Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Принцип работы реактивного и турбореактивного двигателя самолета и ракеты

Современный мир трудно представить без самолетов. Авиация прочно вошла в нашу жизнь и помогает путешественникам преодолевать тысячи километров за считанные часы, что, в еще недавнем прошлом, казалось фантастикой. Не говоря уже о полетах в космос и путешествиях к дальним планетам. Все это стало возможным благодаря изобретению реактивных двигателей. Давайте разберемся в принципе их работы.

Первые двигатели появились давным-давно и преобразовывали мускульную силу животных в полезную для достижения конкретной цели энергию. Простейший пример – лошадь, помогающая крутить эернова мельницы. Затем появились ветряные мельницы, где жернова приходили в движение за счет энергии ветра, иди водяные мельницы, использующие течение рек.

Двигатели, работающие на топливе

Общество сразу по достоинству оценило преимущества использование простейших двигателей и в последующие годы многие ученые трудились над разработкой моделей, работа которых не зависела бы от природных и погодных условий, усталости животного, выступающего в качестве источника энергии.

Гюйгенс ван Зейлихем

Наибольшего успеха на этом поприще добился голландский физик Христиан Гюйгенс ван Зейлихем, который в 1687 году первым предложил использовать порох в качестве источника энергии. Согласно замыслу, в двигателе создавалась камера внутреннего сгорания, в которой должен был сжигаться порох, а выделенная в результате горения энергия, преобразовываться в силу, приводящую определенный элемент в движение. Порох являлся первым прототипом современного топлива.

Примечательно, что идея была позаимствована у артиллеристов, наблюдая за которыми, Гюйгенс обратил внимание на то, что после выстрела, орудия откатывались в сторону, противоположную выстрелу.

Наработки голландца, а также ряда других заслуженных ученых, значительно облегчили путь создания топливных двигателей, которыми мы пользуемся до сих пор. На место пороха пришли бензин и солярка, обладающие иными физическими свойствами и температурами горения, необходимыми для выделения энергии.

Явление отдачи

Шло время, наука не стояла на месте. На смену простейшим механическим двигателям пришли паровые, топливные, электрические.

Но научные поиски и разработки на этом не прекращались. Как всегда, на помощь пришла природа, которая, в большинстве случаев и наталкивает изобретателей на удивительные открытия.

Наблюдения за морскими жителями, такими как осьминоги, кальмары и каракатицы, привели к неожиданным результатам. Манера движения этих морских обитателей, была схожа с кратковременным толчком. Будто тело отталкивается отчего – то и продвигается вперед.

Эти наблюдения были чем-то схожи с замечаниями Гюегенса про выстрел и пушку, которые мы упоминали выше.

Таким образом, в физики появилось понятие «явление отдачи». В ходе дальнейших научных исследований было выяснено, что именно благодаря явлению отдачи происходит все движение на планете Земля: автомобиль отталкивается от земли, корабль – от воды и т. д.

Движение тел происходит благодаря передаче импульса от одного объекта другому. Для объяснения явления приведем простейший пример: вы решили толкнуть своего товарища в плечо, приложили определенную силу, в результате которой, он сдвинулся с места, но и вы испытали силу, отталкивающую вас в противоположную сторону.

Конечно, расстояние, на которое сдвинетесь вы и ваш друг, будет зависеть от ряда факторов: сколько вы весите, как сильно вы его толкнули.

Реактивный двигатель и принцип его работы

Таким образом, мы постепенно подошли к рассмотрению самого распространенного в самолетостроении и ракетной отрасли типа двигателя – реактивный двигатель.

Любой из нас способен воочию наблюдать явление реактивной реакции. Все что необходимо, надуть воздушный шарик и отпустить. Каждый знает, что произойдет далее: из шарика будет вырываться поток воздуха, который будет двигать тело шарика в противоположном направлении.

Согласитесь, очень похоже на то, как кальмар, сокращая свои мышцы, создает струю воды, толкающую его в противоположном направлении.

Наблюдения, описанные выше, получили точные научные объяснения, были отображены в физических законах:

  • закон сохранения импульса;
  • третий закон Ньютона.

Именно на них основывается принцип работы реактивного двигателя: в двигатель поступает поток воздуха, который сгорает в камере внутреннего сгорания, смешиваясь с топливом, в результате чего образуется реактивная струя, заставляющая тело двигаться вперед.

Принцип работы достаточно прост, однако устройство подобного двигателя довольно сложное и требует точнейших расчетов.

Устройство реактивного двигателя

Реактивный двигатель состоит из следующих основных элементов:

  • компрессор, который засасывает в двигатель поток воздуха;
  • камера внутреннего сгорания, где происходит смешивание топлива с воздухом, их горение;
  • турбина – придает дополнительное ускорение потоку тепловой энергии, полученной в результате горения топлива и воздуха;
  • сопло, важнейший элемент, который преобразует внутреннюю энергию в «движущую силу» – кинетическую энергию.

Благодаря совместному взаимодействию этих элементов, на выходе реактивного двигателя образуется мощнейшая реактивная струя, придающая объектам, на которых установлен двигатель, высочайшую скорость.

Реактивные двигатели в самолете

В преддверии Мировой Войны, ученые ведущих стран старательно трудились над разработками самолетов с реактивными двигателями, которые бы позволили их странам безоговорочно диктовать свои условия на небесном фронте.

Первый реактивный самолет был разработан немцами в 1937 году, а его испытания начались лишь в 1939 году. Однако имеющиеся на то время двигатели потребляли невероятно большое количество топлива и запас хода такого самолета составлял всего лишь 60 км.

В это же время Японии и Великобритании удалось создать собственные самолеты с реактивными двигателями. Но это были лишь опытные экземпляры, так и не поступившие в серийное производство.

Первым серийным реактивным самолетом стал немецкий «Мессершмит», который, однако, не позволил гитлеровской коалиции взять верх в развязанной ими войне.

Мессершмитт Me-262 Швальбе/Штурмфогель

В гражданской же авиации реактивные самолеты появились лишь в 1952 году в Великобритании.

С тех пор и по настоящие дни, реактивные двигатели являются основными двигателями, применяемыми в самолетостроении. Именно благодаря им, современны лайнеры развивают скорость до 800 километров в час.

Реактивные двигатели в космосе

После освоения неба человечество поставило перед собой задачу покорить космос.

Как вы уже поняли, наиболее мощным двигателем, способным поднять ракету на высоту во много тысяч километров, являлся именно реактивный двигатель.

Конечно, возникает вопрос: как может работать реактивный двигатель в космосе, в безвоздушном пространстве?

В устройстве ракеты предусмотрен резервуар с кислородом, который смешивается с ракетным топливом и образует необходимую тягу полета ракеты, когда космический корабль покидает атмосферу Земли.

Затем приходит в действие закон сохранения импульса: масса ракеты постепенно уменьшается, сгоревшая смесь топлива и кислорода выбрасывается через сопло в одну сторону, а тело ракеты движется в противоположную.

Содержание

  • Двигатели, работающие на топливе
  • Явление отдачи
  • Принцип работы
  • Устройство реактивного двигателя
  • Реактивные двигатели в самолете
  • Реактивные двигатели в космосе

Как работает реактивный двигатель?

Автор: Игорь Вильховский. Дата публикации: . Категория: Новости.

Наш технопарк превращает детей в настоящих инженеров. Здесь они проектируют и создают различные механизмы, приборы и системы. Инженеры всех времён создавали этот Мир и улучшали его, и мы надеемся, что наши кванторианцы продолжат это дело.

У инженерного ремесла множество направлений, но сегодня хочется вспомнить инженеров космической индустрии, так как совсем недавно был праздник День Космонавтики, в который мы отметили юбилей первого полёта человека в космос.

Огромным прорывом, поспособствовавшему этому событию стало создание первого реактивного двигателя – главной части космической ракеты. Он был изобретен инженерами Гансом фон Охайном и Фрэнком Уиттлом в 1930 году.

Главный советский инженер-конструктор Сергей Павлович Королёв успешно продолжил изучение реактивного движения и создал ракету «Восток-1», которая и отправила в космос первого человека – Юрия Алексеевича Гагарина.

А как же работает реактивный двигатель? Как ему удаётся двигать ракету даже в безвоздушном космическом пространстве? В этой статье ответы на эти вопросы!

Попробуйте поднять самого себя, взявшись за шнурки своих кроссовок. Получилось? Если Вы не нарушили законы физики, то вряд ли! Мы не сможем оторвать себя от земли, как бы не старались. Подлететь вверх мы можем только оттолкнувшись от пола и совершив прыжок. Но как же тогда ракета двигается в космосе? Космос – это пустота, вакуум. Там нет предметов, от которых можно оттолкнуться, чтобы получить импульс для движения. Получается, что ракета двигает сама себя, но как это получается?

Двигаться в вакууме ракете позволяет реактивный двигатель. И нет, ракета не двигает сама себя. Она всё-таки отталкивается. От чего? От собственного топлива!Чтобы понять, как это происходит, давайте вспомним третий закон Ньютона – «Действию всегда есть равное и противоположное противодействие».

Представьте, что Вы сидите на очень скользком льду. Встать и уйти невозможно. Оттолкнуться тоже никак. Вы сидите в одном положении и никак не можете двинуться с места. Что делать в такой ситуации? Нужно получить толчок извне. Да, можно позвонить другу и попросить, чтобы он кинул в Вас что-то тяжелое. Но этот способ травмоопасный и крайне неприятный. Правильнее будет вспомнить всё тот же третий закон Ньютона и получить импульс от противоположного импульса. А если по-простому – снимаем ботинок и кидаем его в сторону со всей силы. Таким образом, мы сообщаем ботинку импульс, с которым он полетит. При этом, ботинок тоже сообщает Вам импульс, направленный в противоположную сторону. Иными словами – мы толкаем ботинок, а ботинок толкает нас. Конечно, из-за разной массы, ботинок и Вы будете двигаться с разными скоростями, но всё-таки Вы начнете движение. Если бы Вы смогли метнуть ботинок с большей скоростью или если бы Вы метнули в сторону целый ящик ботинок, то Ваше движение было бы быстрее.

Именно этот закон реализуется в реактивном двигателе. Но там в сторону летят не ботинки, а поток газа.

Скорость молекул в воздухе – 1800 км/ч. А при нагревании до 2800 ̊С (такова температура газа в жидком реактивном двигателе), их скорость увеличивается в 3 раза. Выбрасывая вниз молекулы газа с такой скоростью, ракета получает и обратный импульс, направленный вверх.

Вот так и работает реактивный двигатель – в результате химической реакции топливо превращается в сильно разогретый газ, который струёй попадает в сопло двигателя. Сопло направляет эту струю в нужную сторону, и ракета начинает движение в противоположном направлении.

Реактивный двигатель был создан гениальными инженерами. А другой гениальный инженер использовал реактивное движение, чтобы открыть человечеству дорогу в космос.

В ДТ «Кванториум» много юных инженеров, и мы уверены, что кто-то из них обязательно создаст что-то не менее важное и гениальное!

—————————————————————————————————————————————————————— Парков Павел Андреевич – педагог Хай-Тек-квантума

Двигатели

пропустить навигацию

Что такое аэронавтика? | Динамика полета | Самолеты | Двигатели | История полета | Что это УЭТ?
Словарь | Веселье и игры | Образовательные ссылки | Урок Ланс | Индекс сайта | Дом

Как работает реактивный двигатель?


Скачать Real Media
56k 256k

Скачать Windows Медиаплеер
56k 256k

НОВИНКА!
Видео “Как работает реактивный двигатель”.

Мы считаем само собой разумеющимся, как легко самолет весом более половины миллион фунтов отрывается от земли с такой легкостью. Как это происходит? Ответ прост. Это двигатели.

Позвольте Терезе Беньо из Исследовательского центра Гленна НАСА объяснить подробнее…

Как указано в НАСА Пункт назначения Завтра.


Реактивные двигатели двигают самолет вперед с большой силой, создаваемой огромная тяга и заставляет самолет лететь очень быстро.

Все реактивные двигатели, которые также называются газовые турбины, работают по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора. Компрессор повышает давление воздуха. Компрессор изготовлен с множеством лопастей, прикрепленных к валу. Лопасти вращаются с большой скоростью и сжимают или сжимают воздух. Сжатый затем воздух распыляется топливом, и электрическая искра зажигает смесь. горящие газы расширяются и выбрасываются через сопло в задней части двигателя. Когда струи газа выбрасываются назад, двигатель и самолет устремляются вперед. Когда горячий воздух направляется к соплу, он проходит через другую группу лопастей. называется турбиной. Турбина крепится к тому же валу, что и компрессор. Вращение турбины приводит к вращению компрессора.

На изображении ниже показано, как воздух проходит через двигатель. Воздух проходит через ядра двигателя, а также вокруг ядра. Это приводит к тому, что часть воздуха быть очень жарко, а некоторые быть прохладнее. Затем холодный воздух смешивается с горячим воздуха в районе выходного отверстия двигателя.

 

Это изображение того, как воздух проходит через двигатель

Что такое тяга?

Тяга поступательная сила, которая толкает двигатель и, следовательно, самолет вперед. Сэр Исаак Ньютон обнаружил, что «для каждого действия существует равное и противоположная реакция». Этот принцип используется в двигателе. в большом объеме воздуха. Воздух нагревается, сжимается и замедляется. Воздух прогоняется через множество вращающихся лопастей. Смешивая этот воздух со струей топлива, температура воздуха может достигать трех тысяч градусов. энергия воздуха используется для вращения турбины. Наконец, когда воздух уходит, он выталкивается из двигателя назад. Это заставляет самолет двигаться вперед.

Детали реактивного двигателя

Вентилятор – Вентилятор является первым компонентом в турбовентиляторный. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий вентилятора изготовлены из титана. Затем он ускоряет этот воздух и разделяет его на две части. Одна часть продолжается через «сердцевину» или центр двигателя, где на него воздействуют другие компоненты двигателя.

Вторая часть “обходит” ядро ​​двигателя. Он проходит через канал который окружает ядро ​​​​к задней части двигателя, где он производит большую часть сила, толкающая самолет вперед. Этот более прохладный воздух помогает успокоиться двигатель, а также добавление тяги к двигателю.

Компрессор – Компрессор первый. компонент ядра двигателя. Компрессор состоит из вентиляторов с множеством лопастей. и крепится к валу. Компрессор сжимает поступающий в него воздух. площади постепенно уменьшаются, что приводит к увеличению атмосферного давления. Этот приводит к увеличению энергетического потенциала воздуха. Сжатый воздух нагнетается в камеру сгорания.

Камера сгорания – В камере сгорания воздух смешивается топливом, а затем загорелся. Есть целых 20 форсунок для распыления топлива в воздушный поток. Смесь воздуха и топлива воспламеняется. Это обеспечивает высокий температура, мощный воздушный поток. Топливо сгорает с кислородом в сжатом воздуха, образуя горячие расширяющиеся газы. Внутренняя часть камеры сгорания часто изготавливается керамических материалов для обеспечения термостойкой камеры. Тепло может достигать 2700°.

Турбина – Поток воздуха с высокой энергией приближается из камеры сгорания поступает в турбину, заставляя лопатки турбины вращаться. Турбины соединены валом для вращения лопаток компрессора и для вращения впускного вентилятора спереди. Это вращение забирает энергию у поток высокой энергии, который используется для привода вентилятора и компрессора. Газы вырабатываемые в камере сгорания, движутся через турбину и раскручивают ее лопасти. Турбины реактивного самолета вращаются тысячи раз. Они закреплены на валах которые имеют несколько комплектов шарикоподшипников между ними.

Сопло – Форсунка – это выпускной канал двигатель. Это часть двигателя, которая фактически создает тягу для самолет. Энергетически обедненный воздушный поток, прошедший через турбину, в дополнение к более холодный воздух, миновавший сердцевину двигателя, создает силу при выходе из сопло, которое толкает двигатель и, следовательно, самолет вперед. Сочетание горячего воздуха и холодного воздуха выбрасывается и производит выхлоп, что вызывает тягу вперед. Перед соплом может стоять смеситель , который сочетает в себе высокотемпературный воздух, поступающий из ядра двигателя, с более низкая температура воздуха, пропущенного через вентилятор. Миксер помогает сделать двигатель тише.

Первый реактивный двигатель – А Краткая история ранних двигателей

Сэр Исаак Ньютон в 18 веке был первым предположил, что взрыв, направленный назад, может привести в движение машину вперед с огромной скоростью. Эта теория была основана на его третьем законе движение. Когда горячий воздух устремляется назад через сопло, самолет движется вперед.

Анри Жиффар построил дирижабль с приводом первым авиационным двигателем, паровой машиной мощностью в три лошадиные силы. Это было очень тяжелый, слишком тяжелый, чтобы летать.

В 1874 году Феликс де Темпл построил моноплан. который пролетел всего лишь короткий прыжок вниз с холма с помощью паровой машины, работающей на угле.

Отто Даймлер , изобретен в конце 1800-х годов первый бензиновый двигатель.

В 1894 году американец Хирам Максим пытался оснастить свой тройной биплан двумя паровыми двигателями, работающими на угле. Это только пролетел несколько секунд.

Ранние паровые машины приводились в движение нагретым углем и, как правило, слишком тяжел для полета.

Американский Сэмюэл Лэнгли сделал модель самолета которые приводились в движение паровыми двигателями. В 1896 году он успешно летал на беспилотный самолет с паровым двигателем, получивший название Аэродром . Он пролетел около 1 мили, прежде чем выдохся. Затем он попытался построить полный размерный самолет Aerodrome A, с газовым двигателем. В 1903 году он разбился сразу после спуска с плавучего дома.

В 1903 году братьев Райт летал, Летчик , с бензиновым двигателем мощностью 12 лошадиных сил двигатель.

С 1903 года, года первого полета братьев Райт, до конца 19 века.30-е годы газовый поршневой двигатель внутреннего сгорания с воздушным винтом. единственное средство, используемое для приведения в движение самолетов.

Это был Фрэнк Уиттл , британский пилот, который разработал и запатентовал первый турбореактивный двигатель в 1930 году. Первый успешный полет двигателя Уиттла в мае 1941 года. Этот двигатель отличался многоступенчатым компрессором и камеру, одноступенчатую турбину и сопло.

В то же время, когда Уиттл работал в Англии, Ханс фон Охайн работал над подобным проектом в Германии. Первый самолет, успешно использование газотурбинного двигателя было немецким Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель. полет.

General Electric построила первый американский реактивный двигатель для ВВС США. Реактивный самолет . Именно экспериментальный самолет ХР-59А совершил первый полет в октябре 19 г. 42.

Типы реактивных двигателей

Турбореактивные двигатели

Основная идея турбореактивный двигатель просто. Воздух, поступающий из отверстия в передней части двигателя сжимается в 3-12 раз по сравнению с исходным давлением в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания. повысить температуру жидкой смеси примерно до 1100–1300 °F F. Полученный горячий воздух проходит через турбину, которая приводит в действие компрессор. Если турбина и компрессор исправны, давление на выходе из турбины будет почти в два раза выше атмосферного давления, и это избыточное давление направляется к соплу для создания высокоскоростного потока газа, создающего тягу. Значительное увеличение тяги может быть получено за счет использования форсаж. Это вторая камера сгорания, расположенная после турбины и перед сопло. Форсажная камера повышает температуру газа перед соплом. Результатом этого повышения температуры является увеличение примерно на 40 процентов по тяге на взлете и гораздо больший процент на высоких скоростях, как только самолет находится в воздухе.

Турбореактивный двигатель является реактивным двигателем. В реактивной машине расширяющиеся газы сильно надавите на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает или сжимает его. Газы проходят через турбину и заставляют ее вращаться. Эти газы отскакивать назад и стрелять из задней части выхлопа, толкая самолет вперед.

Изображение ТРД

Турбовинтовой

А турбовинтовой двигатель представляет собой реактивный двигатель, прикрепленный к воздушному винту. Турбина на задняя часть вращается горячими газами, и это приводит в движение вал, приводящий в движение пропеллер. Некоторые небольшие авиалайнеры и транспортные самолеты оснащены турбовинтовыми двигателями.

Как и турбореактивный, турбовинтовой двигатель состоит из компрессора, камера и турбина, давление воздуха и газа используется для запуска турбины, которая затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем, турбовинтовой двигатель имеет лучшую двигательную эффективность при скоростях полета ниже примерно 500 миль в час. Современные турбовинтовые двигатели оснащены воздушными винтами, имеют меньший диаметр, но большее количество лопастей для эффективной работы при гораздо более высоких скоростях полета. Чтобы приспособиться к более высоким скоростям полета, лопасти имеют форму ятагана с загнутыми назад передними кромками на концах лопастей. Двигатели с такими пропеллерами называются винтовентиляторы .

Изображение турбовинтового двигателя

ТРДД

А турбовентиляторный двигатель имеет большой вентилятор спереди, который всасывает воздух. Большая часть воздуха обтекает двигатель снаружи, что делает его работу тише. и давая больше тяги на малых скоростях. Большинство современных авиалайнеров оснащены турбовентиляторами. В ТРД весь воздух, поступающий во впуск, проходит через газогенератор, состоящий из компрессора, камеры сгорания и турбина. В турбовентиляторном двигателе только часть поступающего воздуха попадает в камера сгорания. Остаток проходит через вентилятор или компрессор низкого давления. и выбрасывается непосредственно в виде «холодной» струи или смешивается с выхлопом газогенератора. для создания «горячей» струи. Целью такой обходной системы является увеличение тяги без увеличения расхода топлива. Это достигается за счет увеличения суммарный расход воздушной массы и снижение скорости при том же суммарном запасе энергии.

Изображение турбовентиляторного двигателя

Турбовальные валы

Это еще одна форма газотурбинного двигателя, которая работает так же, как турбовинтовой двигатель. система. Он не приводит в движение пропеллер. Вместо этого он обеспечивает питание вертолета. ротор. Турбовальный двигатель устроен так, что скорость вертолета ротор не зависит от скорости вращения газогенератора. Это позволяет скорость ротора должна оставаться постоянной, даже если скорость генератора менялись, чтобы модулировать количество производимой мощности.

 

Изображение турбовального двигателя

ПВРД

ПВРД – это самый простой реактивный двигатель и не имеет движущихся частей. Скорость реактивного «тарана» или нагнетает воздух в двигатель. По сути, это турбореактивный двигатель, в котором вращается техника исключена. Его применение ограничено тем, что его степень сжатия полностью зависит от скорости движения вперед. ПВРД не развивает статических тяга и очень небольшая тяга вообще ниже скорости звука. Как следствие, ПВРД требует некоторой формы вспомогательного взлета, например, другого самолета. Он использовался в основном в системах управляемых ракет. Космические аппараты используют это тип струи.

Изображение прямоточного воздушно-реактивного двигателя

 

Вернуться к началу

Что такое аэронавтика? | Динамика полета | Самолеты | Двигатели | История полета | Что такое УЭТ?
Словарь | Веселье и игры | Образовательные ссылки | Урок Планы | Индекс сайта | Главная

Реактивные двигатели

Базовый обзор


На изображении выше показано, как реактивный двигатель будет расположен в современном военный самолет. В базовом реактивном двигателе воздух поступает в передний воздухозаборник и сжимается (мы увидим, как позже). Затем воздух нагнетается камеры сгорания, в которых впрыскивается топливо, а смесь воздуха и топливо воспламеняется. Образующиеся газы быстро расширяются и истощаются. через заднюю часть камеры сгорания. Эти газы действуют с одинаковой силой во всех направлениях, обеспечивая тягу вперед, когда они уходят в тыл. Как газы покидают двигатель, они проходят через веерообразный набор лопастей (турбина), которая вращает вал, называемый валом турбины. Этот вал, в очередь, вращает компрессор, тем самым обеспечивая подачу свежего воздуха через впуск. Ниже представлена ​​анимация изолированного реактивного двигателя, который иллюстрирует процесс притока воздуха, сжатия, горения, оттока воздуха и только что описанное вращение вала.

процесс можно описать следующей схемой, взятой с сайта Rolls Royce, известного производителя реактивных двигателей.


Этот процесс лежит в основе работы реактивных двигателей, но как именно происходит что-то вроде сжатия (сдавливания)? Чтобы узнать больше о каждом о четырех шагах создания тяги реактивным двигателем см. ниже.

СОСА

Двигатель всасывает большой объем воздуха через вентилятор и компрессор этапы. Типичный коммерческий реактивный двигатель потребляет 1,2 тонны воздуха в секунду. во время взлета — иными словами, он мог выпустить воздух на корте для сквоша в меньше секунды. Механизм которым реактивный двигатель всасывает воздух, в значительной степени является частью сжатия этап. Во многих двигателях Компрессор отвечает как за всасывание воздуха, так и за его сжатие. Некоторые двигатели имеют дополнительный вентилятор, не является частью компрессора для подачи дополнительного воздуха в систему. Вентилятор — крайний левый компонент двигатель показан выше.


ВЫЖИМ

Помимо подачи воздуха в двигатель, компрессор также создает давление в воздуха и подает его в камеру сгорания. Компрессор показан на изображении выше слева от огонь в камере сгорания и справа от вентилятора. Компрессионные вентиляторы приводятся в действие от турбина валом (турбина, в свою очередь, приводится в движение воздухом, выходя из двигателя). Компрессоры могут достигать избыточной степени сжатия 40:1, что означает, что давление воздуха в конце компрессора более чем в 40 раз больше воздуха, поступающего в компрессор. На полной мощности лопасти типичного коммерческий реактивный компрессор вращается со скоростью 1000 миль в час (1600 км / ч) и потребляет 2600 фунтов (1200 кг) воздуха в секунду.

Сейчас мы обсудим, как компрессор на самом деле сжимает воздух.


Как видно на изображении выше, зеленые вентиляторы, составляющие компрессор постепенно становится все меньше и меньше, как и полость через которые должен пройти воздух. Воздух должны продолжать двигаться вправо, в сторону камер сгорания двигатель, так как вентиляторы вращаются и толкают воздух в этом направлении. Результат – заданное количество воздуха переходя из большего пространства в меньшее и тем самым увеличивая давление.


BANG

В камере сгорания топливо смешивается с воздухом для создания взрыва, который отвечает за расширение, которое нагнетает воздух в турбину. Внутри типичного коммерческого реактивного двигателя топливо сгорает при сгорании. камере до 2000 градусов по Цельсию. Температура, при которой металлы эта часть двигателя начинает плавиться при температуре 1300 градусов по Цельсию, поэтому продвинутая необходимо использовать методы охлаждения.

Горение камера имеет сложную задачу сжигания большого количества топлива, подается через топливные форсунки с большими объемами воздуха, подаваемый компрессором, и выделяя полученное тепло таким образом что воздух расширяется и ускоряется, чтобы дать плавный поток равномерно нагретый газ. Эта задача должна быть выполнена с минимальными потерями под давлением и с максимальным тепловыделением в ограниченном пространстве доступный.

Количество топлива добавление в воздух будет зависеть от требуемого повышения температуры. Однако, максимальная температура ограничена определенным диапазоном, определяемым материалы, из которых изготовлены лопатки турбины и сопла. Воздух имеет уже был нагрет до температуры от 200 до 550 C за счет работы, проделанной в компрессор, обеспечивающий повышение температуры примерно от 650 до 1150 C от процесса горения. Так как температура газа определяет тягу двигателя, камера сгорания должна быть способна поддержание стабильного и эффективного сгорания в широком диапазоне двигателей условия эксплуатации.

Воздух, занесенный вентилятор, который не проходит через сердцевину двигателя и, следовательно, не используется для сжигания, что составляет около 60 процентов от общего поток воздуха постепенно вводится в жаровую трубу, чтобы снизить температуру внутри камеры сгорания и охладить стенки жаровой трубы.


УДАР

Реакция расширенного газа – смесь топлива и воздуха – нагнетается через турбину, приводит в действие вентилятор и компрессор и выдувает из выхлопное сопло, обеспечивающее тягу.

Таким образом, перед турбиной стоит задача обеспечения мощности для привода компрессор и аксессуары. Это делает это, извлекая энергию из горячих газов, выбрасываемых из системы сгорания и расширения их до более низкого давления и температуры. Непрерывный поток газа, к которому подвергается воздействию турбины, может попасть в турбину при температуре от 850 до 1700 C, что снова намного выше температуры плавления тока технологии материалов.

Для производства вращающий момент, турбина может состоять из нескольких ступеней, каждая из которых использует один ряд подвижных лопастей и один ряд неподвижных направляющих лопаток для направления воздух по желанию на лопасти. Количество этапов зависит от зависимость между мощностью, требуемой от газового потока, вращательным скорость, с которой он должен производиться, и допустимый диаметр турбины.

Желание для обеспечения высокой эффективности двигателя требуется высокая температура на входе в турбину, но это вызывает проблемы, так как лопасти турбины потребуются для работы и выдерживают длительные периоды эксплуатации при температурах выше их плавления точка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *