Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Как узнать ток и напряжение светодиода

Главная » Электрика » Компоненты

Автор: Школа светодизайна MosBuild

В связи с глобальным развитием технологий широкое применение в электронике получили светодиоды. Они обладают множеством особенностей, из которых можно выделить компактность и яркое свечение. Помимо номинального тока, который является их главным параметром, нужно знать рабочее напряжение светодиодов. Этот параметр часто используют для проведения расчетов. Если правильно подобрать параметры устройства, можно продлить срок его службы. Напряжение для светодиода является разницей потенциалов на p-n-переходе, что отмечается в паспортных данных прибора. Бывают случаи, когда нет информации о конкретном изделии, тогда возникает вопрос: «Как определить падение напряжения на светодиоде?».

Содержание

  1. Определение тока
  2. Как узнать падение напряжения?
  3. Теоретический метод
  4. Практический метод

Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Измерение силы тока светодиода

Тестирование проводится следующим образом:

  • Щупы мультиметра подключаются плюсовым выводом к аноду, а минусовым к катоду.
  • Анодный вывод у светодиода делается длиннее, чем катодный.
  • Прозванивать можно светодиоды, у которых небольшое напряжение питания. Если у них большая мощность, применять такой метод нельзя.

Лучше воспользоваться проверенным способом измерения характеристик устройства. Для этого понадобятся:

  • блок питания, рассчитанный на 12 В;
  • мультиамперметр;
  • постоянные резисторы – 2,2 и 1 кОм, а также 560 Ом;
  • переменный резистор – 470–680 Ом;
  • вольтметр, желательно цифровой;
  • провода для коммутации схемы.

Как и в предыдущем случае, потребуется узнать полярность диода. Если по его выводам непонятно, где «+» и «-», тогда придется к одному из выводов подсоединить резистор 2,2 кОм. После этого нужно подключить светодиод к блоку питания. При его свечении нужно отключить питание и промаркировать нужный выход «+».

Теперь нужно заменить резистор 2,2 кОм на 560 Ом. В эту цепь последовательно подсоединяется переменный резистор, а также миллиамперметр для проведения замера. Вольтметр, у которого разрешение 0,1 В, подключается параллельно светодиоду. После этого необходимо установить максимальное сопротивление у переменного резистора.

Мультиметр для замера силы тока и напряжения светодиода

Можно подсоединить собранную схему к блоку питания, соблюдая полярность. После включения у светодиода будет блеклое свечение. Сопротивление постепенно снижают и следят за вольтметром. Определенное время напряжение будет расти до 0,5 В, расти будет и ток, что влияет на увеличение яркости светодиода. Необходимо фиксировать показания каждые 0,1 В. Оптимальный рабочий ток будет достигнут, когда величина напряжения станет расти медленнее силы тока, а яркость перестанет увеличиваться.

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Теоретический метод

Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета. Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода. Ток, проходящий через светодиод, вызывает слабое свечение кристалла.

Типы и виды светодиодов

В состав этих изделий входят различные полупроводниковые металлы. Этот фактор и влияет на падение напряжения на p-n-переходе. Чтобы обозначить такие характеристики, независимо от марок и производителей светодиода, их окрашивают в различные цвета. Но стоит знать, что конкретно утверждать, на сколько вольт светодиод, опираясь только на его окраску, будет неверно. Цвета этих приборов дают приблизительные значения для проведения измерений. Примерные параметры по цветовому признаку приведены в таблице.

Цвет прибораНапряжение, В
Красный1,63–2,03
Желтый2,1–2,18
Зеленый1,9–4,0
Синий2,48–3,7
Оранжевый2,03–2,1
Инфракрасныйдо 1,9
Фиолетовый2,76–4
Белый3,5
Ультрафиолетовый3,1–4,4
Примерные характеристики светодиода можно определить по цвету его корпуса и размерам

На прямое напряжение светодиода не воздействуют габариты или вариации корпуса, однако может проглядываться количество кристаллов, которые излучают свет и соединяются последовательно. Бывают виды элементов SMD, где люминофор прячет цепочку кристаллов.

В корпусе SMD-светодиода последовательно соединяются три кристалла белого цвета. Наиболее часто они применяются в лампах на 220 В китайского производства. Из-за того, что такие светодиоды начинают реагировать только от 9,6 вольт, протестировать их мультиметром не удастся, так как его батарейка питания рассчитана на 9,5 В.

Теоретически можно воспользоваться интернетом, скачав специальную программу datasheet, в поисковике которой вписать известные параметры светодиода, его цвет. Это позволит найти приблизительные характеристики, где падение напряжения и значения тока могут быть неточными.

Практический метод

Проведение тестирования практическим способом позволяет получить наиболее точные значения силы тока и падения напряжения. Рассчитанная таким образом характеристика прибора позволяет безопасно и долговременно использовать его по назначению. Для получения неизвестных параметров потребуется вольтметр, мультиметр, блок питания, рассчитанный на 12 В, резистор от 510 Ом.

Принцип измерений аналогичен описанному выше для тестирования светодиода на номинальный ток. Необходимо собрать схему с резистором и вольтметром, после чего увеличивать постепенно напряжение до начала свечения кристалла. При достижении яркости высшей точки показания замедляют рост. Можно снимать с экрана номинальное напряжение светодиода.

При 1,9 вольт может отсутствовать свечение. В этом случае часто проверяется инфракрасный диод. Чтобы это уточнить, необходимо перевести излучатель в телефонную камеру. Если будет видно на экране белое пятно, то это и есть инфракрасный диод.

Схема проверки падения напряжения на светодиоде

Если нет возможности применить блок питания на постоянные 12 В, можно использовать батарейку «Крона», рассчитанную на 9 вольт. При отсутствии вышеперечисленных источников питания отлично подойдет стабилизатор сетевого напряжения, который может выдавать необходимое выпрямленное напряжение, только потребуется заново рассчитать номинал сопротивления резистора, задействованного в схеме.

В этом случае также нужно повышать напряжение до засвечивания светодиода. Напряжение, при котором произойдет свечение, и будет номинальным, на которое он рассчитан.

При неизвестных характеристиках светодиода обязательно необходимо рассчитывать его значения номинального тока и падения напряжения, чтобы предотвратить быстрый выход из строя.

Понравилась статья? Поделиться с друзьями:

Стабилизатор тока на полевом транзисторе

В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.

Описание задумки.

Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.

Немного теории.

Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.

Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.

Ось У – ток через светодиод.

Ось Х – падение напряжения на светодиоде.

Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В. Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток. Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!

Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!

Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.

Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно. При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так). Получается, что падение напряжение на каждом светодиоде будет – 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.

При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде. Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них. Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.

О схеме.

Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.

Рисунок 2.

Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.

Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт. При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться. При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.

Настройка.

Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.

В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.

Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.

Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.

В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2. Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла. Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.

О печатной плате.

Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37×18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.

Рисунок 3.

О деталях.

Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.

Таблица1 – перечень компонентов.

Позиционное обозначение

Наименование

Аналог/замена

R1

Резистор 10к.

SMD типоразмер 0805

R2-R6

Резисторы шунта.

SMD типоразмер 1206

VD1

Стабилитрон 9,1В.

Корпус SOD80

VT1

Транзистор биполярный BC846. Структура – n-p-n.

Корпус SOT23.

VT2

Транзистор полевой P0903BDG. Структура – n-канальный.

Корпус DPAK

Резюмирую. Во всех моих разработках со светодиодами обязательно есть стабилизатор тока. Он или простой, как в тот, что описан в статье или на операционном усилителе. Светодиоды обычно подключаю параллельно или последовательно-параллельно, всё зависит от конкретной задачи. В этой же статье рассказал, как сделать несложный стабилизатор тока для светодиодов на полевом транзисторе. Постарался объяснить, чем отличается стабилизатор напряжения от стабилизатора тока для светодиодов и что лучше. Надеюсь у меня получилось. Привёл принципиальную схему стабилизатора тока и печатную плату. Все файлы можно скачать с сайта. Приятных разработок!

Ну и фото напоследок.

BC846 datasheet.

P0903BDG datasheet.

Архив с проектом.

Сравнение характеристик светодиодных чипов SMD

: размер, мощность, эффективность

Статья обновлена: 24 августа 2021 г.

Какие светодиодные чипы SMD самые яркие и эффективные? 5050, 5630, 5730, 2835 или что-то другое?

⚠️ Не поддавайтесь искушению смотреть невооруженным глазом прямо на светодиоды высокой яркости!

Светодиодные чипы SMD Характеристики: размер, мощность, эффективность

Светодиодные чипы SMD значительно изменились за последние пару десятилетий. Поскольку стоимость люмена в геометрической прогрессии снижается, теперь они бывают самых разных форм и размеров, которые вы только можете себе представить.

СВЕТОДИОДНЫЕ ЧИПЫ SMD

Идеальный источник света: эффективность 100 %

Световая эффективность излучения видимого спектра (LER) выражается в люменах на ватт (лм/Вт) единиц. Максимальная теоретическая эффективность идеального источника света равна 683 лм/Вт при 555 нм монохроматический зеленый цвет длина волны.

Почему 555 нанометров спросите вы? Потому что стандартизированная кривая V(λ), описывающая среднюю чувствительность человеческого глаза к видимому свету, достигает максимума именно при этом числе! Очевидно, за это мы должны благодарить природу! Другими словами, идеальный светодиодный источник света должен излучать «чистый зеленый цвет» и преобразовывать 100% потребляемой электроэнергии в свет, достигая максимального теоретического предела эффективности.

А как насчет других цветов? А как насчет красного, синего, желтого, оранжевого и белого? Что ж, всякий раз, когда мы сдвигаем, расширяем или растягиваем спектр излучаемого света, чтобы включить в выход другие цвета, мы снижаем максимальную теоретическую эффективность. Почему? Потому что наши глаза не так чувствительны к другим цветам, особенно к крайним синим (700 нм) концам шкалы, и мы полностью слепы к ультрафиолетовому и инфракрасному (ИК) спектрам и выше.

 

 

Светодиоды белого света имеют максимальная теоретическая эффективность около ~ 350 лм/Вт , что означает, что мы еще не достигли этого, но уже очень близко! Согласно официальному пресс-релизу компании (2014 г.), Cree (которая продала свой светодиодный бизнес SMART Global Holdings, Inc. в 2020 г.) была первой компанией, преодолевшей барьер эффективности 300 лм/Вт . Итак, почему мы не видим их в наших таблицах, перечисленных ниже, и в интернет-магазинах, готовых к покупке? Поскольку это результаты испытаний лабораторных образцов НИОКР, они либо чрезвычайно редки, либо дороги в производстве (требуются высокая точность, дорогие и жесткие материалы и механические допуски для массового производства на нашем нынешнем технологическом уровне), и поэтому их доступность очень ограничена. Они и эксклюзивны, и дороги на данный момент.

Как производятся белые светодиоды?

В настоящее время доступны 3 метода, каждый из которых имеет определенное преимущество перед другим:

  1. Использование R-G-B светодиодов (без люминофорных красителей, действующих как преобразователи длины волны). Мы можем создать иллюзию белого света, правильно смешав значения КРАСНОГО, ЗЕЛЕНОГО и СИНЕГО компонентов соответственно. Обратите внимание, что все 3 светодиода имеют разные электрические характеристики, которые необходимо учитывать (а именно, требования к рабочему напряжению и току), что делает логику контроллера более сложной и дорогой. Этот метод может быть очень простым и эффективным, но имеет тенденцию создавать пробелы в спектре, что приводит к более низкому индексу цветопередачи (80-85). Кроме того, из-за различных материалов (состава) уровни износа (старения) меняются со временем по-разному для каждого цвета, что влияет на стабильность и качество света.

    Где мы можем увидеть пример светодиодов RGB и белого света, который они производят? Что ж, если у вас есть OLED/AMOLED-дисплей на мониторе вашего мобильного телефона, ПК или ноутбука, возможно, вы уже смотрите на него, потому что в этих технологиях экрана используется активная светодиодная матрица RGB (или чередующаяся RGBW) для создания иллюзии много цветов, в том числе белый! Если у вас на цифровой или запасной телефонной камере есть режим макросъемки (в сочетании с оптическим или цифровым зумом — это, скорее всего, поможет), вы можете сделать увеличенное изображение отдельных светодиодных субпикселей и убедиться в этом сами! Обратите внимание, что в более старой традиционной технологии экрана TFT LCD на самом деле не используются светодиоды спереди, а цветные стеклянные фильтры RGB пропускают или блокируют блок белого света (BLU) с задней подсветкой, что может заставить вас думать, что это светодиоды, но это не так. !

  2. Использование синего светодиода с красителями на основе люминофора сверху (под крышкой объектива). Эта желтая или оранжевая краска, которую вы видите поверх многих белых светодиодов SMD или светодиодных панелей COB, на самом деле называется преобразователем длины волны , специальным слоем красителя, использующим квантовый принцип преобразования длины волны в частоту. Синие светодиоды обычно работают с длиной волны 450-460 нм. Различные красители будут давать различный спектральный сдвиг и результирующий «белый цвет» (теплый, натуральный, холодный). Некоторые специализированные красители могут давать очень высокие значения CRI (95-98). Люминофорные красители характеризуются собственной внутренней квантовой эффективностью, которая также влияет на общую эффективность светодиодов.
  3. Использование УФ-светодиода с красителями на основе люминофора в качестве преобразователей длины волны сверху (под крышкой объектива). УФ-светодиоды обычно работают с длиной волны 365-395 нм.
Светодиодные чипы SMD: основные свойства
  • Radiant Flux ( люмен ) выход на один чип. Это зависит от номинальной мощности и КПД, размера, геометрии, класса / бункера, электрических характеристик и условий эксплуатации.
  • Эффективность , выраженная в люменах на ватт. Отношение (лм/Вт) связано с Radiant Flux и тем, как сильно светит светодиод по отношению к потребляемой электроэнергии. Несмотря на распространенное мнение, максимальная энергоэффективность светодиодного чипа достигается на более низком уровне мощности , чем его максимальная номинальная мощность ! Диаграмма Люмен на ватт в зависимости от прямого тока (А) имеет форму кривой экспоненциального затухания . Именно по этой причине многие энергоэффективные конструкции включают как минимум на 30-100 % больше светодиодных чипов, чем абсолютный минимум, чтобы избежать снижения эффективности, сохранить чипы более холодными и управлять ими в «наилучшей зоне». В типичной конструкции управляющий ток редко превышает номинальное значение светодиода, и, чтобы держать под контролем температурный режим, они часто занижаются на 30-50 %, что значительно ниже их номинальных и абсолютных максимальных значений. Есть, конечно, и другие случаи, когда энергоэффективность не является основной целью, а общая светоотдача, и в этих случаях светодиоды работают на максимум с большими радиаторами, прикрепленными сзади.
  • Ширина луча излучаемых световых лучей (угол 2D или 3D) — определяется границей, где интенсивность света падает до 50%. Лампы накаливания светят примерно на 360 градусов, тогда как обычные светодиоды обычно рассматриваются как сфокусированные точечные источники с углом луча от 15 до 120 градусов. Обычно это определяется геометрией чипа и формой фокусирующей линзы, расположенной сверху, которую можно добавить позже, после процесса изготовления чипа. Объектив вносит падение светового потока на 5-10 % (потеря эффективности), в зависимости от его значение оптического пропускания , которое обычно составляет около 90-95 %.
  • Спектральный отклик — еще одна важная характеристика. Полихроматические светодиоды являются производными синих светодиодов с различным соотношением длин волн синего, желтого, зеленого и красного цветов, образующих широкий диапазон цветовых температур от янтарного/теплого, естественного/нейтрального до холодного (голубоватого) белого. Качество «белого» определяется люминофорным покрытием поверх светодиодного чипа. Монохроматические светодиоды специализируются на относительно узком диапазоне спектра от ультрафиолетового (УФ), видимого (RGB и других цветов) до инфракрасного (ИК) света.

💡 Обратите внимание, что некоторые светодиодные чипы SMD (например, 5050) на самом деле состоят из нескольких отдельных светодиодов внутри! Если вы присмотритесь, то заметите 6 или 7 отдельных областей под крышкой линзы светодиода. Излишне говорить, что этот факт способствует их более высокой электрической мощности и светоотдаче, но вносятся некоторые потери из-за границ пространства между отдельными «островками» подложки вдоль предельной тепловой характеристики от нескольких диодов, использующих один и тот же корпус.

В случае многоцветных светодиодов RGB каждый сегмент светодиода внутри чипа имеет красный, зеленый и синий цвет соответственно. Иногда внутри одного и того же чипа может присутствовать дополнительный 4-й выделенный светодиод теплого белого (WW) или холодного белого (CW) цвета, чтобы уменьшить дискретные артефакты смешивания цветов, улучшить реализм и CRI (индекс цветопередачи) — в таких случаях чипы и полоски (и соответствующие контроллеры) обычно обозначаются как RGBW , чтобы отличить их от дискретных или более распространенных типов R G B . Варьируя (смешивая) индивидуальную яркость каналов R-G-B, достигается иллюзия «бесконечной» цветовой палитры.

В случае одноцветных версий (холодный белый, натуральный белый, теплый белый, красный, зеленый, синий и т. д.) все отдельные светодиоды внутри одинаковы, но не подключены параллельно; они по-прежнему поставляются с отдельными клеммами для управления отдельными светодиодами (например, для улучшенного распределения тока (= яркости) с ограничительными резисторами).

Ленты RGB LED Flex выпускаются в нескольких вариантах:

  1. 5- или 6-жильные гибриды RGBW/RGBWW/RGBCCT, содержащие как обычный чип 5050 RGB + отдельные чипы 2835 WW и/или CW рядом с ним
  2. 3-проводные RGBCW/RGBWW/RGBNW передовые чипы 4-в-1, а некоторые даже содержат встроенные цифровые логические контроллеры для отдельных светодиодных сегментов с адресацией
  3. 4-проводная классическая светодиодная гибкая лента R-G-B с дискретными диодами R, G и B, расположенными рядом друг с другом
  4. Другие нестандартные/специальные/перемежающиеся варианты
Светодиодные чипы SMD: типовые характеристики

Данные обобщены и сильно упрощены для понимания, но на самом деле все зависит от партии продукции, постпроизводственной классификации (марки/бины) и других характеристик, специфичных для каждого производителя.

  • Типовой белый SMD-светодиод мощностью 0,2 Вт (например, 2835, 5050) работает при напряжении ~ 3,0 В (2,8 ~ 3,6), работает при номинальном токе возбуждения 60 мА и производит 20-35 люмен на один чип. При работе на меньших токах (20-40 мА) выходной поток снижается до 6-15 люмен на один чип.
  • Типовой белый SMD-светодиод мощностью 0,5 Вт (например, 2835, 5630, 5730) работает при напряжении ~ 3,2 В (2,8 ~ 3,6), работает при номинальном токе возбуждения 100–150 мА и производит 30–90 (типичное значение 50–60) люмен на один светодиод. чип. При работе на меньших токах (45-60 мА) выходной поток снижается до 10-30 люмен на один чип.

Типичные значения для светодиодного чипа 5050 :

  • 200 мВт (0,2 Вт) Максимальная номинальная мощность
  • 120° градусов ширина луча
  • 8~14 люмен на один светодиодный чип, но может достигать 24
  • 5050 обычно ярче чипов 3528, но менее мощны, чем 5630 и 5730
  • 5050 Гибкая светодиодная лента (лента) одинаковой длины, номинального напряжения и количества чипов будет производить больше света, а также потребует гораздо большего тока возбуждения (~ 4 раза), чем эквивалентные 3528 и 2835 более дешевые варианты
Светодиодные чипы SMD: общее введение

Современные дискретные светодиодные чипы SMD: SMD5050 , SMD5054 , SMD5630 , SMD5730 , SMD2835 , SMD3014 , SMD35288 , SMD3014 , SMD3528 , , SMD3014 , SMD3528 89128 9.

Первые 2 цифры обозначают ширину ; вторые 2 цифры обозначают длину (все единицы указаны в 1/10 миллиметра или мм , для краткости). К сожалению, само по себе обозначение размера абсолютно ничего не говорит нам об их электрических и светоизлучающих характеристиках!

💡 Отказ от ответственности: Ниже приводится только общая классификация самых популярных в настоящее время размеров, которую не следует воспринимать как абсолютную. Более полный список см. в таблице внизу. Остерегайтесь того факта, что некоторые однодиодные чипы в упаковке могут быть более мощными (обладать большей потребляемой мощностью) по сравнению с другими типами или комбинированными, но это не приводит автоматически к более высокой эффективности! Производители классифицируют по разным сортам / бункеров светодиодов в процессе массового производства и соответственно их цена. Другими словами, вы можете обнаружить, что в целом более совершенный тип чипа «на бумаге» от менее известного (или неизвестного) производителя работает намного хуже, чем менее продвинутая модель от уважаемого производителя! Кроме того, вы должны учитывать различия в качестве и производительности между производственными партиями, которые, как правило, очень высоки у менее известных и респектабельных производителей. Мир светодиодов окрашен всеми оттенками серого (должна быть шутка).

Согласно различным даташитам, наиболее мощными и эффективными являются типы 3535 (до 1500 мА/5 Вт/180 Люмен), 2016 (60 мА/0,2 Вт/до 200 Люмен на один чип), и 2835 типов (150-300 мА/0,5-1,0 Ватт/до 180 Люмен на один чип), но будьте осторожны, гораздо чаще встречаются более дешевые варианты 60 мА/0,2 Вт, встречающиеся в бюджетных светодиодных лентах и ​​лампы похуже ( слабее или менее ярко) чем 5050! За ними внимательно следуют 3030 (150 мА/1 Вт/до 165 люмен на один чип). В среднем классе находятся типы 5054 , 5630 и 5730 (до 150-300 мА/0,5-1,0 Вт/60-150 Люмен) — более мощные, чем типы 5050/5060 — опять же остерегайтесь дешевой маломощности Типы 0,10 ~ 0,15 Вт и 7 ~ 12 люмен обычно встречаются в недорогих светодиодных лентах и ​​лампах. Cree выпускает специальную высокоэффективную серию 5630 J, которая может достигать 209 лм/Вт! Наконец, типы 5050 / 5060 имеют более низкую потребляемую мощность (до 60 мА / 0,2 Вт / 24-32 люмен на один чип), но они очень эффективны, дешевы и доступны по цене, обеспечивают превосходный мощный световой поток. для типичных применений, что делает их очень хорошим бюджетным выбором! Есть и другие размеры и типы, но эти самые популярные на сегодняшний день.

Cree производит некоторые «экзотические» типы 5050 (5 Вт, работающие от 6 В до 36 В, излучающие до 455 люмен на один чип и достигающие эффективности до 201 лм/Вт), но они определенно не являются обычным типом. Обычно нахожу вокруг.

Кроме того, существует серия Cree XLamp XHP50 (Extreme High Power) (и более новая, более эффективная и улучшенная XHP50.2 следующего поколения), которые также представляют собой установленные SMD-чипы с квадратным размером 5,0 x 5,0 мм, но имеют гораздо большую переднюю линзу. и до 18 Вт максимальной номинальной мощности!

XHP XLamp XHP35/XHP35.2/XHP50/XHP50.2/XHP70/XHP70.2 не относятся к тому же классу, что и обычные SMD-светодиоды, которые мы рассматриваем в этой статье, они значительно мощнее (хотя, не обязательно более эффективным!) и поставляются с характерным звездообразным алюминиевым радиатором.

Как правило, чем мощнее чип (например, он выдерживает более высокое входное напряжение и ток), тем больше света он излучает (в сумме), но тем менее эффективен. Другими словами, управление мощными микросхемами на уровне 40-50 % от их номинальной мощности обычно обеспечивает пиковую эффективность [лм/Вт] или рейтинг LPW, в то время как дальнейшее приближение их к номинальным (максимальным непрерывным) номинальным характеристикам снизит это соотношение. . Самые эффективные чипы, как правило, менее 0,2 Вт, потому что они работают при более низкой температуре, их легче производить и получать «идеальные бины» в процессе производства.

Еще раз, имейте в виду, что данные разнятся в зависимости от производителя, класса (цены), области применения, а также меняются с каждым новым поколением светодиодов; следствие быстро развивающейся промышленности. Более дешевые (с низким энергопотреблением) обычно находят свое применение в таких продуктах, как светодиодные лампы USB или светодиодные ленты. Более дорогие зарезервированы для продуктов более высокого класса с соответствующей ценой. Но более высокая мощность и светоотдача (люмены) выливается в более чем мощности батареи, необходимой для их питания (и, следовательно, генерируемых ).0011 Heat ), что является чем-то вроде роскоши и конструктивного ограничения в миниатюрных портативных устройствах и приложениях.

Отдельно стоит упомянуть дешевые светодиодные «клоны», разработанные так, чтобы «выглядеть» и «чувствовать» себя как настоящие. Они распространены в бюджетных / недорогих светодиодных лентах, лампах, лампочках и т. Д. Что делает их такими некачественными и слабыми? По сути, они используют более тонкие и меньшие силиконовые подложки, провода, меньше меди (в полосках/лентах), меньшие радиаторы, плохие регуляторы мощности и так далее. Если вы измерите их вес, то обнаружите, что зачастую они в 2-3 раза легче своих «оригинальных» аналогов. Все это делает их склонными к большему нагреву, что в конечном итоге ограничивает их абсолютную максимальную мощность и срок службы.

Светодиодные чипы также различаются по мощности и рабочему напряжению. Хотя это в основном достигается за счет дополнительных сетевых цепей контроллера и резистора или последовательного соединения микросхем, что приводит к работе при более высоком номинальном напряжении, чем номинальные значения возбуждения кремниевых светодиодов .

Распространенный современный светодиод SMD белого или синего цвета работает от 2,7 ~ 3,6 Вольт (соответствует современным литиевым или 2 (или 3) батарейкам стандарта AA/AAA), но есть и другие варианты: на 5 Вольт ( Питание от шины USB), 12–24 В (питание от аккумулятора автомобиля/грузовика и в обычных бытовых осветительных приборах) и вплоть до сетевого питания 110–220 В переменного тока (использование в домашних условиях, офисе и промышленности). Усилители напряжения или понижающие преобразователи используются либо для повышения низкого напряжения (1-3 вольта) до более высокого (5-12 вольт), либо для выпрямления и уменьшения сетевого питания.

Некоторые светодиоды могут питаться от более высокого напряжения (например, 3,7 ~ 4,5 В для белых светодиодов), но это значительно сокращает срок их службы и даже приводит к их преждевременному сгоранию! Существуют также специальные высоковольтные типы (6-18 В и более) с высоким КПД. Светодиодные чипы

представляют собой нелинейные электронные компоненты (кривая V-I), очень похожие на их обычные неизлучающие родственники , а это означает, что их светоотдача сильно зависит от изменения входного напряжения. Это очень мало беспокоит в таких приложениях, как портативные светодиодные лампы с батарейным питанием, но в профессиональном и домашнем освещении это имеет большое значение. В режиме постоянного напряжения (CV) используются токоограничивающие резисторы, особенно со светодиодными лентами, USB-светодиодными лампами, «кукурузными» лампочками, потолочными светильниками и т. д., однако резисторы снижают общий КПД из-за чрезмерной мощности источника питания или аккумулятор уходит в тепло. Вот почему 9Следует использовать схемы драйвера постоянного тока 0011 (CC), поскольку яркость светодиода можно регулировать более линейно за счет величины электрического тока, проходящего через микросхему в активном режиме, без чрезмерных потерь энергии.

Светодиодные чипы SMD Характеристики: Размер/Мощность/КПД/Технические характеристики Таблица

Исходный источник данных таблицы (отредактировано, обновлено, исправлены ошибки, данные предоставляются как есть)

SMD
Светодиод
Размеры [5]
[мм x мм]
Мощность [6]
[Вт]
Поток на чип [1]
[люмен]
Эффективность [1]
[Лм/Вт]
(мин)
Эффективность [1]
[Лм/Вт]
(макс.)
CRI [4]
[Ra]
Интенсивность [3]
[Кд]
Угол луча
[° градусов]
Радиатор
Требуется [2]
диодов на чип Источник данных / Примечание
1808 1,8 х 0,8 0,1* 8-10 80 100 75-95 120 нет 1 Алибаба
Алиэкспресс
2016 2,0 х 1,6 0,2 16-40 80 200 70-95 120 нет/да* 1 Кри
2216 2,2 х 1,6 0,1*8–10 80 100 90-97 120 нет 1 Алибаба
AliExpress
Высокий индекс цветопередачи 3528
2835 2,8 х 3,5 0,2/0,5/1 14–180 70 180 75–95 4,4-57,3 120 нет/да* 1 Кри/БриджЛюкс
3014 3,0 х 1,4 903:30 0,1 9–12 90 120 75–85 2,8-3,8 120 №* 1 Алибаба
3020 3,0 х 2,0 0,06 5,4 80 90 1,7 120 №* 1 Алибаба
3030 3,0 х 3,0 0,2/0,5/1 30-36 / 110–200 120 200 70-90 120 нет/да* 1 Кри
3528 3,5 х 2,8 0,1/0,5 4–8 / 52 80 104 60–70 120 нет 1, 3 (RGB) Национстар / APT
3535 3,5 х 3,5 0,5/1/2/3/5 35-1000 70 180-200 75–80 120 да 1 Philips/Kingbright/Другие
4014 4,0 х 1,4 0,2 22–34 110 170 80 117 №* 1 Алибаба
[Китай]
5050 5,0 х 5,0 0,2/5,0 12-24 / 800-1000 60-160 120-200 70-90 120 №* 1 (WW/NW/CW), 2 (WW+CW), 3 (RGB), 4 (RGBW) Кри / Юаньлэй (Страна грез) / Другие
5054 5,0 х 5,3 0,2/0,5/1 24-150 110 150 80 120 нет/да* 1, 4 (RGBW) Различные
5060 5,0 х 5,5 0,2 18-26 90 130 80 120 №* 3 (RGB) Hi-Led/оптическая вспышка
5630 5,6 х 3,0 0,2/0,5 24-42 / 45-90 90-120 180-210 70-90 120 №* 1 Кри
5730 5,7 х 3,0 0,2/0,4/0,5 12–26 / 30–65 60 130 70-90 120 №* 1 OptoFlash / Tbelux / Octa Light
5733 5,7 х 3,3 0,5 35–50 70 100 80 9,5-15,9 120 №* 1 Алибаба
[Китай] 903:30
5736 5,7 х 3,6 0,5 40–55 80 110 80 12,7-17,5 120 №* 1 Алибаба
[Китай]
7014 7,0 х 1,4 0,5/1 55-60 / 110-120 110 120 70–80 120 нет/да* 1 Санан 903:30
7020 7,0 х 2,0 0,2/0,5/1 22-24 / 50-60 / 110-120 110 120 75–85 120 нет/да* 1 Тбелукс
7030 7,0 х 3,0 1 110-120 110 120 75–85 120 да 1 Санан
8520 8,5 х 2,0 0,5/1 55–60 / 110–120 110 120 80 120 нет/да* 1 Алибаба
[Китай]

[1] Flux и Световая эффективность указан для полихроматического спектра видимого света (например, теплого, естественного или холодного белого). У монохроматических типов она значительно ниже, за исключением, конечно, зеленого лазера на 555 нм. См. также [2] и [4] ниже.

Эффективность часто указывается при температуре перехода (чипа) в 25°С, что нереально без большого радиатора и/или активного охлаждения. Эффективность при более распространенных 85°С примерно на 8-10% ниже. Это делает прямое сравнение эффективности между различными типами светодиодов, классами (бинами) и производителями еще более сложным.

Поток на кристалл указан для целей ориентации при максимальной продолжительной номинальной мощности и идеальной комнатной температуре перехода. Конечно, при более низких уровнях тока/напряжения или более высоких рабочих температурах оно будет ниже в соответствии с конструкцией и целями/требованиями проекта.

Значения эффективности потока и люмена округлены.

[2] Радиатор рекомендуется для длительной или непрерывной работы при высокой или близкой к максимальной номинальной мощности. В маломощных моделях (0,2 ~ 0,5 Вт) радиатор можно не устанавливать при более низких уровнях мощности (COB и переносные лампы используют алюминиевую подложку как часть конструкции печатной платы со встроенным радиатором). Flux и Beam Angle учитывая, что легко вычислить эквивалент Candela (Cd) выход по стандартной формуле:

Iv [кд] = Φv [лм] / (2π(1 – cos(θ/2)))

, где Iv – светящийся (свет) интенсивность в канделах, Φv — световой поток в люменах, а θ — угол луча в градусах.

Далее, если мы заменим θ = 120° градусов (типично) в приведенном выше уравнении и упростим его, уравнение Люмен-Кандела станет:

Iv [кд] = Φv [лм] / π
Iv [кд] ≈ Φv [лм] / 3,14
Iv [кд] ≈ 0,32 * Φv [лм]

Другими словами, сила света, выраженная в канделах, примерно равна 1/3 для данного светового потока с углом луча светодиода, равным 120° градусов.

[4] Чипы с высоким CRI (индекс цветопередачи) [Ra] обычно имеют более низкую эффективность (лм/Вт) и яркость. Специализированные чипы могут иметь значение CRI Ra до 98 в зависимости от некоторых производителей. Освещение с высоким индексом цветопередачи подходит для профессиональной фото- и видеосъемки (вспомните Голливуд), а также для хорошо спроектированных домов, общественных и офисных помещений, хотя и с меньшей эффективностью.

[5] Чип только в упаковке. Не включает штифты для пайки на сторонах чипа.

[6] High Power Светодиоды обычно работают при напряжении 3,0–3,6 В и требуют 0,35–1,0 А на чип. Высоковольтные типы обычно работают при напряжении 6, 9, 12, 18 или 36 вольт и требуют 0,15–0,30 ампер на чип. Это достигается либо путем укладки нескольких чипов в один корпус (например, светодиодный модуль), либо с помощью специального производственного процесса. Примерами являются серия Cree SMD 2835 J с номинальной мощностью 1 Вт и эффективностью, достигающей почти 180 лм/Вт (класс P), и серия Cree SMD 5050 6 В J с номинальной мощностью 5 Вт и эффективностью, достигающей 175–201 лм/Вт (класс K). ).

Светодиодные модули COB

COB (чип-на-плате) Светодиодное освещение — это новейшая и наиболее значимая тенденция в мире светодиодного освещения, позволяющая отказаться от традиционной дискретной упаковки и максимально плотно упаковать интегрированные микросхемы в произвольную фасонная область из изоляционного слоя и алюминиевой подложки (радиатора): круг, квадрат, прямоугольник, лунообразная, звездообразная… Фосфорный слой распространяется по всей форме COB, что способствует их уникальному внешнему виду. Обратите внимание, что базовая алюминиевая подложка обеспечивает краткосрочное охлаждение COB, а радиатор гораздо большего размера необходимо добавлять отдельно, если он работает на максимальной мощности.

Светодиодные лампы COB — различные продукты (не в масштабе)

Характеристики светового потока (потока), эффективности и требования к мощности различаются в зависимости от производителя, партии и модуля, но в целом дают очень яркий свет (например, > 100 люмен/ Вт), требуется мощность 1 ~ 100 Вт и 3 ~ 12 В постоянного тока или питание от сети (110 В ~ 240 В переменного тока).

стабилизатор напряжения – LM317 по сравнению с AMS1117 в качестве ограничителя постоянного тока для светодиодных плат SMD

спросил

Изменено 22 дня назад

Просмотрено 2к раз

\$\начало группы\$

Мне нужно спроектировать плату следующим образом:

Каждый светодиод типа SMD 5730 с максимальным током 150 мА в трех линиях и входным напряжением 3,2 × 7 ≈ 23 В.

У меня есть видел эту схему:

Но я обнаружил, что AMS1117 более устойчив к нагрузкам в этой части таблицы:

В отличие от более старых регуляторов, семейство AMS1117 не нуждается в каких-либо защитных диодах между регулировочным штифтом и выходом и между выходом и входом, чтобы предотвратить перенапряжение кристалла. Внутренние резисторы ограничивают внутренние пути тока на регулировочном штырьке AMS1117, поэтому даже при наличии конденсаторов на регулировочном штифте не требуется защитный диод для обеспечения безопасности устройства в условиях короткого замыкания. Диоды между входом и выходом обычно не нужны. Микросекундные броски тока от 50 до 100 А могут быть обработаны внутренним диодом между входными и выходными контактами устройства. В нормальных условиях трудно получить такие значения импульсных токов даже при использовании больших выходных емкостей. Если используются выходные конденсаторы большой емкости, например, от 1000 мкФ до 5000 мкФ, и входной контакт мгновенно замыкается на землю, может произойти повреждение. Диод с выхода на вход рекомендуется, когда используется ломовая схема на входе AMS1117 (рисунок 1).

Это может дать мне почти 1 А при падении почти 1,3 В и макс. Vin 15 В, поэтому по такому типу подключения:

Хотелось бы узнать, лучше ли LM317 чем AMS1117 по некоторым факторам. меня волнует его цена; цена AMS1117 составляет почти 1/3 от цены LM317, и предлагает максимальное напряжение (что, я не думаю, что мне здесь нужно, потому что разомкнутый контур не передает никакого напряжения на IC с регулируемым напряжением).

Я также видел этот вопрос:

LM317 Постоянный ток против Ограничителя тока транзистора

Я думаю, что LM317 или AMS1117 лучше подходят для этого использования, я прав?

  • регулятор напряжения
  • токоограничивающий
  • постоянный ток

\$\конечная группа\$

1

\$\начало группы\$

Если у вас падение напряжения 15В, а ток 450 мА, то ваш линейный стабилизатор, будь то просто транзистор, LM317 или AMS1117, должен будет рассеивать 7Вт.

Это безумное количество энергии, которое вы тратите впустую и превращаете в тепло. Все они будут перегреваться.

Итак, вы ошибаетесь, и все ваши решения неадекватны; они ошибаются «на столько же».

На самом деле, вы также неверно истолковываете, что такое «ограничение тока». Но об этом уже неоднократно спрашивали здесь…

Здесь вам нужен импульсный блок питания. И вам нужен не источник постоянного напряжения, а источник постоянного тока, поэтому проектируйте соответственно. На самом деле, я бы сказал, что вы действительно хотите три источника постоянного тока , по одному на каждую цепочку, чтобы избежать теплового разгона, если какой-либо из ваших светодиодов имеет более низкое прямое напряжение, чем другие.

\$\конечная группа\$

3

\$\начало группы\$

AMS1117 лучше. потому что падение напряжения составляет всего 1,25 В. это LDO, для работы ему нужно всего на 1,1-1,3 В больше, чем на выходе. 317 тоже подходит, но ему нужно больше 2В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *