Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Типы smd-корпусов

2 вывода3 вывода4 вывода5 выводов6 выводов8 выводов>9 выводов
smcj
[do214ab]
7,0х6,0х2,6мм
d2pak
[to263]
9,8х8,8х4,0мм
mbs
[to269aa]
4,8х3,9х2,5мм
d2pak5
[to263-5]
9,8х8,8х4,0мм
mlp2x3
[mo229]
(dfn2030-6)
(lfcsp6)
3,0х2,0х0,75мм
tssop8
[mo153]
4,4х3,0х1,0мм
usoic10
(rm10|micro10)
3,0х3,0х1,1мм
smbj
[do214aa]
4,6х3,6х2,3мм
dpak
[to252aa]
6,6х6,1х2,3мм
sop4
4,4х4,1х2,0мм
dpak5
[to252-5]
6,6х6,1х2,3мм
ssot6
[mo193]
3,0х1,7х1,1мм
chipfet
3,05х1,65х1,05мм
tdfn10
(vson10|dfn10)
3,0х3,0х0,9мм
(gf1)
[do214ba]
4,5х1,4х2,5мм
(smpc)
[to277a]
6,5х4,6х1,1мм
ssop4
4,4х2,6х2,0мм
sot223-5
6,5х3,5х1,8мм
dfn2020-6
[sot1118]
(wson6 | llp6)
2,0х2,0х0,75мм
tdfn8
(wson8)
(lfcsp8)
3,0х3,0х0,9мм
(wson10)
3,0х3,0х0,8мм
smaj
[do214ac]
4,5х2,6х2,0мм
sot223
[to261aa]
{sc73}
6,5х3,5х1,8мм
sot223-4
6,5х3,5х1,8мм
mo240
(pqfn8l)
3,3х3,3х1,0мм
sot23-6
[mo178ab]
{sc74}
2,9х1,6х1,1мм
(mlf8)
2,0х2,0х0,85мм
msop10
[mo187da]
2,9х2,5х1,1мм
sod123
[do219ab]
2,6х1,6х1,1мм
sot89
[to243aa]
{sc62}
4,7х2,5х1,7мм
sot143
2,9х1,3х1,0мм
sot89-5
4,5х2,5х1,5мм
tsot6
[mo193]
2,9х1,6х0,9мм
msop8
[mo187aa]
3,0х3,0х1,1мм
(uqfn10)
1,8х1,4х0,5мм
sod123f
2,6х1,6х1,1мм
sot23f
2,9х1,8х0,8мм
sot343
2,0х1,3х0,9мм
sot23-5
[mo193ab|mo178aa]
{sc74a}
(tsop5/sot753)
2,9х1,6х1,1мм
sot363
[mo203ab|ttsop6]
{sc88|sc70-6}
(us6)
2,0х1,25х1,1мм
vssop8
3,0х3,0х0,75мм
bga9
(9pin flip-chip)
1,45х1,45х0,6мм
sod110
2,0х1,3х1,6мм
sot346
[to236aa]
{sc59a}
(smini)
2,9х1,5х1,1мм
sot543
1,6х1,2х0,5мм
sct595
2,9х1,6х1,0мм
sot563f
{sc89-6|sc170c}
[sot666]
1,6х1,2х0,6мм
sot23-8
2,9х1,6х1,1мм
  
sod323
{sc76}
1,7х1,25х0,9мм
sot23
[to236ab]
2,9х1,3х1,0мм
(tsfp4-1)
1,4х0,8х0,55мм
sot353
[mo203aa]
{sc88a|sc70-5}
(tssop5)
2,0х1,25х0,95мм
sot886
[mo252]
(xson6/mp6c)
1,45х1,0х0,55мм
sot765
[mo187ca]
(us8)
2,0х2,3х0,7мм
  
sod323f
{sc90a}
1,7х1,25х0,9мм
dfn2020

(sot1061)
2,0х2,0х0,65мм
(tslp4)
1,2х0,8х0,4мм
sot553
(sot665|esv)
{sc107}
1,6х1,2х0,6мм
wlcsp6
1,2х0,8х0,4мм
    
dfn1608
(sod1608)
1,6х0,8х0,4мм
sot323
{sc70}
(usm)
2,0х1,25х0,9мм
dfn4
1,0х1,0х0,6мм
sot1226
(x2son5)
0,8х0,8х0,35мм
      
sod523f
{sc79}
1,2х0,8х0,6мм
sot523
(sot416)
{sc75a}
1,6х0,8х0,7мм
(dsbga4|wlcsp)
0,75х0,75х0,63мм
        
sod822
(tslp2)
1,0х0,6х0,45мм
sot523f
(sot490)
{sc89-3}
1,6х0,8х0,7мм
          
  dfn1412
{sot8009}
1,4х1,2х0,5мм
          
  sot723
{sc105aa}
(tsfp-3)
1,2х0,8х0,5мм
          
  dfn1110
{mo340ba}
(sot8015)
1,1х1,0х0,5мм
          
  sot883
{sc101}
(tslp3-1)
1,0х0,6х0,5мм
          
  sot1123
0,8х0,6х0,37мм
          

Размеры SMD-резисторов.

Таблица типоразмеров.

Основные размеры корпусов чип-резисторов

Размеры корпусов плоских SMD-резисторов стандартизированы и делятся на типоразмеры. Типоразмер чип-резистора указывают в виде четырёх (реже пяти) цифр, которые являются кодом размера. Обычно, в нём записана длина и ширина резистора в дюймах.

На деле же существует две системы кодирования размеров SMD-компонентов (в том числе и резисторов). В одной из них для кодировки типоразмера используется длина и ширина компонента в

дюймах, а в другой – в миллиметрах.

Например, дюймовый типоразмер 0805 – это тоже, что и 2012 в метрической системе. На самом деле, метрическая система более удобна, так как размеры в дюймах округляются. Для того же типоразмера 0805 (0.08″ x 0.05″) длина в миллиметрах составляет 2,0 мм., а ширина 1,2 мм. Если перевести величину длины и ширины в дюймы, то получим 0,0787″ (2,0 мм.) и 0,0472″ (1,2 мм.). Эти значения округляют, получая 0,08″ и 0,05″ (типоразмер 0805).

Так уж сложилось, что наиболее распространена первая, дюймовая система кодирования размера SMD-корпуса, хотя она и является устаревшей.

Далее приведена таблица №1 с кодами размеров корпусов SMD-резисторов.

Так как существуют две системы кодирования, то в таблице указаны коды размеров, как в дюймовой (

inch или imperial), так и в метрической (metric) системе кодирования.

Например, 0805 = 0,08 (длина) x 0,05 (длина) (в дюймах).

В другой – метрической (metric), в миллиметрах.

Например, 2012 = 2,0 (длина) x 1,2 (ширина) (в миллиметрах). Тот же размер, что и 0805 в дюймах.

Чтобы не спутать одну систему с другой, в технической документации для метрической системы частенько указывают букву М после числового кода (например, 2012М).

Таблица №1. Кодовое обозначение типоразмера и соответствующая длина и ширина элемента.

В дюймах (inch)

L, длина, length (дюймы)

W, ширина, width (дюймы)

Метрический (metric)

L, длина в мм.

W, ширина в мм.

0050

0,008

0,004

0201М

0,2

0,1

0075

0,012

0,006

03015М

0,3

0,15

01005

0,016

0,008

0402М

0,4

0,2

0201 (02016)

0,02

0,01

0603М

0,6

0,3

0202

0,02

0,02

0605М

0,6

0,5

0204

0,02

0,04

0510M

0,5

1,0

0303

0,03

0,03

0808M

0,8

0,8

0306

0,03

0,06

0816М

0,8

1,6

0402

0,04

0,02

1005М

1,0

0,5

0404

0,04

0,04

1010М

1,0

1,0

0406

0,04

0,06

1016M

1,0

1,6

0408

0,04

0,08

1020М

1. 0

2,0

0502

0,05

0,02

1406M

1,4

0,6

0504

0,05

0,04

1210M

1,2

1,0

0505

0,05

0,05

1,2

1,2

0508

0,05

0,08

1220М

1,2

2,0

0510

0,05

0,1

1,2

2,5

0603

0,06

0,03

1608М

1,6

0,8

0606

0,06

0,06

1616М

1,6

1,6

0612

0,06

0,12

1632М

1,6

3,2

0616

0,06

0,16

1640М

1,6

4,0

0805

0,08

0,05

2012М

2,0

1,25

0808

0,08

0,08

2020М

2,0

2,0

0815

0,08

0,15

2037М

2,0

3,7

0830

0,08

0,30

2075М

2,0

7,5

1005

0,1

0,05

2512M

2,5

1,2

1008

0,1

0,08

2520М

2,5

2,0

1010

0,1

0,1

2525М

2,5

2,5

1020

0,1

0,2

2550M

2,5

5,0

1206

0,12

0,06

3216М

3,2

1,6

1210

0,12

0,1

3225М

3,2

2,5

1218

0,12

0,18

3245М (3248M)

3,2

4,5-4,8

1224

0,12

0,24

3250М

3,2

5,0

1225

0,12

0,25

3264М

3. 2

6,4

1505

0,15

0,05

3812М

3,8

1,2

1806

0,18

0,06

4516M

4.5

1,6

1808

0,18

0,08

4520M

4,5

2,0

1812

0,18

0,12

4532М

4,5

3,2

1825

0,18

0,25

4564М

4,5

6,4

2007

0,2

0,07

5320М

5,3

2,0

2010

0,2

0,1

5025М

5,0

2,5

2220

0,22

0,2

5750М (5650M)

5,7-5,6

5,0

2225

0,22

0,25

5664М

5,6

6,4

2512

0,25

0,12

6432М (6332M)

6,4-6,3

3,2

3014

0,30

0,14

7836М

7,8

3,6

3921

0,39

0,21

1052М

10,0

5,2

4527

0,45

0,27

11070М (11470М)

11,0-11,4

7,0

5931

0,59

0,31

1577М

15,0

7,75

6927

0,69

0,27

17570M

17,5

7,0

В таблице №1 представлены коды размеров, которые также используются и для керамических SMD-конденсаторов (2220, 2225, 1825, 0505, 0204 и др. ), резисторных SMD-сборок, SMD-светодиодов.

Сделано это потому, что технология поверхностного монтажа быстро развивается, и те размеры, которые ранее использовались только при производстве керамических конденсаторов или SMD-светодиодов, могут быть применены и при производстве чип-резисторов или их сборок.

В технической документации на резисторы вам также могут встретиться и такие типоразмеры, как 0804, 1506, 2009 и пр. Не стоит удивляться этому. Как правило, это типоразмеры сборок.

Так как толщина элемента не включена в кодировку размера, то необходимо обращаться к документации производителя данного компонента. Обычно, толщина керамических чип-конденсаторов (MLCC) больше, чем толщина чип-резисторов того же типоразмера.

Отмечу, что в таблице приведены не все коды типоразмеров, так как на самом деле их очень-очень много. Естественно, есть и “ходовые”, например, такие, как 0603, 0805, 1206, которые не только востребованы производителями электроники, но и хорошо знакомы радиолюбителям.

Иногда на практике необходимо определить типоразмер SMD-резистора. Как это сделать?

Определить размер SMD-резистора можно замерив его длину и ширину миллиметровой линейкой. Естественно, точно измерить габариты крошечных чип-резисторов вам вряд ли удастся, разве что вооружившись увеличительным стеклом или микроскопом.

Далее находим метрический типоразмер в таблице, который соответствует полученным значениям длины и ширины вашего резистора. Сопоставляем его с кодом в дюймах.

На момент написания материала наименьшим размером был 0050 (inch). Он уже присутствует в техдокументации, но это не означает, что чип-элементы такого типоразмера активно используются при производстве электроники.

Обычно, широкое внедрение нового типоразмера происходит спустя некоторое время, так как большинство производителей просто не имеют достаточно точного оборудования, способного монтировать такие микроминиатюрные компоненты.

Например, даже такой типоразмер, как 01005 настолько мал, что размеры SMD-резисторов меньше, чем частички молотого чёрного перца.

Для сравнения на следующей картинке показаны габариты микроминиатюрных SMD-резисторов типоразмера 01005, 0201, 0402, 0603.

Типоразмеры 0202, 0303, 0404, 0505, 0606, 0808 нередко имеют чип-резисторы, которые устанавливаются в гибридные схемы или сборки.

Например, SMD-резисторы серии IGBR (Vishay) имеют контакты не на торцах подложки, как это сделано у обычных чип-резисторов, а на верхней и нижней стороне корпуса. Это так называемые, Back-Contact Chip Resistors.

Такая конструкция позволяет избавится от одного из выводов, так как нижний контакт такого резистора присоединяется к субстрату методом эвтектического сплавления или с помощью проводящей эпоксидной смолы.

Типоразмеры 0404 (0402 x 2), 0408 (0402 x 4), 0606 (0603 x 2), 0612 (0603 x 4), 1005 (0402 x 4), 1224 (1206 x 4) имеют резисторные SMD-сборки.

На фото показаны резисторные SMD-сборки по 4 и 2 резистора типоразмера 0612 и 0606 соответственно.

Хотелось бы также обратить внимание на то, что наиболее точная информация по типоразмерам и реальным габаритам электронных компонентов содержится в техническом описании (даташите) на конкретную серию резисторов или иных SMD-компонентов.

В даташите производители приводят всю необходимую информацию вплоть до возможных допусков по размерам.

Часто на практике требуется определить мощность SMD-резистора. Теперь, когда мы познакомились с типовыми размерами SMD-резисторов, сделать это будет несложно, так как мощность большинства чип-резисторов соответствует их типоразмеру. Более подробно об этом читайте в материале “Мощность SMD резистора. Как узнать?”.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Корпуса компонентов для поверхностного монтажа (SMD) – Маркировка электронных компонентов – Компоненты – Инструкции

Несмотря на большое количество стандартов, регламентирующих требования к корпусам электронных    компонентов, многие фирмы выпускают элементы в корпусах не соответствующих международным стандартам. Также встречаются ситуации, когда корпус, имеющий стандартные размеры у фирмы имеет другое название.


Часто название корпуса состоит из четырех цифр, которые отображают его длину и ширину. Но в одних стандартах эти параметры задаются в дюймах, в других – в миллиметрах. Так, например, название корпуса 0805 получается следующим образом: 0805=L x W=(0.08 x 0.05) дюйма. А корпус 5845 имеет габариты (5.8 х 4.5) мм. Корпуса с одним и тем же названием могут иметь разную высоту, различные контактные площадки, и выполнены из различных материалов, но рассчитаны для монтажа на стандартное установочное место. Ниже приведены параметры (мм) наиболее популярных типов корпусов.

Таблица 1.

Тип корпуса

L* (мм)

W* (мм)

Н* (мм)

К (мм)

Примечание

0402 (1005)

1. 0

0.5

0.35…0.55

0.2

 

0603(1608)

1.6

0.8

0.45…0.95

0.3

 

0805(2012)

2.0

1.25

0.4…1.6

0.5

ГОСТ Р1-12-0.062

1206(3216)

3.2

1.6

0.4…0.75

0.5

ГОСТР1-12-0.125:Р1-16

1210(3225)

3.2

2.5

0.55…1.9

0.5

 

2118(3245)

3. 2

4.5

0.55…1.9

0.5

 

1806(4516)

4.5

1.6

1.6

0.5

 

1208(4520)

4.5

2.0

2.0

0.5

 

1812(4532)

4.5

3.2

0.6..3.2

0.5

 

2010(5025)

5.0

2.5

0.55

0.5

 

2220(5750)

5. 7

5.0

1.7

0.5

 

2225(5763)

5.7

6.3

2.0

0.5

 

2512(6432)

6.4

3.2

2.0

0.5

 

2824(7161)

7.1

6.1

3.9

0.5

 

3225(8063)

8.0

6.3

3.2

0.5

 

4030

10. 2

7.6

3.9

0.5

 

4032

10.2

8.0

3.2

0.5

 

5040

12.7

10.2

4.8

0.5

 

6054

15.2

13.7

4.8

0.5

 

 

*• в зависимости от технологии, которыми обладает фирма, варьируется и нормируемые разбросы относительно
базовых габаритов. Наиболее распространенные допуски: — 0,05 мм корпуса длиной до I мм. например, 0402;
-0,1 мм -до 2 мм, например. SOD-232; + 0.2 мм —до 5 мм;-0.5 мм – выше 5 мм.
Небольшие расхождения в цифрах у разных фирм обусловлены степенью точности перевода дюймов в мм, а так же
указанием только min. max или номинального размера.
**• Корпуса с одним и тем же названием могут иметь разную высоту.
Это обусловлено: для конденсаторов – величиной емкости и рабочим напряжением, для резисторов – рассеиваемой
мощности, и т.д.

Таблица 2.

Тип корпуса

L* (мм)

W* (MM)

H** (мм)

F (мм)

Примечание

2012(0805)

2.0

1.2

1.2

1.1

EIAJ

3216(1206)

3. 2

1.6

1.6

1.2

EIAJ

3216L

3.2

1.6

1.2

1.2

EIAJ

3528

3.5

2.8

1.9

2.2

EIAJ

3528L

3.5

2.8

1.2

2.2

EIAJ

5832

5.8

3.2

1.5

2.2

5845

5. 8

4.5

3.1

2.2

EIAJ

6032

6.0

3.2

2.5

2.2

EIAJ

7343

7.3

4.3

2.8

2.4

EIAJ

7343H

7.3

4.3

4.3

2.4

EIAJ

DO-214AA

5.4

3.6

2.3

2.05

JEDEC

DO-214AB

7. 95

5.9

2.3

3.0

JEDEC

DO-214AC

5.2

2.6

2.4

1.4

JEDEC

DO-214BA

5.25

2.6

2.95

1.3

JEDEC

SMA

5.2

2.6

2.3

1.45

MOTOROLA

SMB

5.4

2.6

2.3

2.05

MOTOROLA

SMC

7. 95

5.9

2.3

3.0

MOTOROLA

SOD 6

5.5

3.8

2.5

2.2

ST

SOD 15

7.8

5.0

2.8

3.0

ST

 

Таблица 3.

Тип корпуса

L* (мм)

L** (мм)

W*(мм)

Н** (мм)

В (мм)

Примечание

DO-215AA

4. 3

6.2

3.6

2.3

2.05

JEDEC

DO-215AB

6.85

9.9

5.9

2.3

3.0

JEDEC

DO-215AC

4.3

6.1

2.6

2.4

1.4

JEDEC

DO-215BA

4.45

6.2

2.6

2.95

1.3

JEDEC

ESC

1.2

1.6

0. 8

0.6

0.3

TOSHIBA

SOD-123

2.7

3.7

1.55

1.35

0.6

PHILIPS

SOD-123

1.7

2.5

1.25

1.0

0.3

PHILIPS

SSC

1.3

2.1

0.8

0.8

0.3

TOSHIBA

 

*• в зависимости от технологии, которыми обладает фирма, варьируется и нормируемые разбросы относительно базовых
габаритов. Наиболее распространенные допуски: ± 0. 05 мы корпуса длиной до I мм. например, 0402;
±0,1 мм-до 2 мм, например, SOD-232; ±0.2 мм -до 5 мм; ±0,5 мм -свыше 5 мм. Небольшие расхождения в цифрах у
разных фирм обусловлены степенью точности перевода дюймов в мм, а так же указанием только min. max или
номинального размера.
**• Корпуса с одним и тем же названием могут иметь разную высоту. Это обусловлено: для конденсаторов – величиной
емкости и рабочим напряжением, для резисторов – рассеиваемой мощности, и т.д.

Таблица 4

Тип корпуса

L*(mm)

D*(мм)

F*(мм)

S*(мм)

Примечание

DO-213AA (SOD80)

3.5

1.65

0.48

0. 03

JEDEC

DO-213AB (MELF)

5.0

2.52

0.48

0.03

JEDEC

DO-213AC

3.45

1.4

0.42

JEDEC

ERD03LL

1.6

1.0

0.2

0.05

PANASONIC

ER021L

2.0

1.25

0.3

0.07

PANASONIC

ERSM

5.9

2.2

0. 6

0.15

PANASONIC, ГОСТ Р1-11

MELF

5.0

2.5

0.5

0.1

CENTS

SOD80 (miniMELF)

3.5

1.6

0.3

0.075

PHILIPS

SOD80C

3.6

1.52

0.3

 

PHILIPS

SOD87

3.5

2.05

0.3

 

PHILIPS

 

Площадка чип резистора

Мы надеемся, что вся информация, представленная в каталоге, будет полезна и производителям промэлектроники, и сервисным центрам, и радиолюбителям.

Информация по размерам контактных площадок электронных компонентов, применяемых для разработки, сборки и монтажа печатных плат, находится в разделе Печатные платы.

 

РАЗМЕР КОНТАКТНОЙ ПЛОЩАДКИ
ТИПОРАЗМЕРРазмеры резистораПАЙКА ОПЛАВЛЕНИЕМПАЙКА ВОЛНОЙ
ДЮЙМОВЫЙМЕТРИЧЕСКИЙXYablabl
0402100510,50,40,60,9
060316081,60,80,50,91,50,90,91,9
0805201221,20,71,31,90,91,32,2
120632163,21,60,91,72,91,11,73,4
121032253,22,50,92,51,91,12,53,3
121832463,24,61,054,91,951,254,83,15
2010502552,51,02,54,91,22,55,1
251263326,34,21,03,26,21,23,26,4
Корзина

Корзина пуста

Размеры корпусов конденсаторов для поверхностного монтажа | hardware

Типоразмеры корпусов SMT (SMD) конденсаторов A, B, C, D, E, R, S, T, U, V, X и размеры их посадочных мест (рекомендованные размеры контактных площадок для пайки).

[Танталовые конденсаторы, упрощенная таблица]

Источник – Википедия [1]. Наиболее часто используемые конденсаторы A, B, C и D (этот код указан в столбце Case Code таблицы).

EIA Code Case Code L (mil) W (mil) H (mil) W1 (mil) A (mil)
Допуск на размер, мм ±0. 2 +0.2/–0.1 +0.2/–0.1 +0.2 +0.3/–0.2
3216-10 I, K 3.2 (126) 1.6 (63) 1.0 (39) max 1.2 (47) 0.8 (31)
3216-12 S 3.2 (126) 1.6 (63) 1.2 (47) max 1.2 (47) 0.8 (31)
3216-18 A 3.2 (126) 1.6 (63) 1.6 (63) 1.2 (47) 0.8 (31)
3528-12 T 3.5 (138) 2.8 (110) 1.2 (47) max 2.2 (87) 0.8 (31)
3528-15 M, H 3.5 (138) 2.8 (110) 1.5 (59) max 2.2 (87) 0.8 (31)
3528-21 B 3.5 (138) 2. 8 (110) 1.9 (75) 2.2 (87) 0.8 (31)
6032-15 U, W 6.0 (236) 3.2 (126) 1.5 (59) max 2.2 (87) 1.3 (51)
6032-28 C 6.0 (236) 3.2 (126) 2.6 (102) 2.2 (87) 1.3 (51)
7343-20 V, Y 7.3 (287) 4.3 (169) 2.0 (79) max 2.4 (94) 1.3 (51)
7343-31 D 7.3 (287) 4.3 (169) 2.9 (114) 2.4 (94) 1.3 (51)
7343-43 X, E 7.3 (287) 4.3 (169) 4.1 (161) 2.4 (94) 1.3 (51)

Примечания к таблице:

Размеры без скобочек указаны в миллиметрах, в скобочках в милах (mil). 1 мил равен тысячной доле дюйма, или 25.4 мм / 1000 = 0.0254 мм. Если в конце размера указано max, то значит приведен максимальный размер.

EIA Code обозначение корпуса по стандарту EIA, в нем закодирован метрический размер корпуса. Цифры 1 и 2 соответствуют длине L, 3 и 4 ширине W, а цифры 5 и 6 через черточку высоте H.
Case Code популярный заводской буквенный код размера корпуса конденсатора (Kemet, AVX, Vishay).
L длина корпуса (Length).
W ширина корпуса (Width).
H высота корпуса (Height).
W1 ширина контактной площадки для пайки.
A длина контактной площадки.

[Ссылки]

1. Tantalum capacitor site:en.wikipedia.org.
2. Даташиты на танталовые конденсаторы компаний Kemet и Vishay.

SMD компоненты | Виды и типы SMD компонентов

В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского  – удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа  – SMT технологии (Surface Mount Technology), и конечно же, без SMD компонентов.

Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD (Surface Mounted Device), что в переводе с английского  –  “прибор, монтируемый на поверхность”. В нашем случае поверхностью является печатная плата, без сквозных отверстий под радиоэлементы:

В этом случае SMD компоненты не вставляются в отверстия плат. Они запаиваются на контактные дорожки, которые расположены прямо на поверхности  печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на котором раньше были SMD компоненты.

Плюсы SMD компонентов

Самыми большим плюсом SMD компонентов являются их маленькие габариты. На фото ниже простые резисторы и  SMD резисторы:

Благодаря малым габаритам SMD компонентов, у разработчиков появляется возможность размещать большее количество компонентов на единицу площади, чем простых выводных радиоэлементов. Следовательно, возрастает плотность монтажа и в результате этого уменьшаются габариты электронных устройств. Так как вес SMD компонента в разы легче, чем вес того же самого простого выводного радиоэлемента, то и масса радиоаппаратуры будет также во много раз легче.

У простых радиоэлементов  всегда есть паразитные параметры. Это может быть паразитная индуктивность или емкость. Вот, например, эквивалентная   схема простого конденсатора, где сопротивление диэлектрика между обкладками, R – сопротивление выводов, L – индуктивность между выводами.

В SMD компонентах эти параметры минимизированы, потому как их габариты очень малы. Вследствие этого улучшается качество передачи слабых сигналов, а также возникают меньшие помехи  в высокочастотных схемах, благодаря меньшим значениям паразитных параметров.

SMD компоненты намного проще выпаивать. Для этого нам потребуется паяльная станция с  феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье как правильно паять SMD. Запаивать их намного труднее. На заводах их располагают на печатной плате специальные роботы. Вручную на производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.

[quads id=1]

Основные виды SMD компонентов

Давайте рассмотрим основные SMD элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом, предохранители, диоды  и другие компоненты выглядят как обычные маленькие прямоугольники, а точнее, параллелепипеды))

На платах без схемы невозможно узнать, то ли это резистор, то ли конденсатор то ли вообще катушка. Китайцы метят как хотят. На крупных SMD элементах все-таки ставят код или цифры, чтобы определить их принадлежность и номинал.  На фото ниже в красном прямоугольнике помечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также их номинал.

Типоразмеры SMD компонентов могут быть разные. Вот здесь есть описание типоразмеров для резисторов и конденсаторов. Вот, например, прямоугольный SMD конденсатор желтого цвета. Еще их называют танталовыми или просто танталами:

А вот  так выглядят SMD транзисторы:

Есть еще и такие виды SMD транзисторов:

Катушки индуктивности, которые обладают большим номиналом, в SMD исполнении выглядят вот так:

Ну и конечно, как же без микросхем в наш век микроэлектроники! Существует очень много SMD типов корпусов микросхем, но я их делю  в основном на две группы:

1) Микросхемы, у которых выводы параллельны печатной плате и находятся с двух сторон или по периметру.

2) Микросхемы, у которых выводы находятся под самой микросхемой. Это особый класс микросхем, называется BGA (от английского  Ball grid array  – массив из шариков). Выводы таких микросхем представляют из себя простые припойные шарики одинаковой величины.

На фото ниже BGA микросхема и обратная  ее сторона, состоящая из шариковых выводов.

Микросхемы BGA удобны производителям тем, что они очень сильно экономят место на печатной плате, потому что таких шариков под какой-нибудь микросхемой BGA могут быть тысячи. Это значительно облегчает жизнь производителям, но нисколько не облегчает жизнь ремонтникам.

Многослойные платы

Так как  в аппаратуре с SMD компонентами очень плотный монтаж, то и дорожек в плате должно быть больше. Не все дорожки влезают на одну поверхность, поэтому печатные платы делают многослойными.  Если аппаратура сложная и имеет очень много SMD компонентов, то и в плате будет больше слоев. Это как многослойный торт из коржей. Печатные дорожки, связывающие SMD компоненты, находятся прямо внутри платы и их никак нельзя увидеть. Пример многослойных плат – это платы мобильных телефонов, платы компьютеров или ноутбуков (материнская плата, видеокарта, оперативная память и тд).

На фото ниже синяя плата – Iphone 3g, зеленая плата – материнская плата компьютера.

Все ремонтники радиоаппаратуры знают, что если перегреть многослойную плату, то она вздувается пузырем. При этом межслойные связи рвутся и плата  приходит в негодность. Поэтому, главным козырем при замене SMD компонентов является правильно подобранная температура.

На некоторых платах используют обе стороны печатной платы, при этом плотность монтажа, как вы поняли, повышается вдвое. Это еще один плюс SMT технологии. Ах да, стоит учесть еще и тот фактор, что материала для производства SMD компонентов уходит в разы меньше, а себестоимость их при серийном производстве в миллионах штук обходится, в прямом смысле, в копейки.

Рекомендую видео к просмотру – “Что такое SMD компоненты и как их паять”:

Урок 6 – SMD компоненты

SMD компоненты

Мы уже познакомились с основными радиодеталями: резисторами, конденсаторами, диодами, транзисторами, микросхемами и т. п., а также изучили, как они монтируются на печатную плату. Ещё раз вспомним основные этапы этого процесса: выводы всех компонентов пропускают в отверстия, имеющиеся в печатной плате. После чего выводы обрезаются, и затем с обратной стороны платы производится пайка (см. рис.1).
Этот уже известный нам процесс называется DIP-монтаж. Такой монтаж очень удобен для начинающих радиолюбителей: компоненты крупные, паять их можно даже большим «советским» паяльником без помощи лупы или микроскопа. Именно поэтому все наборы Мастер Кит для самостоятельной пайки подразумевают DIP-монтаж.

Рис. 1. DIP-монтаж


Но DIP-монтаж имеет очень существенные недостатки:

– крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
– выводные радиодетали дороже в производстве;
– печатная плата для DIP-монтажа также обходится дороже из-за необходимости сверления множества отверстий;
– DIP-монтаж сложно автоматизировать: в большинстве случаях даже на крупных заводах по производству электронику установку и пайку DIP-деталей приходится выполнять вручную. Это очень дорого и долго.

Поэтому DIP-монтаж при производстве современной электроники практически не используется, и на смену ему пришёл так называемый SMD-процесс, являющийся стандартом сегодняшнего дня. Поэтому любой радиолюбитель должен иметь о нём хотя бы общее представление.

 

SMD монтаж

SMD компоненты (чип-компоненты) — это компоненты электронной схемы, нанесённые на печатную плату с использованием технологии монтирования на поверхность — SMT технологии (англ. surface mount technology).Т.е все электронные элементы, которые «закреплены» на плате таким способом, носят название SMD компонентов (англ. surface mounted device). Процесс монтажа и пайки чип-компонентов правильно называть SMT-процессом. Говорить «SMD-монтаж» не совсем корректно, но в России прижился именно такой вариант названия техпроцесса, поэтому и мы будем говорить так же.


На рис. 2. показан участок платы SMD-монтажа. Такая же плата, выполненная на DIP-элементах, будет иметь в несколько раз большие габариты.

Рис.2. SMD-монтаж


SMD монтаж имеет неоспоримые преимущества:

– радиодетали дешёвы в производстве и могут быть сколь угодно миниатюрны;
– печатные платы также обходятся дешевле из-за отсутствия множественной сверловки;
– монтаж легко автоматизировать: установку и пайку компонентов производят специальные роботы. Также отсутствует такая технологическая операция, как обрезка выводов.

 

SMD-резисторы

Знакомство с чип-компонентами логичнее всего начать с резисторов, как с самых простых и массовых радиодеталей.
SMD-резистор по своим физическим свойствам аналогичен уже изученному нами «обычному», выводному варианту. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. Это же правило относится и ко всем другим SMD-компонентам.

Рис. 3. ЧИП-резисторы


Типоразмеры SMD-резисторов

Мы уже знаем, что выводные резисторы имеют определённую сетку стандартных типоразмеров, зависящих от их мощности: 0,125W, 0,25W, 0,5W, 1W и т. п.
Стандартная сетка типоразмеров имеется и у чип-резисторов, только в этом случае типоразмер обозначается кодом из четырёх цифр: 0402, 0603, 0805, 1206 и т.п.
Основные типоразмеры резисторов и их технические характеристики приведены на рис.4.

Рис. 4 Основные типоразмеры и параметры чип-резисторов


Маркировка SMD-резисторов

Резисторы маркируются кодом на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, На рис. 5. резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 кОм. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифробуквенная. Например, резистор с кодом 4R7 имеет сопротивление 4.7 Ом, а резистор с кодом 0R22 – 0.22 Ом (здесь буква R является знаком-разделителем).
Встречаются и резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как предохранители.
Конечно, можно не запоминать систему кодового обозначения, а просто измерить сопротивление резистора мультиметром.

Рис. 5 Маркировка чип-резисторов

 

Керамические SMD-конденсаторы

Внешне SMD-конденсаторы очень похожи на резисторы (см. рис.6.). Есть только одна проблема: код ёмкости на них не нанесён, поэтому единственный способ ёё определения – измерение с помощью мультиметра, имеющего режим измерения ёмкости.
SMD-конденсаторы также выпускаются в стандартных типоразмерах, как правило, аналогичных типоразмерам резисторов (см. выше).

Рис. 6. Керамические SMD-конденсаторы

 
Электролитические SMS-конденсаторы

Рис.7. Электролитические SMS-конденсаторы


Эти конденсаторы похожи на своих выводных собратьев, и маркировка на них обычно явная: ёмкость и рабочее напряжение. Полоской на «шляпке» конденсатора маркируется его минусовой вывод.

 

SMD-транзисторы

Рис. 8. SMD-транзистор

Транзисторы мелкие, поэтому написать на них их полное наименование не получается. Ограничиваются кодовой маркировкой, причём какого-то международного стандарта обозначений нет. Например, код 1E может обозначать тип транзистора BC847A, а может – какого-нибудь другого. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники. Сложности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатную плату, без документации производителя на эту плату иногда бывает очень сложно.

 

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов приведены на рисунке ниже:

Рис.9. SMD-диоды и SMD-светодиоды

На корпусе диода обязательно указывается полярность в виде полосы ближе к одному из краев. Обычно полосой маркируется вывод катода.

SMD-cветодиод тоже имеет полярность, которая обозначается либо точкой вблизи одного из выводов, либо ещё каким-то образом (подробно об этом можно узнать в документации производителя компонента).

Определить тип SMD-диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода выштамповывается малоинформативный код, а на корпусе светодиода чаще всего вообще нет никаких меток, кроме метки полярности. Разработчики и производители современной электроники мало заботятся о её ремонтопригодности. Подразумевается, что ремонтировать печатную плату будет сервисный инженер, имеющий полную документацию на конкретное изделие. В такой документации чётко описано, на каком месте печатной платы установлен тот или иной компонент.

 

Установка и пайка SMD-компонентов

SMD-монтаж оптимизирован в первую очередь для автоматической сборки специальными промышленными роботами. Но любительские радиолюбительские конструкции также вполне могут выполняться на чип-компонентах: при достаточной аккуратности и внимательности паять детали размером с рисовое зёрнышко можно самым обычным паяльником, нужно знать только некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее об автоматическом и ручном SMD-монтаже будет рассказано отдельно.

 

Скачать урок в формате PDF

Размеры Размеры Подробности »Примечания по электронике

Компоненты

SMT или SMD имеют ряд стандартизированных корпусов, включая 1206, 0805, 0603, 0403, 0201, SOT, SOIC, QFP, BGA и т. Д.


Технология поверхностного монтажа, SMT включает:
Что такое SMT SMD пакеты Четырехместный плоский пакет, QFP Шаровая сетка, BGA Пластиковый держатель микросхемы с выводами, PLCC


Устройства для поверхностного монтажа, SMD или компоненты SMT поставляются в различных упаковках.Поскольку практически вся массовая электроника использует технологию поверхностного монтажа: компоненты для поверхностного монтажа имеют большое значение

Эти компоненты для поверхностного монтажа поставляются в различных упаковках, большинство из которых стандартизированы, чтобы значительно упростить производство сборок печатных плат с использованием автоматизированного оборудования.

Некоторые из наиболее широко используемых компонентов – это резисторы для поверхностного монтажа и конденсаторы для поверхностного монтажа. Эти резисторы и конденсаторы SMD поставляются в небольших прямоугольных корпусах, некоторые из которых очень маленькие.

Кроме того, существует множество различных пакетов SMT для интегральных схем в зависимости от требуемого уровня взаимодействия, используемой технологии и множества других факторов.

Доступен ряд других компонентов, некоторые из которых находятся в стандартных пакетах, но другие, по самой своей природе, нуждаются в специализированных пакетах с нестандартной структурой.


Печатная плата с различными корпусами SMT, а также разъемами, монтируемыми в сквозные отверстия

Требования к работе с компонентами печатных плат

При разработке корпусов для поверхностного монтажа одним из соображений было обращение с компонентами.Поскольку вся цель технологии поверхностного монтажа заключалась в том, чтобы упростить автоматизированную сборку печатных плат, необходимо было спроектировать корпуса так, чтобы ими можно было легко манипулировать на машинах для захвата и установки.

Стили упаковки SMT были разработаны, чтобы обеспечить простоту обращения на этапах отгрузки и складирования в цепочке поставок, а затем с помощью станков захвата и опускания, используемых для сборки печатных плат.

Обеспечение простоты обращения с компонентами на всех этапах, сокращение производственных затрат и максимально высокое качество собранных печатных плат и конечного оборудования.

Часто самые маленькие компоненты свободно хранятся в бункере, они подаются по трубе и извлекаются по мере необходимости.

Более крупные компоненты для поверхностного монтажа, такие как резисторы и конденсаторы, а также многие диоды и транзисторы для поверхностного монтажа, могут храниться на ленте на катушке. Катушка состоит из ленты, внутри которой удерживаются компоненты, а вторая лента свободно приклеивается к задней части. Поскольку машина использует компоненты, удерживающая лента стягивается, открывая доступ к следующему компоненту, который будет использоваться.

Другие компоненты, такие как двухрядные ИС для поверхностного монтажа, можно удерживать в трубке, из которой они могут быть извлечены по мере необходимости, а затем под действием силы тяжести следующий соскользнет вниз.

Очень большие ИС, возможно, четырехъядерные плоские блоки, QFP и держатели микросхем с пластиковыми выводами, PLCC могут храниться в так называемой вафельной упаковке, которую кладут на машину для захвата и размещения. Компоненты удаляются последовательно по мере необходимости.

Стандарты пакетов JEDEC SMT

Отраслевые стандарты используются для обеспечения высокой степени соответствия во всей отрасли.Соответственно, размеры большинства компонентов SMT соответствуют отраслевым стандартам, таким как спецификации JEDEC.

JEDEC Solid State Technology Association – независимая торговая организация и орган по стандартизации полупроводниковой техники. В организацию входят более 300 компаний, многие из которых являются одними из крупнейших компаний-производителей электроники.

Буквы JEDEC обозначают Объединенный инженерный совет по электронным устройствам, и, как следует из названия, он управляет и разрабатывает многие стандарты, связанные с полупроводниковыми устройствами всех типов.Один из аспектов этого – пакеты компонентов технологии поверхностного монтажа.

Очевидно, что для разных типов компонентов используются разные SMT-пакеты, но наличие стандартов позволяет упростить такие действия, как проектирование печатных плат, поскольку можно подготовить и использовать стандартные размеры контактных площадок и их контуры.

Кроме того, использование пакетов стандартного размера упрощает производство, поскольку машины для захвата и размещения могут использовать стандартную подачу для компонентов SMT, что значительно упрощает производственный процесс и снижает затраты.

Различные пакеты SMT можно разделить на категории по типу компонентов, и для каждого из них есть стандартные пакеты.

Пассивные прямоугольные компоненты

Пассивные устройства для поверхностного монтажа в основном состоят из резисторов SMD и конденсаторов SMD. Есть несколько различных стандартных размеров, которые были уменьшены, поскольку технология позволила производить и использовать более мелкие компоненты

Видно, что названия размеров устройств основаны на их размерах в дюймах.


Общие сведения о пассивном SMD-корпусе
SMD Тип корпуса Габаритные размеры
мм
Размеры
дюймов
2920 7,4 x 5,1 0,29 х 0,20
2725 6,9 x 6,3 0,27 х 0,25
2512 6,3 x 3,2 0,25 х 0,125
2010 5.0 х 2,5 0,20 х 0,10
1825 4,5 x 6,4 0,18 х 0,25
1812 4,6 x 3,0 0,18 х 0,125
1806 4,5 x 1,6 0,18 х 0,06
1210 3,2 х 2,5 0,125 х 0,10
1206 3,0 х 1,5 0,12 х 0,06
1008 2.5 х 2,0 0,10 х 0,08
0805 2,0 x 1,3 0,08 х 0,05
0603 1,5 х 0,8 0,06 х 0,03
0402 1,0 х 0,5 0,04 х 0,02
0201 0,6 х 0,3 0,02 х 0,01
01005 0,4 х 0,2 0,016 х 0,008

Из этих размеров размеры 1812 и 1206 теперь используются только для специализированных компонентов или компонентов, требующих большего уровня рассеиваемой мощности. Размеры SMT 0603 и 0402 являются наиболее широко используемыми, хотя с дальнейшим развитием миниатюризации, 0201 и все более широко используются резисторы и конденсаторы SMD меньшего размера.

При использовании резисторов для поверхностного монтажа необходимо следить за тем, чтобы уровни рассеиваемой мощности не превышались, поскольку максимальные значения намного меньше, чем для большинства резисторов с выводами

Примечание о конденсаторах для поверхностного монтажа:

Малые конденсаторы для поверхностного монтажа используются миллиардами во всех формах массового производства электронного оборудования. Конденсаторы для поверхностного монтажа обычно представляют собой небольшие прямоугольные кубоиды, размеры которых обычно изготавливаются в соответствии с размерами промышленных стандартов.Конденсаторы SMCD могут использовать различные технологии, включая многослойную керамику, тантал, электролитические и некоторые другие, менее широко используемые разновидности.

Подробнее о Конденсатор поверхностного монтажа.


Примечание о резисторах для поверхностного монтажа:

Технология поверхностного монтажа дает значительные преимущества для массового производства электронного оборудования. Малогабаритные резисторы для поверхностного монтажа используются миллиардом во всех формах массового электронного оборудования.Резисторы обычно представляют собой очень маленькие устройства прямоугольной формы, и они обычно производятся в соответствии с промышленными стандартами типоразмера

.

Подробнее о Резистор поверхностного монтажа.

Хотя в основном корпусы компонентов для поверхностного монтажа этих размеров используются для резисторов SMD и конденсаторов SMD, они также используются для некоторых других компонентов. В некоторых случаях физически невозможно принять эти стандартные размеры, но некоторые другие компоненты используют их.Одним из примеров является индуктивность SMD. Естественно, это очень сложно для очень маленьких размеров, но индукторы SMD доступны в размерах 0805 и 0603.

Танталовые конденсаторы SMD корпуса

Из-за разной конструкции и различных требований к танталовым конденсаторам для поверхностного монтажа, для них используются несколько различных корпусов. Они соответствуют спецификациям EIA.


Обычный танаталовый конденсатор SMD Детали пакета
SMD Тип корпуса Габаритные размеры
мм
Стандарт EIA
Размер A 3.2 х 1,6 х 1,6 EIA 3216-18
Размер B 3,5 х 2,8 х 1,9 EIA 3528-21
Размер C 6,0 х 3,2 х 2,2 EIA 6032-28
Размер D 7,3 x 4,3 x 2,4 EIA 7343-31
Размер E 7,3 x 4,3 x 4,1 EIA 7343-43

Прочие пассивные компоненты SMD

Есть несколько типов других компонентов, которые не могут соответствовать стандартным размерам компонентов для поверхностного монтажа, которые используются в большинстве резисторов и конденсаторов SMD.

Версии компонентов для поверхностного монтажа, такие как многие типы катушек индуктивности, трансформаторы, кварцевый резонатор, кварцевые генераторы с регулируемой температурой TCXO, фильтры, керамические резонаторы и т. конденсаторы.

Маловероятно, что эти корпуса будут соответствовать стандартным размерам корпусов компонентов для поверхностного монтажа ввиду уникального характера компонентов.

Какой бы стиль упаковки ни был выбран, он должен соответствовать автоматизированным процессам сборки печатных плат и обрабатываться с помощью машины для захвата и установки.

Транзисторно-диодные корпуса

Транзисторы и диоды

SMD часто имеют один и тот же тип корпуса. В то время как диоды имеют только два электрода, упаковка из трех позволяет правильно выбрать ориентацию.


SMT / SMD-диоды на печатной плате

Несмотря на то, что доступно множество SMT-транзисторов и диодных корпусов, некоторые из самых популярных приведены в списке ниже.

  • SOT-23 – Малый контурный транзистор: SMT-корпус SOT23 является наиболее распространенным контуром для малосигнальных транзисторов для поверхностного монтажа.SOT23 имеет три вывода для диода транзистора, но он может иметь больше выводов, когда его можно использовать для небольших интегральных схем, таких как операционный усилитель и т. Д. Его размеры 3 мм x 1,75 мм x 1,3 мм.
  • SOT-223 – Малый контурный транзистор: Корпус SOT223 используется для более мощных устройств, таких как более мощные транзисторы для поверхностного монтажа или другие устройства для поверхностного монтажа. Он больше, чем SOT-23, и имеет размеры 6,7 x 3,7 x 1,8 мм. Обычно имеется четыре клеммы, одна из которых представляет собой большую теплообменную площадку.Это позволяет передавать тепло печатной плате.

Пакеты SMD для интегральных схем

Существует множество форм корпусов, которые используются для ИС для поверхностного монтажа. Хотя существует большое разнообразие, у каждого есть области, в которых его использование особенно применимо.

  • SOIC – Интегральная схема небольшого размера: Этот корпус ИС для поверхностного монтажа имеет конфигурацию с двумя линиями и выводами в виде крыльев чайки с расстоянием между выводами, равным 1.27 мм
  • SOP – Small Outline Package: Существует несколько версий этого SMD пакета:
    • TSOP – Thin Small Outline Package: Этот корпус ИС для поверхностного монтажа тоньше, чем SOIC, и имеет меньшее расстояние между выводами 0,5 мм
    • SSOP – термоусадочная, маленькая упаковка Упаковка: В этом корпусе расстояние между выводами составляет 0,635 мм
    • TSSOP – Thin Shrink Small Outline Упаковка:
    • QSOP – Quarter-size Small Outline Package: Он имеет расстояние между выводами 0.635 мм
    • VSOP – очень маленький контур Упаковка: Он меньше, чем QSOP, и имеет расстояние между выводами 0,4, 0,5 или 0,65 мм.
  • QFP- Quad flat pack: QFP – это стандартный тип плоского корпуса для ИС поверхностного монтажа. Есть несколько вариантов, как описано ниже.
    • LQFP – Низкопрофильный четырехугольный плоский пакет: Этот пакет имеет контакты со всех четырех сторон. Расстояние между выводами варьируется в зависимости от ИС, но высота равна 1.4 мм.
    • PQFP – Пластиковая четырехугольная плоская упаковка: Квадратная пластиковая упаковка с равным количеством штифтов в виде крыла чайки на каждой стороне. Обычно узкий интервал и часто 44 или более контактов. Обычно используется для схем СБИС.
    • CQFP – Ceramic Quad Flat Pack: Керамическая версия PQFP.
    • TQFP – Thin Quad Flat Pack: Тонкая версия PQFP.
    В корпусе с четырьмя плоскими корпусами для ИС поверхностного монтажа со всех сторон выходят очень тонкие выводы в виде крыльев чайки.На ИС с большим количеством выводов они могут быть очень тонкими и легко гнутыми. Однажды согнувшись, их практически невозможно перестроить в нужное положение. При обращении с этими устройствами необходимо проявлять особую осторожность в процессе сборки печатной платы.

  • PLCC – Держатель микросхемы с пластиковыми выводами: Этот тип корпуса имеет квадратную форму и использует J-образные выводы с шагом 1,27 мм.

  • BGA – Ball Grid Array: SMD-корпус с шариковой решеткой имеет все свои контактные площадки под корпусом устройства.Перед пайкой контактные площадки выглядят как шарики припоя, отсюда и название.

    Корпус SMB BGA с верхней и нижней сторонами Размещение контактов под устройством уменьшает требуемую площадь при сохранении количества доступных соединений. Этот формат также решает некоторые проблемы, связанные с очень тонкими выводами, которые требуются для четырехъядерных плоских блоков, и делает корпус более прочным. Расстояние между шариками на BGA обычно составляет 1,27 мм.

    Когда впервые был представлен корпус BGA, во многих кругах существовали сомнения в надежности пайки точек контакта под корпусом, но когда процесс сборки печатной платы работает правильно, проблем не возникает.


Несмотря на то, что существует очень много различных SMD-корпусов, наличие стандартов сокращает их количество, и появляется возможность создавать дизайнерские пакеты для печатных плат, соответствующие им, наряду с проверенными размерами контактных площадок на платах. Таким образом, пакеты обеспечивают высококачественную сборку печатных плат и сокращение общего количества переменных в конструкции.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

SMD / SMT Component Packages: размеры, габариты – ТОМСОН ЭЛЕКТРОНИКС

Технология поверхностного монтажа, компоненты SMT поставляются в различных упаковках. Используются несколько распространенных размеров, что позволяет настраивать производственные машины для захвата и размещения в соответствии с этими размерами.

Наблюдается растущая тенденция к уменьшению размеров упаковки большинства компонентов. Это стало результатом общих улучшений в технологии и более низких напряжений питания для микропроцессоров и многих цифровых ИС, опять же в результате развития технологий.

Кроме того, существует множество различных пакетов SMT для интегральных схем в зависимости от требуемого уровня взаимодействия, используемой технологии и множества других факторов.

Стандарты пакетов JEDEC SMT

Отраслевые стандарты используются для обеспечения высокой степени соответствия во всей отрасли. Соответственно, размеры большинства компонентов SMT соответствуют отраслевым стандартам, таким как спецификации JEDEC. Очевидно, что для разных типов компонентов используются разные SMT-пакеты, но наличие стандартов позволяет упростить такие действия, как проектирование печатных плат, поскольку можно подготовить и использовать стандартные размеры контактных площадок и их контуры.

Кроме того, использование пакетов стандартного размера упрощает производство, поскольку машины для захвата и размещения могут использовать стандартную подачу для компонентов SMT, что значительно упрощает производственный процесс и снижает затраты.

Различные пакеты SMT можно разделить на категории по типу компонентов, и для каждого из них есть стандартные пакеты.

Пассивные прямоугольные компоненты

Пассивные устройства для поверхностного монтажа в основном состоят из резисторов и конденсаторов.Есть несколько различных стандартных размеров, которые были уменьшены, поскольку технология позволила производить и использовать более мелкие компоненты

Видно, что названия размеров устройств основаны на их размерах в дюймах.

Из этих типоразмеров размеры 1812 и 1206 сейчас используются только для специализированных компонентов или компонентов, требующих большего уровня рассеиваемой мощности. Типоразмеры SMT 0603 и 0402 являются наиболее широко используемыми.

Примечание о конденсаторах для поверхностного монтажа:

Малые конденсаторы для поверхностного монтажа используются миллиардами во всех формах массового производства электронного оборудования.Конденсаторы для поверхностного монтажа обычно представляют собой небольшие прямоугольные кубоиды, размеры которых обычно изготавливаются в соответствии с размерами промышленных стандартов. Конденсаторы SMCD могут использовать различные технологии, включая многослойную керамику, тантал, электролитические и некоторые другие, менее широко используемые разновидности.

Примечание о резисторах для поверхностного монтажа:

Технология поверхностного монтажа дает значительные преимущества для массового производства электронного оборудования. Малогабаритные резисторы для поверхностного монтажа используются миллиардом во всех формах массового электронного оборудования.Резисторы обычно представляют собой очень маленькие устройства прямоугольной формы, и они обычно производятся в соответствии с промышленными стандартами типоразмера

.

Танталовые конденсаторы SMD корпуса

Из-за разной конструкции и различных требований к танталовым конденсаторам для поверхностного монтажа, для них используются несколько различных корпусов. Они соответствуют спецификациям EIA.

Транзисторно-диодные корпуса

Транзисторы и диоды

SMD часто имеют один и тот же тип корпуса.В то время как диоды имеют только два электрода, упаковка из трех позволяет правильно выбрать ориентацию.

Хотя доступно множество SMT-транзисторов и диодных корпусов, некоторые из самых популярных приведены в списке ниже.

  • SOT-23 – Транзистор с малым контуром: Корпус SOR23 SMT является наиболее распространенным контуром для транзисторов с малым сигналом. SOT23 имеет три контакта для диода транзистора, но может иметь больше контактов, когда его можно использовать для небольших интегральных схем, таких как операционный усилитель и т. Д.Его размеры 3 мм x 1,75 мм x 1,3 мм.
  • SOT-223 – Малый контурный транзистор: Корпус SOT223 используется для устройств большей мощности. Он больше, чем SOT-23, и имеет размеры 6,7 x 3,7 x 1,8 мм. Обычно имеется четыре клеммы, одна из которых представляет собой большую теплообменную площадку. Это позволяет передавать тепло печатной плате.

Пакеты SMD для интегральных схем

Есть много форм корпусов, которые используются для SMD IC.Хотя существует большое разнообразие, у каждого есть области, в которых его использование особенно применимо.

  • SOIC – Интегральная схема малого размера: Этот корпус SMD IC имеет конфигурацию с двумя линиями и выводами в виде крыльев чайки с расстоянием между выводами 1,27 мм
  • SOP – Small Outline Package: Существует несколько версий этого пакета SMD:
  • TSOP – Thin Small Outline Упаковка: Этот корпус SMD тоньше, чем SOIC, и имеет меньшее расстояние между выводами, равное 0.5 мм
  • SSOP – термоусадочная, маленькая упаковка Упаковка: В этом корпусе расстояние между выводами составляет 0,635 мм
  • TSSOP – Thin Shrink Small Outline Упаковка:
  • QSOP – Quarter-size Small Outline Упаковка: Он имеет шаг штифта 0,635 мм
  • VSOP – очень маленький контур Упаковка: Он меньше, чем QSOP, и имеет расстояние между выводами 0,4, 0,5 или 0,65 мм.
  • QFP- Quad flat pack: QFP – это стандартный тип плоского корпуса для ИС.Есть несколько вариантов, как описано ниже.
    PLCC – Держатель микросхемы с пластиковыми выводами: Этот тип корпуса имеет квадратную форму и использует J-образные выводы с шагом 1,27 мм.
  • BGA – Ball Grid Array: SMD-корпус с шариковой решеткой имеет все свои контактные площадки под корпусом устройства. Перед пайкой контактные площадки выглядят как шарики припоя, отсюда и название.

Размещение контактов под устройством уменьшает требуемую площадь при сохранении количества доступных соединений.Этот формат также решает некоторые проблемы, связанные с очень тонкими выводами, которые требуются для четырехъядерных плоских блоков, и делает корпус более прочным. Расстояние между шариками на BGA обычно составляет 1,27 мм.

Несмотря на то, что существует очень много различных SMD-корпусов, наличие стандартов сокращает их количество, и появляется возможность создавать дизайнерские пакеты для печатных плат, соответствующие им, наряду с проверенными размерами контактных площадок на платах. Таким образом, пакеты обеспечивают высококачественную сборку печатных плат и сокращение общего количества переменных в конструкции.

Резисторы SMD

: коды, размер, испытания, допуски и выбор

Резистор

SMD или микросхемный фиксированный резистор – это один из резисторов для глазури с металлическим стеклом. Это резистор, изготовленный путем смешивания металлического порошка и порошка стеклянной глазури и печати на подложке методом трафаретной печати. Он устойчив к влажности и высокой температуре, имеет низкотемпературный коэффициент. Резистор SMD может значительно сэкономить место на схеме и сделать дизайн более изысканным.

Abstract

Резистор SMD или Чип фиксированный резистор является одним из резисторов для глазури с металлическим стеклом.Это резистор, изготовленный путем смешивания металлического порошка и порошка стеклянной глазури и печати на подложке методом трафаретной печати. Он устойчив к влажности и высокой температуре с низкотемпературным коэффициентом. Резистор SMD может значительно сэкономить место на схеме и сделать дизайн более изысканным. SMD – это аббревиатура от Surface Mounted Devices, которая представляет собой особый вид элементного устройства SMT (технология поверхностного монтажа). Резисторы SMD обычно называют чип-резисторами.

Каталог

I Как определить коды резисторов SMD?

1.Метод номинального обозначения цифрового кабеля (обычно используется для прямоугольных чип-резисторов)

SMD-резистор

Метод определения номинала цифрового кабеля заключается в нанесении сопротивления цифрами на резисторе. Его первая цифра и вторая цифра являются значащими цифрами, а третья цифра представляет собой число «0», добавленное после значащей цифры. В нем нет букв. Например: «472 ‘» означает «4700 Ом»; «151» означает «150».

Значение сопротивления резистора SMD обычно указывается непосредственно на поверхности резистора в цифровой форме, поэтому значение сопротивления резистора считывания можно непосредственно увидеть по номеру на поверхности резистора.Обычно существует три метода представления:

(1) Состоит из трех чисел, указывающих, что допуск сопротивления составляет ± 5%. Первые две цифры являются значащими цифрами, третья цифра представляет собой множитель умножения на ноль, а основная единица измерения – Ω. Например, 103, 1 и 0 – допустимые числа, просто запишите их, 2 означает умножение на ноль, который является степенью 10 (короче говоря, третья цифра – это степень 10). Таким образом, сопротивление, представленное числом 103, является степенью 10 × 10 = 10 × 1000 = 10000 Ом = 10 кОм

(2) Состоит из четырех чисел, указывающих, что допуск сопротивления составляет ± 1%.Первые три цифры являются значащими цифрами, а четвертая цифра представляет собой множитель на ноль (то есть число означает степень 10). Например, 1502, 150 – значащее число, запишите его напрямую, 2 представляет степень 10. Таким образом, сопротивление 1502 – это квадрат 150 × 10 = 150 × 100 = 15000 Ом = 15 кОм

(3) Состоит из цифры и буквы, например 5R6, R16 и т. д. Здесь нужно только заменить R на десятичную точку.

5R6 = 5,6R = 5,6 Ом R16 = 0,16R = 0,16 Ом

Здесь следует отметить, что «R» является выражением сопротивления, а «Ω» – единицей сопротивления.В повседневной жизни мы не можем смешивать эти два понятия, но в промышленном производстве граница между ними очень расплывчата.

2. Метод номинального цветового кольца (обычно используется для цилиндрических постоянных резисторов)

SMD-резисторы такие же, как и обычные резисторы, и в большинстве из них используются четыре кольца (иногда три кольца) для обозначения их сопротивления. Первое кольцо и второе кольцо – это значащие цифры, а третье кольцо – это увеличение (коды цветных колец показаны в таблице 1).Например: «Коричневый, зеленый, черный» означает «15 Ом»; «Синий Серый Оранжевый Серебро» означает «68 кОм» с допуском ± 10%.

3.E96 цифровой код и буквенный смешанный номинальный метод

Смешанный номинальный метод цифровых кодов и букв также использует три цифры для обозначения значения сопротивления, то есть «две цифры плюс одна буква», где две цифры представляют код сопротивления серии E96. Третья цифра – это увеличение, выраженное буквенным кодом (приведенным в таблице). Например: «51D» означает «332 × 103; 332 кОм»; «249Y» означает «249 × 10-2; 2.49 Ом “.

II SMD-резисторы размером

Резисторы для поверхностного монтажа стандартизированы по форме и размеру. Большинство производителей используют стандарт JEDEC. Размер SMD-резистора представлен цифровым кодом, например 0603. Этот код содержит ширина и высота упаковки. Таким образом, в примере с кодом 0603 в британской системе мер это означает, что длина составляет 0,060 дюйма, а ширина – 0,030 дюйма. Этот код может быть указан в английских или метрических единицах, обычно для обозначения размер упаковки чаще.Напротив, в современном дизайне печатных плат чаще используются метрические единицы (мм), что может вызвать путаницу. В общем, вы можете предположить, что код указан в английских единицах измерения, но используется размер в миллиметрах. Размер резистора SMD в основном зависит от требуемой номинальной мощности. В следующей таблице перечислены размеры и характеристики распространенных корпусов для поверхностного монтажа.

(дюймы)

(мм)

(L) (мм)

(W) (мм)

(t) (мм)

an (мм)

b (мм)

0201

0603

0.60 & plusmn; 0,05

0,30 & plusmn; 0,05

0,23 & plusmn; 0,05

0,10 & plusmn; 0,05

0,15 0,15 & plusmn; 0,05

0

0

0

0

0

1,00 + 0,10

0,50 + 0,10

0,30 + 0,10

0,20 + 0,10

0.25 и плюс 0,10

0603

1608

1,60 и плюс 0,15

0,80 и плюс 0,15

0,40 и плюс 0,109

0,40000 900.209

0,409 9005 0,109

0,30 и плюс 0,20

0805

2012

2,00 и плюс 0,20

1,25 и плюс 0.15

0,50 и плюс 0,10

0,40 и плюс 0,20

0,40 и плюс 0,20

1206

3216

3216

3216

& plusmn; 0,15

0,55 & plusmn; 0,10

0,50 & plusmn; 0,20

0,50 & plusmn; 0,20

1210

32254920 и плюс 0,20

2,50 плюс 0,20

0,55 плюс 0,10

0,50 и плюс 0,20

0,50 и плюс 0,20

0

0

934

0

0

934

0

0

934

0

4,50 + 0,20

3,20 + 0,20

0,55 + 0,10

0,50 + 0,20

0.50 и плюс 0,20

2010

5025

5,00 и плюс 0,20

2,50 и плюс 0,20

0,55

0

0,55

0 0,10

49 0,1049 плюс

0,60 и плюс 0,20

2512

6432

6,40 и плюс 0,20

3,20 и плюс 0.20

0,55 & plusmn; 0,10

0,60 & plusmn; 0,20

0,60 & plusmn; 0,20

Таблица упаковки и размеров

III SMD резисторы испытания 1. Метод испытания сопротивления заземления

: а. Рабочее заземление переменного тока, сопротивление не должно превышать 4 Ом; б. Безопасное рабочее заземление, сопротивление не должно превышать 4 Ом; c. Рабочее заземление постоянного тока, сопротивление должно определяться в соответствии с конкретными требованиями компьютерной системы; Патч-сопротивление заземления молниезащиты не должно превышать 10 Ом; е.Если в системе экранирования используется совместное заземление, сопротивление заземления не должно превышать 1 Ом.

2. Тестер резистора SMD

Тестер сопротивления заземления ZC-8 подходит для измерения сопротивления различных систем питания, электрооборудования, молниеотводов и других заземляющих устройств. Он также может измерять значение сопротивления и удельное сопротивление почвы проводников с низким сопротивлением.

Тестер сопротивления заземления ZC-8

3. Работа этого прибора состоит из генератора с ручным запуском, трансформатора тока, скользящего резистора и гальванометра.Все механизмы установлены в пластиковом корпусе, а внешний корпус удобен для переноски. К аксессуарам относятся провода вспомогательного датчика и т. Д., Которые устанавливаются в сумке с аксессуарами. В его принципе работы используется формула сравнения опорного напряжения.

4. Перед использованием проверьте комплектность тестера. Тестер включает в себя следующие устройства: 1. Один тестер сопротивления заземления ZC-8 2. Два вспомогательных заземляющих стержня 3. Три провода, каждый из которых 5м, 20м и 40м

5.Использование и эксплуатация

(1) При измерении сопротивления SMD-резистора кнопка клеммы E на приборе соединяется с проводом длиной 5 м, кнопка клеммы P соединяется с проводом длиной 20 м, а кнопка клеммы C соединяется с провод 40м. Другой конец провода подсоединяется к заземляющему электроду E ’, датчику потенциала P’ и датчику тока C ’, при этом E’, P ’, C’ должны находиться на прямой линии на расстоянии 20 м.

Если на схеме подключения сопротивление микросхемы больше или равно 1 Ом, соедините две кнопки клеммы E на измерителе вместе.Связанные изображения по этой теме:

Схема подключения, когда сопротивление микросхемы больше или равно 1 & Omega;

Когда сопротивление микросхемы меньше 1 Ом, подключите два провода кнопки клеммы E на приборе к тестируемому заземлению, чтобы устранить дополнительную ошибку, вносимую сопротивлением соединительного провода во время измерения.

Схема подключения, когда сопротивление микросхемы меньше 1 & Омега;

(2) Этапы работы

1) Вся проводка со стороны прибора должна быть правильной.

2) Соединение между прибором и заземляющим электродом E ’, датчиком потенциала P’ и датчиком тока C ’должно находиться в плотном контакте.

3) После того, как счетчик установлен горизонтально, отрегулируйте механическое нулевое положение гальванометра и вернитесь к нулю.

4) Установите переключатель увеличения на максимальное увеличение и постепенно увеличивайте скорость кривошипной рукоятки до 150 об / мин. Когда стрелка гальванометра отклоняется в определенном направлении, поверните циферблат, чтобы вернуть стрелку гальванометра в положение «0».В это время показание на циферблате, умноженное на шкалу увеличения, является измеренным значением сопротивления.

5) Если показание шкалы меньше 1, стрелка гальванометра все еще не сбалансирована, и переключатель увеличения можно установить на следующее меньшее увеличение, пока оно не будет отрегулировано до полного баланса.

6) Если стрелка гальванометра счетчика дрожит, скорость кривошипа можно изменить, чтобы устранить дрожание.

Электрические и физические схемы

IV Допуск

Что такое прецизионный резистор SMD? Прецизионный резистор SMD означает, что допуск чип-резистора относительно невелик.Обычно это называется допуском 1%. Минимальная погрешность может достигать 0,01%. Температурный коэффициент составляет всего ± 5 частей на миллион / ° C, что редко достигается в промышленности: он может применяться к прецизионным приборам, коммуникационным электронным продуктам и портативным электронным продуктам. Многие люди спросят: если сопротивление микросхемы такое маленькое, можно ли его различить, если не проверять 5% и 1%? Итак, ниже мы сравниваем разницу между резисторами микросхемы 5% и 1%.

Резисторы SMD серии 5% представлены тремя символами: в этом методе первые две цифры представляют собой действующие цифры значения сопротивления, а третья цифра представляет собой число «0», которое следует добавить после действующего числа. .Когда сопротивление меньше 10 Ом, R используется для обозначения положения десятичной точки в значении сопротивления в коде резистора. Это обозначение обычно используется в серии сопротивлений с погрешностью значения сопротивления 5%. Например, 330 означает 33 Ом вместо 330 Ом; 221 означает 220 Ом; 683 означает 68000 Ом или 68 кОм; 105 означает 1 МОм; 6R2 означает 6,2 Ом.

Прецизионные резисторы SMD серии 1% представлены 4 символами: первые 3 цифры этого обозначения представляют собой действующие цифры значения сопротивления, а четвертая цифра представляет количество нулей, которые следует добавить после действующих цифр.Когда сопротивление меньше 10 Ом, R все еще используется в коде для обозначения положения десятичной точки в значении сопротивления. Этот метод представления обычно используется в серии прецизионных сопротивлений с погрешностью сопротивления 1%. Например: 0100 означает 10 Ом; 1000 означает 100 Ом; 4992 означает 49900 Ом или 49,9 кОм; 1473 означает 147000 Ом или 147 кОм; 0R56 означает 0,56 Ом.

На поверхности резисторов SMD выгравированы буквы. Если есть только три цифры, ошибка составляет 5%. Если есть четыре цифры, ошибка составляет 1%.

В Выбор резисторов SMD

Применение технологии поверхностной сборки (SMT) очень распространено, и доля электронных продуктов, собираемых SMT, превышает 90%. С развитием мелкомасштабного производственного оборудования SMT область применения SMT еще больше расширяется, и в аэрокосмической, аэрокосмической, приборостроительной, станкостроительной и других областях SMT также используется для производства различных небольших электронных продуктов или компонентов.

Разработчики электронных продуктов часто используют SMD-устройства для разработки новых продуктов.В последние годы обслуживающий персонал также начал ремонтировать большое количество электронных продуктов, собранных по технологии SMT.

Модель резистора SMD неоднородна и устанавливается каждым производителем, а модель особенно длинная (состоит из более чем десятка букв и цифр). Если различные параметры и характеристики SMD-резистора могут быть правильно представлены при покупке, то необходимый резистор можно легко приобрести (или заказать).

Для резисторов SMD существует 5 параметров, а именно размер, сопротивление, допуск, температурный коэффициент и упаковка.

1. Размер

SMD резисторы обычно имеют 7 размеров, которые выражаются двумя кодами размеров. Код размера – это код EIA (Американской ассоциации электронной промышленности), представленный 4 цифрами. Первые две цифры и последние две цифры указывают длину и ширину резистора в дюймах соответственно. Другой – это метрический код, который также представлен 4 цифрами в миллиметрах. Резисторы разного размера имеют разную номинальную мощность.

2. Сопротивление

Номинальное сопротивление определяется серией.Каждая серия делится на допуск сопротивления (чем меньше допуск, тем больше делится значение сопротивления), и чаще всего используется E-24 (допуск значения сопротивления составляет & plusmn; 5%).

На поверхности резистора SMD три цифры используются для представления значения сопротивления, в котором первая и вторая цифры являются действительными числами, а третья цифра представляет собой число, за которым следует ноль. Когда есть десятичная точка, используйте “R” для обозначения и занимайте одну значащую цифру.

3. Допуск

Допуск SMD резистора (углеродного пленочного резистора) имеет 4 уровня, а именно уровень F, ± 1%; Уровень G, плюс 2%; Уровень J, плюс 5%; Уровень К, плюс 10%.

4. Температурный коэффициент

Температурный коэффициент резистора SMD имеет два уровня, а именно, уровень w & plusmn; 200 ppm / ℃; X уровень, & plusmn; 100ppm / ℃. Только резисторы с допуском F относятся к классу x, тогда как резисторы с допусками других классов обычно относятся к классу w.

5. В основном существует два вида упаковки: насыпная и рулонная.

Диапазон рабочих температур резисторов SMD составляет -55- + 125 ℃. Максимальное рабочее напряжение зависит от размера: 0201 – самое низкое, 0402 и 0603 – 50 В, 0805 – 150 В, а другие размеры – 200 В.

Цифры на поверхности резистора SMD используются для обозначения символов сопротивления, расположенных по горизонтали, и указываются для представления трех цифр, где первые две цифры – действительные цифры, а третья цифра – показатель степени 10.Например: 473 означает 47 & раз; 103 = 47 к & Омега ;. Если второй символ на поверхности резистора, используемый для обозначения значения сопротивления, представляет собой букву R, он представляет десятичную точку, например, 5R1 означает, что значение сопротивления равно 5,1 & Omega ;.

Рекомендуемый артикул:

В чем разница между подтягивающими и понижающими резисторами?

Руководство по прецизионным резисторам для новичков

Что такое пакеты микросхем DIP, SMD, QFP и BGA?

Существует много типов корпусов ИС, каждый из которых имеет уникальные размеры, типы монтажа и / или количество выводов.Наиболее распространенные типы корпусов ИС включают DIP, устройства для поверхностного монтажа (SMD), корпус с малым контуром (SOP), четырехплоскостной корпус (QFP) и решетку с шариками (BGA).

Двухрядный корпус (DIP)

Это наиболее распространенный корпус ИС для сквозных отверстий, используемый в схемах, особенно в хобби-проектах. Эта ИС имеет два параллельных ряда выводов, перпендикулярно выступающих из прямоугольного пластикового корпуса.

Габаритные размеры DIP-корпуса зависят от количества выводов. Наиболее распространенное количество кеглей – четыре, шесть, восемь, четырнадцать, восемнадцать, двадцать, двадцать восемь и сорок кеглей.Штыри на DIP IC разнесены на 2,54 мм друг от друга, что является стандартным расстоянием и идеально подходит для установки в макетные платы, вертикальные платы и другие макетные платы.

DIP IC также может быть легко припаян к печатной плате. Иногда вместо пайки микросхемы непосредственно на печатную плату используется гнездо для микросхемы. Использование гнезда позволяет легко извлекать и вставлять DIP IC в печатную плату.

Устройство для поверхностного монтажа (SMD)

На рынке доступно множество корпусов для поверхностного монтажа, включая SOP, транзисторы с малым контуром (SOT) и QFP.Для корпусов SMD IC обычно требуются специальные печатные платы, содержащие соответствующий узор из меди, к которому они будут припаяны. Обычно для их пайки на печатных платах используются специальные автоматизированные инструменты.

Компактная ИС (SOIC), корпус

Корпус

SOIC короче и уже, чем DIP. Это SMD, в котором все контакты DIP изогнуты наружу и уменьшены до размера. Каждый штифт обычно находится на расстоянии 1,27 мм от следующего.

Мелкоконтрастная упаковка (СОП)

Это еще более уменьшенная версия пакета SOIC.Подобно SOIC, семейство SOP имеет меньший форм-фактор, с расстоянием между выводами менее 1,27 мм. Каждая СОП включает в себя пластиковую упаковку с малым контуром (PSOP), тонкую упаковку с малым контуром (TSOP) и тонкую усадочную упаковку с малым контуром (TSSOP).

Четырехплоскостной корпус (QFP)

В отличие от двухстороннего DIP, QFP IC имеет контакты со всех четырех сторон. ИС QFP может иметь от восьми выводов на сторону (всего 32) до более семидесяти (300+). Контакты на микросхеме QFP обычно расположены на расстоянии от 0,4 мм до 1 мм.Меньшие варианты стандартного пакета QFP включают тонкий QFP (TQFP), очень тонкий QFP (VQFP) и низкопрофильный QFP (LQFP) пакеты.

Четырехплоскостной пакет без проводов (QFN)

Существует еще один тип ИС QFP, но с другой структурой выводов, он называется корпусом QFN. Контакты на упаковке QFN видны снизу, а иногда и по бокам, и снизу.

Малоконтрастный транзистор (СОТ)

Устройства

SMD, такие как прямоугольные транзисторы, доступны в корпусах SOT.

Шаровая сетка (BGA)

ИС

Advanced доступны в корпусах BGA. Эти удивительно сложные корпуса имеют маленькие шарики припоя, расположенные в виде двухмерной сетки на дне. Обычно, чтобы поместить эти пакеты на печатную плату, требуется автоматизированная процедура, включающая машины для захвата и размещения и печи оплавления. Пакеты BGA находятся на платах pcDuino и Raspberry Pi.


Технология поверхностного монтажа – обзор

11.4.2 Великобритания

Уильямс и Эллис 26 представили модель радиационного повреждения в сварных швах под флюсом.База данных, используемая для подбора модели, включает ряд сварных швов с различным содержанием Cu, Ni и P. Образцы, как правило, облучали в реакторах для испытаний материалов (MTR) с мощностью дозы ~ 7 × 10 – 9 сна / с, хотя некоторые виды облучения проходили при более низких мощностях дозы. Температуры облучения ( T irr ) находились в диапазоне от 225 до 315 ° C. Модель была сформулирована с точки зрения увеличения твердости при облучении, хотя степень радиационного повреждения оценивалась с помощью комбинации испытаний на твердость, испытаний по Шарпи и испытаний на вязкость разрушения с использованием подхода Master Curve.

Изменение твердости из-за облучения (Δ H ) было подогнано к модели с двумя элементами: упрочнения матрицы (Δ Mtx ) и упрочнения обогащенного Cu осадка (Δ Ppt ) с использованием статистических процедур. Результирующая модель, применимая при высокой мощности дозы (7 × 10 – 9 сна / с), составляет:

[11,39] ΔH = ΔMtx + ΔPpt

, где

[11,40] ΔMtx = 8,65⋅2,66−0,0065 Tirr⋅dose0,42

и

[11,41] ΔPpt = 41 + 1850PCumtx − 0,1640,398⋅tanhdose15.7−32.2Cumtx

Доза облучения указана в миллидеталиях в год, содержание P и Cu в мас.%, А содержание меди в матрице ( Cu mtx ) равно содержанию Cu для Cu ≤ 0,35 мас.% и 0,35 мас.% для Cu > 0,35 мас.%. Компонент осаждения при изменении твердости устанавливается равным нулю для Cu mtx ≤ 0,164 мас.%.

Верхний предел для Cu mtx в 0,35 мас.% Был основан на измерениях Cu mtx с помощью сканирующего просвечивающего электронного микроскопа с полевой эмиссией.Пороговое значение для дисперсионного твердения 0,164 мас.% Было определено с помощью процедуры подбора данных, хотя признано, что это значение выше, чем общепринятое для других сталей корпуса реактора.

Было получено хорошее согласие между измеренным и рассчитанным изменением твердости, как показано на рис. 11.5. Стандартное отклонение для подгонки составляет 4.0VPN. Модель сравнивалась с данными, полученными при температурах облучения 225, 295 и 315 ° C. Хотя модель не была разработана с использованием этих данных, было получено хорошее соответствие.

11,5. Расчетное изменение твердости по сравнению с измеренным для 48 наборов данных. 26

Для расширения модели до более низких мощностей доз, при которых ожидается увеличение степени осаждения при данной дозе, добавлен дополнительный член Дж , определяемый как отношение концентрации вакансий при высокой дозе. с более низкой мощностью дозы, вводится в выражение для Δ Ppt :

[11,42] ΔPpt41 + 1850PCumtx − 0,1640,398⋅tanhJ × доза 15,7-32,2Cumtx

Таким образом, J равно до единицы при высокой мощности дозы (7 × 10 – 9 сна / с) и увеличивается с уменьшением мощности дозы.Соответствующие значения J были определены путем нахождения значений, которые дали предсказания модели, равные измеренным изменениям твердости.

Установлены корреляции между изменением твердости и сдвигом вязкости разрушения и температурой перехода по Шарпи. Эти корреляции показывают, что сдвиг Шарпи занижает сдвиг вязкости разрушения для сварных швов под флюсом в базе данных в среднем примерно на 10%.

Jones and Bolton 27 предоставили подробное описание подхода, используемого Magnox Electric для построения кривых трендов, описывающих DDR корпусов Magnox RPV.Авторы подчеркивают, что преимущество физического подхода состоит в том, что построенные таким образом кривые тренда могут быть использованы с уверенностью, когда требуется ограниченная экстраполяция в области дозы нейтронов, мощности дозы или температуры облучения, которые специально не охвачены наблюдением. база данных.

Ранняя работа Басвелла и Джонса 28 сравнивала экспериментальные результаты с предсказаниями модели Фишера 29 для сварных швов под флюсом Magnox, облученных в контролируемом месте при температуре около 165 ° C (см.рис.11.6). Сдвиг перехода показан как функция квадратного корня из дозы, чтобы подчеркнуть зависимость компонента упрочнения матрицы (Δ T mtx ). Сдвиг из-за упрочнения, связанного с Cu, линейно добавляется к компоненту повреждения матрицы, чтобы обеспечить полное охрупчивание (Δ T всего ).

11.6. Моделирование соответствует данным переходного смещения воздуховода 2.

На рис. 11.6 показан инкубационный период до введения дозы, при которой осаждение Cu оказывает значительное влияние на охрупчивание.Также показана доза, при которой максимальное количество Cu включается в кластеры (пик осаждения Cu). В этом представлении не учитывается чрезмерное старение; вместо этого упрочнение Cu в этот момент выходит на плато. Видно, что получено хорошее согласие с измеренными данными Duct 2.

Jones and Bolton 27 сообщили об изменениях этого подхода, которые позволили возникать незатвердевающее охрупчивание. Незакалывающееся (межкристаллитное) охрупчивание обнаруживается в металлах, получаемых дуговой сваркой под флюсом C – Mn.В принципе, трехчленное выражение может использоваться для моделирования охрупчивания, если происходит значительная межкристаллитная трещина. Вызванные облучением изменения прочности (Δσ y ) и температуры перехода по Шарпи (Δ T 40 Дж ) в C – Mn сталях составляют:

[11,43] Δσy, всего = Δσy, Cu + Δσy, матрица

и

[11.44] ΔT40J, total = ΔT40J, Cu + ΔT40J, матрица + ΔT40J, GB

Нижний индекс «матрица» относится к вкладу в общее изменение повреждения матрицы, а «Cu» относится к вкладу Осаждение Cu, и «GB» в уравнении.11.44 относится к вкладу межзеренного охрупчивания из-за сегрегации границ зерен P. Авторы описывают, как выводятся выражения для каждого члена. Например, для оценки величины первого члена использовалось малоугловое рассеяние нейтронов (МУРН) облученных и необлученных сварных швов под флюсом. Результаты SANS показывают, что для различных мощностей дозы и температур облучения диаметр CRP оставался практически постоянным и составлял 2 нм. Кроме того, растворимая доля Cu, оставшаяся после термообработки стального корпуса, соответствовала 0.18 ± 0,02 мас.%. Таким образом можно было оценить величину периода упрочнения Cu.

Однако, из-за ограниченного количества доступных данных наблюдения, незатвердевающее охрупчивание относится к увеличенному, зависящему от дозы, термину MD. DDR следующей формы применяются для сталей Magnox RPV и металлов сварных швов:

[11,45] Δσyand / или ΔT40J = B + A⋅FTdose0,5

, где B представляет собой пиковое упрочняющее действие Cu, A является a константа, зависящая от материала, F T – температурный коэффициент облучения, доза выражена в снах.Данные наблюдения описываются подобранными кривыми тренда с верхним и нижним интервалами прогноза, заданными статистическими границами. Прагматически та же двухчленная форма DDR используется для построения эмпирической кривой тренда для металлов сварных швов под флюсом, даже если такие сварные швы могут иметь значительные межкристаллитные трещины (см. Рис. 11.7).

11.7. Эмпирическая кривая тренда для сварных швов под флюсом Magnox на основе данных наблюдения за реактором.

Компания BNFL Magnox Generation предприняла амбициозный проект по прямой проверке методологии путем прямых измерений вязкости разрушения на образцах металла сварного шва под флюсом, снятом с списанного корпуса реактора в Траусфинидде. 30 Методология прогнозирования включает в себя расчет свойств вязкости разрушения путем применения вызванного облучением сдвига температуры перехода из пластичного в хрупкое состояние (DBTT) к кривой вязкости разрушения в начале срока службы. Как описано ранее, была построена кривая тренда, показывающая сдвиг DBTT в зависимости от дозы и температуры облучения, измеренный в снах.

Данные о вязкости разрушения были получены для четырех слоев четырех сварных швов; Всего было получено 379 качественных результатов.Результаты представлены на рис. 11.8 вместе с прогнозами только что описанной методологии. На рис. 11.8 результаты для разных слоев (соответствующих разным дозам) были нормализованы к эталонной дозе (сна), соответствующей одному из слоев. В каждом случае корректировка производилась путем смещения экспериментальных данных по оси температуры на величину, предсказанную DDR, в соответствии с разницей в дозе между этим местом и дозой контрольного слоя. Между результатами по вязкости разрушения и прогнозами наблюдается отличное согласие.Результаты распределяются равномерно относительно среднего прогноза, а ожидаемое количество баллов падает выше и ниже 5-го и 95-го процентилей.

11,8. Данные и прогнозы трещиностойкости корпуса реактора Trawsfynydd; все температуры отрегулированы для условий сварного шва 1, слоя 4. 30

Модификации предыдущих моделей постоянно производились в Великобритании теми же авторами. 31 Совсем недавно Уильямс, Уилфорд, Одетт и Ямамото разработали уравнение корреляции охрупчивания, оптимизированное специально для сталей корпусов реакторов с низким содержанием меди и содержанием меди менее 0.075 мас.%. 32 Они использовали данные испытательного реактора для оценки свойств стенок корпуса реактора при более высоких плотностях потока энергии, чем данные наблюдений. Таким образом, эффект флюса был одной из главных задач их работы.

Чтобы идентифицировать эффект флюса в базе данных об охрупчивании, созданной Rolls Royce (RR), они выполнили всестороннюю оценку своей базы данных с точки зрения влияния флюса, следуя процедуре, показанной на рис. 11.9. Сначала они подбирают простую функциональную форму ΔHv = Adose к данным об отдельном тепловом излучении при одинаковых условиях (поток и температура), но при разных плотностях энергии в своей базе данных, чтобы получить значения A для каждого конкретного условия.Затем значения A были построены как функция температуры облучения, чтобы получить выражение для модели значений A , зависящей от температуры. Эта модель использовалась для оценки значений A при определенной температуре облучения, например 290 ° C, для сравнения значений A для удельной теплоемкости при различных условиях магнитного потока. Результаты показывают, что существует постоянный эффект потока в значениях A для исследованных материалов с низким содержанием Cu.

11.9. Метод оценки эффекта мощности дозы. 32

На основании этих экспериментальных данных Williams et al. Компания разработала сложное уравнение корреляции охрупчивания для материалов с низким содержанием меди. Они использовали базу данных RR, а также базу данных IVAR для определения деталей уравнения, а исходная модель была откалибрована с использованием базы данных IVAR, которая содержит данные с очень широким диапазоном экологических и металлургических условий. Затем была определена улучшенная модель с учетом данных вне баз данных RR и UCSB.

Основная форма уравнения имеет следующий вид:

[11,46] ΔHSMD = ΔT41J / kCV = FC × FT × Φeff0,4560

, в котором

[11,47] FC = -0,4915 + 1,279Ni + 0,3433Mn + 101,3P + 19,53Cu-1,080C + 0,9580Si

[11,48] FT = 1-FCT1290-1Tirr

с

[11,49] FCT = 1117 + 180,8Ni

[11,50] Φeff = Q × Φ

, где

Δ H SMD – упрочнение из-за SMD (HV)

F C – химический фактор (состав в% по массе)

2 9119 F 911 T 911 – температурный коэффициент

Φ eff – эффективная доза; Φ – фактическая доза (мдпа)

F CT – химический фактор влияния температуры

T irr – температура облучения (° C)

10 Q коэффициент ускорения

г φ с , г φ r с – доли выживаемости вакансий при фактическом ( φ ) и эталонном ( φ ) мощности дозы; φ r = 5 × 10 – 10 dpa / s

Δ T 41 J is Charpy 41 J shift

k 911 CV 911 изменение твердости к коэффициенту корреляции сдвига Шарпи (= 2.21 для сварных швов; 1,72 для пластин и поковок)

Химический фактор F C учитывает влияние Ni, Mn, P, Cu, C и Si. Для среднего химического состава исследованных материалов с низким содержанием Cu влияние P и Ni преобладает в F C , а влияние Cu и Mn показано на рис. 11.10. Этот общий эффект химического состава согласуется с другими корреляционными уравнениями. Температурный коэффициент F T дополнительно состоит из значений для Ni и температуры.

11.10. Вклады в химический фактор в подобранной базе данных. 32

Эффект потока является ключевой моделью в этом уравнении корреляции. Это учитывается в коэффициенте Q , который является своего рода регулировкой магнитного потока. Фактура Q представляет собой отношение концентрации вакансий к концентрации вакансий при эталонных условиях. Это основано на идее, что на формирование микроструктур в материалах с низким содержанием Cu сильно влияет диффузия растворенных атомов, которые учитываются в факторе F C .Концентрацию вакансий можно рассчитать, решив уравнения баланса для образования и потребления точечных дефектов, представленные следующим образом:

[11,52] Gv + Xtv / τt − RrXvXi − DvXvSt * −DvXvRtXt = 0

и

[11,53 ] Gi − RrXvXi − DiXiSt * −DiXiRtXtv = 0

При условии, что G i = G v и D i X i911 911 911 911 911 911 = 9112 v и игнорирование старших членов на основе оценок величины членов:

[11.54] gs = gs * StSt *

[11,55] gs * = B2 + 4A − B2A

[11,56] A = GvSt * 4πrtτtΩ + 4πrrΩDvSt * + 4πrtXtΩSt * 4πrtτtΩ

[11,57vStτ * 4πrtτtΩ

[11,57vττ * BΩt = 1 − GvSt]

[11,58] Gv = φΣv

[11,59] St * = Sc + St

[11.60] Sc = 4πrcΣcφτc / Ω

[11,61] τt = b2 / Dvexp − Hb / RT

[11,62] Dv = D0exp − Hm / RT

и

[11,63] τc = τa0 / exp − Evc / kT

, где

b – вектор Бургера (2,48 × 10 -10 м)

305 k – постоянная Больцмана (8.61811 × 10 – 5 эВ / К)

R – газовая постоянная (8,3114 Дж / моль / К)

Ом – атомный объем (1,17 × 10 – 29 м 3 )

D 0 – константа диффузии вакансий (5 × 10 -5 м 2 / с)

D i – межузельный атом (S ) коэффициент диффузии (m 2 / с)

D v – коэффициент диффузии вакансий (m 2 / с)

E vc – энергия связи 1 для вакансионных кластеров .855 эВ)

г * с , г с – доля выживаемости вакансий (все поглотители, нет кластеров вакансий)

G i от SIA облучение (SIA / s)

G v – скорость образования вакансий в результате облучения (вакансий / с)

H b – энергия связи для захваченных вакансий (3 × 10 4 Дж / моль)

H м – энергия миграции вакансии (1.26 × 10 5 Дж / моль)

r c – радиус рекомбинации для кластеров (3,1 × 10 – 10 10 м)

r r – рекомбинационный радиусы рекомбинации матрицы (5,7 × 10 – 10 м)

r t – радиусы рекомбинации для ловушек растворенных веществ (5,7 × 10 – 10 м)

S – сила погружения для кластеров вакансий (м – 2 )

S т – общая постоянная сила погружения (4 × 10 14 м – 2 , подогнано)

S * t – общая сила поглощения, включая кластеры вакансий (m – 2 )

T – температура облучения (K)

X i , X 911 v 9111 2 и X tv – SIA, вакансия и концентрация термических вакансий

X t – концентрация ловушки растворенного вещества (5 × 10 – 3 , подогнано)

φ is поток (н / см 2 / с, E > 1 МэВ), φ = dpa / s / 1.5 × 10 – 21

Σ c – сечение образования вакансионных кластеров (4,5 × 10 – 25 см 2 )

Σ v – производственное перекрестное сечение вакансий (6 × 10 – 22 см 2 )

τ a0 – предэкспонента времени отжига вакансионных кластеров (1,2357 × 10 11 / с)

τ c , τ t – время отжига для вакансионных кластеров и захваченных вакансий (с)

В приведенной выше системе уравнений есть много параметров.Однако, как показано выше, большинству параметров были присвоены разумно оцененные значения, и эти значения фиксируются на протяжении всего процесса калибровки. Единственными параметрами, подходящими для базы данных по охрупчиванию, являются общая постоянная сила поглощения, S т , и концентрация ловушки растворенного вещества, X т . Окончательная форма концентрации вакансий как функции потока не обязательно видна в уравнениях, но схематично изображена на рис.11.11. Обратите внимание, что вклад тепловых вакансий не учитывается в текущем моделировании, как показано на рисунке.

11.11. Влияние мощности дозы на концентрацию вакансий (схема). 32

Табличка VIII (см. Цветной раздел между страницами 202 и 203) показывает остатки, определенные как измеренное Δ Hv минус вычисленное Δ Hv как функция квадратного корня из мощности дозы. Этот метод очень хорошо предсказывает данные из самых разных источников данных с очень широким диапазоном мощности дозы.Стандартное отклонение остаточного напряжения составляет 4,7 HV, что соответствует 8 ~ 10 ° C по шкале Charpy TTS при 41 Дж.

Светодиоды SMD – производители, поставщики, экспортеры

Светоизлучающий диод (LED) – это полупроводниковое устройство, которое может создавать источники света различных цветов с использованием составного полупроводникового материала, такого как GaAs, AlGaAs, GaN, InGaN и AlGaInP. Вообще говоря, светодиодные чипы должны быть упакованы так, чтобы обеспечивать механическую опору, электрическое соединение, оптическое направление и путь теплового потока наружу.После этого пакеты светодиодов интегрируются в системы как функциональные блоки. Светодиод SMD (устройства поверхностного монтажа) представляет собой корпус светодиодов, изготовленный путем пайки структур корпуса светоизлучающих диодов на печатную плату с использованием метода поверхностного монтажа. Корпуса SMD обычно изготавливаются из пластика и могут быть названы пластиковыми держателями микросхем с выводами (PLCC). Корпуса SMD обычно имеют светодиодный чип, подключенный к нескольким металлическим выводам, сформированным из рамки с выводами, и могут опционально включать в себя тепловую пробку.Электропитание подается на печатную плату и подается соответственно на электроды p-типа и электроды n-типа светодиодных чипов через выводные рамки структуры светоизлучающего диодного корпуса, чтобы светоизлучающие диодные чипы излучали свет. Корпус для поверхностного монтажа обычно подразделяется на два типа, один из которых представляет собой держатель микросхемы с пластиковыми выводами (PLCC), в котором 32-контактный корпус квадратной формы снабжен выводами, выводящимися Т-образным образом с четырех сторон корпуса. и имеет более компактные размеры по сравнению с корпусом DIP, а другой из них представляет собой держатель микросхемы с керамическими выводами (CLCC), в котором выводы выводятся Т-образным образом с четырех сторон корпуса.Светодиодный корпус SMD имеет преимущества в компактном дизайне, низкой стоимости, большом световом потоке, низком износе светового потока, эффективном отводе тепла и большей гибкости в системной интеграции. Эти светодиоды обладают высокой надежностью и предназначены для работы в широком диапазоне условий окружающей среды. Эта высокая надежность делает их идеальными для использования в условиях освещения. Светодиоды SMD названы по своим размерам. SMD 2835, например, наиболее известная конфигурация SMD на рынке и предлагающая лучшее соотношение цены и качества среди SMD-корпусов, называются так, потому что размеры микросхем равны 2.8 мм x 3,5 мм. Другие чипы SMD, доступные на рынке, включая 3014, 3528, 4014, 5050, 5630, 5730 и т. Д. Типичные осветительные приборы для светодиодных чипов, упакованные в корпуса SMD, включают, например, но не ограничиваясь ими, светодиодные лампы, светодиодные трубки, светодиоды. панели, светодиодные линейные светильники, светодиодные ленты, светодиодные потолочные светильники, светодиодные прожекторы, светодиодные светильники для высоких пролетов. Ведущие производители светодиодов SMD включают Cree, Bridgelux, Philips LumiLEDs, Osram, Epistar, Samsung, Seoul Semiconductor, LG, Honglitronic, Sanan, MLS, ETi, Everlight, Nichia, Sharp и т. Д.

Размеры для поверхностного монтажа 4,9 x 4,0 мм | Тактильные переключатели (переключатели Light Touch) | Средства автоматизации | Промышленные устройства

Японский (Япония) Английский (Глобальный) Английский (Азиатско-Тихоокеанский регион) Китайский (Китай)


1. Размеры

ЭВПБК

(тисненая лента)


Внешние размеры

Общий допуск на размер: ± 0.Размеры 1
() являются справочными.

Принципиальная схема

Вернуться к началу

2.Размеры тисненой ленты


Номера деталей: EVPBK / Высота: 0,63 мм

Вернуться к началу

3. Справочные данные

Рекомендуемые условия пайки оплавлением

Вернуться к началу

Вернуться к началу


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *