Резисторы переменные, постоянные вся истина!
Друзья, всем привет! На дворе зима а календарь говорит мне, что будни перетекают в приятные праздничные выходные, так что самое время для новой статьи. Для тех кто меня не знает, скажу, что меня зовут Владимир Васильев и я веду вот этот самый радиолюбительский блог, так что добро пожаловать!
В прошлой статье мы разбирались с понятием электрического тока и напряжения. В ней буквально на пальцах я постарался объяснить что представляет собой электричество. В помощь применял некие «сантехнические аналогии».
Боле того, я наметил для себя написать ряд обучающих статей для совсем начинающих радиолюбителей- электронщиков, так что дальше будет больше — [urlspan]не пропустите.[/urlspan]
Содержание статьи
Сегодняшняя статья будет не исключением, сегодня я постараюсь как можно подробнее осветить тему резисторов. Резисторы хоть и являются, наверно самыми простыми радиокомпонентами, но у начинающих могут вызвать массу вопросов. А отсутствие ответов на них может привести к полному бардаку в голове и привести к отсутствию мотивации и желанию развиваться.
Что такое сопротивление?
Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.
Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.
Чтобы ответить на этот вопрос, давайте вернемся снова к нашей сантехнической аналогии. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.
Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.
В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.
Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока измеряемую в амперах. Сопротивление которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов измеряемое в омах.
Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.
Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить сравнив с медью у которой удельное сопротивление 0,0175Ом*мм². Неплохо да?
При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.
Как выглядит резистор?
В природе встречаются абсолютно различные резисторы. Есть резисторы с постоянным сопротивление, есть резисторы с переменным сопротивлением. И каждый вид резисторов находит свое применение. Так давайте остановимся и постараемся уделить вниманием некоторые из них.
Постоянные резисторы.
Само название говорит о том, что они обладают постоянным фиксированным сопротивлением. Каждый такой резистор изготавливается с определенным сопротивлением, определенной рассеиваемой мощностью.
Рассеиваемая мощность
— это еще одна характеристика резисторов, так же как и сопротивление. Мощность рассеяний говорит о том, какую мощность может рассеять резистор в виде тепла (вы наверное замечали, что резистор во время работы может значительно нагреваться).
Естественно, что на заводе не могут изготавливать резисторы абсолютно любые. Поэтому постоянные резисторы имеют определенную точность указываемую в процентах. Эта величина показывает в каких пределах будет гулять результирующее сопротивление.И естественно, чем точнее резистор, тем дороже он будет. Так зачем переплачивать?
Также сама величина сопротивления не может быть любой. Обычно сопротивление постоянных резисторов соответствует определенному номинальному ряду сопротивлений. Эти сопротивления обычно выбираются из рядов типо Е3, Е6, Е12,Е24
Как видите резисторы из ряда Е24 имеют более богатый набор сопротивлений. Но это еще не предел так как существуют номинальные ряды E48, E96, E192.
На электрических схемах постоянные резисторы обозначаются эдаким прямоугольником с выводами. На самом условном графическом обозначении может надписываться мощность рассеяния.
Переменные резисторы
Вы когда-нибудь обращали внимание на различные «крутилки» в старой аналоговой технике. Например, задумывались ли о том что вы крутите, прибавляя громкость в старом, возможно даже ламповом телевизоре?
Многие регуляторы и различные «крутилки»представляют собой переменные резисторы. Так же как и постоянные резисторы, переменные также имеют различную рассеивающую мощность. Однако их сопротивление может меняться в широких пределах.
Переменные резисторы служат для регулирования напряжения или тока в уже готовом изделии. Как я уже упоминал этим резистором может регулироваться сопротивление в схеме формирования звука. Тогда громкость звука будет меняться пропорционально углу поворота ручки резистора. Так сам корпус находится внутри устройства, а та самая крутилка остается на поверхности.
Более того, бывают еще и сдвоенные , строенные , счетверенные и так далее переменные резисторы. Обычно их применяют, когда нужно параллельное изменение сопротивления сразу в нескольких участках схемы.
Условное графическое изображение резистора на электрических схемах. |
Подстроечные резисторы.
Переменный резистор это очень хорошо, но что если нам нужно изменение или подстройка сопротивления лишь на этапе сборки изделия?
Переменный резистор нам в этом не очень подходит. Переменный резистор обладает меньшей точностью нежели постоянный. Это плата за возможность регулировки, в результате которой сопротивление может гулять в некоторых пределах.
Конечно на этапе налаживания изделия может применяться так называемый подборочный резистор. Это обычный постоянный резистор, только при монтаже он подбирается из кучки резисторов с близкими номиналами.
Подбор резисторов имеет место быть когда требуется регулировка параметров изделия и при этом требуется высокая точность работы (чтобы требуемый параметр как можно меньше плавал). Таким образом нужно чтобы резистор был как можно большей точностью 1% или даже 0,5%.
Так для подстройки параметров схемы чаще всего применяют подстроечные резисторы. Эти резисторы специально придуманы для этих целей. Подстройка осуществляется посредством тоненькой часовой отвертки, причем после достижения требуемой величины сопротивления ползунок резистора часто фиксируют краской или клеем.
Условное графическое изображение подстроечного резистора |
Формулы и свойства
При выборе резистора, помимо его конструктивной особенности, следует обращать внимания на основные его характеристики. А основными его характеристиками, как я уже упоминал, являются сопротивление и мощность рассеяния.
Между этими двумя характеристиками есть взаимосвязь. Что это значит? Вот допустим в схеме у нас стоит резистор с определенной величиной сопротивления. Но по каким-либо причинам мы выясняем, что сопротивление резистора должно быть значительно меньше того, что есть сейчас.
И вот что получается, мы ставим резистор с значительно меньшим сопротивлением и в соответствии с законом Ома мы можем получить небольшое западло.
Так как сопротивление резистора было большим, а напряжение в цепи у нас фиксированное, то вот что получилось. При уменьшении номинала резистора общее сопротивление в цепи упало, следовательно ток в проводах возрос.
Но что если мы поставили резистор с прежней мощностью рассеяния? При возросшем токе , новый резистор может и не выдержать нагрузки и умереть, его душа улетит вместе с клубком дыма из бездыханного тельца резистора 🙂
Выходит, что при номинале резистора 10 Ом, в цепи будет течь ток равный 1 А. Мощность которая будет рассеиваться на резисторе будет равняться
Видите какие грабли могут подстерегать на пути. Поэтому при выборе резистора, обязательно нужно смотреть его допустимую мощность рассеяния.
Последовательное соединение резисторов
А давайте теперь посмотрим как будут меняться свойства цепи при последовательном расположении резисторов. Итак у нас есть источник питания и далее стоят последовательно три резистора с различным сопротивлением.
Попробуем определить какой ток протекает в цепи.
Здесь хочется упомянуть, для тех кто не в теме, что электрический ток в цепи только один. Есть правило Кирхгофа, которое гласит что сумма токов втекающих в узел равно сумме токов вытекающих из узла. А так как в данной схеме у нас последовательное расположение резисторов и никаких узлов и в помине нет , то ясно, что ток будет один.
Для определения тока, нам нужно определить полное сопротивление цепи. Находим сумму всех резисторов показанных на схеме.
Здесь я приведу формулу полного сопротивления при последовательном расположении резисторов. |
Полное сопротивление получилось равным 1101 Ом. Теперь зная что полное напряжение (напряжение источника питания)равно 10 В, а полное сопротивление равно 1101 Ом, тогда ток в цепи равняется I=U/R=10В/1101 Ом=0,009 А =9 мА
Зная ток мы можем определить напряжение, высаживаемое на каждом резисторе. Для этого также воспользуемся законом Ома. И получается напряжение на резисторе R1 будет равно U1=I*R1=0.009А*1000Ом=9В. Ну и тогда для остальных резисторов U2=0.9В, U3=0.09В. Теперь можно и проверить сложив все эти напряжения, ну и получив в результате значенье близкое напряжению питания.
Ах да вот вам и делитель напряжения. Если сделать отвод после каждого резистора то можно убедиться в наличии еще некоторого набора напряжений. Если при этом использовать равные сопротивления то эффект делителя напряжения будет еще более очевиден.
Кликните для увеличения
На изображении видно как меняется напряжение между разными точками -потенциалами.
Так как резисторы сами по себе являются хорошими потребителями тока, то понятно, что при использовании делителя напряжения, стоит выбирать резисторы с минимальными сопротивлениями. Кстати мощность расходуемая на каждом резисторе будет одинаковой.
Для резистора R1 мощность будет равняться P=I*R1=3.33A*3.33В=11,0889Вт. Округляем и получаем 11Вт. И каждый резистор естественно должен быть на это рассчитан. Потребляемая мощность всей цепи будет P=I*U=3.33A*10В=33,3Вт.
Сейчас я вам покажу какая мощность будет для резисторов имеющих разное сопротивление.
Кликните для увеличения
Мощность потребляемая всей цепочкой, изображенной на рисунке, будет равняться P=I*U=0.09A*10В=0,9Вт.
Теперь рассчитаем мощность потребляемую каждым резистором:
Для резистора R1: P=I*U=0.09A*0.9В=0,081Вт;
Для резистора R2: P=I*U=0.09A*0.09В=0,0081Вт;
Для резистора R3: P=I*U=0.09A*9В=0,81Вт.
Из этих наших расчетов становится понятной закономерность:
- Чем больше общее сопротивление цепочки резисторов, тем меньше будет ток в цепи
- Чем больше сопротивление конкретного резистора в цепи, тем большая мощность будет на нем выделяться и тем больше он будет греться.
Поэтому становится понятной необходимость подбирать номиналы резисторов в соответствии с их потребляемой мощностью.
Параллельное соединение резисторов
С последовательным расположение резисторов думаю более менее понятно. Так давайте рассмотрим параллельное соединение резисторов.
Здесь на этом изображении схемы показано различное расположение резисторов. Хотя в заголовке я упомянул о параллельном соединении, думаю наличие последовательно соединенного резистора R1 позволит нам разобраться в некоторых тонкостях.
Итак суть заключается в том что последовательная схема соединения резисторов является делителем напряжения, а вот параллельное соединение представляет собой делитель тока.
Рассмотрим это подробнее.
Ток течет от точки с большим потенциалом к точке с меньшим потенциалом. Естественно, что ток из точки с потенциалом 10В стремится к точке нулевого потенциала — земле. Маршрут тока будет : Точка10В —>>точка А—>>точка В—>>Земля.
На участке пути Точка 10 —Точка А, ток будет максимальным, ну просто потому, что ток бежит по прямой и не разделяется на развилках.
Далее по правилу Кирхгофа, ток будет раздваиваться. Получается ток в цепи резисторов R2 и R4 будет одним а в цепи с резистором R3 другим. Сумма токов этих двух участков будет равняться току на самом первом отрезке (от источника питания до точки А).
Давайте рассчитаем эту схему и узнаем значение тока на каждом участке.
Для начала узнаем сопротивление участка цепи резисторов R2, R4
Значение резистора R3 нам известен и равен 100Ом.
Теперь находим сопротивления участка АВ. Сопротивление цепи резисторов, соединенных параллельно будет вычислено по формуле:
Ага, подставили в формулу наши значения для суммы резисторов R2 и R4 (Сумма равна 30 Ом и подставляется вместо формульной R1) и значение резистора R3 равное 100 Ом (Подставляется вместо формульной R2). Вычисленное значение сопротивления на участке АВ равняется 23 Ом.
Как видите выполнив несложные вычисления наша схема упростилась и свернулась и стала нам уже более знакомой.
Ну и полное сопротивление цепи будет равняться R=R1+R2=23Ом+1Ом=24Ом. Это мы нашли уже по формуле для последовательного соединения. Мы это рассматривали так что на этом останавливаться не будем.
Теперь ток на участке до разветвлений (участок Точка 10В —>>Точка А) мы сможем найти по формуле Ома.
I=U/R=10В/24Ом=0,42A . Получилось 0,42 ампера. Как мы уже обсуждали этот ток будет один на всем пути от точки максимального потенциала, до точки А. На участке А В, значение тока будет равно сумме токов с участков полученных после разделения.
Чтобы определить ток на каждом участке между точками А и В, нам нужно найти напряжение между точками А и В.
Оно как уже известно будет меньше напряжения питания 10В. Его мы найдем по формуле U=I*R=0.42A*23Ом=9,66В.
Как вы могли заметить полный ток в точе А (равный сумме токов параллельных участков) умножается на результирующее сопротивление запараллеленных (сопротивление резистора R1 мы не учитываем) участков цепи.
Теперь мы можем найти ток в цепи резисторов R2, R4. Для этого напряжение между точками А и В разделим на сумму этих двух резисторов. I=U/(R2+R4)=9.66В/ 30Ом=0,322А.
Ток в цепи резистора R3 тоже найти не сложно. I=U/R3=9.66В/100Ом=0,097А.
Как видите при параллельно соединении резисторов ток делится пропорционально значениям сопротивлений. Чем больше сопротивление резистора, тем меньше будет ток на этом участке цепи.
В тоже время напряжение между точками А и В, будет относиться к каждому из параллельных участков (напряжение U=9.66В мы использовали для расчетов и там и там ).
Здесь хочется сказать как напряжение и ток распределяются по схеме.
Как я уже говорил ток до разветвления равен сумме токов после развилки. Впрочем умный мужик Кирхгоф нам это уже рассказывал.
Получается следующее: Ток I на развилке разделится на три I1, I2, I3, а затем снова воссоединится в I как было и в самом начале, получаем I=I1+I2+I3.
Для напряжения или разности потенциалов, что есть одно и тоже будет следующее. Разность потенциалов между точками А и С (далее буду говорить напряжение AC), не равна напряжениям BE, CF,DG. В тоже время напряжения BE, CF,DG , будут равны между собой. Напряжение на участке FH вообще равно нулю, так как напряжению просто не на чем высаживаться (нет резисторов).
Думаю тему параллельного соединения резисторов я раскрыл, но если есть еще какие-то вопросы то пишите в комментариях, чем смогу помогу 🙂
Преобразование звезды в треугольник и обратно
Существуют схемы, в которых резисторы соединены так, что не совсем понятно где есть последовательное соединение а где параллельное. И как же с этим быть?
Для этих ситуаций есть способы упрощения схем и вот одни из них это преобразование треугольника в эквивалентную звезду или наоборот, если это необходимо.
Для преобразования треугольника в звезду считать будем по формулам:
Для того чтобы совершить обратное преобразование нужно воспользоваться несколько другими формулами:
С вашего позволения я не буду приводить конкретные примеры, все что требуется это только подставить в формулы конкретные значения и получить результат.
Этот метод эквивалентного преобразования будет служить хорошим подспорьем в мутных случаях, когда не совсем понятно с какой стороны подступиться к схеме. А тут порой поменяв звезду на треугольник ситуация проясняется и становится более знакомой.
Ну чтож дорогие друзья вот и все, что я хотел вам сегодня рассказать. Мне кажется эта информация будет полезной для вас и принесет свои плоды.
Хочу еще добавить, что многое из того что я здесь выложил очень хорошо расписано в книгах «Искусство схемотехники» и «Занимательная микроэлектроника», так что рекомендую прочитать обзорные статьи и скачать себе эти книжки. А будет еще лучше, если вы их раздобудете где-нибудь в бумажном варианте.
P.S. У меня на днях возникла одна идея о том как можно получить интересный способ заработка на знаниях электроники и вообще радиолюбительском хобби так что обязательно [urlspan]подпишитесь на обновления.[/urlspan]
Кроме того относительно недавно появился еще один прогрессивный способ подписки через форму сервиса Email рассылок, так что люди подписываются и получают некие приятные бонусы, так что добро пожаловать.
А на этом у меня действительно все, я желаю вам успехов во всем , прекрасного настроения и до новых встреч.
С н/п Владимир Васильев.
Конструктор ЗНАТОК 320-Znat «320 схем»
Конструктор ЗНАТОК 320-Znat «320 схем» — это инструмент, который позволит получить знания в области электроники и электротехники а также достичь понимания процессов происходящих в проводниках.
Конструктор представляет собой набор полноценных радиодеталей имеющих спец. конструктив, позволяющий их монтаж без помощи паяльника. Радиокомпоненты монтируются на специальную плату — основание, что позволяет в конечном итоге получить вполне функциональные радиоконструкции.
Используя этот конструктор можно собрать до 320 различных схем, для построения которых есть развернутое и красочное руководство. А если подключить фантазию в этот творческий процесс то можно получить бесчисленное количество различных радиоконструкций и научиться анализировать их работу. Этот опыт я считаю очень важен и для многих он может оказаться бесценным.
Вот несколько примеров того, что Вы можете сделать благодаря этому конструктору:
Летающий пропеллер;
Лампа,включаемая хлопком в ладоши или струей воздуха;
Управляемые звуки звездных войн, пожарной машины или скорой помощи;
Музыкальный вентилятор;
Электрическое световое ружье;
Изучение азбуки Морзе;
Детектор лжи;
Автоматический уличный фонарь;
Мегафон;
Радиостанция;
Электронный метроном;
Радиоприемники, в том числе FM диапазона;
Устройство, напоминающее о наступлении темноты или рассвета;
Сигнализация о том, что ребенок мокрый;
Защитная сигнализация;
Музыкальный дверной замок;
Лампы при параллельном и последовательном соединении;
Резистор как ограничитель тока;
Заряд и разряд конденсатора;
Тестер электропроводимости;
Усилительный эффект транзистора;
Схема Дарлингтона.
popayaem.ru
что нужно знать о переменных резисторах / Habr
Регулировка громкости звуковой системы, фиксация положения пальца на сенсорном экране и определение появления в автомобиле человека – вот всего лишь несколько примеров использования переменных резисторов в повседневной жизни. Возможность изменять сопротивление – это возможность взаимодействовать, поэтому переменные резисторы можно найти во множестве вещей. (Всё, что необходимо знать о постоянных резисторах, описано в предыдущей статье).
Принципы одинаковы, но способов разделения напряжения существует довольно много. Рассмотрим, что лежит в основе верньеров, реостатов, мембранных потенциометров, резистивных сенсорных экранов, а также датчиков изгиба и растяжения.
Потенциометры, по сути – это делители напряжения. Это метод разделения заданного напряжения на меньшие значения. Согласно схеме, у потенциометра (серый) есть три точки соединения. Средняя – переменная (обозначена стрелкой), и она контактирует с материалом резистора внутри где-то в одной из точек протяжённого резистора.
Напряжение между регулируемой точкой и одной из оставшихся (концов резистора) определяется сопротивлением между ними. Если соединены только две точки, тогда у нас получится переменный резистор, или реостат.
На фото – потенциометр с цилиндрической поворотной ручкой. Круглая пластиковая ручка громкости на вашей звуковой системе прячет один из таких потенциометров. Обратите внимание на три контакта, из которых средний соединён с переменной точкой. На фото изображён новый потенциометр. А вот статья о том, как я использовал такое устройство на усилителе, сделанном из банки из-под арахисового масла.
У потенциометров может быть линейный или логарифмический диапазон сопротивления. Линейный означает, что при повороте ручки сопротивление меняется линейно. Если повернуть её на четверть, сопротивление изменится на четверть.
Но если так будет с ручкой громкости, нашим ушам покажется, что громкость растёт слишком быстро; так происходит из-за особенностей восприятия звуков мозгом. Поэтому для ручки громкости лучше использовать потенциометр, чьё сопротивление меняется логарифмически. На графике показано, как меняется громкость при повороте ручки, как для линейного, так и для логарифмического потенциометра. Некоторые потенциометры обеспечивают лишь псевдо-логарифмический рост, и они дешевле тех, что дают настоящий логарифм. Они состоят из двух линейных частей, встречающихся на 50% поворота. Их работа также отражена на графике.
Логарифмическое поведение достигается изменением формы резистивного элемента – его ширина меняется по всей длине. Поэтому потенциометры часто делят на линейно сужающиеся и логарифмически сужающиеся.
Ещё одна разновидность потенциометра – подстроечное сопротивление, или триммер. Они меньше размером, и используются на электронных платах. Подстраиваются одни обычно один раз, или очень редко – только для калибровки схемы.
Триммеры
Эквалайзер
Не все потенциометры работают с вращением. Они могут быть сделаны и в форме ползунов, как на фото с эквалайзером. Такие ползуны подвержены попаданию грязи, нарушающей их работу – именно такая проблема появилась у клавиатуры на фото (это моя клавиатура, и её ползуны действительно трудно передвигать).
Как я уже упомянул, при подсоединении только двух контактов потенциометр часто называют реостатом. Реостаты обычно используются для больших токов, и, конечно же, не только для регулировки громкости.
Чтобы работать с большими токами, они обычно делаются при помощи провода, намотанного на изолированный сердечник, по которому ходит скользящий контакт. Вспомним символ потенциометра, у которого использовано три контакта. Поскольку здесь мы подключаем два контакта, мы используем другой символ; сопротивление со стрелочкой (не подсоединённой) поперёк. На изображении ниже вы можете видеть два варианта этого символа – по стандартам IEEE и IEC.
Мембранный потенциометр состоит из гибкой диэлектрической, часто прозрачной мембраны с присоединённой снизу полоской сопротивления.
Ниже её находится основание, на поверхности которого нанесена токопроводящая дорожка. Когда палец, или другой объект прикасается к мембране, полоска устанавливает контакт с дорожкой. В результате на контактах полоски появляется напряжение. Оно зависит от того, в каком месте полоска соприкоснулась с дорожкой. Схема тут та же, что и самая первая схема на странице для потенциометра.
Сопротивление мембранного потенциометра SoftPot с сайта Sparkfun меняется линейно от 100 Ом до 10 кОм с номинальной мощностью в 1 Вт.
В случае, когда контакт не постоянен (например, он возникает только при нажатии пальцем), в схеме необходим подтягивающий резистор (к примеру, 100 кОм). Но у некоторых мембранных потенциометров есть магнит или скользящий контакт, всегда давящий на мембрану и поддерживающий постоянный контакт.
Резистивный сенсорный экран похож на мембранный потенциометр, только резистивный материал есть на обоих его слоях, причём материал прозрачный. Передняя мембрана гибкая и также прозрачная, так что палец или стилус может надавить на неё и создать контакт. Технология использовалась в некоторых дешёвых карманных компьютерах или детских игрушках. Она всё ещё применяется, но революция смартфонов произошла благодаря ёмкостным экранам, не требующим гибкой мембраны.
Для 4-проводного резистивного сенсорного экрана напряжение подаётся на верхний слой, а результат считывается с нижнего, и таким образом считывается координата X. Затем всё происходит наоборот и получается координата Y. Всё это происходит за миллисекунды, и опрос экрана проводится непрерывно.
Все подсчёты ведутся вспомогательным контроллером. Резистивные экраны не такие отзывчивые, как ёмкостные, и для высокой точности обычно требуется стилус. Используются в очень дешёвых смартфонах.
Датчики давления состоят из токопроводящего полимера, в котором есть проводящие и непроводящие частицы. Он расположен между двумя проводниками, переплетёнными, но не соединёнными. Прижимание полимера к проводникам создаёт контакт. Увеличение силы или площади нажатия увеличивает проводимость и уменьшает сопротивление. Без нажатия сопротивление конструкции может быть более 1 МОм, а точность обычно составляет около 10%. Этого достаточно для использования в музыкальных инструментах, протезах, датчиках наличия человека в машине и портативной электроники.
Гибкий датчик – это резистивный материал, например, углерод, нанесённый на гибкую мембрану. При изгибании датчика материал растягивается и сопротивление увеличивается пропорционально радиусу изгиба. Судя по одной из спецификаций, сопротивление плоского датчика в 10 кОм может удваиваться при сгибании его на 180 градусов, когда оба конца соединяются. Распространённый пример – пальцы в игровых перчатках, такие, как в контроллере Nintendo Power Glove (в одном из проектов его хакнули для управления квадрокоптером). Сгибание пальцев приводит к изменению сопротивления, показывающему степень сгиба.
Датчик растяжения работает по тому же принципу, только его сопротивление увеличивается при растяжении. Резиновый шнур с углеродом выглядит, как шнур для банджи. Судя по одному примеру с Adafruit, 6-дюймовый шнурок сопротивлением 2,1 кОм при растяжении до 10″ меняет сопротивление до 3,5 кОм. Ещё один пример – проводящая нить из стальных волокон, смешанных с полиэстером, а ещё бывают датчики в виде резинок или ремней.
habr.com
Какие бывают переменные резисторы?
Конструкция, обозначение и разновидности переменных и подстроечных резисторов
Если посмотреть на всё изобилие радиокомпонентов, которые используются в промышленности и радиолюбителями, то нетрудно заметить, что некоторые радиодетали могут изменять величину своего основного параметра.
К таким элементам относятся переменные и подстроечные резисторы, сопротивление которых можно менять.
Переменных резисторов выпускается очень большой ассортимент, как для обычных электронных схем, так и для схем использующих микромонтаж.
Все переменные и подстроечные резисторы подразделяются на проволочные и тонкоплёночные.
В первом случае на керамический стержень наматывается константановая или манганиновая проволока. Вдоль проволочной обмотки перемещается ползунковый контакт. За счёт этого меняется сопротивление между подвижным контактом и одним из крайних выводов проволочной обмотки.
Во втором случае на подковообразную пластину из диэлектрика наносится резистивная плёнка с определённым сопротивлением, а ползунок перемещается вращением оси. Резистивная плёнка – это тонкий слой углерода (проще говоря, сажи) и лака. Поэтому в описании к конкретной модели резистора в пункте тип проводника обычно пишут “углеродистое” или “углерод”. Естественно, в качестве материала резистивного слоя могут применяться и другие материалы и вещества.
А чем подстроечные резисторы отличаются от переменных?
Подстроечные резисторы в отличие от переменных рассчитаны на гораздо меньшее число циклов перемещения подвижной системы (ползунка). Максимальное число для некоторых экземпляров, например, для высоковольтного резистора НР1-9А вообще ограничено 100.
Для переменных резисторов количество циклов может достигать 50 000 – 100 000. Этот параметр называют износоустойчивостью. При превышении этого количества надёжная работа не гарантируется. Поэтому применять подстроечные резисторы взамен переменных строго не рекомендуется – это сказывается на надёжности устройства.
Давайте взглянем на устройство тонкоплёночного переменного резистора марки СП1. На рисунке вы видите реальный переменный резистор, сопротивление которого 1 МОм (1 000 000 Ом).
А вот его внутреннее устройство (снята защитная крышка). Тут же на рисунке указаны основные конструктивные части.
Четвёртый вывод, который виден на первом изображении – это вывод металлической крышки, который служит электрическим экраном и обычно присоединяется к общему проводу (GND).
Подстроечный резистор имеет схожее конструктивное исполнение. Вот взгляните. На фото подстроечный резистор СП3-27б (150 кОм).
Подстройка сопротивления осуществляется регулировочной отвёрткой. Для этого в конструкции резистора предусмотрен паз.
Теперь, когда мы разобрались с устройством переменных и подстроечных резисторов, давайте узнаем, как они обозначаются на принципиальной схеме.
Обозначение переменных и подстроечных резисторов на принципиальных схемах.
Обычное изображение переменного резистора на принципиальной схеме.
Как видим, оно состоит из обозначения обычного постоянного резистора и “отвода” – стрелочки. Стрелка с отводом символизирует средний контакт, который мы и перемещаем по поверхности из намотанного на каркас высокоомного провода или тонкоплёночному покрытию.
Рядом с графическим изображением ставится буква R с порядковым номером в схеме. Также рядом указывается номинальное сопротивление (например, 100k – 100 кОм).
Если переменный резистор включен в схему реостатом (подвижный средний вывод соединён с одним из крайних), то на схеме он может указываться с двумя выводами (на изображении это R2). На зарубежных схемах переменный резистор обозначается не прямоугольником, а зигзагообразной линией. На картинке это R3.
Переменный резистор, объединённый с выключателем питания.
Используется в недорогой переносной аппаратуре. Сам переменный резистор, как правило, используется в цепи регулирования громкости звука, а поскольку он физически (но не электрически!) совмещён с выключателем, то при повороте ручки можно включить прибор и тут же отрегулировать громкость звука. До широкого внедрения цифровой регулировки громкости, такие комбинированные резисторы активно применялись в переносных радиоприёмниках.
На фото – регулировочный резистор с выключателем СП3-3бМ.
На фотографии чётко видна конструкция выключателя, который замыкает свои контакты при повороте дискового регулятора. Часто использовался в аудиоаппаратуре советского производства (например, в переговорных устройствах, радиоприёмниках и пр.).
Также в электронике применяются сдвоенные или объединённые переменные резисторы. У них подвижный контакт конструктивно объединён, и его перемещением можно менять сопротивление у двух или нескольких переменных резисторов одновременно.
Такие резисторы частенько применялись в аналоговой аудиоаппаратуре как регулятор стерео баланса или один из резисторов многополосного эквалайзера. Число сдвоенных резисторов в эквалайзере высокого класса может достигать 20.
В первом квадрате показано обозначение сдвоенного переменного резистора (R1.1; R1.2), который частенько используется в стереофонической аппаратуре. Во втором показано условное изображение на схеме счетверённого переменного резистора. Обратите внимание на буквенную маркировку (R1.1; R1.2; R1.3; R1.4).
На принципиальных схемах объединённые резисторы обозначаются с использованием соединяющей пунктирной линии. Этим указывается то, что их подвижные контакты механически объединены на валу одной ручки-регулятора.
Обозначение подстроечного резистора.
Подстроечный резистор на схеме обозначается аналогично переменному за одним исключением – у него нет стрелочки. Это говорит нам о том, что регулировка сопротивления производится либо единоразово при настройке электронной схемы, либо очень редко при профилактических работах.
Типы переменных и подстроечных резисторов.
Для того чтобы иметь представление обо всём многообразии переменных и подстроечных резисторов ознакомимся с фотографиями.
Неразборный переменный резистор.
Обычный переменный резистор широкого применения. Хорошо заметен тип: СП4 – 1, мощность 0,25 Ватт, сопротивление 100 кОм.
Резистор снизу залит эпоксидным компаундом, то есть он неразборный и ремонту не подлежит. Этот тип очень надёжный, так как он выпускался для оборонной аппаратуры.
А это подстроечные резисторы СП3-16б. Резисторы СП3-16б предназначены для перпендикулярной установки на печатную плату, а мощность их составляет 0,125 Вт. Имеют линейную (А) функциональную характеристику. Как видим, их конструкция весьма добротна и надёжна.
Однооборотные непроволочные подстроечные резисторы.
Малогабаритный подстроечный резистор, который впаивается непосредственно в печатную плату бытовой аппаратуры. Он имеет очень маленькие размеры и на некоторых платах распаивается до десятка ему подобных.
На фото ниже показаны подстроечные резисторы СП3-19а (справа) мощностью 0,5 Вт. Материал резистивного слоя – металлокерамика.
Лакоплёночные резисторы СП3-38. Устройство их весьма примитивно.
Так как его корпус является открытым, то на поверхность оседает пыль, конденсируется влага, что и сказывается на надёжности такого изделия. Материал проводника – металлокерамика, а мощность невысока – около 0,125 Вт.
Подстройка таких резисторов осуществляется отверткой из диэлектрика во избежание короткого замыкания. В бытовой электронной аппаратуре найти их довольно легко.
Резисторы РП1-302 (на фото справа) и РП1-63 (слева).
Для подстройки сопротивления резисторов РП1-63 может потребоваться специальная отвёртка. Если приглядется, то паз под отвёртку имеет шестигранную форму. В отличие от СП3-38 такие резисторы имеют защищённый корпус. Это положительно сказывается на их надёжности.
Мощные проволочные подстроечные резисторы.
Здесь показан мощный 3-ёх ваттный проволочный резистор СП5-50МА.
Его корпус сделан просторным, чтобы к проводящему проволочному слою был приток воздуха для охлаждения. Если перевернуть резистор, то можно детально разглядеть его устройство в том числе и изоляционную планку на которой намотан высокоомный проводник.
Высоковольтные регулировочные резисторы.
Достаточно редкий экземпляр подстроечного резистора (НР1-9А). Ещё не так давно они стояли во всех кинескопных телевизорах и были завязаны в цепи регулировки высокого напряжения. Его сопротивление 68 МОм. (Из телевизора я его, собственно, и вытащил, чтобы сфоткать и показать вам).
Сам по себе НР1-9А является набором керметных резисторов. Его рабочее напряжение 8500 В (это 8,5 киловольт!!!), а предельное рабочее напряжение составляет аж 15 кВ! Номинальная мощность – 4 Вт. Почему регулировочный резистор НР1-9А называют набором резисторов? Да потому, что он состоит из нескольких. Его внутренняя структура соответствует схеме из 3-ёх отдельных резисторов.
В современных кинескопных телевизорах они встраиваются прямо в ТДКС (Трансформатор диодно-каскадный строчный).
Ползунковые переменные резисторы.
В аудиоаппаратуре с аналоговым управлением часто применяются движковые регулировочные резисторы. Их ещё называют ползунковыми. Они широко использовались в электронных приборах для регулировки яркости, контрастности, громкости, тембра и др. Вот взгляните на их конструкцию.
Далее на фото показан ползунковый переменный резистор СП3-23а. Из маркировки следует, что мощность его составляет 0,5 Вт, а функциональная характеристика соответствует линейной зависимости (буква А). Сопротивление – 1кОм.
Также как и переменные резисторы с круговой движковой системой, ползунковые могут быть сдвоенные, например резистор СП3-23б (самый нижний на первом фото). В его составе два переменных резистора с общим подвижным контактом.
Подстроечные многооборотные резисторы.
Очень часто, особенно в специальной аппаратуре, применялись очень удобные и одно время совершенно дефицитные проволочные многооборотные подстроечные резисторы.
Выводы так же были жёсткие для впайки в уже готовые гнёзда, или выполненные из гибкого провода МГТФ, чтобы их можно было распаять в любые точки платы. От нуля до максимального сопротивления регулировочный винт под отвёртку нужно было повернуть ровно 40 раз. Этим достигалась очень высокая точность установки параметров схемы.
На фото показан многооборотный подстроечный резистор СП5-2А. Изменение сопротивления производится круговым перемещением подвижной контактной системы через червячную пару. За 40 полных оборотов можно изменить его сопротивление от минимального до максимального значения. Применяются резисторы СП5-2А в цепях постоянного и переменного тока, и рассчитаны на мощность 0,5 – 1 Вт (зависит от модификации). Износоустойчивость – от 100 до 200 циклов. Функциональная характеристика – линейная (А).
Более полную информацию по резисторам отечественного производства можно получить из справочника “Резисторы” под редакцией И.И. Четверткова и В.М. Терехова. В нём приведены данные практически по всем резисторам. Справочник вы найдёте здесь.
Ремонт переменного резистора.
Так как переменные резисторы – это электромеханическое изделие, то со временем они начинают портиться. Из-за износа проводящего слоя и ослабления прижима скользящего контакта они начинают плохо работать, появляется так называемый “шорох”.
В большинстве случаев восстанавливать неисправный переменный резистор нет смысла, но бывают и исключения. Например, нужного для замены может просто не оказаться под рукой или же он может быть очень редкий. Так в некоторых микшерских пультах используются достаточно редкие и уникальные образцы. Найти замену им сложно.
В таком случае восстановить правильную работу переменного резистора можно с помощью обычного карандаша. Грифель карандаша состоит из графита – твёрдого углерода. Поэтому можно аккуратно разобрать переменный резистор, подогнуть ослабший скользящий контакт, а по проводящему слою несколько раз провести грифелем карандаша. Этим мы восстановим проводящий слой. Также не помешает смазать покрытие силиконовой смазкой. Затем резистор собираем обратно. Естественно, такой метод подходит лишь для резисторов с тонкоплёночным покрытием.
Честно говоря, простейший переменный резистор можно смастерить из простого карандаша, ведь грифель его сделан из углерода! А напоследок, давайте прикинем в уме, как это можно сделать.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
go-radio.ru
расчет, теория и принцип действия
Существуют два вида сопротивления – переменное и постоянное, а делитель напряжения на резисторах нужен для защиты электроприборов. Например, светодиодам необходим небольшой ток, в противном случае они могут перегореть. Для ограничения тока в электрическую цепь вставляется резистор, следовательно ток уменьшается и светодиоды работают в штатном режиме. Резистор – радиоэлемент для увеличения сопротивления электрической цепи. Его ставят с целью понижения напряжения или тока.
Постоянное сопротивление – резисторы, которые не изменяют свой номинал. Если подобное происходит, значит резистор вышел из строя. Переменные резисторы могут менять свое сопротивление в процессе своей работы. Они оснащены специальный бегунок, который и регулирует сопротивление. На основе их изготавливают самые различные регуляторы.
В статье будут подробно рассмотрены типы подключения и что такое делитель напряжения. Также в статье содержится видеоролик на данную тему и скачиваемый файл с дополнительной информацией.
Делитель напряжения.
Соединение резисторов
Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике. Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов. Соединение резисторов может производиться последовательно, параллельно и смешанно.
Последовательное соединение резисторов
Последовательное соединение.Последовательное соединение резисторов это такое соединение, в котором конец одного резистора соединен с началом второго резистора, конец второго резистора с началом третьего и так далее. То есть при последовательном соединении резисторы подключатся друг за другом. При таком соединении через резисторы будет протекать один общий ток. Следовательно, для последовательного соединения резисторов будет справедливо сказать, что между точками А и Б есть только один единственный путь протекания тока.
Интересно почитать: принцип действия и основные характеристики варисторов.
Таким образом, чем больше число последовательно соединенных резисторов, тем большее сопротивление они оказывают протеканию тока, то есть общее сопротивление Rобщ возрастает. Рассчитывается общее сопротивление последовательно соединенных резисторов по следующей формуле: Rобщ = R1 + R2 + R3+…+ Rn.
Последовательное и параллельное соединение резисторов.
Параллельное соединение резисторов
Параллельное соединение резисторов это соединение, в котором начала всех резисторов соединены в одну общую точку (А), а концы в другую общую точку. При этом по каждому резистору течет свой ток. При параллельном соединении при протекании тока из точки А в точку Б, он имеет несколько путей. Таким образом, увеличение числа параллельно соединенных резисторов ведет к увеличению путей протекания тока, то есть к уменьшению противодействия протеканию тока. А это значит, чем большее количество резисторов соединить параллельно, тем меньше станет значение общего сопротивления такого участка цепи (сопротивления между точкой А и Б.)
Общее сопротивление параллельно соединенных резисторов определяется следующим отношением: 1/Rобщ= 1/R1+1/R2+1/R3+…+1/Rn. Следует отметить, что здесь действует правило «меньше – меньшего». Это означает, что общее сопротивление всегда будет меньше сопротивления любого параллельно включенного резистора.
Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле Rобщ= R1*R2/R1+R2
Если имеет место два параллельно соединенных резистора с одинаковыми сопротивлениями, то их общее сопротивление будет равно половине сопротивления одного из них. Данный вид подключения характерен тем, что все элементы цепи соединяется выводами в одной точке друг другу, т.е. точка входа и выхода всех нагрузок сходятся в одну точку (или еще одно обозначение на схемах — //). Электроток, двигаясь по проводнику, дойдя до общего соединения делится на количество имеющихся веток.
Если представить движение воды в трубе, то можно сказать, что вода двигающиеся по одной трубе, равномерно перетекает в несколько отводов, подсоединенных к ней. В нашем случае заряженные электроны, двигающиеся по проводнику, также растекаются на количества предложенных веток в узле.
Каждый вид соединения находится под одинаковым напряжением:
- U = U1 = U2; Суммарная сила тока равняется суммарному значению тока каждого участка
- I = I1 + I2; Сопротивление цепи равно сумме величина обратных сопротивлению участка:
- 1/R = 1/R1 + 17R2 + . . . + 1/Rn; Сила тока пропорциональна сопротивлению каждого участка
- I1/I2=R2/R1.
Примеры расчета
Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:
- U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
- U2 = R2 * I = 800 Ом * 2А = 1600 В.
Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В. Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток. R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом. Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2 А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В. А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором — 1600 В. При этом напряжение источника питания — 4000 В.
Смешанное соединение резисторов
Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением. На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно.
Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:
- Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.
- Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.
- После расчета эквивалентных сопротивлений резисторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.
- Рассчитывают сопротивления полученной схемы.
Схема смешанного подключения.
Законы Кирхгофа
Первый закон
Ещё один очень важный закон — это закон Кирхгофа. Для участка цепи постоянного тока их два. Первый закон имеет формулировку: Сумма всех токов, входящих в узел и выходящих из него равна нулю. Если посмотреть на схему, I1 — это ток, который заходит в узел, I2 и I3 — это электроны, которые вытекают из него. Применяя формулировку первого закона можно записать формулу по-другому: I1-I2+I3=0. В этой формуле знаки плюс имеют значения, которые прибывают в узел, минус, который отходит от него.
Второй закон Кирхгофа
Если к цепи с включенными сопротивлениями подключен один источник ЭДС (батарея питания) тогда всё понятно, можно обойтись законом Ома. А, если, источников несколько и схема с различным схемным расположением элементов, тогда вступает в силу второй закон, который гласит: сумма токов всех источников питания для замкнутого контура, равна сумме падений напряжения на всех сопротивлениях участка в этом контуре.
Параллельное и последовательное соединение резисторов, решение задач
Алгоритм расчёта смешанных подключений находится в тех же правилах, что и в элементарных схемах расчета последовательного и параллельного соединения резисторов. Ничего нового нет: нужно правильно разбить предложенную схему на пригодные для расчета участки. Участки, с элементами, подключены поочередно либо параллельно. Для решения задачи на последовательное и параллельное соединение резисторов необходимо правильно оценить цепи элементов. На схеме присутствует параллельная и последовательная часть соединения элементов. Для расчета очень важно аккуратно, шаг за шагом упрощать цепи и не брать сразу всю схему (рис.1). Как же правильно определить параллельное и последовательное соединение резисторов?
Для примера расчета возьмем резисторы R3, R4, которые подключены параллельно. Эквивалентный резистор этих элементов, будет равенRэ. = 1/R34 =1/R3 + 1/R4, после преобразования формулы и приведения к одному знаменателю получим R34 = R3 · R4 / (R3 + R4). Э. = 1/3+1/4 /(3+4) =1,7 Ом.
Далее видно, что приведённая эквивалентное R эк и R6 соединены последовательно, чтобы узнать сопротивление их необходимо сложить, тогда общее сопротивление будет равно R346 = R34 + R6, тогда Rэк346 = 1,7 + 6 = 7, 7 Ом.
Материал в тему: описание и область применения подстроечного резистора.
Заменяем на схеме одним общим элементом, теперь, позиция упрощается еще больше. Теперь образовалась ситуация — включение трех элементов в //. Как вычисляется такое соединение нам уже известно, 1/ R23465 = 1/ R2 +1/R346 + 1/R5 после вычисления правой части получаем 0,82 Ом. После окончательного вычисления получаем R23465 = 2,1 Ом. Здесь следует обратить внимание, что общее сопротивление получилось меньше самого меньшего из трех. Заменяем эти сопротивление одним эквивалентным R23465. В конечном итоге все выглядит уже намного проще. Rц = Rэк + R1+ R2. R об. = R ц = 1,21 +7+1 =9,21 Ом.
Из приведенного алгоритма расчёта видно, как из сложной схемы путем простого математического вычисления и применения правил сокращения резисторов участок становится простой и понятной.
При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными.
Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно. На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.
Почитать материал по теме: что такое SMD резисторы.
Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.
Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.
- Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом.
- Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом.
Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.
Типы подключений.
Расчет гасящего резистора
В схемах аппаратуры связи часто возникает необходимость подать на потребитель меньшее напряжение, чем дает источник. В этом случае последовательно с основным потребителем включают дополнительное сопротивление, на котором гасится избыток напряжения источника. Такое сопротивление называется гасящим.
Напряжение источника тока распределяется по участкам последовательной цепи прямо пропорционально сопротивлениям этих участков. Рассмотрим схему включения гасящего сопротивления:
- Полезной нагрузкой в этой цепи является лампочка накаливания, рассчитанная на нормальную работу при величине напряжения Uл= 80 в и тока I =20 ма.
- Напряжение на зажимах источника тока U=120 в больше Uл, поэтому если подключить лампочку непосредственно к источнику, то через нее пройдет ток, превышающий нормальный, и она перегорит.
- Чтобы этого не случилось, последовательно с лампочкой включено гасящее сопротивление R гас.
Схема включения гасящего сопротивления резистора.
Расчет величины гасящего сопротивления при заданных значениях тока и напряжения потребителя сводится к следующему:
– определяется величина напряжения, которое должно быть погашено:
Uгас = Uист – Uпотр,
Uгас = 120 – 80 = 40в
определяется величина гасящего сопротивления
Rгас = Uгас / I
Rгас = 40 / 0,020 = 2000ом = 2 ком
Далее необходимо рассчитать мощность, выделяемую на гасящем сопротивлении по формуле
P = I2 * Rгас
P = 0,0202 * 2000 = 0,0004 * 2000 = 0,8вт
Зная величину сопротивления и расходуемую мощность, выбирают тип гасящего сопротивления.
Практическое применение параллельного и последовательного соединения
Для чего практически можно использовать параллельное и последовательное соединение резисторов? Случается, что при ремонте электронной аппаратуры, не всегда в наличии сопротивление нужного номинала. Ехать в магазин за одним копеечным элементом — накладно. Вот тут и могут пригодиться составные резисторы. Просто надо последовательно или параллельно соединить их, подобрав требуемый номинал.
Приведем пример работы делителя напряжения на фоторезисторе. Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.
Диапазон изменения выходного напряжения.
Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.
При соединении резисторов, их ножки первоначально скручивают. Какой стороной разворачивать сопротивление — неважно (в отличие от диодов, резисторы одинаково пропускают ток в обоих направлениях). На концах скрутку слегка обжимают плоскогубцами, затем пропаивают. Следите за тем, чтобы корпуса были друг от друга подальше — так они будут лучше охлаждаться при работе.
Более подробно о делителях напряжения можно узнать из скачиваемого файла правила подключения проводников. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.elektroznatok.ru
www.themechanic.ru
www.electrono.ru
www.hightolow.ru
www.sxemotehnika.ru
Как вам статья?Poll Options are limited because JavaScript is disabled in your browser.electroinfo.net
Типы резисторов
Слово «резистор» произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.
Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах ( Ом
), килоомах ( кОм
) или мегаомах ( МОм
). Номинальные значения сопротивлений указываются на корпусе резисторов, однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.
Постоянные резисторы
Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:
I
класс – на± 5 %
II
класс – на± 10 %
III
класс – на± 20 %
Существует так же так называемые прецизионные резисторы, они выпускаются с допусками:
- ± 2 %
- ± 1 %
- + 0,2 %
- ± 0,1 %
- ± 0,5 %
- ± 0,02 %
- ± 0,01 %
Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.
Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления ( ТКС
) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С
. В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС
оказывается положительным, а во втором – отрицательным.
Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА
применяются резисторы с номинальной мощностью рассеяния от 0,125
до 2 Вт
.
Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:
Е (К)
– от1
до99 Ом
К
– от0,1
до99 кОм
М
– от0,1
до99 МОм
Пример обозначений номинальных сопротивлений резисторов:
27Е
–27 Ом
4Е7
–4,7 Ом
К680
–680 Ом
1К5
–1,5 кОм
43К
–43 кОм
2М4
–2,4 МОм
3М
–3 МОм
Различают два основных вида резисторов: нерегулируемые ( постоянные ) и регулируемые ( переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.
Постоянные резисторыПостоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:
- ПЭ
- ПЭВ
- ПЭВ-Р
- ПЭВТ
Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:
Металлизированные резисторы, лакированные эмалью, теплостойкие:
- МЛТ
- ОМЛТ
- МТ
- МТЕ
Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:
На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R
, после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.
Обозначение постоянного резистора
Для сопротивления от 0
до 999 Ом
единицу измерения не указывают, для сопротивления от 1 кОм
до 999
и от 1 МОм
и выше к числовому его значению добавляют обозначения единиц измерения.
Сопротивление резистора ориентировочное
Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка *
.
При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R
делается надпись « пров
».
Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.
Регулируемый резистор без отводов
Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.
Функциональная характеристика переменного резистора
По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:
А
– линейная зависимостьБ
– логарифмическаяВ
– показательная зависимость
Регулируемый резистор с двумя дополнительными отводами
Сдвоенный переменный резистор
Двойной переменный резистор
Регулируемый резистор с выключателем
Подстроечные резисторыРазновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.
Подстроечные резисторы
ТерморезисторыТерморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении.
Температурный коэффициент сопротивления ( ТКС
) таких резисторов отрицательный.
Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления ( ТКС
) таких резисторов положительный.
Терморезисторы (термисторы)
Условное графическое обозначение варисторов
Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.
Система обозначений варисторов включает буквы СН
(сопротивление нелинейное) и цифры.
Первая из цифр
обозначает материал
1
– карбид кремния2
– селен
Вторая цифра
– конструкцию
1,8
– стержневая2, 10
– дисковая3
– микромодульная
Третья цифра
– порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах,
например – СН-1-2-1-100.
Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.
ФоторезисторыФоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.
Условное графическое обозначение фоторезисторов
Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.
Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС
(фотосопротивление), за ними следует буква, обозначающая материал светочувствительного элемента:
А
– сернистый свинецК
– сернистый кадмийД
– селенистый кадмий
Затем идет цифра, указывающая на вид конструкции, например: ФСК-1
.
В новой системе обозначений первые две буквы СФ
(сопротивление фоточувствительное). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1
.
selectelement.ru
Что такое резистор и для чего он нужен
Резисторы являются наиболее распространенными элементами в электронных схемах. Они состоят обычно из изоляционного корпуса с выводами соединенными материалом с известным удельным сопротивлением (ρ)
Резисторы обычно имеют вид стержня, трубки, пленки для поверхностного монтажа или проволоки определенной длины (l) и сечения (А).
Поэтому сопротивление резистора можно выразить следующей формулой:
R = ρ x l/A
Резисторы (сопротивление) оказывают сопротивление току, протекающему через них. Резисторы используют в основном для получения конкретных значений тока, а также применяются в делителях напряжения. И так основное предназначение резистора – это противодействие протеканию тока. Это действие они оказывают как для постоянного, так и для переменного тока.
Что такое резистор
Резисторы производят, в основном, в виде трубок из фарфора или керамики с металлическими выводами на обоих концах. На поверхности трубок может быть нанесен, например, слой углерода (у углеродных резисторов) или даже очень тонкий слой драгоценного металла (у металлизированных резисторов).
Так же резистор может быть выполнен из проволоки с высоким удельным сопротивлением (проволочные резисторы).
Основным параметром резистора является его постоянное сопротивление. В области больших частот у резистора, помимо сопротивления, появляются такие характеристики, как емкость и индуктивность. Эти параметры резистора можно представить в виде следующей модели:
где:
- R = сопротивление резистивного материала,
- CL = собственная емкость резистора,
- LR = индуктивность резистора,
- LS = индуктивность его выводов.
Здесь видно, что резистор имеет помимо собственного сопротивления еще и составляющие индукции и емкости. При применении в цепях переменного тока эти характеристики играют роль реактивного сопротивления, который в сочетании с собственным сопротивлением создают дополнительное сопротивление в схеме, которое в некоторых случаях необходимо учитывать.
Основными параметрами резисторов являются:
- Номинальное сопротивление — дано с учетом больших допустимых отклонений, содержащихся в диапазоне 0,1…20%.
- Номинальная мощность – максимально допустимая мощность рассеивания.
Номинальное напряжение – равно наибольшему напряжению, которое не вызывает изменения в свойствах резистора, и, в частности его повреждения. Номинальные значения напряжений для большинства резисторов составляет от нескольких десятков до нескольких сотен вольт.
На основании размера резистивного слоя или сечения проволоки можно определить значение сопротивления. В электронных схемах, в основном, используются резисторы многослойные. В случае работы с большими значениями тока и мощности, используются проволочные резистор.
Резисторы многослойные металлизированные являются термически стабильными, они надежные в работе и имеют низкий уровень шума (важно в профессиональной электронике).
Единицей измерения сопротивления является Ом (символ омега), и в основном на схемах обозначается буквой – R.
Из закона Ома: сопротивление резистора в 1 Ом — это такое сопротивление, когда при напряжении на его выводах в 1 вольт через него протекает ток равный 1 амперу.
Номинальный ряд и цветовая маркировка резисторов
Большинство производимых в мире резисторов имеют сопротивление из так называемого номинального ряда (Е). Каждый из видов номинального ряда поделен на декады, и в каждой десятке есть 6 (ряд E6), 12(ряд E12), (ряд E24) 24 значения.
Эти значения в декаде подобраны так, что с учетом допуска, сопротивления двух соседних значений перекрывают друг друга, и благодаря этому вы можете подобрать любые промежуточные сопротивления.
Стандартные допуски сопротивления резисторов равны 5, 10 или 20%. Соседние значения пересекаются в следующих случаях:
- для ряда E6 с 20% допуском,
- для ряда E12 с 10% допуском,
- для ряда Е24 с 5% допуском.
Величина сопротивления и отклонение отмечаются на резисторе в виде нескольких цветных колец (или точек). Первые цветные кольца (2 или 3) определяют значение в Ом, а последнее кольцо – допуск (отклонение).У небольших резисторов, как правило, величина сопротивления, допуск и температурный коэффициент (ТКС) иногда наносится с помощью 4…6 цветных полос. Более подробно о цветовой маркировки резисторов читайте здесь.
В типоразмер и мощность резисторов
Как известно, напряжение, поданное на резистор, вызывает протекание в нем тока, а значит, на таком резисторе выделяется определенная часть мощности в виде тепла. Для исправного функционирования, это тепло резистор должен рассеивать в окружающее пространство. Эта его способность напрямую зависит его размеров.
В следующей в таблице приведены типичные значения номинальной мощности резисторов в соответствии с их размерами:
Номинальная мощность (Вт) | Примерные размеры (мм) длина х диаметр |
0,1 | 5 … 7 х 1 |
0,2 | 5 х 1,6 |
0,33 | 7.5 х 2,5 |
0,5 | 10 х 3,7 |
1 | 18 х 7 |
2 | 24 х 8,5 |
fornk.ru
Резистор. Нелинейные резисторы | Для дома, для семьи
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о резисторах. Во второй части статьи мы рассмотрели резисторы переменного сопротивления, а в этой заключительной части познакомимся с нелинейными резисторами.
Нелинейные резисторы относятся к классу саморегулирующихся резисторов, изменяющих свое сопротивление под воздействием внешних электрических или неэлектрических факторов. Благодаря своим специфическим качествам нелинейные резисторы применяются в схемах автоматики, схемах защиты от перенапряжений, в устройствах контроля и регулирования различных величин, в качестве датчиков в измерительных приборах и т.д.
Нелинейными называются резисторы, для которых не выполняется линейная зависимость между током и приложенным к ним напряжением. Наиболее широкое применение в электронике и электротехнике нашли варисторы, терморезисторы, фоторезисторы и тензорезисторы.
1. Тензорезисторы.
Тензорезистор – это резистор, деформация которого вызывает изменение его электрического сопротивления. Тензорезисторы широко применяются в качестве чувствительных элементов тензометрических датчиков, используемых для измерения деформаций, внутренних усилий, перемещений, биений, крутящих моментов, давления и др.
В основе принципа работы тензорезистора лежит явление тензоэффекта, заключающееся в изменении электрического сопротивления проводника при его растяжении или сжатии, изгибе, кручении и сдвига. Однако чаще всего рассматривают линейную деформацию растяжения или сжатия. На рисунке показан тензодатчик, применяемый в конвейерных весах для измерения веса материала.
Тензорезистор представляет собой проводник, выполненный в виде плоской петлеобразной обмотки прямоугольной формы (решетки), к концам которой припаяны (приварены) выводы из медного провода, предназначенные для включения тензорезистора в электрическую цепь. Решетка с помощью специального клея закрепляется на тонкой прямоугольной полоске из бумаги, клеевой или лаковой пленки, служащей для решетки подложкой. С помощью подложки тензорезистор крепится к поверхности тензодатчика или исследуемого объекта.
Проводники для тензорезисторов изготавливают из специальной константановой микропроволоки толщиной 0,025…0,035 мм, тонкой фольги из медноникелевого сплава толщиной 0,01…0,02 мм или же напыляются методом фототравления для получения плёнки металла.
Принцип работы тензорезистора достаточно прост. Для проведения измерений тензорезистор приклеивают к исследуемому объекту, благодаря чему деформация устройства практически точно воспринимается решеткой тензорезистора. В процессе измерения исследуемый объект деформируется, соответственно, и решетка тензорезистора испытывает деформацию растяжения или сжатия, отчего меняется ее поперечное сечение, а значит, и сопротивление.
Отечественной промышленностью выпускаются проволочные, фольговые и полупроводниковые тензорезисторы. На рисунке показан внешний вид фольговых тензорезисторов типа ТКФ, 2ФКП.
На следующем рисунке показан фольговый тензорезистор для измерения трех компонент деформации.
Основными параметрами тензорезисторов являются:
1. Коэффициент тензочувствительности (чувствительность тензорезистора) — характеризует интенсивность изменения сопротивления проводника в зависимости от воздействующей деформации.
2. Номинальное сопротивление, R (Ом) – значение активного сопротивления чувствительного элемента (решетки) тензорезистора. Тензорезисторы выпускаются с номинальным сопротивлением 10…1000 Ом и наиболее распространенными являются величиной 120, 200, 350, 400, 1000 Ом.
3. Предельная деформация, Ɛmax (%) – наибольшее значение деформации в мкм/м (или в %), в отношении которой завод-изготовитель гарантирует надежную работу тензорезистора.
4. Ползучесть, % (ч) – проявляется в виде изменения выходного сигнала при заданном и неизменном значении деформации. Причиной ползучести является упругое несовершенство подложки и клея. Обычно ползучесть тензорезисторов не превышает 0,5 — 1% за первый час после приклеивания и соответственно 1 – 1,5% за 6 часов.
На принципиальных схемах тензорезисторы обозначают основным символом резистора и знаком нелинейного саморегулирования с буквой «Р», обозначающей механическое усилие – давление.
Измерение деформации с помощью тензорезистивных преобразователей является одним из самых сложных в технике электрических измерений из-за малого диапазона изменения сопротивления тензорезистора при воздействии деформации. Изменение сопротивления 100-омного датчика составляет около 0,0002 Ом на деформацию в 1 мкм/м, поэтому для преобразования таких малых изменений питающее напряжение к тензорезистору подводят через мостовую схему, где тензорезистор может быть включен в одно из плеч моста, либо в два плеча, либо мостовая цепь составляется целиком из тензорезисторов.
В зависимости от количества тензорезисторов, включаемых в измерительный мост, возможны три модификации мостовой схемы: «четверть моста», «полумост» и «полный мост».
Тензорезисторы обычно выносятся за пределы измерительного устройства и располагаются на исследуемом объекте, тогда как резисторы, дополняющие мост, как правило, расположены в измерительном устройстве.
2. Терморезисторы.
Терморезистором называют полупроводниковый резистор, сопротивление которого изменяется под действием температуры. Резистивный элемент таких резисторов выполнен из полупроводниковых материалов на основе окислов металлов.
Терморезисторы используются для температурной компенсации различных электрических цепей, стабилизации токов и напряжений, в качестве датчиков контроля температуры, в автоматике для регулирования и измерения температуры, в измерителях мощности и т.д.
Основными параметрами терморезисторов является номинальное сопротивление, изменяющееся при определенной температуре, и температурный коэффициент сопротивления (ТКС), показывающий на какую величину изменяется сопротивление резистора при изменении температуры на 1°С. Также учитывают тепловую инерцию, которая характеризуется постоянной времени, т.е. промежутком времени, в течение которого сопротивление резистора изменится на 63°С при перенесении его из воздушной среды с температурой 0°С в воздушную среду с температурой 100°С.
В зависимости изменения сопротивления от температуры терморезисторы изготавливают с отрицательным и положительным ТКС. Терморезисторы с отрицательным ТКС называют термисторами (NTC), а с положительным – позисторами (PTC). При повышении температуры сопротивление термистора уменьшается, а сопротивление позистора увеличивается.
Нагрев терморезистора осуществляют прямым или косвенным способом.
При прямом нагреве сопротивление резистора изменяется под действием окружающего воздуха или непосредственно проходящим через резистор током. Терморезисторы с прямым нагревом используются для измерения температуры, температурной компенсации положительного ТКС различных электрических цепей, стабилизации токов и напряжений, в качестве предохранителей в схемах защиты от перегрузок по току и напряжению, в качестве переключателей в пусковых устройствах.
Отечественная промышленность выпускает термисторы серии КМТ, ММТ, СТ1-2, СТ1-17, СТ3-6, СТ4-2, ПТ1, ПТ3, ТР1 — ТР4, ТП и т.д., а также позисторы серии СТ5-1, СТ6-1А, СТ10-1, СТ11-1Г, СТ14-3, СТ15-2-220В и т.д.
При косвенном нагреве изменение сопротивления происходит под действием тепла, выделяемого специальным нагревателем. В резисторах косвенного нагрева резистивный и нагревательный элементы размещены в одном корпусе, но гальванически разделены друг от друга. Нагревательным элементом задается температура резистивного элемента и, тем самым, изменяется сопротивление терморезистора. Терморезисторы косвенного нагрева используются в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу терморезистора.
Отечественной промышленностью выпускаются резисторы косвенного нагрева серии ТКП-20, ТКПМ-20, ТКП-50, ТКПМ-50, ТКП-300А, ТКПМ-300А, СТ1-21, СТ1-30, СТ1-31, СТ3-21, СТ3-27, СТ3-31, СТ3-33 и т.д.
На принципиальных схемах терморезисторы изображают в виде нелинейного резистора со знаком температуры «t°». Условное изображение терморезистора косвенного нагрева обозначается с дополнительным символом подогревателя в виде перевернутой латинской буквой «U».
3. Варисторы.
Варистором называют полупроводниковый резистор, обладающий свойством уменьшения сопротивления полупроводника при увеличении приложенного напряжения.
Варисторы обладают высоким омическим сопротивлением, составляющим сотни мегаом, и включаются в электрическую цепь параллельно питающему напряжению и нагрузке. Они работают в диапазоне напряжений от 4 до 1500 В постоянного или переменного тока и рассчитаны на определенное рабочее напряжение.
Варисторы применяются для защиты электрооборудования от импульсных напряжений и используются в маломощных стабилизаторах, системах автоматической регулировки усиления, в схемах защиты от перегрузок и т.п. Принцип действия варистора заключается в его способности мгновенно понижать свое сопротивление при увеличении или скачках питающего напряжения, а затем также мгновенно его восстанавливать при возвращении напряжения на первоначальный уровень.
Работает варистор следующим образом: в обычном режиме (при отсутствии скачков напряжения) он находится под действием питающего напряжения защищаемого оборудования и проходящий ток через варистор очень мал (менее 1 мА) и варистор никак не влияет на работу защищаемого оборудования.
При скачке питающего напряжения варистор резко уменьшает свое сопротивление до нескольких ом и шунтирует нагрузку, пропуская весь пиковый ток через себя. При этом поглощаемая варистором энергия скачков напряжения рассеивается в виде теплового излучения, и в этот момент через варистор могут кратковременно протекать токи в десятки или тысячи ампер.
Так как варистор обладает большим быстродействием (не более 25 нс), то после прекращения скачков напряжения он быстро восстанавливает свое сопротивление до номинального значения и питающее напряжение опять поступает на оборудование.
При длительном воздействии повышенным напряжением варистор может перегреться и выйти из строя из-за превышения максимально допустимого тока. Геометрические размеры и мощность варистора играют значительную роль, так как общая площадь его поверхности имеет пропорциональное влияние на эффективность рассеивания энергии бросков напряжения и удержание пиковых токов нагрузки без угрозы быть поврежденным. Поэтому на корпусе зарубежных и некоторых отечественных варисторов помимо рабочего напряжения указывают его диаметр в миллиметрах:
Но все же полную информацию о варисторе необходимо смотреть на сайте производителя или в сопроводительной документации, так как производители маркируют их с небольшим отличием.
Основные параметры варисторов:
1. Номинальное рабочее напряжение, Un – классификационное напряжение, при котором через варистор протекает ток 1мА.
2. Максимально допустимое переменное Um~ и постоянное Um= напряжение – величина, при которой варистор включается в работу.
3. Напряжение ограничения — максимальное напряжение между выводами варистора, воздействующее на защищаемое электрооборудование в момент шунтирования его варистором.
4. Допустимая поглощаемая энергия, W (Дж) при воздействии одиночного импульса. От этой величины зависит, как долго может действовать перегрузка с максимальной мощностью без опасности повредить варистор.
5. Емкость, Со, измеренная в закрытом состоянии. При работе ее значение зависит от приложенного напряжения. Когда варистор пропускает пиковый ток, величина емкости падает до нуля.
Расчет рабочего режима варистора сводится к оптимальному выбору значения его классификационного напряжения и допустимой энергии рассеивания. Для ориентировочных расчетов рекомендуется, чтобы рабочее переменное напряжение не превышало Uвх ≤ 0,6Un, а рабочее постоянное напряжение не превышало Uвх ≤ 0,85Un.
Для сети с напряжением 220В 50Гц используют варисторы с классификационным напряжением не ниже 380…430В. Для варистора с классификационным напряжением 430 В при импульсе тока 100 А напряжение будет ограничено на уровне около 600 В.
Для повышения рассеиваемой мощности варисторы включают последовательно или параллельно. При последовательном включении через варисторы протекает одинаковый ток, а общее напряжение разделяется пропорционально их сопротивлениям. В этих же соотношениях разделяется поглощаемая энергия.
При параллельном включении используется последовательно-параллельная схема включения варисторов: варисторы последовательно собираются в столбы, а столбы соединяются параллельно. Затем подбором варисторов добиваются совпадения ВАХ столбов варисторов.
На принципиальных схемах варистор обозначается в виде нелинейного резистора с латинской буквой «U» у излома знака саморегулирования.
Из советских и российских наибольшее применение нашли варисторы серии СН1 (устарели и не выпускаются), СН2 и ВР-1, а из зарубежных, варисторы серии FNR, CNR, TWR, JVR, WMR, HEL, MYG и т.д.
Отечественные варисторы изготавливаются в виде дисков толщиной до 10 мм (в зависимости от классификационного напряжения) и маркируются буквенным и цифровым кодом. Варисторы СН2-1 и ВР-1 имеют проволочные однонаправленные выводы диаметром 0,8 мм (варисторы СН2-1 варианта «в» имеют выводы диаметром 0,6 мм). Варисторы СН2-2 вариант «А» имеют штуцерные выводы с резьбой М5, вариант «Б» имеет массивные выводы, переходящие в шпильки с резьбой М5, вариант «Г» имеет массивные дисковые выводы с резьбой М5, а варианты «В» и «Д» имеют контактные поверхности, покрытые серебром.
Маркировка отечественных варисторов:
1. Две первые буквы СН и ВР указывают, что это варистор.
2. Цифра сразу после букв обозначает материал, из которого сделан варистор: СН2 – оксидноцинковые, ВР-1 — оксидноцинковые.
3. Вторая цифра, написанная через дефис, обозначает тип варистора (1 – дисковые варисторы, 2 – силовые варисторы). У варисторов ВР вторая цифра является типоразмером (габариты).
4. Буква сразу после второй цифры указывает на вариант варистора (а–д – проволочные выводы; А–Д – силовые выводы).
5. Третье число является номинальным напряжением (в вольтах).
6. Четвертое число обозначает допускаемое отклонение от номинального напряжения (в процентах).
Примеры маркировки:
СН2-1а 430В ±10% — оксидноцинковый варистор, дисковый, с проволочными выводами, номинальным напряжением 430 В с допускаемым отклонением ±10%.
ВР-1-1 22В ±10% — оксидноцинковый варистор, дисковый, с проволочными выводами, номинальным напряжением 22 В с допускаемым отклонением ±10%.
Примеры маркировки зарубежных варисторов:
FNR 14 K471:
FNR – серия или название производителя;
14 — диаметр варистора 14 мм;
K – допускаемое отклонение от номинального напряжения ±10%;
471 – рабочее напряжение 470 В – смотри цифровая маркировка резисторов.
CNR 07D 390K:
CNR — серия или название производителя;
07— диаметр варистора 7мм;
D – дисковый;
390 — рабочее напряжение 39 В;
K – допускаемое отклонение от номинального напряжения ±10%.
271 KD 14:
271 — рабочее напряжение 270 В;
K — допускаемое отклонение от номинального напряжения ±10%;
D – дисковый;
14 — диаметр варистора 14 мм.
4. Фоторезисторы.
Фоторезистором называют полупроводниковый фотоэлектрический прибор, электрическое сопротивление которого зависит от освещенности. Фоторезисторы работают в цепях постоянного и переменного тока, и нашли широкое применение в радио и электротехнике. Их применяют в системах фотоэлектрической автоматике и телемеханике, в промышленной и бытовой электронике и вычислительной технике.
Принцип действия фоторезистора основан на эффекте фотопроводимости полупроводника при его освещении. В результате поглощения полупроводником лучистой энергии образуется дополнительное количество подвижных носителей заряда, вследствие чего улучшается электропроводность полупроводника и, как следствие, уменьшается сопротивление, т.е. возникает дополнительная проводимость, называемая фотопроводностью полупроводника.
Если поверхность полупроводника освещать непрерывно, то его сопротивление снижается, и через фоторезистор начинает течь световой ток. После прекращения освещения восстанавливается прежняя величина проводимости и через неосвещенный фоторезистор течет малый ток, называемый темновым. Разность между световым и темновым током называют фототоком.
Более удобно пользоваться понятием темновое сопротивление, которое определяется, как сопротивление неосвещенного фоторезистора. Для большинства фоторезисторов указывается именно нижний предел темнового сопротивления, величина которого находится в пределах от десятков килоом до нескольких мегаом.
Фоторезистор состоит из диэлектрической подложки, выполненной из стеклянной или керамической пластины, на поверхность которой нанесен тонкий слой металла из золота, серебра или платины. На поверхность металлов нанесен тонкий слой из специального полупроводника, например, из сульфидов свинца, висмута, кадмия и др., свойства которого и определяют параметры фоторезистора. Подложка и полупроводник образуют светочувствительный элемент, который снабжен гибкими выводами для включения в электрическую цепь и расположен так, чтобы на него мог падать свет.
От внешних воздействий фоторезистор защищает слой лака или эпоксидной смолы, пропускающий свет лишь нужной области спектра, а также пластмассовый или металлический корпус. Свет проникает через окошечко в корпусе, расположенное над полупроводниковым слоем.
Отечественная промышленность выпускает фоторезисторы ФСК, ФСД, ФСА, СФ.
На электрических схемах фоторезисторы обозначаются символом резистора, помещенного в круг, к которому направлены две наклонные параллельные стрелки, символизирующие фотоэлектрический эффект. На некоторых современных отечественных и зарубежных схемах круг указывают не всегда.
К основным параметрам фоторезисторов относятся:
1. Темновое сопротивление, Rт – сопротивление фоторезистора в отсутствии падающего на него излучения в диапазоне его спектральной чувствительности.
2. Световое сопротивление, Rc – сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.
3. Рабочее напряжение, Uраб – постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях (гарантирующее продолжительную работу фоторезистора).
4. Удельная чувствительность – отношение фототока к произведению величины падающего на фоторезистор светового потока и приложенного к нему напряжения.
5. Интегральная чувствительность – определяется как отношение разности токов при освещении и темнового к световому потоку, падающего на резистор при номинальном значении напряжения. Ее величина лежит в пределах от 1000 до 5000 мкА/(лм•В).
Кроме указанных параметров, фоторезистор характеризуется также максимальным рабочим напряжением, номинальной мощностью, относительным изменением сопротивления, временем спада фототока при затемнении, а также спектральными характеристиками, показывающими, в какой части спектра фоторезистор имеет наибольшую чувствительность.
Вот и все, что хотел коротко рассказать о нелинейных резисторах.
Удачи!
Литература:
1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. Ю. А. Овечкин – «Полупроводниковые приборы», Москва «Высшая школа» 1979 г.
3. В. В. Фролов – «Язык радиосхем», Москва «Радио и связь», 1988 г.
4. И. Б. Бондаренко – «Электрорадиоэлементы. 1 часть. Резисторы», Санкт-Петербург 2012 г.
5. Б. А. Глаговский, И. Д. Пивен – «Электротензометры сопротивления», Энергия, Москва 1964 Ленинград.
6. Е. С. Полищук – «Измерительные преобразователи», Киев, Головное издательство издательского объединения «Вища школа», 1981 г.
7. В. А. Мехеда – «Тензометрический метод измерения деформаций», Самара, Издательство СГАУ, 2011 г.
sesaga.ru