Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Активная и реактивная мощность. За что платим и работа

Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).

Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.

Активная и реактивная мощность

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии.

Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю.
Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности. В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет. Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке. Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения. Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному). Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т. е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности.

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга. Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи. Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники. Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности. Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем. Но бес, как известно, кроется в деталях. Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается.

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые однофазные счетчики электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку. За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

Похожие темы:

Что такое реактивная энергия или реактивная мощность?

Когда речь идет об электрических приборах, чаще всего интересуются их электрической мощностью. При этом считается, что чем больше эта мощность, обычно указываемая в документации, приложенной к электроизделию, тем большую полезную работу можно получить от этого изделия.

Электроприборы представляют собой нагрузку, которая для переменного тока имеет разную величину. Так все нагревательные приборы: лампы накаливания, ТЭНы в утюгах, электрических плитах, электрочайниках, стиральных машинах, электрообогревателях и т. п., это активные нагрузки. Все виды трансформаторов, стабилизаторов, электродвигателей – в стиральных машинах, кондиционерах, вентиляторах, отопительных приборах, электроинструменте, насосах для полива и для отопления, газонокосилках, измельчителях веток (шредерах ) и мн. др. – это нагрузки активно-индуктивные. Люминесцентные лампы и светильники, энергосберегающие компактные лампы (КЛЛ) и пр. – это активно-емкостные нагрузки.

Реактивной называется энергия возникающая при прохождении переменного электрического тока через катушку индуктивности (образуется магнитное поле) или через конденсатор (образуется электрическое поле). Она может увеличиваться или уменьшаться. При увеличении она потребляет мощность из сети, при уменьшении – отдает обратно в сеть.

В домашней электрической сети действует переменное напряжение, величина которого 220 В, а частота 50 Гц. По форме это синусоида, которая 100 раз в секунду переходит через «0». В этот момент происходит смена направления движения тока. При подключении этого напряжения к нагрузке, которая имеет только активную составляющую, ток в цепи по фазе (по моменту действия) полностью совпадает с напряжением. Т. е. при нарастании тока идет нарастание напряжения, при спаде напряжения спадает и ток, при переходе напряжения через «0» ток в это же мгновение тоже переходит через «0».

Если нагрузка имеет индуктивную составляющую, то ток начинает отставать от напряжения. Напряжение растет, перейдя через «0», а ток еще может даже не дошел до «0», напряжение уже начало уменьшаться после максимума, а ток опаздывает, т. к. он еще увеличивается. И чем больше индуктивность обмотки двигателя или трансформатора, тем больше это расхождение по фазе. При активной составляющей нагрузки близкой или равной «0» (когда трансформатор включен в сеть, а нагрузки на нем нет) ток запаздывает почти на 90°, т. е. на четверть периода.

В случае емкостной нагрузки процесс тот же, но только ток опережает напряжение.

Происходят эти процессы потому, что в первом случае ток, протекающий по катушке индуктивности (обмотке двигателя или трансформатора) создает каждым витком катушки магнитное поле. А т. к. ток изменяется – нарастает или спадает, то суммарное поле тоже увеличивается или уменьшается. Изменяющееся магнитное поле по закону электромагнитной индукции (закону Майкла Фарадея) наводит в соседних витках той же катушки или соседней с ней, например вторичной катушке трансформатора э.

д.с. самоиндукции такой же по величине, но обратной по знаку. Эта э.д.с., вызывает в своей нагрузке, которой является уже питающая сеть такой же изменяющийся ток, но обратного направления. Этот новый ток опять по тому же закону М. Фарадея образует обратное по направлению изменяющееся магнитное поле и процесс повторяется. Пока по обмотке течет переменный ток, в ней будет создаваться переменное магнитное поле. И чем больше индуктивность, тем больше поле. При выключении тока поле исчезнуть мгновенно не может, поэтому оно на контактах выключателя может образовать электрический дуговой разряд. Если его нет, то поле разряжается через маленькое активное сопротивление катушки. Т. е. когда ток увеличивается, катушка запасает энергию, а когда начинает уменьшаться – катушка отдает ее обратно в сеть. Нагрузка не включена, тока на выходе нет, а напряжение есть, и трансформатор гоняет энергию в обмотку и из обмотки. Эти токи на активном сопротивлении проводов вызывают тепловые потери. Они по величине невелики, но они есть.
Похожие процессы происходят и при емкостном характере нагрузки. Отличие лишь в том, что поле не магнитное, а электрическое.

Таким образом, работы нет, а потери присутствуют.

Те же процессы происходят и при включении нагрузки. Но на фоне больших рабочих токов, протекающих при этом, реактивные токи мало заметны.

Уменьшить эти токи можно подключением к индуктивным цепям конденсаторов, а к емкостным, соответственно, индуктивностей. Это называется компенсированием реактивных составляющих.

Оценить реактивную составляющую можно по Км – коэффициенту мощности или по cos φ. При этом cos φ = Р/S, где:

  • Р – активная мощность, обеспечивающая рабочие характеристики;
  • S – полная мощность, потребляемая устройством.

При cos φ = 1 – вся мощность устройства активная, при меньших значениях – появляется реактивная составляющая. Мощность потребляемая растет, а работа остается та же.

Например, если на дрели и вентиляторе написано, что его мощность 600 Вт, а cos φ = 0,75, то их реальная мощность, потребляемая из сети будет равна 800 Вт, а работу они сделают на 600 Вт.

Меры по компенсации реактивной мощности

Правильная компенсация реактивной мощности дает возможность уменьшить мощность, передаваемую по кабельным и проводным сетям предприятия. Это позволяет снизить расход до 10-20 %, а в тех случаях, когда cos φ = 0,5 и даже менее его, результат может быть до 1/3.Предприятия с большим количеством мощных недогруженных электродвигателей должны компенсировать их реактивную мощность.

Небольшие организации, офисы, торговые предприятия могут иметь большую реактивную составляющую за счет люминесцентных источников освещения, двигателей вентиляции приточной и вытяжной, кондиционеров, приводов теплоснабжения и водоснабжения и другой нелинейной нагрузки. К такой нагрузке могут относиться тиристорные и симисторные регуляторы систем освещения, импульсные блоки питания и мн. др. Все эти виды потребителей электроэнергии используют в своей работе импульсный режим, при этом этот режим часто сопровождается крутыми передними и задними фронтами импульсов (нарастанием и спаданием тока и напряжения). Специалисты эти фронты называют передним и задним. И чем меньше длительность переднего и заднего фронтов, тем больше в питающую сеть переменного тока проникает гармоник (напряжений удвоенной, утроенной и т. д. частоты) основного напряжения, тем меньше cos φ.

Поэтому передовые производители современных компактных люминесцентных ламп (КЛЛ) заботятся об энергетической эффективности не только самой лампы, но и всей электрической сети, используемой для их питания. Для этого они, незначительно усложнив схему их питания, получают коэффициент мощности, равный 0,92 – 0,97. В то же время простые КЛЛ имеют его значительно меньшей величины, а обычные традиционные люминесцентные «трубки» с электромагнитным пуско-регулирующим аппаратом имеют коэффициент мощности вообще равный 0,5.

Поэтому, выбирая для своей квартиры или офиса малогабаритные энергосберегающие высокоэффективные источники света в виде КЛЛ, обязательно интересуйтесь таким их параметром, как коэффициент мощности. И если он не указан в параметрах продаваемой лампы, то лучше отказаться от такой покупки.

Предлагаем приобрести качественные энергосберегающие лампы:

Наименование: Лампа светодиодная стандартная B60 PA-10 10W E27 4000K алюмопл. корп. 18-0007
Тип лампы: Стандартная
Артикул: 18-0007
Мощность (W): 10
Тип цоколя: E27
Cветовой поток (lm): 806
Световая эффективность (lum/W): 81
Ширина B (мм): 60
Высота A (мм): 110
Температура (К): 4000
Тип света: нейтральный свет
Напряжение (V): 175-250
Ресурс , часов: 25000
Срок службы, лет: 17
Индекс цветопередачи (Ra): 80
Аналог лампы накаливания (W): 75Вт
Частота электросети (Hz): 50
Температурный режим (град): -20С +40°C
Количество в ящике, шт: 50
Содержание ртути (мг): 0
Класс энергосбережения: A
Штрих код упаковки: 4895127204464
Тип колбы: Стандартная
Цвет стекла: Опаловый
Угол рассеивания град: 220

Производитель: ELM
Гарантия: 2 года

(Код: 18-0007)

Тип лампы: Стандартная
Мощность (W): 10
Температура (K): 4000
Тип цоколя: E27

Наименование: Лампа светодиодная стандартная LS-V10 10W E27 4000K алюмопл. корп. A-LS-1520
Артикул: A-LS-1520
Мощность: 10
Световой поток: 900
Тип лампы: Стандартная
Напряжение (V): 220
Цветовая температура К: 4000
Тип цоколя: E27
Группа: Лампы
Подгруппа: Лампы светодиодные (LED)
Модель: ls-V10
Тип колбы: Стандартная
Цвет стекла: Опаловый
Тип светодиода: SMD
Угол рассеивания, (C): 270
Ресурс часов: 25000
A mm: 110
B mm: 60
Штрих код упаковки: 4895127217815

Количество в упаковке шт.: 50
Производитель: Electrum

(Код: A-LS-1520)

Наименование: Лампа светодиодная стандартная LS-V10 10W E27 4000K алюмопл. корп. A-LS-1520
Артикул: A-LS-1520
Мощность: 10
Тип цоколя: E27

Наименование: Комплект ламп светодиодных стандартных B60 PA10L 10W E27 4000K алюмопл. корп. 3шт. 18-0150
Артикул: 18-0150
Мощность: 10
Световой поток: 806
Тип лампы: Стандартная
Напряжение (V): 220
Цветовая температура К: 4000
Тип цоколя: E27
Группа: Лампы
Подгруппа: Лампы светодиодные (LED)
Модель: PA10L
Тип колбы: Стандартная
Цвет стекла: Опаловый
Тип светодиода: SMD

Угол рассеивания, (C): 250
Ресурс часов: 20000
A mm: 109
B mm: 60
Штрих код упаковки: 4895127200930
Количество в упаковке шт.: 50
Производитель: ELM

(Код: 18-0150)

Наименование: Комплект ламп светодиодных стандартных B60 PA10L 10W E27 4000K алюмопл. корп. 3шт. 18-0150
Артикул: 18-0150
Мощность: 10
Тип цоколя: E27

Наименование: Лампа светодиодная стандартная A60 LS-33 Elegant 10W E27 Ra90 4000K алюмопл. корп. A-LS-1912
Артикул: A-LS-1912
Мощность: 10
Световой поток: 850
Цветовая температура: 4000
Тип лампы: Стандартная
Тип цоколя: E27
Напряжение (V): 220
Ресурс часов: 25000
A mm: 111
B mm: 60
Модель: LS-33 Elegant
Тип светодиода: SMD Samsung
Количество в ящике (шт): 50
Угол рассеивания, (C): 270
Производитель: Electrum

(Код: A-LS-1912)

Наименование: Лампа светодиодная стандартная A60 LS-33 Elegant 10W E27 Ra90 4000K алюмопл. корп. A-LS-1912
Артикул: A-LS-1912
Мощность: 10
Световой поток: 850

Реактивная электроэнергия – оплата

Законодательство в области электроэнергетики предусматривает довольно внушительный набор упоминаний о необходимости оплаты потребителю в адрес сетевой организации реактивной мощности, однако, фактически, такая оплата в настоящее время не осуществляется. Давайте разберемся почему так происходит.

Известный всем еще со школьной скамьи треугольник мощностей, творчески переработанный в иллюстрации к данной статье, говорит о том, что полная мощность состоит из активной мощности, то есть идущей на полезную работу, а также реактивной мощности, которая, соответственно, на полезную работу не идет.

По сути, реактивная мощность – это потери. Чем больше реактивная мощность, тем больше сетевая организация должна передать энергии, чтобы электроустановки потребителя выполнили полезную работу.

По логике потребитель должен либо компенсировать сетевой организации затраты на передачу “лишней” мощности, либо устанавливать у себя компенсаторы реактивной мощности, которые стоят совсем не дешево.

Законодательство на первый взгляд здесь на стороне сетевой организации.

В правилах оказания услуг по передаче электрической энергии, указано, что:

  • При необходимости потребитель обязан установить оборудование, обеспечивающие регулирование реактивной мощности.
  • Потребитель обязан поддерживать на границе балансовой принадлежности значения показателей качества электрической энергии, в том числе соблюдать значения соотношения потребления активной и реактивной мощности, определяемые для отдельных энергопринимающих устройств (групп энергопринимающих устройств).
  • Сетевая организация обязана определять значения соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств. Правила определения установлены соответствующим приказом Минэнерго РФ.
  • Если сетевая организация выявляет нарушение потребителем соотношения активной и реактивной мощности, далее:
    • Составляется акт.
    • Потребитель уведомляет о сроке в течение которого он установит компенсаторы реактивной мощности.
    • Если уведомления от потребителя нет, либо в установленные сроки (не более 6 месяцев) компенсаторы не установлены, в отношении потребителя применяется повышающий коэффициент к тарифу на услуги по передаче электроэнергии.

Размер повышающего коэффициента устанавливается в соответствии с методическими указаниями, утверждаемыми федеральным органом исполнительной власти в области государственного регулирования тарифов.

При технологическом присоединении в технических условиях для заявителей сетевая организация указывает требования к устройствам контроля и учета качества электроэнергии, к том числе соотношению активной и реактивной мощности.

В правилах розничных рынков электроэнергии указано, что:

  • Обязанность потребителя по обеспечению функционирования компенсации реактивной мощности является существенным условием договора энергоснабжения.
  • Потребитель обязан поддерживать на границе балансовой принадлежности значения показателей качества электрической энергии соблюдать значения соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств.

Почему же при столь детальной проработке вопроса об обязанностях потребителя по поддержанию соотношения активной и реактивной мощности и оплате сетевой организации услуг по передаче с повышающим коэффициентом при нарушении данного соотношения, в настоящее время потребители фактически не доплачивают за реактивную мощность?

Всё просто.

В настоящее время повышающие коэффициенты установлены только в отношении потребителей, подключенных к сетям единой национальной (общероссийской) электрической сети.


То есть, для потребителей, не имеющих договор оказания услуг по передаче электроэнергии с ПАО “ФСК ЕЭС” зафиксировать нарушение соотношения активной и реактивной мощности можно, а вот наказать за это нельзя.

В результате в распределительных сетях контроль реактивной мощности осуществляется только на этапе технологического присоединения, где сетевая организация может включить установку компенсаторов реактивной мощности в технические условия.

Что такое активная, реактивная и полная мощность нагрузки стабилизатора?

В отличии от вычисления мощности при постоянном токе, формулы для вычисления мощности в цепях переменного тока достаточно сложны. В общем случае электрическая мощность в этом случае имеет интегральные зависимости.

Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Полная мощность определяется как векторное сложение этих величин.

Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии. Для каждого электрического прибора вид преобразования энергии свой: в электрической лампочке электроэнергия преобразуется в свет и тепло, в утюге электроэнергия преобразуется в тепло, в электродвигателе электроэнергия преобразуется в механическую энергию. Фактически, активная мощность определяет скорость полезного потребления энергии.

Реактивная мощность — мощность определяемая электромагнитными полями, образующимися в процессе работы приборов. Реактивная мощность, как правило, является «вредной» или «паразитной». Реактивная мощность определяется характером нагрузки. Для такого прибора как лампочка она равна нулю, в процессе горения лампы электромагнитные поля практически не образуются. В процессе работы электродвигателя реактивная мощность может достигать больших значений. Понятие реактивной мощности тесно связано с понятием «пусковые токи».

При выборе стабилизатора напряжения необходимо определять полную мощность потребителей. Самый точный способ — найти значение полной мощности прибора в его паспорте. Если такой возможности нет, то для определения полной мощности приборов с большими «пусковыми токами» принято использовать повышающий коэффициент «4».

Следует также учитывать, что номинальная мощность стабилизатора напряжения может указываться разными производителями стабилизаторов и ИБП в различных диапазонах входных параметров тока. Китайские производители часто завышают реальную мощность устройства в два и более раз.

Особое внимание при выборе подходящего стабилизатора напряжения или источника бесперебойного питания следует обратить на возможность использования стабилизатора при реактивной нагрузке. Часто производители указывают, что номинальная мощность стабилизатора или ИБП указана без учета реактивной нагрузки. В паспортных данных стабилизаторов и источников питания можно найти фразу «устройство не может использоваться для реактивной нагрузки».

Для работы с приборами, имеющими большую реактивную мощность мы рекомендуем использовать специальные стабилизаторы напряжения и ИБП компании «Бастион». Эти приборы характеризуются большой перегрузочной мощностью и хорошей защитой от помех в сети по нагрузке.

Подробные ответы вы можете найти в следующих статьях:

Сравнение реальных мощностей стабилизаторов напряжения разных марок

Сравнение стабилизаторов напряжения Ресанта, APC, Voltron, Калибри, Teplocom

Стабилизаторы напряжения для котлов отопления

Преимущества релейных стабилизаторов напряжения «Бастион»

Стабилизатор напряжения для холодильника

Стабилизаторы напряжения для насосов

Стабилизатор напряжения для кондиционера и сплит-системы

Активная обратная энергия. Активная и реактивная энергия

Реактивная мощность – часть электрической энергии, возращенная нагрузкой источнику. Явление возникновения ситуации считается вредным.

Возникновение реактивная мощность

Допустим, цепь содержит источник питания постоянного тока и идеальную индуктивность. Включение цепи порождает переходный процесс. Напряжение стремится достичь номинального значения, росту активно мешает собственное потокосцепление индуктивности. Каждый виток провода согнут круговой траекторией. Образуемое магнитное поле будет пересекать соседствующий сегмент. Если витки расположены один за другим, характер взаимодействия усилится. Рассмотренное называется собственным потокосцеплением.

Характер процесса таков: наводимая ЭДС препятствует изменениям поля. Ток пытается стремительно вырасти, потокосцепление тянет обратно. Вместо ступеньки видим сглаженный выступ. Энергия магнитного поля потрачена, чтобы воспрепятствовать процессу создавшему. Случай возникновения реактивной мощности. Фазой отличается от полезной, вредит. Идеально: направление вектора перпендикулярно активной составляющей. Подразумевается, сопротивление провода нулевое (фантастический расклад).

При выключении цепи процесс повторится обратным порядком. Ток стремится мгновенно упасть до нуля, в магнитном поле запасена энергия. Пропади индуктивность, переход пройдет внезапно, потокосцепление придает процессу иную окраску:

  1. Уменьшение тока вызывает снижение напряженности магнитного поля.
  2. Произведенный эффект наводит противо-ЭДС витков.
  3. В результате после отключения источника питания ток продолжает существовать, понемногу затухая.

Графики напряжения, тока, мощности

Реактивная мощность некое звено инерции, постоянно запаздывающее, мешающее. Первый вопрос: зачем тогда нужны индуктивности? О, у них хватает полезных качеств. Польза заставляет мириться с реактивной мощностью. Распространенным положительным эффектом назовем работу электрических двигателей. Передача энергии идет через магнитный поток. Меж витками одной катушки, как было показано выше. Взаимодействию подвержены постоянный магнит, дроссель, все, способное захватить вектором индукции.

Случаи нельзя назвать в смысле описательном всеобъемлющими. Иногда применяется поток сцепления в виде, показанном для примера. Принцип используют пускорегулирующие аппараты газоразрядных ламп. Дроссель снабжен несметным количеством витков: отключение напряжения вызывает не плавное снижение тока, но выброс большой амплитуды противоположной полярности. Индуктивность велика: отклик поистине потрясающий. Превышает исходные 230 вольт на порядок. Достаточно, чтобы возникла искра, лампочка зажглась.

Реактивная мощность и конденсаторы

Реактивная мощность запасается энергией магнитного поля индуктивностями. А конденсатор? Выступает источником возникновения реактивной составляющей. Дополним обзор теорией сложения векторов. Поймет рядовой читатель. В физике электрических сетей часто используются колебательные процессы. Всем известные 220 вольт (теперь принятые 230) в розетке частотой 50 Гц. Синусоида, амплитуда которой равна 315 вольт. Анализируя цепи, удобно представить вращающимся по часовой стрелке вектором.

Анализ цепей графическим методом

Упрощается расчет, можно пояснить инженерное представление реактивной мощности. Угол фазы тока считают равным нулю, откладывается вправо по оси абсцисс (см. рис.). Реактивная энергия индуктивности совпадает фазой с напряжением UL, опережает на 90 градусов ток. Идеальный случай. Практикам приходится учитывать сопротивление обмотки. Реактивной на индуктивности будет часть мощности (см. рис.). Угол меж проекциями важен. Величина называется коэффициентом мощности. Что означает на практике? Перед ответом на вопрос рассмотрим понятие треугольника сопротивлений.

Треугольник сопротивлений и коэффициент мощности

Чтобы проще вести анализ электрических цепей, физики предлагают использовать треугольник сопротивлений. Активная часть откладывается, как ток, – вправо оси абсцисс. Договорились, индуктивность направлять вверх, емкость – вниз. Вычисляя полное сопротивление цепи, значения вычитаем. Исключено комбинированный случай. Доступно два варианта: реактивное сопротивление положительное, либо отрицательное.

Получая емкостное/индуктивное сопротивление, параметры элементов цепи домножают коэффициентом, обозначаемым греческой буквой «омега». Круговая частота – произведение частоты сети на удвоенное число Пи (3.14). Еще одно замечание по поводу нахождения реактивных сопротивлений укажем. Если индуктивность просто домножается указанным коэффициентом, для емкостей берутся величины обратные произведению. Понятно из рисунка, где приведены указанные соотношения, помогающие вычислять напряжения. После домножения берем алгебраическую сумму индуктивного, емкостного сопротивлений. Первые рассматриваются положительными величинами, вторые – отрицательными.

Формулы реактивных составляющих

Две составляющие сопротивления – активная и мнимая – являются проекциями вектора полного сопротивления на оси абсцисс и ординат. Углы сохраняются при переносе абстракций на мощности. Активная откладывается по оси абсцисс, реактивная — вдоль сои ординат. Емкости и индуктивности являются основополагающей причиной возникновения в сети негативных эффектов. Было показано выше: без реактивных элементов становится невозможным построение электротехнических устройств.

Коэффициентом мощности принято называть косинус угла меж полным вектором сопротивления и горизонтальной осью. Столь важное значение параметру приписывают, поскольку полезная часть энергии источника является долей полных трат. Доля высчитывается умножением полной мощности на коэффициент. Если векторы напряжения и тока совпадают, косинус угла равен единице. Мощность теряется нагрузкой, улетучиваясь теплом.

Сказанному верить! Средняя мощность периода при подключении к источнику чисто реактивного сопротивления равна нулю. Половину времени индуктивность принимает энергию, вторую отдает. Обмотка двигателя обозначается на схемах прибавлением источника ЭДС, описывающего передачу энергии валу.

Практическое истолкование коэффициента мощности

Многие замечают неувязку в случае практического рассмотрения реактивной мощности. Для снижения коэффициента рекомендуют параллельно обмоткам двигателя включать конденсаторы большого размера. Индуктивное сопротивление уравновешивает емкостное, ток вновь совпадает с напряжением фазой. Сложно понять вот по какой причине:

  1. Допустим, к источнику переменного напряжения подключили первичную обмотку трансформатора.
  2. В идеале активное сопротивление равно нулю. Мощность должна быть реактивной. Но это плохо: угол между напряжением и током стремятся сделать нулевым!

Но! Колебательный процесс безучастен работе двигателей, трансформаторов. Теория реактивной мощности предполагает: колебания совершает вся энергия. До последней капли. В трансформаторе, двигателе из поля происходит активная «утечка» энергии на совершение работы, наведение тока вторичной обмотки. Энергия циркулировать между источником и потребителем не может.

Реальная цепь процесс согласования отдельных участков затрудняет. Для перестраховки поставщики требуют установить параллельно обмотке двигателя конденсаторы, чтобы энергия циркулировала в локальном сегменте, не выходила наружу, нагревая соединительные провода. Важно избежать перекомпенсации. Если емкость конденсаторов будет слишком велика, батарея станет причиной увеличения коэффициента мощности.

Что касается сдвига фаз, возникает на вторичной обмотке трансформатора подстанции. Роль играет не это. Двигатель работает, часть энергии не преобразована в полезную работу, отражается назад. В результате возникает коэффициент мощности. Участвующая составляющая индуктивности – технологический, конструкционный дефект. Часть, не приносящая пользы. Скомпенсируем, добавляя конденсаторные блоки.

Проверка правильности согласования ведется по факту отсутствия сдвига фаз между напряжением и током работающего электродвигателя. Лишняя энергия циркулирует меж избыточной индуктивностью обмоток, установленным конденсаторным блоком. Достигнута цель мероприятия – избежать нагрева проводников питающей устройство сети.

Что предлагают под видом экономии электроэнергии

В сети предлагают купить устройства экономии электроэнергии. Компенсаторы реактивной мощности. Важно не перегнуть палку. Допустим, компенсатор будет уместно смотреться рядом с включенным компрессором холодильника, коллекторным двигателем пылесоса, обременять квартиру мерами при работающих лампочках накала – предприятие сомнительное. До установки потрудитесь узнать сдвиг фаз меж напряжением и током, согласно информации, правильно рассчитайте объем блока конденсаторов. Иначе попытки сэкономить таким образом потерпят неудачу, разве случайно удастся навести палец в небо, попасть в точку.

Вторым аспектом компенсации реактивной мощности является учет. Делается для крупных предприятий, где стоят мощные двигатели, создающие большие углы сдвига фаз. Внедряют специальные счетчики учета реактивной мощности, оплачиваемой согласно тарифу. Для расчетов коэффициента оплаты применяется оценка тепловых потерь проводов, ухудшение режима эксплуатации кабельной сети, некоторые другие факторы.

Перспективы дальнейшего изучения реактивной энергии, как явления

Реактивная мощность выступает явлением отражения энергии. Идеальные цепи явления лишены. Реактивная мощность проявляется выделенным теплом на активном сопротивлении кабельных линий, искажает синусоидальную форму сигнала. Отдельная тема разговора. При отклонениях от нормы двигатели работают не столь гладко, трансформаторам – помеха.

“Справочник” – информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам , конденсаторам , светодиодам и т.д. Информация содержит все, необходимые для подбора компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию радиоэлементов .

С одной стороны, работу тока можно легко посчитать, зная силу тока, напряжение и сопротивление нагрузки. До боли знакомые формулы из курса школьной физики выглядят так.

Рис. 1. Формулы

И здесь нет ни слова про реактивную составляющую.

С другой стороны, ряд физических процессов на самом деле накладывают свои особенности на эти расчёты. Речь идёт о реактивной энергии. Проблемы с пониманием реактивных процессов приходят вместе со счетами за электроэнергию в крупных предприятиях, ведь в бытовых сетях мы платим только за активную энергию (размеры потребления реактивной энергии настолько малы, что ими просто пренебрегают).

Определения

Чтобы понять суть физических процессов начнём с определений.

Активная электроэнергия – это полностью преобразуемая энергия, поступающая в цепь от источника питания. Преобразование может происходить в тепло или в другой вид энергии, но суть остаётся одна – принятая энергия не возвращается обратно в источник.

Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной.

Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока. То есть ранее полученный и учтённый счётчиком ток, не совершив работы, возвращается. Помимо прочего ток совершает скачок (на короткое время нагрузка сильно возрастает).

Тут без примеров сложно понять процесс.

Самый наглядный – работа конденсатора. Сам по себе конденсатор не преобразует электроэнергию в полезную работу, он её накапливает и отдаёт. Конечно, если часть энергии всё-таки уходит на нагрев элемента, то её можно считать активной. Реактивная же выглядит так:

1.При питании ёмкости переменным напряжением, вместе с увеличением U растёт и заряд конденсатора.

2.В момент начала падения напряжения (второй четвертьпериод на синусоиде) напряжение на конденсаторе оказывается выше, чем у источника. И поэтому конденсатор начинает разряжаться, отдавая энергию обратно в цепь питания (ток течёт в обратном направлении).

3.В следующих двух четвертьпериодах ситуация полностью повторяется, то только напряжение меняется на противоположное.

Ввиду того, что сам конденсатор работы не совершает, принимаемое напряжение достигает своего максимального амплитудного значения (то есть в √2=1,414 раза больше действующего 220В, или 220·1,414=311В).

При работе с индуктивными элементами (катушки, трансформаторы, электродвигатели и т.п.) ситуация аналогична. График показателей можно увидеть на изображении ниже.

Рис. 2. Графики показателей

Ввиду того, что современные бытовые приборы состоят из множества разных элементов с “реактивным” эффектом питания и без него, то реактивный ток, протекая в обратном направлении, совершает вполне реальную работу по нагреву активных элементов. Таким образом, реактивная мощность цепи – по сути выражается в побочных потерях и скачках напряжения.

Очень сложно отделить один показатель мощности от другого при расчётах. А система качественного и эффективного учёта стоит дорого, что, собственно, и привело к отказу от измерения объёма потребления реактивных токов в быту.

В крупных коммерческих объектах наоборот, объем потребления реактивной энергии намного больше (из-за обилия силовой техники, снабжаемой мощными электродвигателями, трансформаторами и другими элементами, порождающими реактивный ток), поэтому для них вводится раздельный учёт.

Как считается активная и реактивная электроэнергия

Большинство производителей счётчиков электроэнергии для предприятий реализуют простой алгоритм.

Q=(S 2 – P 2) 1/2

Здесь из полной мощности S отнимается активная мощность P (в облегчённом для понимания виде).

Таким образом, производителю не обязательно организовывать полностью раздельный учёт.

Что такое cosϕ (косинус фи)

Для числового выражения соотношения активной и реактивной мощностей применяется специальный коэффициент – косинус фи.

Вычисляется он по формуле.

cosϕ = P акт /P полн

Где полная мощность – это сумма активной и реактивной.

Такой же коэффициент указывается на шильдиках электроинструмента, оснащённого двигателями. В этом случае cosϕ используется для оценки пиковой потребляемой мощности. Например, номинальная мощность прибора составляет 600 Вт, а cosϕ = 0,7 (средний показатель для подавляющего большинства электроинструмента), тогда пиковая мощность, необходимая для старта электродвигателя будет считаться как Pномин / cosϕ, = 600 Вт / 0,7 = 857 ВА (реактивная мощность выражается в вольт-амперах).

Применение компенсаторов реактивной мощности

Чтобы стимулировать потребителей эксплуатировать электросеть без реактивной нагрузки, поставщики электроэнергии вводят дополнительный оплачиваемый тариф на реактивную мощность, но оплату взимают только если среднемесячное потребление превысит определённый коэффициент, например, при соотношении полной и активной мощностей составит свыше 0,9, счёт на оплату реактивной мощности не выставляется.

Для того, чтобы снизить расходы, предприятия ставят специальное оборудование – компенсаторы. Они могут быть двух видов (в соответствии с принципом работы):

  • Ёмкостные;
  • Индуктивные.

Единственное с чем согласен с автором, так это то что так это что вокруг понятия “реактивная энергия” немало легенд… В отместку видимо автор выдвинул ещё и свою…Путано…противоречиво…изобилие всяких: “”энергия приходит, энергия уходит…” Итог вообще получился шокирующий, истина перевёрнута с ног на ноги: “Вывод – реактивный ток вызывает нагрев проводов, не совершая при этом никакой полезной работы” Господин, дорогой! нагрев это уже работа!!! Мнение моё, тут людям с техническим образованием без векторной диаграммы синхронного генератора под нагрузкой не склеить описание процесса грамотно, а людям интересующимся могу предложить простой вариант, без затей.

Итак о реактивной энергии. 99% электричества напряжением 220 вольт и более вырабатывается синхронными генераторами. Электроприборами в быту и работе мы используем разные, большинство из них “греют воздух”, выделяют теплоту в той или иной степени…Пощупайте телевизор, монитор компьютера, о кухонной электропечи я уже не говорю, везде чувствуется тепло. Это всё потребители активной мощности в электросети синхронного генератора. Активная мощность генератора это безвозвратные потери вырабатываемой энергии на тепло в проводах и приборах. Для синхронного генератора передача активной энергии сопровождается механическим сопротивлением на приводном валу. Если бы Вы, уважаемый читатель вращали генератор вручную, Вы бы сразу же почувствовали повышенное сопротивление Вашим усилиям и означало бы это одно, кто-то в вашу сеть включил дополнительное число нагревателей, т.е повысилась активная нагрузка. Если в качестве привода генератора у вас дизель, будьте уверены, расход топлива возрастает молниеносно, т.к именно активная нагрузка потребляет ваше топливо. С реактивной энергией иначе…Скажу я вам, невероятно, но некоторые потребители электроэнергии сами являются источниками электроэнергии, пусть на очень короткое мгновение, но являются. А если учесть что переменный ток промышленной частоты изменяет своё направление 50 раз в секунду, то такие (реактивные) потребители 50 раз в секунду передают свою энергию сети. Знаете как в жизни, если кто-то что-то добавляет к оригиналу своё без последствий это не остаётся. Так и здесь, при условии, что реактивных потребителей много, или они достаточно мощные, то синхронный генератор развозбуждается. Возвращаясь к нашей прежней аналогии где в качестве привода Вы использовали свою мышечную силу, можно будет заметить, что несмотря на то что Вы не изменили ни ритма вращая генератор, ни не почувствовали прилива сопротивления на валу, лампочки в вашей сети вдруг погасли. Парадокс, тратим топливо, вращаем генератор с номинальной частотой, а напряжения в сети нет… Уважаемый читатель, выключи в такой сети реактивные потребители и всё восстановится. Не вдаваясь в теорию развозбуждение происходит когда магнитные поля внутри генератора, поле системы возбуждения вращающейся вместе с валом и поле неподвижной обмотки соединённой с сетью поворачиваются встречно друг другу, тем самым ослабляю друг друга. Генерация электроэнергии при понижении магнитного поля внутри генератора уменьшается. Техника ушла далеко в перёд, и современные генераторы оснащены автоматическими регуляторами возбуждения, и когда реактивные потребители “провалят” напряжение в сети, регулятор сразу же повысит ток возбуждения генератора, магнитный поток восстановится до нормы и напряжение в сети восстановится Понятно, что ток возбуждения имеет и активную составляющую, так что извольте добавить и топливо в дизеле.. В любом случае, реактивная нагрузка негативно влияет на работу электросети, особенно в момент подключения реактивного потребителя к сети, например, асинхронного электродвигателя…При значительной мощности последнего всё может закончится плачевно, аварией. В заключение, могу добавить для пытливого и продвинутого оппонента, что, есть и реактивные потребители с полезными свойствами. Это всё те что обладают электроёмкостью…Включи такие устройства в сеть и уже электрокомпания должна вам)). В чистом виде это конденсаторы. Они тоже отдают электроэнергию 50 раз в секунду, но при этом магнитный поток генератора наоборот увеличивается, так что регулятор может даже понизить ток возбуждения, экономя затраты. Почему мы раньше об этом не оговорились…а зачем…Дорогой читатель обойди свой дом и поищи емкостной реактивный потребитель…не найдешь…Разве только раскурочишь телевизор или стиральную машину…но пользы от этого понятно не будет….

и является суммой двух величин, одна из которых постоянна во времени, а другая пульсирует с двойной частотой.

Среднее значение p(t) за период Т называется активной мощностью и полностью определяется первым слагаемым уравнения (5.1):

Активная мощность ха-рактеризует энергию, расходуемую необратимо источником в единицу времени на производство полезной работы потребителем. Активная энергия, потребляемая электроприёмниками, преобразуется в другие виды энергии : механическую, тепловую, энергию сжатого воздуха и газа и т. п.

Среднее значение от второго слагаемого мгновенной мощности (1.1) (пульсирует с двойной частотой) за время Т равно нулю, т. е. на ее создание не требуется каких-либо материальных затрат и поэтому она не может совершать полезной ра-боты. Однако ее присутствие указывает, что между источником и приемником происходит обратимый процесс обмена энергией. Это возможно, если имеются элементы, способные накапливать и отдавать электромагнитную энергию – емкость и индуктивность . Эта составляющая характеризует реактивную мощность.

Полную мощность на зажимах приемника в комп-лексной форме можно представить следующим образом:

Единица измерения полной мощности S = UI – ВА.

Реактивная мощность – величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями (обменом) энергии между источником и приемником. Для синусоидального тока она равна произведению действующих значений тока I и напряжения U на синус угла сдвига фаз между ними: Q = UI sinφ. Единица измерения – ВАр.

Реактивная мощность не связана с полезной работой ЭП и расходуется только на создание переменных электромагнитных полей в электродвигателях, трансформаторах, аппаратах, линиях и т. д.

Для реактивной мощности приняты такие понятия, как генерация, потребление, передача, потери, баланс. Считается, что если ток отстает по фазе от напряжения (индуктивный характер нагрузки), то реактивная мощ-ность потребляется и имеет положительный знак, а если ток опережает напряжение (емкостный характер нагрузки), то реактивная мощность ге-нерируется и имеет отрицательное значение.

Основными потребителями реактивной мощности на промышленных предприятиях являются асинхронные двигатели (60-65 % общего потреб-ления), трансформаторы (20-25 %), вентильные преобразователи, реакторы, воздушные электрические сети и прочие приемники (10 %).

Передача реактивной мощности загружает электрические сети и установленное в ней оборудование, уменьшая их пропускную способность. Реактивная мощность генерируется синхронными генераторами электростанций, синхронными компенса-торами, синхронными двигателями (регулирование током возбуждения), батареями конденсаторов (БК) и линиями электропередачи.

Реактивная мощность, вырабатываемая емкостью сетей, имеет следующий порядок величин: воздушная линия 20 кВ генерирует 1 кВАр на 1 км трехфазной линии; подземный кабель 20 кВ – 20 кВАр/км; воздушная линия 220 кВ – 150 кВАр/км; подземный кабель 220 кВ – 3 МВАр/км.

Коэффициент мощности и коэффициент реактивной мощности.

Векторное представление величин, характеризующих состояние сети, приводит к представлению реактивной мощности Q вектором, перпендикулярным вектору активной мощности Р (рис. 5.2). Их векторная сумма дает полную мощность S .

Рис. 5.1. Треугольник мощностей

Согласно рис. 5.1 и (5.2) следует, что S 2 = Р 2 + Q 2 ; tgφ = Q/P; cosφ = P/S.

Основным нормативным показателем, характе-ризующим реактивную мощность, ранее был коэффициент мощности cosφ. На вводах, питающих промышленное предприятие, средневзвешенное значение этого коэффициента должно было находиться в пределах 0,92-0,95. Однако выбор соотношения P/S в качестве нормативного не дает четкого представления о динамике изменения реального значения реактивной мощности. Например, при изменении коэффициента мощности от 0,95 до 0,94 реактивная мощность изменяется на 10 %, а при изменении этого же коэффициента от 0,99 до 0,98 приращение реактивной мощности составляет уже 42 %. При расчетах удобнее оперировать соотношением tgφ = Q/P , которое называют коэффициентом реактивной мощности.

Предприятиям, у которых присоединенная мощность более 150 кВт (за исключением «бытовых» потребителей), определены предельные значения коэффициента реактивной мощности , потребляемой в часы больших суточных нагрузок электрической сети – с 7 до 23 часов (Приказ Министерства промышленности и энергетики РФ от 22.02.2007 г. № 49 «О порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии »).

Предельные значения коэффициентов реактивной мощности (tgφ) нормируются в зависимости от положения точки (напряжения) присоединения потребителя к сети. Для напряжения сети 100 кВ tgφ = 0,5; для сетей 35, 20, 6 кВ – tgφ = 0,4 и для сети 0,4 кВ – tgφ = 0,35.

Введение новых директивных документов по компен-сации реактивной мощности было направлено на повышение эффективности работы всей системы электроснабжения от генераторов энергосистемы до приемников электроэнергии.

С введением коэффициента реактивной мощности стало возможным представлять потери активной мощности через активную или реактивную мощности: Р = (P 2 /U 2) R (l + tg 2 φ).

Угол между векторами мощностей Р и S соответствует углу φ между векторами активной составляющей тока I а и полного тока I , который, в свою очередь, представляет собой векторную сумму активного тока I а, находящегося в фазе с напряжением, и реактивного тока I р, находящегося под углом 90° к нему. Это расположение токов является расчетным приемом, связанным с разложением на активную и реактивную мощности, которое можно считать естественным.

Большинство потребителей нуждаются в реактивной мощности, поскольку они функционируют благодаря изменению магнитного поля . Для наиболее употребительных двигателей в нормальном режиме работы можно привести следующие примерные значения tgφ.

В момент пуска двигателей требуется значительное количество реактивной мощности, при этом tgφ = 4-5 (cosφ = 0,2-0,24).

Синхронные машины обладают способностью потреблять или выдавать реактивную мощность в зависимости от степени возбуждения.

В синхронных генераторах и двигателях размеры цепей возбуждения ограничивают возможность поставки реактивной мощности до максимальных значений tgφ = 0,75 (cosφ = 0,8) или до tgφ = 0,5 (cosφ = 0,9) (табл. 5.1).

Синхронные двигатели, выпускаемые отечественной промышленностью, рассчитаны на опережающий коэффициент мощности (cosφ = 0,9) и при номинальной активной нагрузке P ном и напряжении U ном могут вырабатывать номинальную реактивную мощность Q ном ≈ 0,5P ном.

При недогрузке СД по активной мощности β = P/P ном Q /Q ном > 1.

Преимуществом СД, используемым для компенсации реактивной мощности, по сравнению с КБ является возможность плавного регулирования генерируемой реактивной мощности. Недостатком является то, что активные потери на генерирование реактивной мощности для СД больше, чем для КБ.

Дополнительные активные потери в обмотке СД, вызываемые генерируемой реактивной мощностью в пределах изменения cosφ от 1 до 0,9 при номинальной активной мощности СД, равной P ном, кВт:

Р ном = Q 2 ном R /U 2 ном,

где Q ном – номинальная реактивная мощность СД, кВ Ар; R – сопротивление одной фазы обмотки СД в нагретом состоянии, Ом; U ном – номинальное напряжение сети, кВ.

В системах электроснабжения промышленных предприятий КБ компенсируют реактивную мощность базисной (основной) части графиков нагрузок, а СД снижают пики нагрузок графика.

Таблица 5.1

Зависимости коэффициента перегрузки по реактивной мощности синхронных двигателе й

Синхронные компенсаторы.

Разновидностью СД являются синхронные компенсаторы (СК), которые представляют собой СД без нагрузки на валу. В настоящее время выпускается СК мощностью выше 5000 кВ?Ар. Они имеют ограниченное применение в сетях промышленных предприятий. Для улучшения показателей качества напряжения у мощных ЭП с резкопеременной, ударной нагрузкой (дуговые печи, прокатные станы и т. п.) используются СК.

Статические тиристорные компенсирующие устройства.

В сетях с резкопеременной ударной нагрузкой на напряжении 6-10 кВ рекомендуется применение не конденсаторных батарей, а специальных быстродействующих источников реактивной мощности (ИРМ), которые должны устанавливаться вблизи таких ЭП. Схема ИРМ приведена на рис. 5.2. В ней в качестве регулируемой индуктивности используются индуктивности LR и нерегулируемые ёмкости С 1-С 3.

Рис. 5.2. Быстродействующие источники реактивной мощности

Регулирование индуктивности осуществляется тиристорными группами VS , управляющие электроды которых подсоединены к схеме управления. Достоинствами статических ИРМ являются отсутствие вращающихся частей, относительная плавность регулирования реактивной мощности, выдаваемой в сеть, возможность трёх- и четырёхкратной перегрузки по реактивной мощности. К недостаткам относится появление высших гармоник, которые могут возникнуть при глубоком регулировании реактивной мощности.

За счет дополнительных потерь мощности в сети, вызванных потреблением реактивной мощности, увеличивается общее потребление электроэнергии. Поэтому снижение перетоков реактивной мощности является одной из основных задач эксплуатации электрических сетей.

Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).

Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю. Рассмотрим, возможно ли подобное, и насколько можно приблизиться к идеалу.

Активная и реактивная мощность
Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность. Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности. В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет. Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке. Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения. Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному). Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности.

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга. Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи. Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники. Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности. Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем. Но бес, как известно, кроется в деталях. Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается.

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку. За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

Реактивная мощность – это… Что такое Реактивная мощность?

Реактивная мощность
        величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока (См. Переменный ток). Р. м. Q равна произведению действующих значений напряжения U и тока /, умноженному на синус угла сдвига фаз (См. Сдвиг фаз) φ между ними: Q = UI sinφ. Измеряется в Варах. Р. м. связана с полной мощностью (См. Полная мощность) S и активной мощностью (См. Активная мощность) Р соотношением: Мощности коэффициента электрических установок осуществляется компенсация реактивной мощности (см. Компенсирующие устройства).

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Реактивная лампа
  • Реактивная сила

Смотреть что такое “Реактивная мощность” в других словарях:

  • реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… …   Справочник технического переводчика

  • РЕАКТИВНАЯ МОЩНОСТЬ — электр. мощность в цепи переменного тока, расходуемая на поддержание вызываемых переменным током периодических изменений: 1) магнитного поля при наличии в цепи индуктивности; 2) заряда конденсаторов при наличии конденсаторов и проводов (напр.… …   Технический железнодорожный словарь

  • РЕАКТИВНАЯ МОЩНОСТЬ — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними: Q =… …   Большой Энциклопедический словарь

  • РЕАКТИВНАЯ МОЩНОСТЬ — величина, характеризующая скорость обмена энергией между генератором переменного тока и магнитным (млн. электрическим) полем цепи, создаваемым электротехническими устройствами (индуктивностью и ёмкостью). Р. м. возникает в цепи при наличии сдвига …   Большая политехническая энциклопедия

  • Реактивная мощность — Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность 2 Мощность постоянного тока …   Википедия

  • реактивная мощность — 3.1.5 реактивная мощность (вар): Реактивная мощность сигналов синусоидальной формы какой либо отдельной частоты в однофазной цепи, определяемая как произведение среднеквадратических значений тока и напряжения и синуса фазового угла между ними.… …   Словарь-справочник терминов нормативно-технической документации

  • реактивная мощность — reaktyvioji galia statusas T sritis Standartizacija ir metrologija apibrėžtis Menamoji kompleksinės galios dalis, skaičiuojama pagal formulę Q² = S² – P²; čia Q – reaktyvioji galia, S – pilnutinė galia, P – aktyvioji galia. Matavimo vienetas –… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • реактивная мощность — reaktyvioji galia statusas T sritis fizika atitikmenys: angl. reactive power; wattless power vok. Blindleistung, f; wattlose Leistung, f rus. безваттная мощность, f; реактивная мощность, f pranc. puissance déwatée, f; puissance réactive, f …   Fizikos terminų žodynas

  • реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними:… …   Энциклопедический словарь

  • реактивная мощность — reaktyvioji galia statusas T sritis automatika atitikmenys: angl. reactive power vok. Blindleistung, f; wattlose Leistung, f rus. реактивная мощность, f pranc. puissance réactive, f …   Automatikos terminų žodynas


Что такое активная и реактивная электроэнергия, мощность

Специфика сети переменного тока приводит к тому, что в фиксированный момент времени синусоиды напряжения и тока на приемнике совпадают только в случае так называемой активной нагрузки, полностью переводящей ток в тепло или механическую работу. Практически это всевозможные электронагревательные приборы, лампы накаливания, в каком-то приближении электродвигатели и электромагниты под нагрузкой и звуковоспроизводящая аппаратура.

Ситуация полностью меняется, если нагрузка, не создающая механической работы, обладает большой индуктивностью при малом сопротивлении. Это характерный случай электродвигателя или трансформатора на холостом ходу. Подключение подобного потребителя к источнику постоянного тока привело бы к короткому замыканию, здесь же ничего особенного с сетью не случится, но мгновенный ток будет отставать от мгновенного напряжения примерно на четверть периода. В случае же чисто емкостной нагрузки (если в розетку вставить конденсатор), ток на нем будет, наоборот, на ту же четверть периода опережать напряжение.

Реактивные токи

Практически такое несовпадение тока и напряжения, не производя на приемнике полезной работы, создает в проводах дополнительные, или, как принято их называть, реактивные токи, которые в особо неблагоприятных случаях могут привести к разрушительным последствиям. При меньшей величине это явление все равно требует расходовать излишний металл на более толстую проводку, повышать мощность питающих генераторов и трансформаторов электроэнергии. Поэтому экономически оправдано устранять в сети реактивную мощность всеми возможными способами. При этом следует учитывать суммарную реактивную мощность всей сети, при том, что отдельные элементы могут обладать значительными значениями реактивной мощности.

Реактивная электроэнергия

С количественной стороны влияние реактивной электроэнергии на работу сети оценивается косинусом угла потерь, который равен отношению активной мощности к полной. Полная мощность считается как векторная величина, которая зависит от сдвига фаз между током и напряжением на всех элементах сети. В отличие от активной мощности, которую, как и механическую измеряют в ваттах, полную мощность измеряют в вольт-амперах, так как эта величина присутствует только в электрической цепи. Таким образом, чем ближе косинус угла потерь к единице, тем полнее используется сечение проводов и мощность, вырабатываемая генератором.

Основные пути снижения реактивной мощности – взаимная компенсация сдвигов фаз, создаваемых индуктивными и емкостными приемниками и использование приемников с малым углом потерь.

Простое объяснение реактивной мощности

Реактивная мощность – это когда поток тока, вызванный напряжением переменного тока, приложенным к устройству, приводит к тому, что поток тока идет впереди или позади приложенного напряжения переменного тока.

Реактивные устройства будут накапливать некоторую энергию при приложении напряжения, и они будут возвращать эту энергию позже в синусоиде … Подумайте о пружине … вы вкладываете энергию в пружину, а затем, когда вы уменьшаете или убираете силу , например, Voltage, пружина будет возвращаться назад, возвращая вложенную в нее энергию… Энергия не поглощается, реактивные нагрузки возвращают энергию, вложенную позже.

Если вы заряжаете конденсатор напряжением постоянного тока, то после отключения подключения напряжения постоянного тока вы помещаете лампу на этот конденсатор, он кратковременно загорается, поскольку возвращает накопленную энергию.

Таким же образом, если вы подключаете напряжение к индуктору, например к двигателю, а затем уменьшаете или убираете напряжение, индуктор будет отбрасываться энергией, поскольку его магнитное поле схлопывается.

Итак, «Реактивная мощность» – это средство объяснения того, как ведет себя ток, наблюдаемый в реактивной нагрузке, по отношению к приложенному напряжению переменного тока… Дальнейшее понимание становится более сложным и может быть объяснено лучше с учетом более конкретных и прямых вопросов.

«РЕАКТИВНАЯ МОЩНОСТЬ» … Давайте проясним одно распространенное заблуждение, что поставщик генераторов и электросетей не поставляет вам реактивную мощность … Мощность – это напряжение и ток.

Электроэнергетическая компания поставляет вам напряжение переменного тока.
Что делать с этим напряжением, зависит от вас и вашего оборудования.
Если вы подключите к этому напряжению небольшой резистор (с высоким сопротивлением), вы получите небольшой ток.
Если вы подключите к этому напряжению большой резистор (с низким сопротивлением), вы получите больший ток.

Точно так же ваше оборудование контролирует ток, а не поставщик … Если ваше оборудование чисто резистивное, тогда ток будет в фазе с приложенным напряжением … Но если вы подключите индуктивную нагрузку, такую ​​как двигатель, Текущий цикл будет отставать от приложенного напряжения … Это означает, что форма волны тока переменного тока будет расти позже, чем повышение напряжения, шины, поэтому она также будет падать позже, чем повышение напряжения.Это означает, что определенное количество мощности будет поглощено реактивной частью вашей нагрузки, но затем эта мощность будет возвращена позже в цикле … Таким образом, в среднем, реактивная мощность не потребляется … Она поглощается, как при сжатии. пружина во время части цикла и возвращается в систему позже в другой части цикла, как пружина, отталкивающая назад.

В двигателях реактивная часть мощности создает магнитное поле, которое затем схлопывается и преобразовывается в противоположном направлении, когда приложенное напряжение переменного тока проходит свой цикл… Именно это магнитное поле обеспечивает механическую силу между двумя различными частями, в результате чего двигатель вращается … Потребляется только реальная мощность, как в двигателе, выполняющем механическую работу … Некоторая реальная мощность теряется в виде тепла в различные виды неэффективности как потери.

Понимание основ реактивной мощности

Реактивная мощность непонятна для не инженеров и важна при проектировании электрических систем, особенно на уровне распределения. В то время как понимание реактивной мощности требует знания интегрального исчисления, основные интуитивные представления могут быть поняты без строгого математического исследования.По мере того как системы распределения становятся более сложными с распределенными энергоресурсами и требуют автоматизации, участники отрасли нуждаются в общем понимании значения «мнимой мощности» для эффективности и стабильности системы.

Реактивная мощность – это бесполезная и необходимая электроэнергия

Электрические Мощность (P, в ваттах) состоит из напряжения, (В, в вольтах) и тока, (I, в амперах). Формула P = V × I. Хорошая аналогия для описания взаимосвязи между напряжением и током – это вода, текущая по реке.Ток – это скорость воды, а напряжение – это наклон реки. Когда он становится круче, эта река ведет себя странно. Скорость течения остается прежней, однако вода становится более плотной, и в результате поток становится тяжелее. Способность потока толкать вас вниз по реке – скорость течения, умноженная на плотность воды (напряжение), – это сила реки.

Кажущаяся мощность реки – если вы просто ее измерить – включает как поступательное движение, так и нисходящее давление на русло реки.В то время как поступательное движение полезно для выполнения работы (например, для запуска небольшой гидротурбины), давление на русло реки служит только для поддержки потока. Это разница между активной мощностью (P, в ваттах) и реактивной мощностью (VAr, в мнимых ваттах). Отношение реактивной мощности к полной мощности (активная мощность 2 + реактивная мощность 2 ) 1/2 называется коэффициентом мощности . Рассмотрим пример лошади, тянущей дрезину.

Пример коэффициента мощности: лошадь и дрезина


Источник: Consolidated Edison

Как показано на изображении выше, представьте лошадь, которая тянет железнодорожный вагон со стороны пути.Хотя лошадь привязана по диагонали, вагон может двигаться только по рельсам. Сила натяжения веревки – это кажущаяся мощность; только часть этой мощности составляет «рабочая» (реальная) мощность, которая тянет вагон вперед. Из-за угла тяги лошади часть затраченной энергии тратится впустую как «нерабочая» (реактивная) мощность. По мере увеличения этого угла соотношение между реальной мощностью и реактивной мощностью снижается до тех пор, пока лошадь не отъедет от рельсов, не двигая вагон вообще.Это соотношение часто рассчитывается как коэффициент мощности: активная мощность, деленная на полную мощность (активная + реактивная).

Огромные отключения электроэнергии из-за сбоев реактивной мощности

Реактивная мощность важна для потока мощности, потому что она помогает регулировать напряжение. Возвращаясь к аналогии с рекой, без русла реки, противодействующего движению вперед, не могло быть потока воды. Увеличение реактивной мощности можно охарактеризовать как повышение крутизны русла при одновременном «выдавливании» воды вперед.Это «сжатие» увеличивает плотность воды и позволяет ей двигаться дальше. Точно так же реактивная мощность имеет решающее значение в линиях электропередачи для увеличения напряжения на входе и «сжатия» потока на выходе.

Производство реактивной мощности, иногда называемой мнимой мощностью , требует мощности электростанции, но не приносит прямой экономической ценности – представьте лошадь, тянущую вагон по диагонали. Для интегрированных монопольных коммунальных предприятий использование электростанций для выработки реактивной мощности компенсируется тарифной базой.Для коммерческих генераторов реактивная мощность отнимается от мощности электростанции, которая вместо этого может производить реальную мощность. Таким образом, реактивная мощность должна компенсироваться в качестве вспомогательной услуги.

14 июля 2003 г. произошло историческое отключение электроэнергии на северо-востоке США и Канады, от которого пострадали около 55 миллионов человек в восьми штатах и ​​одной провинции. Среди причин этого огромного сбоя системы серьезный недостаток реактивной мощности был назван важным фактором. В часы, предшествовавшие отключению электроэнергии, спрос на реактивную мощность был особенно высоким из-за больших объемов потоковой передачи данных на большие расстояния через Огайо в Канаду.В то же время подача реактивной мощности была опасно низкой отчасти из-за отсутствия стимула для выработки реактивной мощности. Сбои реактивной мощности также способствовали отключениям электроэнергии на Западе (1996 г.) и во Франции (1978 г.).

Реактивная мощность возникает в результате задержки между током и напряжением

В цепи постоянного тока (DC) мощность имеет постоянную интенсивность и может течь только в одном направлении. С другой стороны, ток и напряжение в цепях переменного тока (AC) быстро колеблются, и кажется, что мощность течет во всех направлениях.Скорость колебаний обозначается как частота , а задержка между двумя «частотами» – их фазовый угол . Фазовый угол важен как в одном месте, так и между двумя точками. Например, задержка частоты напряжения между начальной и конечной точками провода создает поток мощности. Важным моментом в цепях переменного тока является задержка между колебаниями напряжения и тока в любой отдельной точке. Когда ток и напряжение в одной точке точно совпадают в фазе друг с другом, таким образом, имея точно такое же время, вся мощность, возникающая в результате потока, равна реальной мощности .По мере того как задержка между током и напряжением увеличивается, увеличивается и величина реактивной мощности – лошадь все больше отдаляется от вагона. Реактивная мощность присутствует всякий раз, когда ток либо «отстает», либо «опережает» напряжение.

Фазы тока, напряжения и мощности в системе переменного тока


Источник: MIT Electric Grid of the Future Report

Препятствия для потоков мощности в линии электропередачи называются импедансом . Эти импедансы могут быть либо сопротивлением, либо реактивным сопротивлением. Сопротивление – это трение электронов с атомами внутри электрических проводников, которое одинаково влияет как на ток, так и на напряжение, преобразовывая небольшое количество энергии в отходящее тепло. Реактивное сопротивление может относиться к электрическим полям или магнитным полям. Электрические поля , влияющие на напряжение, создаются, когда две электрически заряженные металлические пластины помещаются близко друг к другу, не касаясь друг друга. Эти конденсаторы , создают напряжение без протекания тока, таким образом эффективно сохраняя и задерживая колебания напряжения относительно тока. Магнитные поля , с другой стороны, заставляют ток совершать «обход» относительно напряжения. Сами по себе электрические линии постоянно накапливают и извлекают переменный ток в магнитном поле, которое вращается по спирали вокруг провода. «Катушки индуктивности » представляют собой катушки с проволокой специальной конструкции, предназначенные для хранения тока в магнитных полях. Некоторые приборы, такие как электродвигатели и холодильники, обладают индуктивными свойствами.

Когда ток отстает от напряжения, в цепи присутствует положительной реактивной мощности .Наиболее важной причиной положительной реактивной мощности является реактивное сопротивление самих линий электропередач. На всем протяжении линии часть тока проходит «в обход» спиралевидного магнитного поля вокруг линии. Трансформаторы, в которых используются катушки индуктивности, также подают положительную реактивную мощность в линии. На границе сети индуктивные приборы, такие как электродвигатели и холодильники, также вносят положительную реактивную мощность.

Поскольку более высокая реактивная мощность соответствует более высокому напряжению, слишком большая положительная реактивная мощность в одной части сети может вызвать резкое падение напряжения.Чтобы компенсировать реактивное сопротивление линий электропередач, трансформаторов и индуктивных устройств, необходимо обеспечить достаточную подачу отрицательной реактивной мощности. Эта услуга может предоставляться электростанциями, хотя и за счет реальной выработки электроэнергии и ограничена пропускной способностью передачи. В качестве альтернативы, отрицательная реактивная мощность , может использоваться ниже по потоку для улучшения потока мощности. Например, конденсаторы, расположенные ниже по потоку рядом с трансформаторами и индуктивными нагрузками, могут использоваться для уменьшения падений напряжения там, где это наиболее необходимо.Некоторые электрические устройства, такие как интеллектуальные инверторы, также могут локально стабилизировать реактивную мощность.

Регулировка реактивной мощности в системе распределения электроэнергии

Хотя реактивная мощность важна для стабильности напряжения при передаче, слишком большая положительная реактивная мощность в системе распределения влияет на энергоэффективность. Возвращаясь к примеру с лошадью и железнодорожным вагоном, увеличение угла тяги снижает количество реальной мощности, прикладываемой к железнодорожному вагону. В 2011 году компания Consolidated Edison в Нью-Йорке ввела плату за реактивную мощность, чтобы наказать крупных потребителей электроэнергии с неэффективным индукционным оборудованием.Коммунальное предприятие рекомендует крупным клиентам устанавливать конденсаторы рядом с индуктивными нагрузками, циклически включать индуктивное оборудование и модернизировать свои предприятия более эффективным оборудованием, чтобы поддерживать коэффициент мощности выше 95%.

Реактивная мощность – задержка между напряжением и током в заданной точке – подвержена ограничениям передачи. В результате часто необходимо производить реактивную мощность вблизи того места, где она необходима. Кроме того, некоторым приборам, таким как электродвигатели, требуется отрицательная реактивная мощность для правильной работы своих магнитов.Таким образом, подача реактивной мощности на месте намного эффективнее, чем получение ее издалека. Именно здесь распределенные энергоресурсы могут принести значительные выгоды для регулирования реактивной мощности.

Согласно SDG & E, интеллектуальные инверторы могут эффективно регулировать реактивную мощность с небольшими дополнительными затратами. В январе 2014 года Комиссия по коммунальным предприятиям Калифорнии выпустила технический отчет, в котором рекомендуются стандарты возможностей интеллектуальных инверторов. PJM также выступила с убедительными заявлениями в поддержку интеллектуальных инверторов для регулирования реактивной мощности.Согласно документам рабочей группы IEEE 1547, «результаты […] моделирования показывают, что реальный и реактивный противоток не является существенной проблемой и что не требуется вносить никаких существенных изменений в работу фидера при высоких уровнях [умного] инвертор проникновения ». В апреле 2014 года FERC опубликовала отчет персонала с описанием методик компенсации реактивной мощности в качестве вспомогательной услуги. С добавлением новых возможностей «умных сетей», таких как автоматизация, прогнозная аналитика и локальная координация, реактивная мощность может стать той лошадью, которую мы можем приручить.

Что такое активная, реактивная и полная мощность – определение и объяснение

Активная мощность

Определение: Мощность, которая фактически потребляется или используется в цепи переменного тока, называется Истинная мощность или Активная мощность или Реальная мощность . Он измеряется в киловаттах (кВт) или МВт. Это фактические результаты работы электрической системы, которая управляет электрическими цепями или нагрузкой.

Реактивная мощность

Определение: Мощность, которая течет вперед и назад, что означает, что она движется в обоих направлениях в цепи или реагирует на себя, называется Реактивной мощностью .Реактивная мощность измеряется в киловольт-амперах, реактивная (кВАр) или мвар.

Полная мощность

Определение: Произведение среднеквадратичного значения напряжения и тока известно как Полная мощность . Эта мощность измеряется в кВА или МВА.

Было замечено, что мощность потребляется только в сопротивлении. Чистая катушка индуктивности и чистый конденсатор не потребляют никакой энергии, поскольку в течение полупериода, какая бы мощность ни принималась от источника этими компонентами, та же самая мощность возвращается к источнику.Эта мощность, которая возвращается и течет в обоих направлениях цепи, называется реактивной мощностью. Эта реактивная мощность не выполняет никакой полезной работы в цепи.

В чисто резистивной цепи ток находится в фазе с приложенным напряжением, тогда как в чисто индуктивной и емкостной цепи ток сдвинут по фазе на 90 градусов, т. Е. Если в цепи подключена индуктивная нагрузка, ток отстает от напряжения на 90 градусов, а если подключена емкостная нагрузка, ток опережает напряжение на 90 градусов.

Следовательно, из всего вышеизложенного можно сделать вывод, что ток , синфазный с напряжением, дает истинную или активную мощность , тогда как ток , сдвинутый по фазе на 90 градусов с напряжением, вносит вклад в реактивную мощность в цепи.

Следовательно,

  • Истинная мощность = напряжение x ток в фазе с напряжением
  • Реактивная мощность = напряжение x ток не в фазе с напряжением

Векторная диаграмма для индуктивной цепи показана ниже:

Если взять за эталон напряжение V, то ток I отстает от напряжения V на угол ϕ.Ток I делится на две составляющие:

  • I Cos ϕ в фазе с напряжением В
  • I Sin ϕ, который на 90 градусов не совпадает по фазе с напряжением V

Следовательно, следующее выражение, показанное ниже, дает активную, реактивную и полную мощность соответственно.

  • Активная мощность P = V x I cosϕ = V I cosϕ
  • Реактивная мощность P r или Q = V x I sinϕ = V I sinϕ
  • Полная мощность P a или S = ​​V x I = VI

Активная составляющая тока

Составляющая тока, которая находится в фазе с напряжением цепи и вносит вклад в активную или истинную мощность схемы, называется активной составляющей или составляющей полной ватт или синфазной составляющей тока.

Реактивная составляющая тока

Составляющая тока, которая находится в квадратуре или на 90 градусов по фазе относительно напряжения схемы и вносит вклад в реактивную мощность схемы, называется реактивной составляющей тока.

Разница между активной и реактивной мощностью

Основная разница между активной и реактивной мощностью

Основное различие между активной и реактивной мощностью состоит в том, что активная мощность – это фактическая или реальная мощность, которая используется в цепи, в то время как реактивная мощность колеблется взад и вперед между загрузкой и источником, что теоретически бесполезно.

Следующий треугольник мощности показывает соотношение между активной, реактивной и полной мощностью. Все эти мощности индуцируются только в цепях переменного тока, когда ток опережает или отстает от напряжения, то есть существует разность фаз (фазовый угол (Φ) между напряжением и током.

Что такое активная мощность?

Мощность, которая действительно используется и потребляется для полезной работы в цепи переменного или постоянного тока, известной как активная мощность, или истинная мощность, реальная мощность, полезная мощность или полная мощность в ваттах.Он обозначается буквой «P» и измеряется в ваттах, кВт или МВт. Среднее значение активной мощности можно рассчитать по следующим формулам.

Формулы для активной мощности
  • P = V x I … (цепи постоянного тока)
  • P = V x I x Cosθ … (однофазные цепи переменного тока)
  • P = √3 x В L x I L x Cosθ … (Трехфазные цепи переменного тока)
  • кВт = √ (кВА 2 – кВАр 2 )

Связанное сообщение: Разница между аналоговым и цифровым мультиметром

Что такое реактивная мощность

Мощность, которая движется и возвращается (колеблется назад и вперед) между источником и нагрузкой в ​​цепи, известна как реактивная мощность.Его также называют бесполезной мощностью или мощностью без ватта. Реактивная мощность обозначается буквой «Q» и измеряется в ВАР (вольт-ампер, реактивная мощность), кВАр или МВАр.

Реактивная мощность тоже полезна, т. Е. Помогает создавать магнитное и электрическое поле и накапливать в цепях и разряжать трансформаторы, соленоиды, асинхронные двигатели и т.д. x I x Sinθ

  • VAR = √ (VA 2 – P 2 )
  • kVAR = √ (kVA 2 – кВт 2 )
  • Реактивная мощность = √ (Полная мощность 2 Истинная мощность 2 )
  • Связанное сообщение: Разница между Конденсатор и суперконденсатор

    Сравнение активной и реактивной мощности.

    В следующей таблице показаны основные различия между активной и реактивной мощностями.

    Характеристики Активная мощность Реактивная мощность
    Определение Истинный или Реальный или Фактический Мощность , рассеиваемая в цепи, называется , рассеиваемая в цепи Активная мощность , которая фактически используется или потребляется. Мощность, которая непрерывно колеблется между источником и нагрузкой, известна как Реактивная мощность .(Также известен как бесполезный или Вт без Мощность)
    Обозначается P Q
    Единицы Вт, кВт, МВт, МВт ВАр, кВАр
    Формулы
    • P = V x I (цепи постоянного тока)
    • P = V x I x Cosθ (однофазные цепи переменного тока)
    • P = √3 x В L x I L x Cosθ (трехфазные цепи переменного тока)
    • P = 3 x В Ph x I Ph x Cosθ
    • P = √ (S 2 – Q 2 ) или
    • P = √ (VA 2 – VAR 2 ) или
    • Q = V x I x Sinθ
    • Реактивная мощность = √ (Полная мощность 2 True мощность 2 )
    • ВАр = √ (ВА 2 – P 2 )
    • кВАр = √ (кВА 2 – кВт 2 )
    Измерительный прибор Ваттметр Ваттметр
    Роль в цепях постоянного тока Активная мощность равна реактивной мощности i.е. в цепях постоянного тока нет VAr. Существует только активная мощность. В цепях постоянного тока отсутствует реактивная мощность из-за нулевого фазового угла (Φ) между током и напряжением.
    Роль в цепях переменного тока Активная мощность важна для производства тепла и использования электрического и магнитного поля, создаваемого реактивной мощностью. Реактивная мощность играет важную роль в цепях переменного тока для создания магнитных и электрических полей.
    Поведение в чисто резистивной цепи Вся мощность в цепи рассеивается резисторами, что составляет активную мощность Нет реактивной мощности в чисто резистивной цепи.
    Поведение в чисто емкостной цепи Активная мощность равна нулю (0), то есть вся мощность поочередно поглощается от источника переменного тока и непрерывно возвращается обратно. Ведущие вариации. В чисто емкостной цепи нагрузки напряжение и ток не совпадают по фазе на 90 ° друг с другом (ток опережает напряжение на 90 ° (другими словами, напряжение отстает на 90 ° от тока). Т.е. опережающая реактивная мощность.
    Поведение в чисто индуктивной цепи Активная мощность равна нулю (0)

    P = VI Cos θ

    Когда: Cos (90 °) = 0

    Мощность P = VI (0) = 0

    Тогда общая активная мощность = 0 Вт.

    Отстающие Вар. В чисто индуктивной или реактивной цепи нагрузки напряжение и ток не совпадают по фазе на 90 ° друг с другом (ток отстает на 90 ° от напряжения (другими словами, напряжение опережает на 90 ° от тока). Т.е. опережающая реактивная мощность.
    Приложения Активная мощность используется для производства тепла, света, крутящего момента и т. Д. В электрических приборах и машинах. Реактивная мощность также полезна, которая используется для измерения коэффициента мощности и генерирования магнитного потока, электрического потока, электрического и магнитное поле в двигателях, трансформаторах, пускорегулирующих аппаратах, оборудовании индукционного нагрева и т. д.

    Похожие сообщения:

    9.1.1 Реактивная мощность | EBF 483: Знакомство с рынками электроэнергии

    9.1.1 Реактивная мощность

    Реактивная мощность – это очень сложное для технологического понимания понятие, но довольно простое с экономической точки зрения. Здесь мы сосредоточимся на экономике, но для этого нам нужно немного понять физику. Если вы хотите узнать больше о загадочной природе реактивной мощности, я настоятельно рекомендую вам прочитать прекрасную книгу Александрии фон Мейер Power Systems: A Conceptual Introduction .

    Напомним из начала термина, что электроэнергия на самом деле состоит из двух компонентов: тока и напряжения. В системе переменного тока производимые ток и напряжение непостоянны. Оба являются синусоидальными волнами с частотой 60 циклов в секунду или 60 Гц (эта «частота» – важное понятие, к которому мы вернемся позже в этом уроке). Если волны напряжения и тока достигают пика в одно и то же время, как показано на панели (а) рисунка ниже, говорят, что они находятся «в фазе».«Если волны напряжения и тока не достигают пика в одно и то же время, как показано на панели (b) рисунка ниже, то они считаются« не в фазе ».

    В фазе и Не в фазе переменного тока.

    кредит: Это изображение З. Хе © Государственный университет Пенсильвании под лицензией CC BY-NC-SA 4.0 Z.

    Для энергосистем требуется, чтобы напряжение и ток были как можно более “синфазными”. Если бы единственными устройствами, которые были подключены к системам питания, были простые резисторы (например, лампочка или обычный тостер), тогда было бы несложно поддерживать фазу системы питания.Некоторые типы бытовых устройств, такие как кондиционеры, холодильники, насосы для бассейнов или что-нибудь еще, в котором используется электродвигатель, могут фактически сбивать напряжение и ток в противофазе. Эти устройства иногда называют «индуктивными нагрузками», поскольку они потребляют ток, но могут снижать напряжение, или они создают слабое электромагнитное поле, которое может сдвигать напряжение по фазе с током.

    Если напряжение оказывается не в фазе с током, это уменьшает количество мощности, которое может быть доставлено (помните, что мощность = напряжение, умноженное на ток), и некоторые из этих индуктивных нагрузок могут не работать (а лампочки могут не работать. такие же яркие и т. д.).Разница в фазах между напряжением и током или то, какое дополнительное напряжение потребуется для восстановления синфазности системы, называется реактивной мощностью.

    Мощность, которую мы фактически потребляем (напряжение, умноженное на ток), иногда называют «реальной мощностью», чтобы отличить ее от реактивной мощности. В этом классе, если мы просто будем использовать термин «мощность», то это всегда будет относиться к реальной мощности.

    Это подводит нас к первому экономическому принципу реактивной мощности: реальная мощность и реактивная мощность дополняют потребление.Многим устройствам, использующим электричество, требуется не только реальная мощность для выполнения своих основных функций, но и реактивная мощность, чтобы компенсировать влияние, которое эти устройства оказывают на напряжение.

    Когда энергосистеме требуется больше реактивной мощности, ее можно эффективно вырабатывать на электростанции. Помните, что большинство электростанций вырабатывают электричество через катушку провода, вращающуюся в магнитном поле. (Насколько быстро эта катушка вращается? 60 раз в секунду, или 60 Гц, что является той же частотой, что и формы волны напряжения и тока.) Если волны напряжения и тока не совпадают по фазе, это можно исправить, отрегулировав силу магнитного поля, что может сделать оператор электростанции, слегка передвинув катушку с проводом. Это то, что мы называем «производством» реактивной мощности. Слово «производство» здесь вводит в заблуждение, поскольку реактивная мощность – это не вещь (например, молекула газа или капля нефти) или сила (например, электричество). Но мы используем этот термин как своего рода сокращение.

    Однако есть одна загвоздка, которая подводит нас ко второму экономическому принципу реактивной мощности: реактивная мощность и реальная мощность являются заменителями в производстве.Если электростанция хочет производить больше реактивной мощности, она должна немного уменьшить выработку реальной мощности. Сколько именно определяется техническим проектом силовой установки. Поскольку реактивная мощность не является ни объектом, ни силой, производство реактивной мощности не требует прямых затрат. Однако для электростанции существуют альтернативные издержки в виде упущенного реального производства электроэнергии.

    Некоторые специализированные устройства, такие как батареи конденсаторов, также могут обеспечивать реактивную мощность.Однако с запасом зачастую дешевле производить реактивную мощность на существующей электростанции, чем строить новую батарею конденсаторов. Многие такие конденсаторные батареи действительно существуют в реальных энергосистемах, особенно вблизи городов, где строительство электростанций может быть затруднено.

    До реструктуризации электроэнергетики электроэнергетические компании корректировали выработку электростанций, когда требовалось больше реактивной мощности. Экономические затраты на это были усвоены коммунальным предприятием – если системе потребовалась бы такая большая реактивная мощность, что она значительно увеличила бы стоимость выработки реальной мощности, эти затраты проявились бы в виде более высоких тарифов на электроэнергию.

    Однако в регионах, где была проведена реструктуризация электроэнергетики, ни одна электростанция не будет добровольно обеспечивать реактивную мощность, поскольку это будет означать меньшую реальную мощность, которую она могла бы продать на рынке. PJM и другие операторы рынка обычно решают эту проблему, требуя от генераторов производить реактивную мощность по запросу, при этом любое упущенное потребление реальной мощности компенсируется на основе альтернативных издержек. Например, если генератору предлагается снизить выходную мощность на 1 МВтч, чтобы увеличить реактивную мощность, и если рыночная цена составляет 25 долларов за МВтч, то генератор получит компенсацию в 25 долларов за это действие по увеличению реактивной мощности.

    сборов за реактивную мощность по вашему контракту на энергоснабжение

    Что такое сборы за реактивную мощность?

    Со всех поставщиков и, в конечном итоге, с клиентов взимается плата за реактивную мощность, которая взимается операторами распределительной сети и, при необходимости, передается конечному потребителю. Невозможно заранее узнать, произойдет ли заряд реактивной мощности, поскольку это зависит от того, как объект использует электроэнергию. Быстрый просмотр исторических счетов – хороший признак того, стоит ли вам беспокоиться об этих расходах или нет.При этом, когда это необходимо, расходы на реактивную мощность пропускаются в счет клиента, если это необходимо, вас не выделяют, если вы видите эти расходы в своих счетах.

    В каждом конкретном случае каждый клиент должен оценить, является ли плата за реактивную мощность достаточно большой, чтобы оправдать затраты времени и денег на приобретение оборудования или изменение режима работы, чтобы минимизировать расходы на реактивную мощность в будущем. Свяжитесь с Direct Power, чтобы получить больше информации.

    Чтобы получить более подробную информацию:

    Реактивная мощность относится к разнице между поданной электроэнергией и электричеством, преобразованным в полезную мощность (т.е. то, что вы можете использовать). Если на объекте имеется высокая реактивная мощность, то есть при большом расходе мощности, требуется больший ток, чтобы обеспечить такой же выходной сигнал. Это создает дополнительную нагрузку на распределительную сеть, потенциально увеличивая расходы оператора распределительной сети. Эта плата является вкладом в те расходы, которые указаны в ваших счетах.

    Чтобы побудить клиентов повысить коэффициент мощности, все операторы распределительных сетей (DNO) будут применять плату за реактивную мощность, если средний коэффициент мощности клиента за месяц выставления счета ниже определенного уровня (обычно ниже 0.95). Плата за реактивную мощность в сочетании с согласованной платой за поставленную мощность нацелена на то, чтобы побудить клиента улучшить свой коэффициент мощности и снизить текущий спрос на своем объекте.

    • Стоит понимать, что различное оборудование по-разному влияет на электроснабжение объекта. Мы можем в общих чертах разделить оборудование, используемое на объектах, на три следующие категории:
    • Индуктивные нагрузки – это нагрузки, которые для работы должны создавать электромагнитное поле и, как говорят, вызывают запаздывающий коэффициент мощности (текущее запаздывание по напряжению).
    • Резистивные нагрузки – это нагрузки, которые не влияют на коэффициент мощности на месте (единичный коэффициент мощности). Примеры этого оборудования: вольфрамовые лампы накаливания, электрические нагревательные элементы и т. Д.
    • Емкостные нагрузки – эти нагрузки вызывают опережающий коэффициент мощности (напряжение токоведущих проводов). Эти нагрузки противоположны индуктивным нагрузкам.
    Как исправить запаздывающие коэффициенты мощности:
    • Запаздывающий коэффициент мощности на объекте обычно корректируется путем установки оборудования коррекции коэффициента мощности.Это оборудование содержит конденсаторы, которые создают эффект, противоположный индуктивной нагрузке, и уменьшают эффект запаздывания (текущее запаздывание напряжения), вызванный индуктивной нагрузкой на объекте.
    • Если требуемое корректирующее оборудование очень маленькое по размерам, оборудование коррекции коэффициента мощности будет автоматическим. Это означает, что по мере увеличения индуктивной нагрузки на объекте все больше конденсаторов подключается к сети, а по мере уменьшения индуктивной нагрузки конденсаторы отключаются.
    • Компании по коррекции коэффициента мощности обычно предлагают клиентам бесплатный опрос и расценки.Обычно обследование объекта включает в себя проверку текущего коэффициента мощности на объекте, какое оборудование используется на объекте и определение наилучшего способа корректировки коэффициента мощности.
    • Если средний коэффициент мощности корректируется до уровня выше порога зарядки (обычно выше 0,95), зарядка реактивной мощности прекращается.
    • Повышение среднего коэффициента мощности снизит максимальное потребление кВА.
    • Снижение спроса высвободит электрическую мощность на объекте.
    • Кабели, распределительные устройства, трансформаторы и оборудование потребителя будут пропускать меньше тока.
    Типичные примеры вещей, которые могут вызвать задержку мощности:
    • перем. асинхронные двигатели
    • Индукционный нагрев
    • Трансформаторы
    • Освещение разряда высокой интенсивности (HID)

    Следовательно, в зависимости от того, сколько вы тратите на реактивные заряды, разумно обсудить вышеизложенное с электриком на вашем объекте и в Direct Power. Надеюсь, электрик посоветует вам недорогие изменения, которые вы можете внести, чтобы улучшить коэффициент мощности и, следовательно, снизить вероятность заряда реактивной мощности.

    Свяжитесь с нами сегодня, чтобы получить полезный совет по тарифам на реактивную мощность на вашем объекте.

    мощность, электрическая: Реактивная мощность | Infoplease

    Реактивная мощность – это понятие, используемое инженерами для описания потери мощности в системе, возникающей в результате создания электрических и магнитных полей. Хотя реактивные нагрузки, такие как катушки индуктивности и конденсаторы, не рассеивают мощность, они падают напряжение и потребляют ток, что создает впечатление, что они действительно это делают. Эта мнимая мощность или фантомная мощность называется реактивной мощностью . Он измеряется в единицах, называемых вольт-ампер-реактивными (ВАР). Фактическое количество используемой или рассеиваемой мощности называется истинной мощностью , и измеряется в ваттах. Комбинация реактивной мощности и истинной мощности называется полной мощностью , и является произведением напряжения и тока цепи. Полная мощность измеряется в вольт-амперах (ВА). Говорят, что устройства, которые накапливают энергию за счет магнитного поля, создаваемого протеканием тока, поглощают реактивную мощность; те, которые накапливают энергию за счет электрических полей, как говорят, генерируют реактивную мощность.Реактивная мощность имеет большое значение, поскольку она должна подаваться и поддерживаться для обеспечения непрерывного стабильного напряжения в передающих сетях. Таким образом, реактивная мощность производится для обслуживания системы, а не для конечного потребления. Потери мощности, возникающие при передаче тепла и электромагнитных излучений, включаются в общую потребность в реактивной мощности, как и потребности энергоемких устройств, таких как электродвигатели, электромагнитные генераторы и генераторы переменного тока. Эта энергия подается для многих целей конденсаторами, конденсаторами и аналогичными устройствами, которые могут реагировать на изменения тока, высвобождая энергию для нормализации потока.Если элементы энергосистемы не могут получить необходимую им реактивную мощность от близлежащих источников, они потянут ее через линии электропередачи и дестабилизируют сеть. Таким образом, плохое управление реактивной мощностью может вызвать серьезные отключения электроэнергии.

    Колумбийская электронная энциклопедия, 6-е изд.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *