко вспыхнули, значит, в красной части цепи ненадолго возник источник тока. В его роли выступила катушка индуктивности. Магнитное поле вокруг неё стало исчезать, передавая свою энергию электронам в проводе, поэтому они приходят в движение. Это значит, что катушка становится источником тока.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!