Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Простой трехдиапазонный ППП – US5MSQ

Путь в эфир начинающего радиолюбителя нередко начинается с постройки несложного по схеме и конструкции   приемника прямого преобразования (другое название – гетеродинный приемник).  Но, как правило, это однодиапазонные конструкции [1,2,3 ]. Реализация многодиапазонных ППП традиционным путем (с переключением контуров гетеродина и входного фильтра многоконтактным галетным или барабанным переключателем[4], или используя сменные платы с контурами [5 ]) приводит не только  к существенному усложнению конструкции  и налаживания, но и появлению проблем со стабильностью частоты ГПД.

Но есть и другой, более удачный с точки зрения автора, подход. Вспомним, что частоты основных радиолюбительских КВ диапазонов образуют правильную геометрическую прогрессию, такую, что гармоники нижних диапазонов попадают на частоты других, более высокочастотных диапазонов. Поэтому имеется замечательная возможность применить  в многодиапазонном ППП один не переключаемый гетеродин, работающий  только на одном диапазоне, и который имеет, как правило, лучшую стабильность частоты, т.к. его монтаж  получается компактнее и жестче, а главное — в его контурной цепи отсутствуют переключающие, а значит нестабильные, контакты. Структурная схема такого  ГПД возможна в двух вариантах – с задающим генератором, работающим на самом высокочастотном диапазоне с последующим делением частоты цифровыми счетчиками (например, такой способ реализован в [6]) или с задающим генератором, работающим на частоте самого низкочастотного диапазона с последующим умножением частоты в буферных каскадах. Последний способ  реализован в очень интересной конструкции И.Григорова [7]. Более того, используя свойство ключевого смесителя работать на гармониках частоты гетеродина, можно вообще обойтись без умножения частоты, что и положено в основу конструкции этого приемника. Несмотря на внешнее сходство со схемой[7], предлагаемый вашему вниманию приемник благодаря оптимизации работы смесителя имеет лучшие на порядок чувствительность и ДД, повышенную  избирательность по соседнему каналу, меньшие габариты, более экономичен, но при этом проще в изготовлении и налаживании. В нем нет дефицитных деталей и построить его смогут даже малоопытные радиолюбители. Внешний вид приемника приведен на фото

 

Внешний вид трёхдиапазонного ППП US5MSQ

Основные технические характеристики:

  1. Диапазоны рабочих частот, МГц …………………………………………………….7, 14, 21
  2. Полоса пропускания приемного тракта (по уровню –6 дБ), Гц ……… 300…2600
  3. Чувствительность приемного тракта с антенного входа, мкВ, при  отношении            сигнал/шум 10 дБ, не хуже……………………………………………………………………..0,7
  4. Динамический диапазон по перекрестной модуляции (ДД2), дБ, при 30% АМ и расстройке 50 кГц, не менее ……………………………………………………..75
  5. Избирательность по соседнему каналу, дБ, при расстройке от частоты несущей на 10 кГц, не менее ……………………………………………………….70
  6. Ток, потребляемый от внешнего стабилизированного источника питания с напряжением 9В, мА, не более ………………………………………………. 10

 

Принципиальная схема трехдиапазонного ППП US5MSQ

Принципиальная схема приемника приведена на рис.1. Сигнал с антенного разъема подается на регулируемый аттенюатор, выполненный на сдвоенном потенциометре R1. По сравнению с одиночным потенциометром подобное решение обеспечивает бОльшую глубину регулировки  ослабления ( более 60дБ) во всем КВ диапазоне, что позволяет обеспечить оптимальную работу приемника практически любой антенной. Далее сигнал через катушку связи L1 поступает на двухконтурный полосовой фильтр (ПДФ) L2C5, L3C10 с емкостной связью через конденсатор С9. Переключение диапазонов производится тумблером SA1, имеющем нейтральное (незамкнутое) положение контактов. В положении контактов, показанном на схеме включен диапазон 21МГц.  При переключении на 14МГц к контурам подключаются дополнительные конденсаторы С1,С3 и С6,С14, смещающие  резонансные частоты контуров на середину рабочего диапазона. При переключении на диапазон 7МГц  к контурам ПДФ подключаются не только конденсаторы С2,С4 и С8,С15, но и дополнительный конденсатор связи С7, что необходимо для получения оптимальной формы АЧХ ПДФ на этом диапазоне.

Нагрузкой ПДФ служит однотактный ключевой смеситель  на основе полевого транзистора VT1. Это важный узел, «сердце» приемника, определяющий его основные параметры  и заслуживает особого внимания.

В процессе моих экспериментов с ключевыми смесителями ППП было обнаружено [8],  что ключевой смеситель гетеродинного приемника, нагруженный по выходу емкостями, со стороны входа работает как узкополосный синхронный фильтр (СФ)[9], с центральной частотой на частоте гетеродина и полосой пропускания равной удвоенной полосе пропускания по ЗЧ. Физические основы этого явления достаточно доступно были изложены в [10]. Обратите внимание, что на частотах верхних КВ диапазонов добротность этого простого СФ достигает совершенно фантастических величин  — тысяч и десятков тысяч! Например

— при  полосе по ЗЧ для приема SSB сигнала  2,5кГц – более 4000 (на 21МГц)

— при  полосе по ЗЧ для приема CW сигнала  0,8кГц – более 12000 (на 21МГц).

Более того, ярко выраженная частотная зависимость входного сопротивления ключевого смесителя при высокоомной нагрузке последнего повышает селективность подключенного к нему ПДФ. При этом на  пологой АЧХ входного контура (или  ПДФ) появляется  острый пик шириной, равной удвоенной полосе пропускания по НЧ (в данном случае примерно 5 кГц). Центральная частота этого пика  совпадает с частотой настройки гетеродина и перестраивается вместе с ней. При этом эффект повышения добротности контура тем больше, чем выше соотношение нагруженной и конструктивной добротности, и фактически равен этому соотношению (разумеется при достаточно большом сопротивлении нагрузки смесителя гетеродинного приемника, или если угодно, СФ). Для классической системы согласования контура (внесенное сопротивления источника/нагрузки равны) повышение добротности контура не превысит 2раз. Поэтому выгодно уменьшать коэффициент включения источника сигнала — согласованной антенны и применить полное подключение к контуру смесителя, имеющего в свою очередь, высокоомную нагрузку. При этом внеполосные помехи существенно ослабляются, чувствительность  и, соответственно, ДД в виду исключительно малых потерь во входных цепях приемника существенно возрастают. И это дает нам возможность создавать более совершенные приемники на принципе прямого преобразования.

Но вернемся к принципиальной схеме ППП.  Для реализации высоких селективных свойств смесителя применено полное подключение к ПДФ, а нагрузка смесителя по сравнению с традиционной повышена в несколько раз – до 5-10кОм. Полевой транзистор VT1, включен в режиме управляемого сопротивления[11].  При малых напряжениях сток-исток, независимо от полярности, канал полевого транзистора ведет себя как обычное сопротивление. Его значение можно менять от нескольких мегоом при запирающем напряжении на затворе до десятков ом при отпирающем. Таким образом, при подаче гетеродинного напряжения через конденсатор С17 на затвор, получится почти идеальный смеситель. Запирающее напряжение на затворе устанавливается автоматически из-за выпрямляющего действия p-n перехода (автосмещение) транзистора VT1. При этом изменяя амплитуду  гетеродинного напряжения, а значит и величину запирающего напряжения на затворе, мы может устанавливать в широких пределах относительную длительность открытого состояния канала, или скважность. При преобразовании на гармониках для выравнивания чувствительности по диапазонам скважность открытого состояния выбрана близкой к 4, что в данной схеме получается автоматически, т.к. преобразователь спроектирован так, что не требует кропотливой работы по подбору напряжения гетеродина. Для этого достаточно лишь выбрать полевой транзистор VT1 с напряжением отсечки, меньшем чем у VT2,  не менее, чем в 2 раза.

К достоинствам смесителя относится очень малая мощность, потребляемая от гетеродина, поэтому последний практически не нагружается, что позволило отказаться от буферного каскада и тем самым упростить схему. Развязка входных  и гетеродинной цепей однотактного смесителя на полевом транзисторе при его работе на основной частоте ГПД в основном определяется проходной емкостью сток-затвор транзистора, что в общем случае является одним из существенных его недостатков, затрудняющая  успешное применение его на ВЧ диапазонах. В данном случае такой проблемы нет, т.к. только на диапазоне 7МГц смеситель работает на основной частоте ГПД, а на диапазоне 14МГц – на второй гармонике ГПД, а на 21МГц –соответственно на третьей, при этом на верхних диапазонах реально сигналов с такой частотой нет, а имеющийся остаточный  сигнал ГПД частотой порядка 7МГц очень эффективно подавляются ПДФ диапазонов 14 и 21МГц. Наименьшее подавление сигнала ГПД будет на 7МГц диапазоне, но и здесь его подавление( на антенном входе) превышает 60дБ – вполне достаточно для нормальной работы приемника.

Гетеродин выполнен по схеме индуктивной трехточки ( схема Хартли) на полевом транзисторе VT2. Контур гетеродина содержит катушку L4 и конденсаторы С11-С13. Конденсатором переменной емкости (КПЕ) С11 частота генерации перестраивается в пределах 6,99-7,18МГц, что соответствует по второй гармонике диапазону  13,98-14,36Мгц, а по третьей — 20,97-21,54МГц.  Связь контура с цепью затвора  VT2 осуществляется посредством конденсатора С16, на котором, благодаря  выпрямляющему действию p-n перехода транзистора VT2, образуется автосмещение, достаточно жестко стабилизирующее амплитуду колебаний. Так, например, при возрастании амплитуды колебаний  запирающее выпрямленное напряжение также увеличивается и усиление транзистора падает, уменьшая коэффициент положительной обратной связи (ПОС). Собственно, ПОС получается при протекании тока  транзистора по части витков катушки L4. Отвод к истоку сделан от 1/3 части общего числа витков.

Основная  фильтрация сигнала в ППП  осуществляется на низкой частоте фильтром нижних частот (ФНЧ) и потому качество работы приемника во многом определяется селективностью его ФНЧ. Для улучшения помехоустойчивости и селективности приемника на входе УНЧ применен двухзвенный ФНЧ C18L5C19L6C24с частотой среза примерно 2,7кГц, составленный из двух последовательно включенных П-образных LC  звеньев. Конденсатор С21 образует дополнительный полюс затухания за полосой среза и тем самым обеспечивает увеличение крутизны спада АЧХ до 40дБ/октаву. В качестве катушек ФНЧ применена магнитофонная ГУ, что позволило исключить из конструкции ППП трудоемкие в изготовлении низкочастотные катушки. В числе положительных свойств этого решения можно отметить малые габариты фильтра, высокую линейность при больших уровнях сигналов благодаря наличию в магнитопроводе немагнитного зазора (Кг меньше 1% при входном 1Вэфф), малую чувствительность к наводкам благодаря хорошей штатной экранировке. Следует отметить, что лучшее подавление ( на 3 дБ) в двухзвенном ФНЧ получается при перекрестном соединении катушек.

Несмотря на то, что нагрузка ФНЧ (входное сопротивление УЗЧ порядка 5-10кОм ) выбрана существенно больше характеристического сопротивления ФНЧ (что требуется для реализации хороших селективных свойств смесителя)  неприятного характерного «звона» сигнала не наблюдается, т.к. в виду небольшой добротности катушек ГУ форма АЧХ ФНЧ имеет лишь небольшой подъем в области верхних звуковых частот, что благоприятно для улучшения разборчивости речи.

УЗЧ приемника двухкаскадный, с непосредственной связью между каскадами. Он собран по типовой схеме  на современных малошумящих транзисторах VT3, VT4 с высоким коэффициентом передачи тока.  Благодаря стопроцентной отрицательной обратной связи по постоянному току  режимы транзисторов по постоянному току устанавливаются автоматически и мало зависят от колебаний температуры и напряжения питания. Чтобы  входное сопротивление УЗЧ мало зависело от разброса параметров транзисторов, сопротивление резистора R6 относительно небольшим (15кОм). Нагрузкой УЗЧ служат высокоомные телефоны ТОН-2 с сопротивлением по постоянному току 4,4кОм, которые включаются непосредственно в коллекторную цепь транзистора VT4(через разъем Х3), при этом через их катушки протекает и переменный ток сигнала и постоянный ток транзистора, что дополнительно подмагничивает телефоны и улучшает их работу. . Конденсатор С27 совместно с индуктивностью последовательно включенных наушников образует резонасный контур с частотой примерно 1,2кГц, но из-за большого активного сопротивления обмоток  добротность последнего невысока — полоса пропускания по уровню -6дБ примерно 400-2800Гц, поэтому  его влияние на общую АЧХ не очень существенно и носит характер вспомогательной фильтрации и небольшой коррекции АЧХ. Так любителям телеграфа можно выбрать С27=22-33нФ, тем самым мы сместим резонанс вниз на частоты 800-1000Гц. Если сигнал глуховат и для улучшения разборчивости речевого сигнала нужно обеспечить подъем верхних частот, можно взять С27=2,2-4,7нФ, что поднимет резонанс вверх до 1,8-2,5кГц.

Конструкция и детали. Большинство деталей приемника смонтированы на печатной плате из односторонне фольгированного стеклотекстолита размером 41х99мм, чертеж которой со стороны печатных проводников приведен на рис. 2,

Чертеж платы трехдиапазонного ППП US5MSQ со стороны печатных проводников

а расположение деталей – на рис.3.

Чертеж платы трехдиапазонного ППП US5MSQ со стороны деталей

Чертёж печатной платы в формате lay можно скачать здесь. Плата рассчитана на установку малогабаритных радиодеталей – резисторы С1-4, С2-23, МЛТ-0,062. При применении более крупных резисторов (0,125 или0,25Вт) их следует устанавливать вертикально. Керамические контурные конденсаторы термостабильные КМ, К10-17или аналогичные импортные(дисковые оранжевые с черной точкой или многослойные с термостабильностью  МР0). Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные. Конденсаторы С18,С19,С21,С24 желательно выбирать термостабильные — пленочные, металлопленочные например малогабаритные импортные серий МКТ,МКР и аналогичные. Остальные керамические блокировочные и электролитические – любого типа  малогабаритные.

Катушки приемника L1-L4 выполнены на  малогабаритных каркасах от контурных катушек ПЧ 10,7Мгц  размерами 8х8х11 мм (рис. 4) от широко распространенных  недорогих импортных

Конструкция каркаса катушек ППП US5MSQ

 

радиоприемников и магнитол. Катушки L2-L4 содержат по 18 витков провода ПЭЛ, ПЭВ  диаметром 0,13-0,23мм, отвод у катушки L4 сделан от шестого витка, считая от вывода, соединенного с общим проводом. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 3 витка такого же провода. Намотку следует проводить с максимальным натяжением провода, равномерно размещая витки во всех секциях каркаса, после чего катушка плотно фиксируется штатной капроновой гильзой. Весь контур заключен в штатный латунный экран.  При необходимости все катушки можно выполнить на любых других, доступных радиолюбителю каркасах, разумеется изменив число витков для получения требуемой индуктивности и, соответственнно, подкорректировав чертеж печатной платы под новый конструктив. Например, для широко распространенных каркасов контуров ПЧ от старых телевизоров диаметром 7,5-8,5мм с подстроечниками СЦР-1 ( М6х10) и прямоугольными ( могут быть и круглыми ) экранами, катушки L2-L4 содержат по 12 витков провода ПЭЛ, ПЭВ  диаметром 0,4-0,7мм, намотанных на длине 10мм, при этом отвод у катушки L4 сделан от четвертого витка, считая от вывода, соединенного с общим проводом. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 2 витка такого же провода.

В качестве катушек L5, L6 ФНЧ с успехом можно применять любые доступные новые или б/у универсальные головки кассетных стереомагнитофонов отечественного или импортного производства. Их индуктивность, как правило, находится в диапазоне 60-180мГ, что нам вполне подходит, только для сохранения частоты среза ФНЧ надо обратнопропорционально изменить номиналы конденсаторов C18,C19,C21,C24. Это будет легко сделать на слух в процессе первых испытаний приемника в эфире.

КПЕ может быть любым, но обязательно с воздушным диэлектриком, иначе будет трудно получить приемлемую стабильность ГПД. Применение КПЕ с воздушным диэлектриком почти автоматически обеспечит нам весьма высокую стабильность ГПД без принятия специальных мер по термостабилизации. Так, в авторском варианте ГПД (контурный конденсатор С13 КМ-5 группы М47)  этот приемник на 21МГц при питании от «Кроны» держит SSB  станцию не менее получаса, т.е абсолютная нестабильность (по третьей гармонике) не хуже 150-200Гц! Очень удобны КПЕ от УКВ блоков старых промышленных приемников, которые еще  часто встречаются на наших радиорынках. Именно такой применен в авторской конструкции. Они имеют встроенный верньер 1:4, что существенно облегчает настройку на SSB станцию. Включив параллельно обе секции, получим емкость примерно 8-34пФ.Растягивающие кондесаторы С12,С13 служат для точной укладки диапазонов и их величина выбирается в зависимости от имеющегося в наличии КПЕ. Расчетные значения растягивающих конденсаторов для наиболее распространенных КПЕ приведены в  табл.1.

С11, пФС12, пФС13, пФ
8-34> 10000 или заменить перемычкой470
9-2707501300
9-3606801600
12-4956801800

 

Головные телефоны электромагнитные, обязательно высокоомные (с катушками электромагнитов индуктивностью примерно 0,5Гн и сопротивлением по­стоянному току 1500…2200 Ом), например, типа ТОН-1, ТОН-2, ТОН-2м, ТА-4, ТА-56м. При согласно-последовательном включении , т.е «+»одного соединен с»- «другого,  имеют общее сопротивление по постоянному току 3,2-4,4 кОм, по переменному примерно 10-12кОм на частоте 1кГц. Вилка включения телефонов заменяется стандартным трех- или пятиштырьковым разъемом от звукозаписывающей бытовой аппаратуры (СГ-3,СГ-5 или аналогичные импортные) –  на схеме XS3. Между выводами 2 и 3штыревой части разъема устанавливают перемычку, которая служит для подключения батареи питания GB1. При отсоединении телефонов питание приемника будет отключаться автоматически. Плюсовый провод телефонов соединяется с выводом 2 разема, что обеспечит сложение магнитных потоков, создаваемых током подмагничивания и постоянными магнитами телефонов.[2]

Разъем ХS3 предназначен для подключения зарядного устройства или, в случае отсутствия встроенного аккумулятора, внешнего блока питания. Блок питания годится любой промышленного изготовления или самодельный, обеспечивающий стабилизированое напряжение +9…12В при токе не менее 12-15 ма. Для автономного питания можно применять  любые батарейки или аккумуляторы, размещенные в специальном контейнере. Например, очень удобен малогабаритный  аккумулятор на 8,4В размером с «Крону» и емкостью 200мА/час, которого хватает практически на сутки напрерывной работы приемника.

В смесителе хорошо работают современные полевые транзисторы с p-n переходом, с минимальной проходной емкостью и малым напряжением отсечки – BF245A, J(U)309, КП307А,Б,КП303А,Б,И. В гетеродине можно применить любые современные полевые тразисторы с p-n переходом и анпряжением отсечки не менее 3,5-4В BF245C.J(U)310, КП307Г, КП303Г,Д,Е, КП302Б,В и т.п.

В качестве VT3,VT4 применимы любые кремниевые с коэффициентом передачи тока на менее 100, желательно малошумящие, например отечественные КТ3102Д,Е или широко распространенные недорогие импортные 2N3904, BC547-549, 2SC1815 и т.п.

Вид на внутренний монтаж трёхдиапазонного ППП US5MSQ

 

Вид на внутренний монтаж приведён на рис.5. Конструкция шкального механизма видна на фото. В верхней части передней панели вырезано прямоугольное окно шкалы, сзади которого на расстоянии 1мм закреплен винтами М1,5 длиной 15мм подшкальник.  На эти же винты насажены промежуточные капроновые ролики диаметром 4мм, обеспечивающие необходимый ход тросика. Диск верньера применен стандартный, диаметром 13мм от блоков УКВ старых приемников. Шкала линейная, с отображением всех трех диапазонов. Ось, на котором закреплена ручка настройки, использована от переменного резистора типа . От этого же резистора использованы элементы крепления оси на передней панели (см.рис.6).

Детали верньера трёхдиапазонного ППП US5MSQ

На оси следует сделать небольшую проточку (полукруглым надфилем, зажав в патрон электродрели ось), в которую укладывают тросик (два витка вокруг оси). Стрелка шкалы – отрезок провода ПЭВ диаметром 0,55мм.

Налаживание. Правильно смонтированный приемник с исправными деталями начинает работать, как правило, при первом же включении. Проверить общую работоспособность основных узлов приемника можно при помощи обычного мультиметра. Сначала, включиво мультиметр в режиме измерения тока в разрыв цепи питания, проверяем, что потребляемый ток не превышает 12-15мА, в наушниках должны негромко прослушиваться  собственные шумы приемника. Далее, переключив мультиметр в режим измерения постоянного напряжения, измеряем напряжение на эмиттере VT4 составляет примерно 0,5В. При исправном УЗЧ прикосновение руки к его входным цепям  должно вызывать появление в динамике громкого, рычащего звука. О работоспособности гетеродина свидетельствует наличие на затворах VT1, VT2 отрицательного напряжения автосмещения порядка нескольких вольт.

Настройка приемника проста и сводится к укладке частоты гетеродина на диапазоне 7МГц и настройке входных контуров ПДФ по максимуму сигнала.  Удобно это делать при помощи генератора стандартных сигналов(ГСС). Переключаем приемник на диапазон 7МГц. ГСС настраиваем на частоту 6,98 МГц и, установив уровень его выходного сигнала порядка 30-100мВ, подключаем его к антенному гнезду приемника. Ротор КПЕ  переводим в  положение максимальной емкости. Установив переключатель диапазонов в положение 7МГц, вращением сердечника катушки L4 добиваемся прослушивания сигнала ГСС. Если это не удается, корректируем емкость кондесатора С12. Перестроив приемник на верхний конец диапазона, убеждаемся, что верхняя частота приема не менее, чем 7,18Мгц.  При необходимости добиваемся этого подбором емкости конденсатора С13. После проведенных изменений , процедуру установки начала диапазона надо повторить.

Теперь можно приступать к  градуировке механической шкалы. Ее градуируют на диапазоне 7МГц с помощью ГСС с интервалом 1,2 или 5кГц – в зависимости от линейных размеров самой шкалы. Поскольку ГПД у нас не переключаемый, разметка шкалы, сделанная на  диапазоне 7МГц, справедлива и для верхних диапазонов, разумеется с учетом множителя 2 и 3. Авторский вариант разметки шкалы хорошо виден на фото внешнего вида.

Настройку контуров ДПФ  следует начинать с диапазона 21Мгц. Подключив к выходу приемника индикатор уровня выходного сигнала (миливольтметр переменного тока, осцилограф, а то и просто мультиметр в режиме измерения переменного напряжения к выводам конденсатора С27) устанавливаем частоту ГСС на середину диапазона, т.е. 21,22МГц. Настроившись приемником на сигнал ГСС поочередным вращением сердечников катушек L2,L3 добиваемся максимального уровня сигнала(максимальной громкости приема). По мере роста громкости следует при помощи плавного аттенюатора R1 поддерживать уровень  сигнала на выходе УНЧ примерно 0,3-0,5В.Если при вращении сердечника после достижения максимума наблюдается снижение шумов, это свидетельствует что входной контур у нас настроен правильно, возвращаем сердечник в положение максимума и можем приступать к следующему диапазону.  Если вращением сердечника( в обе стороны) не получается зафиксировать четкий максимум, т.е сигнал продолжает расти, то наш контур неправильно настроен и понадобится подбор конденсатора. Так если сигнал продолжает увеличиваться при полном выкручивании сердечника, емкость конденсатора  контура С5(или С11) надо немного уменьшить , как правило(если катушка выполнена правильно) достаточно поставить следующий ближайший номинал. И опять проверяем возможность настройки входного контура в резонанс. И наоборот, если сигнал продолжает уменьшаться при полном вкручивании сердечника, емкость конденсатора  контура С5(или С11)  надо увеличить.  Аналогичным образом настраиваем контура ПДФ диапазонов 14Мц и 7МГц, установив частоту ГСС 14,18 и 7,05Мгц соответственно, но только регулировкой триммеров  ( сердечники катушек L2,L3 при этом уже не трогаем).

Укладку диапазонов и градуировку шкалы можно провести и без ГСС[12], но   нам понадобится  контрольный приемник, в качестве которого можно применить  любой исправный приемник (связной или радиовещательный), имеющий хотя бы один широкий или несколько растянутых КВ диапазонов – не критично. Наиболее близким к любительским диапазонам является радиовещательный 41м диапазон, который в реальных приемниках как правило охватывает и частоты ниже 7100кГц, по крайней мере до 7000кГц.

Разумеется, проще всего проводить калибровку при помощи связного приемника (особенно с цифровой шкалой) или переделанного ( со встроенным детектором смесительного типа) радиовещательного АМ. Если у вас нет такого, а просто обычный АМ приемник – можно конечно попробовать ловить на слух присутсвие мощной несущей, как рекомендуется в некоторых описаниях, но, откровенно  говоря, это занятие не для слабонервных — затруднительно сделать даже при поиске основной частоты ГПД, не говоря уже о гармониках. Поэтому не будем мучаться — если контрольный приемник любит АМ, давайте сделаем ему АМ! Для этого (см.рис.1) соединим выход УНЧ( коллектор VT4) с его входом(базаVT3) при помощи вспомогательного конденсатора  емкостью 10-22нФ ( не критично), тем самым превратим наш УНЧ в генератор НЧ, а смеситель теперь будет выполнять ( и довольно эффективно!) функции модулятора АМ с той же частотой, которую слышим в телефонах. Теперь поиск частоты генерации ГПД весьма облегчится не только на основной частоте ГПД но и на её гармониках. Я  это проверил экспериментально, сделав в начале поиск основной частоты (7МГц) и ее второй гармоники (14МГц) в режиме связного приемника, а потом в режиме АМ. Громкость сигнала и удобство поиска практически одинаковы, единственное отличие – в режиме АМ из-за широкой полосы модуляции и полосы пропускания УПЧ точность определения частоты немного ниже (2-3%), но это не очень критично, т.к. если нет цифровой шкалы, общая погрешность измерения частоты будет определяться точностью механической шкалы контрольного приемника, а здесь погрешность существенно выше ( до 5-10%), потому и предусматриваем при расчете ГПД диапазон перестройки ГПД с некоторым запасом.

Сама метода измерения проста. Переключаем приемник на диапазон 7МГц. Подключаем один конец небольшого куска провода, например один из щупов от мультиметра, к гнезду внешней антенны XW1 настраиваемого приемника, а второй конец —  к гнезду внешней антенны контрольного приемника или просто располагаем рядом с его входной цепью (телескопической антенной) . Поставив ручку КПЕ ГПД в положение максимальной емкости ручкой настройки приемника ищем громкий тональный сигнал, и по шкале приемника определяем частоту. если шкала приемника отградуирована в метрах радиоволны, то для пересчета в частоту в МГц используем простейшую формулу F=300/L( длина волны в метрах).

Далее,  подключив к приемнику антенну длиной не менее 5м (желательно наружную) приступаем к настройке контуров ДПФ  по максимуму шумов и сигналов эфира по методике, описанной выше.

Обсудить конструкцию приемника, высказать свое мнение и предложения можно на форуме

Литература

  1. Поляков В. Приемник прямого преобразования. — Радио, 1977, №11, с.24.
  2. Поляков В. Простой радиоприемник коротковолновика-наблюдателя. — Радио, 2003, №1  с.58-60,№2 с.58-59
  3. Поляков В. Радиолюбителям о технике прямого преобразования. ― М.: Патриот, 1990
  4. Зирюкин Ю. Приемник прямого преобразования. —РадиоЛюбитель №7, 1995 г
  5. Степанов Б.,Шульгин Г. Всеволновый КВ приемник «Радио-87ВПП» — Радио, 1987г. №2, с.19, №3, с.17
  6. Беленецкий С. Однополосный гетеродинный приемник с большим динамическим диапазоном. — Радио, 2005г. №10, с.61-64, №11, с.68-71.
  7. Григоров И. Простой приемник наблюдателя. —Радиоконструктор, 1999г,№12,с.12-13
  8. Беленецкий С. Новый взгляд на смесительный детектор  и некоторые аспекты его практического применения.— материалы  форума cqham.ru в теме «Современный трансивер прямого преобразования»  http://forum.cqham.ru/viewtopic.php?t=7391&postdays=0&postorder=asc&&start=1860
  9. Морозов В. Узкополосный синхронный фильтр. Радио, 1972, №11, с.53-54
  10. Поляков В.Ключевой смеситель гетеродинного приемника. http://www.cqham.ru/trx83_64.htm
  11. 11.Погосов А. Модуляторы и детекторы на полевых транзисторах. — Радио, 1981, №10 с.19
  12. Беленецкий С. Я строю простой ППП.

   Беленецкий С.Э. US5MSQ г.Луганск, Украина

Приятно вспомнить, что по итогам конкурса журнала Радио на лучшую публикацию 2008 года, проведенного по отзывам читателей, автор, то бишь я, за статью с описанием этого приемника был награжден дипломомДиплом US5MSQ от ж.Радио

 

Набор радиодеталей для сборки этого трёхдиапазонного приемника в разной комплектации можно приобрести здесь

Многие коллеги изготовили этот ППП, некоторые из них даже выложили своеобразные видеоотчеты о работе приемника на youtube:

 

 

us5msq.com.ua

Простые супергетеродинные приемники на двухзатворных полевых транзисторах. Часть 2

На основе схемы, рассмотренной в первой части статьи (рис.2), изменяя параметры только входных и гетеродинных контуров можно создавать самые разные варианты любительских приемников на НЧ диапазоны.

Двухдиапазонный приемник на 80 и 160м

Фрагмент принципиальной схемы ВЧ блока двухдиапазонного варианта приемника на 80 и 160м приведена на рис.5. Не показанная часть схемы полностью соответствует базовому варианту (см. рис.2), для облечения чтения нумерация совпадающих элементов сохранена, вновь введенные ее продолжают.

Принципиальная схема ВЧ блока двухдиапазонного приемника на 80 и 160м US5MSQ

В показанном на схеме положении переключателя SA1 включен диапазон 160м.  Двухконтурный ПДФ L1C1C2C3L2C4C5С6 аналогичен по структуре  примененному в базовом варианте и имеет полосу пропускания не уже 1,8-2Мгц. Внешняя антенна  подключаются аналогично базовому варианту.  Для перехода на 80м диапазон замыкаются контакты переключателя SA1 и параллельно катушкам L1,L2 величиной 22мкГн подключаются  катушки L5,L6 величиной 8,2мкГн, в результате полоса пропускания ПДФ смещается точно на частоты диапазона 80м – 3,5-3,8МГц.  Контур ГПД на 160м диапазоне состоит из катушки L3, КПЕ С38 и растягивающих конденсаторов  С40,С8,С9, и С10, величина последних выбрана из расчета обеспечить  с достаточным запасом диапазон перестройки 2,28-2,52Мгц. При включении 80м диапазона параллельно L3 подключаются катушка L7 и конденсатор С41, в результате диапазон перестройки ГПД смещается к требуемому 3,98-4,32Мгц, с некоторым запасом. Немного расширенный диапазон перестройки ГПД  позволил отказаться от операции их точной укладки.

Для улучшения повторяемости было решено полностью отказаться от самодельных катушек и выполнить ВЧ  цепи на  малогабаритных аксиальных дросселях стандартных номиналов (типа ЕС24 и т.п.). Благодаря дополнительно проведенной  оптимизации значений контурных элементов под стандартный номинальный ряд удалось упростить не только схему, но и настройку. В результате при установке исправных деталей указанных на схеме номиналов ВЧ блок практически не требует настройки, достаточно только подстроить триммеры С39 и С42 по максимуму сигнала на середине 160м диапазона.

Разумеетмя, что при отсутствии готовых дросселей можно применить самодельные катушки, самостоятельно рассчитав требуемое кол-во витков, например по методике, приведенной в первой части статьи. При этом схему можно еще более упростить, отказавшись от триммеров, а настройку ВЧ блока провести по стандартной или упрощенной методике, приведенной ниже.

Трехдиапазонный приемник на 20,40 и 80м

Этот приемник  немного сложнее, но и совершеннее предыдущих.
Его принципиальная схема приведена на рис.6. Сигнал с антенного разъема подается на

Принципиальная схема трехдиапазонного приемника с ЭМФ на 20,40 и 80м US5MSQ

регулируемый аттенюатор, выполненный на сдвоенном потенциометре R25 и далее через катушку связи L1 поступает на двухконтурный полосовой диапазонный  фильтр (ПДФ) L2C5С11, L3C17С21 с емкостной связью через конденсатор С10. Переключение диапазонов производится трехпозиционным переключателем. В положении контактов, показанном на схеме включен диапазон 14МГц.  При переключении на 7МГц к контурам подключаются дополнительные контурные конденсаторы С4,С9 и С16,С20, смещающие  резонансные частоты контуров на середину рабочего диапазона и дополнительный конденсатор связи С15. При переключении на диапазон 3,5МГц  к контурам ПДФ подключаются соответственно конденсаторы С8,С14 и С13. Для расширения полосы на 80м диапазоне введены резисторы R1,R2. Этот трехдиапазонный ПДФ рассчитан на применение большой, полноразмерной антенны и сделан по упрощенной схеме всего на двух катушках, что оказалось возможным благодаря нескольким особенностям — верхние диапазоны, где требуется бОльшие чувствительность и селективность — узкие (меньше 3%), нижний 80м, где очень высок уровень помех и вполне достаточно чувствительности порядка 3-5мкВ — широкий (9%). Примененная схема имеет самый большой коэф.передачи по напряжению на 14Мгц с почти пропорциональным частоте снижением в сторону 3,5Мгц, причем  избирательность по зеркальному каналу при ПЧ 500кГц даже на 14Мгц будет порядка 30дБ — вполне приличное значение, учитывая, что в полосе 13-13,35Мгц нет мощных вещательных станций.

Приемник работает очень чисто, даже без аттенюатора без заметных на слух перегрузок держит сигнал – уровнем как минимум до S9+40дБ. Чувствительность при с/шум=10дБ не хуже 3мкВ (80м) и 1мкв (40 и 20м). Ток потребления в покое — порядка 20мА и не более 50мА при максимальной громкости на динамик 8 Ом.
Гетеродин выполнен по схеме индуктивной трехточки ( схема Хартли) на полевом транзисторе VT3. Контур гетеродина содержит катушку L5 и конденсаторы С18,С19. Конденсатором переменной емкости (КПЕ) С51 частота генерации перестраивается в пределах 13,48-13,87МГц. При переключении на 7МГц к контуру параллельно С18 и С19 подключаются дополнительные растягивающие конденсаторы С6 и С7,С12, смещающие  диапазон перестройки частоты до 7,48-7,72МГц. При переключении на диапазон 3,5МГц  подключаются соответственно конденсаторы С1  и С2С3, а диапазон перестройки ГПД равен 3,98-4,32МГц. Связь контура с цепью затвора  VT3 осуществляется посредством конденсатора С22, на котором, благодаря  выпрямляющему действию p-n перехода диода VD1, образуется отрицательное напряжение автосмещения, достаточно жестко стабилизирующее амплитуду колебаний в широком диапазоне частот. Так, например, при возрастании амплитуды колебаний  запирающее выпрямленное напряжение также увеличивается и усиление транзистора падает, уменьшая коэффициент положительной обратной связи (ПОС). Собственно, ПОС получается при протекании тока  транзистора по части витков катушки L5. Отвод к истоку сделан от 1/3 части общего числа витков.

Сигнал ГПД подается на второй затвор смесителя VT2 через  буферный истоковый повтотитель VT1. Это вызвано тем, что на верхнем 20м диапазоне при ПЧ 500кГц частоты настройки контуров ДПФ и ГПД очень близки, поэтому реактивное сопротивление контура ГПД для частоты сигнала велико и сильные эфирные сигналы (уровнем S9+40дБ и более) через межзатворную емкость смесителя VT2 попадают  непосредственно в контур ГПД, что приводит пусть к небольшой, но заметной на слух, паразитной модуляции — в принимаемом сигнале появляется неприятный  призвук. Применение  истокового повторителя VT1 полностью устраняет этот эффект, но при этом ток потребления приемника в покое увеличился до 20мА.

Остальная часть схемы полностью  соответствует базовому варианту.

Все детали приемника, кроме разъемов, переменных резисторов и КПЕ, смонтированы на плате  из одностороннего фольгированного стеклотекстолита размером 67,5х95мм. Авторский чертеж платы со стороны печатных проводников приведен на рис. 7,

Чертеж платы трёхдиапазонного приёмника US5MSQ со стороны печатных проводников

расположение деталей – на рис.8,

Чертеж платы трёхдиапазонного приёмника US5MSQ со стороны деталей

а фото собранной платы на рис.9.

Фото собранной платы трёхдиапазонного приёмника US5MSQ

Чертёж печатной платы в формате lay можно скачать здесь

на чертеже предусмотрено посадочное место под три наиболее распространенных конструктива ЭМФ (круглых и прямоугольных). С целью уменьшения размеров, плата рассчитана на установку в основном SMD компонентов — резисторы и дроссель L6 типоразмера 1206, а конденсаторы 0805, электролитические импортные малогабаритные. Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные. В качестве SA1,SA2  применены переключатели  П2К с независимой фиксацией и четырьмя переключающими группами. Технологические перемычки J1,J2, подобные применяемым на компьютерных материнских платах и адаптерах.
В качестве VT1,VT3  можно применить практически любые  современные полевые транзисторы с p-n переходом, с начальным током стока не менее 5-6мА  – BF245В,С, J(U)309 -310, КП307Б, Г, КП303Г, Д, Е, КП302 А,Б. В качестве VT4 применимы любые кремниевые с коэффициентом передачи тока на менее 100, BC847- ВС850, MMBT3904, MMBT2222 и т.п.

Катушки приемника L1-L4 выполнены на  малогабаритных каркасах от малогабаритных катушек ПЧ 455 кГц  размерами 8х8х11 мм, от широко распространенных  недорогих импортных радиоприемников и магнитол, подстроечником которых служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвертку. Катушки L2-L3 содержат по 9 витков провода ПЭЛ, ПЭВ  диаметром 0,13-0,23мм. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 1 виток, а катушка связи L4 наматывается поверх нижней части катушки L3 и содержит 5 витков такого же провода. Гетеродинная катушка L3 намотана на импортном малогабаритном многосекционном каркасе контура ПЧ 10,7 МГц. Она содержит 19 витков провода ПЭЛ (ПЭВ) диаметром 0,13-0,17мм, отвод от 7 витка. Намотку следует проводить с максимальным натяжением провода, равномерно размещая витки во всех секциях каркаса, после чего катушка плотно фиксируется штатной капроновой гильзой. Весь контур заключен в штатный латунный экран.

При необходимости все катушки можно выполнить на любых других, доступных радиолюбителю каркасах, разумеется изменив число витков для получения требуемой индуктивности и, соответственно, подкорректировав чертеж печатной платы под новый конструктив.

Внешний вид приемника приведен на рис.10,

Внешний вид трёхдиапазонного приёмника US5MSQ

а вид на внутренний монтаж – на рис.11. Конструкция шкального механизма видна на фото.

Вид на монтаж трёхдиапазонного приёмника US5MSQ

В верхней части передней панели вырезано прямоугольное окно шкалы, сзади которого на расстоянии 1мм закреплен винтами М1,5 длиной 15мм подшкальник.  На эти же винты насажены промежуточные капроновые ролики диаметром 4мм, обеспечивающие необходимый ход тросика. Шкала линейная, с отображением всех трех диапазонов. Ось, на котором закреплена ручка настройки, использована от переменного резистора типа . От этого же резистора использованы элементы крепления оси на передней панели. На оси следует сделать небольшую выточку (полукруглым надфилем, зажав в патрон электродрели ось), в которую укладывают тросик (два витка вокруг оси).  Стрелка шкалы – отрезок провода ПЭВ диаметром 0,55мм. Настройка трактов НЧ и ПЧ аналогична базовому варианту. Далее, подключив высокоомный вольтметр (например, китайский цифровой мультиметр) через развязывающий резистор 51-100кОм к затвору VT3, убеждаемся, что на всех диапазонах отрицательное напряжение автосмещение не менее 1В. Затем по падению напряжения на R4 проверяем ток стока VT1 и если он более 7-8мА, увеличиваем R4 до получения требуемого, допустимо порядка 5-8мА.

Затем снимаем технологическую перемычку (джампер) J1  и вместо нее к этому разъему подключаем частотомер и приступаем к укладке диапазонов ГПД, которую начинаем с диапазона 20 м (переключатели SA1,SA2 отжаты). Подбором растягивающих конденсаторов С18,С19 добиваемся требуемой ширины перестройки (с небольшим запасом – порядка 15-20 кГц по краям), а сердечником катушки L5 совмещаем начало диапазона и больше катушку не трогаем. Далее, нажав переключатель SA2, переходим к укладке  диапазона 40м, для чего  сначала устанавливаем триммер С12 в среднее положение (это легко определить по изменению частоты при его регулировке), подбором  растягивающих конденсаторов С6,С7 добиваемся как требуемой ширины перестройки, так и примерного совпадения начала диапазонов, после чего подстройкой С12 совмещаем их более точно. Затем переходим на диапазон 80м (отжав SA2 и нажав SA1) и аналогично, подбором растягивающих конденсаторов С6,С7,  укладываем его границы и триммером С3 совмещаем начало диапазона с предыдущими.

При указанной выше конструкции катушки и использовании термостабильных конденсаторов группы МПО (а по сведениям автора к ним относятся практически все импортные SMD конденсаторы емкостью менее 910пФ) стабильность частоты получилась вполне приличной — после 15мин прогрева приемник держит SSB станции не менее получаса на 20м диапазоне и не менее часа — на нижних и это без всяких дополнительных усилий по термокомпенсации.

Настройку контуров ДПФ можно сделать по упрощенной методике и  следует начинать с диапазона 80м. Подключив к выходу приемника индикатор уровня выходного сигнала (миливольтметр переменного тока, осциллограф, а то и просто мультиметр в режиме измерения напряжения постоянного тока к выводам конденсатора С42) устанавливаем частоту ГСС на середину диапазона, т.е. 3,65МГц. Расчетная АЧХ ПДФ на этом диапазоне широкая «двугорбая», с провалом в середине диапазона примерно на 1дБ.

АЧХ ПДФ диапазона 80м (полоса 380 кГц) приемника US5MSQ

Чтобы правильно настроить этот ПДФ без ГКЧ, воспользуемся следующим приемом. Временно зашунтируем катушку L3 резистором150-220 Ом и настроившись приемником на сигнал ГСС  вращением сердечника катушки L2 добьемся максимального уровня сигнала (максимальной громкости приема). По мере роста громкости следует при помощи плавного аттенюатора R1 поддерживать уровень  сигнала на выходе УНЧ примерно 0,3-0,5В. Если при вращении сердечника после достижения максимума наблюдается снижение шумов, это свидетельствует что входной контур у нас настроен правильно, возвращаем сердечник в положение максимума и можем приступать к следующему диапазону.  Если вращением сердечника (в обе стороны) не получается зафиксировать четкий максимум, т.е. сигнал продолжает расти, то наш контур неправильно настроен и понадобится подбор конденсатора. Так если сигнал продолжает увеличиваться при полном выкручивании сердечника, емкость конденсатора  контура С5(или С11) надо немного уменьшить, как правило (если катушка выполнена правильно) достаточно поставить следующий ближайший номинал. И опять проверяем возможность настройки входного контура в резонанс. И наоборот, если сигнал продолжает уменьшаться при полном вкручивании сердечника, емкость конденсатора  контура С5(или С11)  надо увеличить.  После этого перенесем шунтирующий резистор на катушку L2 и вращением сердечника катушки L3 добьемся максимального уровня сигнала. Вот теперь ПДФ диапазона 80м настроен правильно. Больше катушки не трогаем и переходим на диапазон 20м и 40м. АЧХ ПДФ этих диапазонов узкие, одногорбые, поэтому они

АЧХ ПДФ диапазона 40м (полоса 190 кГц) приемника US5MSQ

АЧХ ПДФ диапазона 20м (полоса 470 кГц) приемника US5MSQ

настравиаются просто по максимуму сигнала в средней части диапазона – частоты соответственно 14,175 и 7,1МГц. С начала настраиваем ПДФ диапазона 20м регулировкой триммеров С5,С21, а затем – 40м, соответственно  регулировкой триммеров С4,С20. При достаточно большой антенне настройку ПДФ по приведенной выше методике можно сделать  непосредственно по шумам (сигналам) эфира, памятуя, что лучшее прохождение, а значит, более сильные сигналы,  на диапазонах 80 и 40м будут в темное время суток, а на 20м – в светлое.

Сергей Беленецкий (US5MSQ)                                                   г.Луганск, Украина

Набор радиодеталей для сборки этого трёхдиапазонного приемника в разной комплектации можно приобрести здесь

Обсудить конструкцию приемника, высказать свое мнение и предложения можно на форуме

Многие коллеги уже изготовили трёхдиапазонный вариант, некоторые из них даже выложили своеобразные видеоотчеты о работе приемника на youtube:

 

us5msq.com.ua

Громкоговорящий ППП на германиевых транзисторах

Пресытившись конструкциями на лампах и современных компонентах в последнее время в ностальгическом порыве маюсь конструкциями на германиевых транзисторах.

Начитавшись на форумах, что, дескать, из-за несовершенства технологии производства их параметры со временем сильно деградируют, для проверки своих запасов  даже приобрёл промышленный измеритель параметров транзисторов и маломощных диодов Л2-54.

Мой Л2_54_US5MSQ

Протестировал более сотни разных экземпляров транзисторов и могу с удовлетворением отметить, что ни один не забраковал – все как минимум с полуторакратным (а чаще всего с 2-3 кратным) запасом соответствуют справочным данным. Так что совсем не грех их трудоустроить, тем паче, что в мою юность многие из них были столь же желанны, как и недоступны.

И начинаем традиционно – с постройки УНЧ.

Целый ряд популярных и по сей день радиолюбительских приемников, например [1,2],  выполнены на германиевых транзисторах и рассчитаны на работу на дефицитные ныне высокоомные наушники. Рекомендуемые там же для повышения выходной мощности простые эмиттерные повторители способны обеспечить более-менее пристойное звучание лишь на связные низкоомные наушники (100- 600 Ом) или низкоомную нагрузку (4-16 Ом  современные наушники или динамик), подключаемую через трансформатор с Ктр не менее 1/5 (1/25 по сопротивлению) и всё равно при малых уровнях сильно сказывается искажения типа ступенька. Можно, конечно, попробовать притулить туда современные УНЧ на ИМС, но они требуют плюсовое питание. Можно пойти еще дальше и перевести конструкции на современные транзисторы, но… теряется «изюминка», вкус времени  — «ностальжи», так что это не наш путь.

Существенно улучшить качество звучания на низкоомную нагрузку и обеспечить громкоговорящий прием поможет усилитель мощности с глубокой ООС (рис.1 обведён синей рамкой), подключаемый вместо высокоомных наушников.

Рис.1 УНЧ ППП мощностью 0,5 Вт US5MSQ

Как видим, его схема почти классика 60-70гг. Отличительной чертой является глубокая (более 32 дБ) ООС по постоянному и переменному току (через резистор R7), что и обеспечивает высокую линейность усиления (при  средних уровнях Кг менее 0,5%, при малой (менее 5 мВт) и максимальной мощности (0,5 Вт) Кг достигает 2%). Несколько непривычное включение регулятора громкости обеспечивает повышение глубины ООС при уменьшении громкости, благодаря этому оказалось возможным сделать УНЧ более экономичным (ток покоя всего УНЧ ППП не более 7 мА) практически при полном отсутствии искажений типа «ступенька». Конденсатор С6 ограничивает полосу пропускания на уровне примерно 3,5 кГц (без него она превышает 40 кГц!), что также снижает уровень собственных шумов – УНЧ очень тихий. Уровень собственных шумов на выходе примерно 1,2 мВ! (при заземлённом левом выводе С1). Общий Кус со входа (с левого вывода С1) примерно 8 тыс. Т.о. уровень собственных шумов приведенных ко входу — примерно 0,15 мкВ. При подключении к реальному источнику сигнала (ФНЧ) за счет токовой составляющей уровень собственных шумов, приведенных ко входу, возрастает до 0,3-0,4 мкВ.

Испытание мощного УНЧ ППП_US5MSQ

 

В выходном каскаде применены недорогие и надежные ГТ403. УНЧ способен выдать «на гора» и большую мощность (до 2,5 Вт на нагрузке 4 Ома), но тогда потребуется установить транзисторы на радиаторы и/или применить более мощный (П213, П214 и т.п.), но, на мой взгляд,  0,5 Вт и современном чувствительном динамике «за глаза» хватает даже при прослушивании музыки. Для усилителя НЧ пригодны практически любые германиевые низкочастотные транзисторы соответствующей структуры и Н21э транзисторов не менее 40 (Т2, T3, Т4 –МП13-16, МП39-42, а Т5- МП9-11, МП35-38). Если планируется применение этого УНЧ в ППП, то нужно, чтобы Т1 был малошумящим (П27А, П28, МП39Б). Для выходного каскада пары Т4,Т5 и Т6,Т7 желательно подобрать с близкими ( не хуже +-10%) значениями Н21е.

За счет глубокой ООС по постоянному току режимы УНЧ устанавливаются автоматически.   При первом включении проверяют ток покоя (5-7 мА) и при необходимости добиваются требуемого подбором более удачного экземпляра диода. Упростить эту процедуру можно, если воспользоваться китайским мультиметром. Он в режиме прозвонки диодов пропускает через диод ток примерно 1 мА. Нам нужен экземпляр с падением напряжения порядка 310-320 мВ.

Для испытаний мощного УНЧ была выбрана схема простого двухдиапазонного ППП RA3AAE[3]. Давно хотел её попробовать, да всё как-то руки не доходили, а тут такая оказия (hi!).

двухдиапазонный ППП RA3AAE

Сразу сделал небольшие корректировки схемы (см. рис.3), которые здесь и опишу. Всё остальное, в т.ч. и процесс настройки смотрите в книжке [3].

рис.2 Двухдиапазонный ППП US5MSQ с Рвых 0,5 Вт

В качестве двухзвенного ФНЧ уже традиционно применил магнитофонную универсальную головку, что обеспечило повышенную селективность по соседнему каналу.  Катушка ФНЧ имеет довольно большую собственную емкость, поэтому она существенно нагружает ГПД, особенно если намотана не ПЭЛШО, а простым проводом типа ПЭВ, ПЭЛ (в т.ч. и магнитофонные ГУ). В этом случае собственная емкость катушки настолько велика, что весьма проблематично запустить ГПД с нормальной амплитудой на диодах — с этим сталкивались многие коллеги. Вот поэтому сигнал ГПД лучше снимать не с отвода катушки, а катушки связи, что исключает все эти проблемы и заодно полностью исключает попадание напряжение ГПД на вход УНЧ. Дабы не заморачиваться намоткой нашел подходящие готовые катушки и вперёд, к испытаниям ППП и неожиданно натолкнулся на серьезные «грабли» — при переключении на 40м диапазон амплитуда сигнала ГПД на катушке связи уменьшается в 2 раза! Ладно, подумал я, может у меня гранаты, то бишь катушки, не той системы (hi!). Нашел каркасы и перемотал строго по автору (см. фото)

Блок ВЧ 2х-диапазонного ППП US5MSQ и здесь надо отдать должное Владимиру Тимофеевичу  — без дополнительных телодвижений сразу попал в указанные частотные диапазоны — как входных контуров, так и ГПД.

Но… проблема осталась, а это значит, что нельзя оптимально настроить смеситель на обоих диапазонах – если выставить оптимальную амплитуду на одном, то на другом диоды будут или закрыты или практически постоянно открыты.  Возможен только некий средний, компромиссный, вариант  установки амплитуды ГПД, когда смеситель будет более-менее работать на обоих диапазонах, но с повышенными потерями (до 6-10 дБ). Решение проблемы оказалось поверхности – использовать свободную группу переключения в тумблере для коммутации эмиттерного резистора, которым и будем устанавливать оптимальную амплитуду ГПД на каждом диапазоне. Для контроля и регулировки оптимальной амплитуды ГПД применим такую же методу, как в [4].

Для этого левый (см. рис.3) вывод диода D1 переключаем на вспомогательный конденсатор 0С1. В результате получается классический выпрямитель напряжения ГПД с удвоением. Этот своеобразный «встроенный ВЧ вольтметр» и дает нам возможность провести фактически прямое измерение режимов работы конкретных диодов от конкретного ГПД непосредственно в работающей схеме.  Подключив для контроля к 0С1 мультиметр в режиме измерения постоянного напряжения, подбором эмиттерных резисторов (с начала R3 на 40м диапазоне, затем R5 на 80м) добиваемся напряжения +0,8…+1 В – это и будет оптимальное напряжения для диодов 1N4148, КД522,521 и т.п.  Вот вся настройка. Подпаиваем вывод диода обратно на место, а вспомогательную цепочку убираем. Теперь при оптимальном работающем смесителе можно оптимизировать (увеличить) его подключение к входному контуру (отвод делается не от 5 , а от 10 витка L2), тем самым повысить чутьё на 6-10дБ на обоих диапазонах.

По цепи питания мощного двухтактного УНЧ возможны большие пульсации напряжения, особенно при питания от батарей. Поэтому для питания ГПД применен экономичный параметрический стабилизатор напряжения на Т4,  где в качестве стабилитрона использован обратносмещённый эмиттерный переход КТ315 (что было под рукой). Выходное напряжение стабилизатора выбрано порядка -6..-6,5в, что обеспечивает стабильную частоту настройки при разряде батареи вплоть до 7в.  Из-за пониженного напряжения питания ГПД число витков катушки связи L3 увеличено до 8 витков. Но у КТ315 разброс по напряжению пробоя эмиттерного перехода довольно большой – первый попавшийся дал 7,5в – многовато, второй дал 7в (см. графики из [5])

КТ315 и КТ316 в качестве стабилитрона– уже хорошо, применив в качестве Т4 кремниевый КТ209в получил требуемые -6,3в. Если не хочется заморачиваться с подбором, можно в качестве Т5 поставить КТ316, тогда Т4 должен быть германиевым (МП39-42). Тогда имеет смысл для унификации и в ГПД поставить КТ316 (см. рис.4), что положительно скажется на стабильности частоты ГПД. Именно такой вариант у меня сейчас работает.

рис.3 Двухдиапазонный ППП US5MSQ с Рвых 0,5Вт. Вариант с КТ316

Макет 2х диапазонного ППП US5MSQ

Основные параметры приемника

Чувствительность при с/шум=10дБ  — не хуже 1,5 мкВ (на 40м не хуже 1 мкВ)

Коэффициент подавления АМ при отстройке мешающего АМ сигнала на 50 кГц – 86 дБ

Максимальная выходная мощность (при Кг не более 2%) на нагрузке 8 Ом – 0,5 Вт

Общий Кус (со входа антенны) примерно 10тыс.

Ослабление сигнала помехи при расстройке 10 кГц  — 74дБ

Полоса пропускания тракта НЧ

(по уровню -6дБ) – 2,75 кГц

(по уровню -20дБ) – 3,5 кГц

(по уровню -40дБ) – 5,3 кГц

(по уровню -60дБ) – 7,4 кГц

Рабочая тетрадь US5MSQ

Приобрести набор деталей для самостоятельного изготовления этого приемника можно здесь 

Литература:

1.Поляков В. Приемник прямого преобразования. — Радио, 1977, №11, с.24

2.Поляков В. Простой радиоприемник коротковолновика-наблюдателя. — Радио, 2003, №1 с.58-60,№2 с.58-59

3.Казанский И., Поляков В. Азбука коротких волн. М., ДОСААФ, 1978, с.39

4.Беленецкий С. Я строю простой ППП.

5.Перлов В. Зайцев В.Транзисторы и диоды в качестве стабилитронов. — Радио, 1976, №10, с.46

 

С.Беленецкий US5MSQ                                                     г.Киев, Украина

Обсудить конструкцию приемника, высказать свое мнение и предложения можно на форуме

us5msq.com.ua

Простой транзисторный регенеративный приёмник – US5MSQ

Приобрёл я как-то по случаю добротно сделанную  экранированную катушку ГПД от Р-250 (много их появилось на наших блошиных рынках — это сколько же Р-250 «разбомбили» на цветмет!), индуктивностью 31 мкГн, добавил КПЕ с верньером 1/40 , пару транзисторов/резисторов/конденсаторов и через пару часов  на макете (см. фото) получился вполне приличный регенератор диапазона 2,8-3,8 МГц.Фото макета регенератора US5MSQ

Благодаря качественной катушке стабильность частоты настройки на высоте. Что любопытно, хотя и субъективно, — слушать на него АМ на «стометровке» намного комфортнее, чем на на большие и тяжелые  РПС, Р-326М, Р-309. При этом приемник по питанию очень экономный — ток потребления всего 3 мА!

Усиление и чувствительность получились (при с/шум=10дБ) при АМ порядка 150 тыс. и 3-5 мкВ, CW/SSB соответственно 1,5 млн и 1-2 мкВ (вероятно, она выше, но достоверно измерить трудно, т.к. очень высок принимаемый на измерительные провода уровень эфирных шумов и помех). Очень плавный подход к точке генерации (особенно если использовать многооборотный резистор R1, но и с обычным потенциометром получается неплохо) обеспечил прекрасную селективность — полоса пропускания может быть сужена примерно до 200-300 Гц, т.е. добротность достигает порядка 12-15 тыс!Транзисторный регенератор 2,9-3,8МГц US5MSQ

Рассмотрим подробнее принципиальную схему приёмника, которая приведена на рис.1. В нём функции регенерации (VT1) и детектирования (VT2) разделены между разными каскадами, что по сравнению с традиционно выполненным регенерирующим детектором позволило заметно ( в разы) повысить максимально достижимую стабильную добротность и, соответственно, чувствительность и избирательность. Эти цифры основаны на моем эксперименте, когда я на тех же компонентах испытал регенерирующий истоковый детектор, который в общем-то неплохо работает, но с ним я не смог получить стабильную полосу пропускания уже 800 Гц (т.е. максимальная добротность порядка 4-4,5 тыс.) — далее срывается в генерацию. Поэтому чувствительность и усиление получились примерно в 2 раза ниже от первоначального.

Сигнал с антенны через плавный аттенюатор на потенциометре R4 поступает на конденсатор С7 большой емкости (он должен быть керамическим или КСО), образующий совместно с другими контурными конденсаторами емкостной делитель с большим коэффициентом деления. Поэтому собственное излучение в эфир в автодинном режиме мизерное, а частота настройки приемника слабо зависит как от длины антенны (её коэффициент включения в контур очень мал — примерно примерно 1/110 по напряжению, или 1/12 тыс. по сопротивлению), так и от манипуляций с аттенюатором R4.  Больший плюс  в том, что при таком включении антенны для верхних частот контур представляет собой ФНЧ третьего порядка, который эффективно давит внедиапазонные помехи, в том числе от УКВ/FM диапазонов.

Собственно сам регенератор выполнен по схеме емкостной трехточки (вариант Клаппа) на транзисторе VT1. Контур состоит из катушки индуктивности L1 и конденсаторов С1,С2,С4,С5,С6,С7. Частоту гетеродина можно перестраивать в диапазоне 2900-3800 кГц(задаётся растягивающим конденсатором С2, с некоторым запасом по краям) конденсатором переменной емкости (КПЕ) С4. Уровень регенерации регулируется переменным резистором R1 путём изменения напряжения смещения на базе VT1.

По сравнению с полевыми транзисторами у биполярных при равных токах существенно (почти на порядок) выше крутизна, а, следовательно, за счёт меньшего включения в контур можно получить лучшие результаты как по стабильности режима регенерации, так и минимизировать влияние  регулировки уровня регенерации на частоту настройки. Последнее свойство очень важно для комфортного пользования регенератором, т.к.  у транзисторов (особенно у биполярных), в отличие от ламп, межэлектродные ёмкости существенно зависят от рабочих напряжений и токов. И обеспечивается оно в двух направлениях.

1.Обеспечивается высокая стабильность параметров транзистора VT1 введением глубокой ООС по постоянному току (так называемая базово-эмиттерная стабилизация) R2R3R5R6. VD1 обеспечивает термостабилизацию режима VT1 по постоянному току  и повышает плавность регулировки при малых значениях эмиттерного тока (так называемое «токовое зеркало»), т.е. фактически — плавность регулировки уровня регенерации.

2.Чем выше начальная добротность катушки и лучше усилительные свойства транзистора (выше соотношение Н21е/S на рабочей частоте), тем допустимо меньшее включение транзистора в контур, а, следовательно, будет меньше его вредное (дестабилизирующее и нелинейное) влияние на полученную (регенерируемую) добротность и стабильность частоты. В нашем случае транзистор включен в контур через два емкостных делителя

— делитель (разветвитель) контурных токов между двумя параллельно включенными цепочками С2С4 и С1С5С6, имеющий коэффициент деления контурного тока Кдт=С156/(С156+C24), где С24 и С156 – емкость цепочек последовательно включенных конденсаторов С2С4 и С1С5С6

— делитель контурного напряжения С1С5С6, имеющий имеющий коэффициент деления контурного напряжения Кдн=С1/(С1+С5)

И поэтому общий коэффциент включения транзистора в контур будет равен произведению этих величин Кд=Кдт*Кдн, а коэффициент трансформации входного сопротивления и собственной емкости транзистора в контур равен квадрату этого соотношения.

К примеру, при приеме в автодинном режиме после слабых станций включились мощные и мы для улучшения качества приема (повышения помехоустойчивости) увеличили ручкой Regen  ток VT1, тем самым подняли уровень своего гетеродина в несколько раз. При этом межэлетродные емкости транзистора VT1 изменятся примерно на 2-3 пФ (типичное значение для BC547, 2N3904 и т.п.). Давайте оценим насколько при этом изменится частота приёма у нашего приёмника.

Для простоты расчёта  рассмотрим случай, когда емкости контурных ветвей равны, например на частоте приёма 3,52 МГц, т.е. С24=С156=33 пФ, при этом Кдт=1/2.

Кдн=36/(1000+36)=0,035, а  коэффициент трансформации изменений собственной емкости транзистора в контур равен К=(Кдт*Кдн)^2=0,0003, т.о. изменение контурной емкости, вызванное изменением режима работы транзистора VT1  dСк=3 пФ*0,0003=0,001 пф.

При этом относительное изменение контурной емкости составит

dСк/Ск=0,001 пФ/66 пФ=15*10^(-6) или 15 ppm. При этом изменение резонансной частоты контура будет в 2 раза меньше, т.е. 7,5 ppm или в абсолютных величинах

dF=3,52 МГц*7,5*10^(-6)= 26,4 Гц!!!

Как видим, даже большие изменения режима работы транзистора не приведут к существенным изменениям частоты приёма.

На практике величину С1 выбираем минимально возможной – такой, чтобы устойчивая генерация на наивысшей рабочей частоте начиналась при напряжении на движке R1 примерно +6…+7 вольт. Диапазон(ы) рабочих частот можно пересчитать под свои потребности при помощи программки KONTUR3C, подставляя в ячейку собственной емкости генератора величину 38-40 пФ.

Детектирование сигнала осуществляется полевым транзистором (ПТ) VT2, включенным по схеме истокового детектора(ИД),  к преимуществам которого можно отнести

— высокое входное сопротивление, хорошую линейность детектирования (за счёт 100% ООС по огибающей) в режиме АМ

— достаточно высокую линейность смесителя и чистоту спектра преобразования (за счет квадратичной ВАХ) в автодинном режиме.

Малый ток стока VT2 ( порядка десятков мкА — определяется высокоомным резистором R7)

повышает уровень эффективного (линейного, пратически без потерь) детектирования АМ сигнала до 50-70 мВэфф. При меньших уровнях входного АМ сигнала детектирование будет проходить уже на квадратичном участке ВАХ, качество выходного сигнала остаётся ещё вполне приличным, а вот выходной уровень пропорционально квадрату уменьшения уровня входного сигнала. К примеру, при входном сигнале порядка 3 мВ, на выходе ИД будет примерно 50 мкВ.

Поэтому для повышения чувствительности приемника можно применить УНЧ с большим усилением. Это тем более актуально для работы в автодинном режиме, когда  (аналогично ППП) основное усиление обеспечивает именно УНЧ. В истоковом детекторе можно применять практически любые ПТ, но тогда, вероятно, потребуется подобрать истоковый резистор R7 до получения тока стока в пределах 50-100мкА

С выхода детектора сигнал через однозвенный ФНЧ R9C14 с полосой среза порядка 3 кГц поступает на двухкаскадный УНЧ. Он собран по типовой схеме  на современных малошумящих транзисторах VT3, VT4 с высоким коэффициентом передачи тока, включенных по схеме с ОЭ и с непосредственной связью между каскадами.  Благодаря стопроцентной отрицательной обратной связи по постоянному току  режимы транзисторов по постоянному току устанавливаются автоматически и мало зависят от колебаний температуры и напряжения питания. Нагрузкой УЗЧ служат высокоомные телефоны ТОН-2 с сопротивлением по постоянному току 4,4 кОм, которые включаются непосредственно в коллекторную цепь транзистора VT4 (через разъем Х3), при этом через их катушки протекает и переменный ток сигнала и постоянный ток транзистора, что дополнительно подмагничивает телефоны и улучшает их работу. Конденсатор С27 совместно с индуктивностью последовательно включенных наушников образует резонасный контур с частотой примерно 1,2 кГц, но из-за большого активного сопротивления обмоток  добротность последнего невысока — полоса пропускания по уровню -6 дБ примерно 400-2800 Гц, поэтому  его влияние на общую АЧХ не очень существенно и носит характер вспомогательной фильтрации и небольшой коррекции АЧХ.

Усиление УНЧ ограничено R12 на уровне 10 тыс., больше не надо. Регулировка громкости выполнена на потенциометре R13 и осуществляется путём увеличения глубины ООС примерно 50-70 раз, что в сочетании с плавным аттенюатором на входе вполне достаточно для комфортного приёма любых уровней входного сигнала, но и (это важно с учётом вероятных больших перепадов уровней продетектированного сигнала в режимах SSB и АМ) в те же 50-70 раз повышается перегрузочная способность УНЧ.

В качестве VT3,VT4 применимы любые кремниевые с коэффициентом передачи тока на менее 150, желательно малошумящие, например отечественные КТ3102Д,Е или широко распространенные недорогие импортные 2N3904, BC547-549, 2SC1815 и т.п.  Головные телефоны электромагнитные, обязательно высокоомные (с катушками электромагнитов индуктивностью примерно 0,5Гн и сопротивлением по­стоянному току 1500…2200 Ом), например, типа ТОН-1, ТОН-2, ТОН-2м, ТА-4, ТА-56м. При согласно-последовательном включении , т.е «+»одного соединен с»- «другого,  имеют общее сопротивление по постоянному току 3,2-4,4 кОм, по переменному примерно 10-12 кОм на частоте 1 кГц. Вилка включения телефонов заменяется стандартным трех- или пятиштырьковым разъемом от звукозаписывающей бытовой аппаратуры (СГ-3, СГ-5 или аналогичные импортные) –  на схеме XS3. Между выводами 2 и 3 штыревой части разъема устанавливают перемычку, которая служит для подключения батареи питания GB1. При отсоединении телефонов питание приемника будет отключаться автоматически. Плюсовый провод телефонов соединяется с выводом 2 разъёма, что обеспечит сложение магнитных потоков, создаваемых током подмагничивания и постоянными магнитами телефонов.

Чертёж печатной платы мной не разрабатывался, но есть вариант в формате lay, разработанный нашим болгарским коллегой LZ2XL(см. фото),  который один из первых повторилПриемник LZ2XL

приемник и прислал свой отзыв (оставлен авторский стиль, только подправлена грамматика):

«Привет Сергей, а приёмник ваш интересный оказался. После ужина сделал плату и весь вечер было одно удовольствие. Правда у меня подходящей катушки с вожженой медью не оказалось и приемник работал чуть выше — в пределах 5.8-8.2 МГц. На сороковке не плохо работает, правда без аттенюатора вещалки перекрывают всё.

Аттенюатор обязателен, особенно на участке сороковки. Если антенна включена без атенюатора вещалки перекривают весь диапазон. Здесь сама антенна включена немного необычно и оригинально. В этом включение аттенюатор не влияет на точку регенераций, а это хорошо, сам подход к регенераций особенно мягкий. На SSB нет искажений из-за синхронизаций регенератора. После точки генерации сам приемник ведет себя хорошо, соседние сильные сигналы не мешают.»

Ещё один наш коллега Александр (ник staradio) повторил приёмник, применив самодельную катушку большого диаметра (см. фото монтажа и внешнего вида)Александр Радио_вид на монтаж

Александр Радио_внешний вид

Результатом испытаний он доволен.

Испытания приемника, проведённый мной в последствии (опробовал и на провод 10 м на высоте примерно 10 м с балкона 4-го этажа на дерево, и на наклонный WINDOM 41 м ( с крыши девятиэтажки на фонарный столб) с экранированным снижением) показали, при размещении большой антенны около уличного освещения в вечернее время появляются  довольно заметные НЧ наводки (фон), поэтому антенна подключалась через емкость 510 пФ, но можно поставить и двухзвенный ФВЧ (две емкости по 510 пФ и дроссель 50-100 мкГн).

Позже для устранения описанного выше явления схема была немного доработана (изменена входная цепь) в расчёте на применение   самодельных катушек (на рис.2 в качестве каркаса высокодобротной катушки — кольцо AMIDON).рис.2 Транзисторный регенератор 2,8-7,8Мгц

И ещё просьбе коллег была разработана схема громкоговорящего варианта с электронной настройкой на варикапе (рис.3), но она мной не макетировалась.Транзисторный регенератор US5MSQ 2,85-7,45Мгц на варикапе

 

С.Беленецкий, US5MSQ                                                           г.Киев, Украина

Обсудить конструкцию приемника, высказать свое мнение и предложения можно на форуме.

Видео работы приемника, изготовленного Александром (staradio)

 

Обсудить конструкцию приемника, высказать свое мнение и предложения можно на форуме.

us5msq.com.ua

РАДИО для ВСЕХ – Трёхдиапазонный приёмник радиолюбителя 20, 40 и 80 м

Трехдиапазонный приемник на 20, 40 и 80 м радиолюбительские диапазоны на двухзатворных полевых транзисторах (RX204080EMF)

Приёмник разработан Сергеем Эдуардовичем Беленецким (US5MSQ). Подробное описание конструкции выложено на сайте автора здесь http://us5msq.com.ua Кроме того, там Вы сможете найти информацию по другим его конструкциям, задать вопросы на форуме, а также приобрести наборы для сборки.  Данная конструкция опубликована с любезного разрешения автора и, надеюсь, заинтересует радиолюбителей. Его принципиальная схема приведена здесь и на чертеже ниже. Описание работы и последовательность настройки подробно описаны здесь и в двух частях здесь и здесь.


 



Сигнал с антенного разъема подается на регулируемый аттенюатор, выполненный на сдвоенном потенциометре R25 и далее через катушку связи L1 поступает на двухконтурный полосовой диапазонный  фильтр (ПДФ) L2C5С11, L3C17С21 с емкостной связью через конденсатор С10. Переключение диапазонов производится трёхпозиционным переключателем. В положении контактов, показанном на схеме включен диапазон 14 МГц.  При переключении на 7 МГц к контурам подключаются дополнительные контурные конденсаторы С4С9 и С16С20, смещающие  резонансные частоты контуров на середину рабочего диапазона и дополнительный конденсатор связи С15. При переключении на диапазон 3,5 МГц  к контурам ПДФ подключаются соответственно конденсаторы С8С14 и С13. Для расширения полосы на 80 м диапазоне введены резисторы R1 и R2. Этот трехдиапазонный ПДФ рассчитан на применение большой, полноразмерной антенны и сделан по упрощенной схеме всего на двух катушках, что оказалось возможным благодаря нескольким особенностям – верхние диапазоны, где требуется бОльшие чувствительность и селективность — узкие (меньше 3%), нижний 80 м, где очень высок уровень помех и вполне достаточно чувствительности порядка 3-5 мкВ – широкий (9%). Примененная схема имеет самый большой коэффициент передачи по напряжению на 14 Мгц с почти пропорциональным частоте снижением в сторону 3,5 Мгц, причем  избирательность по зеркальному каналу при ПЧ 500 кГц даже на 14 Мгц будет порядка 30 дБ — вполне приличное значение, учитывая, что в полосе 13-13,35 Мгц нет мощных вещательных станций.

Выделенный ДПФ сигнал подается на первый затвор полевого транзистора VT1. На второй его затвор поступает напряжение гетеродина величиной порядка 1…3 Вэфф. Сигнал промежуточной частоты, являющийся суммой или разностью частот гетеродина и сигнала, величиной порядка 25…35 мкВ выделяется в цепи стока смесителя контуром, образованным индуктивностью обмотки ЭМФ Z1 и конденсаторами С23С23. Развязывающие цепочки R9C25 и R19C46 защищают общую цепь питания смесителей от попадания в нее сигналов гетеродина, промежуточной  и звуковой частоты.
Приемник работает очень чисто, даже без аттенюатора без заметных на слух перегрузок держит сигнал – уровнем как минимум до S9+40 дБ. Чувствительность при с/шум=10 дБ не хуже 3 мкВ (80 м) и 1 мкв (40 и 20 м). Ток потребления в покое – порядка 20 мА и не более 50 мА при максимальной громкости на динамик 8 Ом.
Гетеродин выполнен по схеме индуктивной трехточки (схема Хартли) на полевом транзисторе VT3. Контур гетеродина содержит катушку L5 и конденсаторы С18,С19. Конденсатором переменной емкости (КПЕ) С51 частота генерации перестраивается в пределах 13,48-13,87 МГц. При переключении на 7 МГц к контуру параллельно С18 и С19 подключаются дополнительные растягивающие конденсаторы С6 и С7,С12, смещающие  диапазон перестройки частоты до 7,48-7,72 МГц. При переключении на диапазон 3,5 МГц  подключаются соответственно конденсаторы С1  и С2С3, а диапазон перестройки ГПД равен 3,98-4,32 МГц. Связь контура с цепью затвора  VT3 осуществляется посредством конденсатора С22, на котором, благодаря  выпрямляющему действию p-n перехода диода VD1, образуется отрицательное напряжение автосмещения, достаточно жестко стабилизирующее амплитуду колебаний в широком диапазоне частот. Так, например, при возрастании амплитуды колебаний  запирающее выпрямленное напряжение также увеличивается и усиление транзистора падает, уменьшая коэффициент положительной обратной связи (ПОС). Собственно, ПОС получается при протекании тока  транзистора по части витков катушки L5. Отвод к истоку сделан от 1/3 части общего числа витков.
Сигнал ГПД подается на второй затвор смесителя VT2 через  буферный истоковый повтотитель VT1. Это вызвано тем, что на верхнем 20 м диапазоне при ПЧ 500 кГц частоты настройки контуров ДПФ и ГПД очень близки, поэтому реактивное сопротивление контура ГПД для частоты сигнала велико и сильные эфирные сигналы (уровнем S9+40 дБ и более) через межзатворную емкость смесителя VT2 попадают  непосредственно в контур ГПД, что приводит пусть к небольшой, но заметной на слух, паразитной модуляции — в принимаемом сигнале появляется неприятный  призвук. Применение  истокового повторителя VT1 полностью устраняет этот эффект, но при этом ток потребления приемника в покое увеличился до 20 мА. Все детали приемника, кроме разъемов, переменных резисторов и КПЕ, смонтированы на плате  из одностороннего фольгированного стеклотекстолита размером 68х95 мм. Авторский чертеж платы со стороны печатных проводников приведен на фото.
Основную селекцию сигналов в приемнике выполняет ЭМФ Z1 с полосой пропускания 2,35; 2,75; 3,0 или 3,1 кГц со средней, нижней или верхней полосой пропускания. В зависимости от типа примененного ЭМФ селективность по соседнему каналу (при расстройке на 3 кГц выше или ниже полосы пропускания) достигает 60…70дБ. С его выходной обмотки, настроенной конденсаторами С33С35 в резонанс на промежуточную частоту, сигнал поступает на детектор, который выполнен по схеме, аналогичной первому смесителю, на полевом транзисторе VT5. Его высокое входное сопротивление позволило получить минимально возможное затухание сигнала в ЭМФ основной селекции (порядка 10-12 дБ), поэтому на первом затворе величина сигнала составляет не менее 8…10 мкВ.
Второй гетеродин приемника выполнен на транзисторе VT4 почти по такой же схеме, что и первый, только вместо индуктивности применен керамический резонатор ZQ1. В этой схеме генерация колебаний возможна только при индуктивном сопротивлении цепи резонатора, т.е. частота колебаний находится между частотами последовательного и параллельного резонансов.  Нередко в подобных приемниках во втором гетеродине используют довольно дефицитный комплект – кварцевый резонатор на 500 кГц и ЭМФ с верхней полосой пропускания. Это удобно, но заметно удорожает приемник. В нашем приемнике в качестве частотозадающего элемента применен широко распространенный керамический резонатор на 500 кГц от пультов ДУ, имеющий достаточно  широкий межрезонансный интервал ( не менее 12-15 кГц). Подстройкой емкости конденсаторов С36 37 второй гетеродин легко «тягается» по частоте в диапазоне, как минимум 493-503 кГц  и, как показал опыт, при исключении прямых температурных воздействий  обеспечивает достаточную для практики стабильность частоты. Благодаря этому свойству, для нашего приемника подходит практически любой ЭМФ со средней частотой около 500 кГц и полосой пропускания 2,1…3,1 кГц. Это может быть, скажем, ЭМФ-11Д-500-3,0В или ЭМФДП-500Н-3,1 или ФЭМ-036-500-2,75С, использованный автором, с буквенными индексами В, Н, С. Буквенный индекс указывает, какую боковую полосу относительно несущей выделяет данный фильтр — верхнюю (В) или нижнюю (Н), или же частота 500 кГц приходится на середину (С) полосы пропускания фильтра. В нашем приемнике это не имеет значения, поскольку при налаживании частоту второго гетеродина устанавливают на 300 Гц ниже полосы пропускания фильтра, и в любом случае будет выделяться верхняя боковая полоса. Требуемую частоту второго гетеродина для конкретного ЭМФ с полосой пропускания П (кГц) можно определить по простейшим формулам:
– для ЭМФ с верхней полосой F=500 кГц,
– для ЭМФ со средней полосой F(кГц)=499,7 – П/2,
– для ЭМФ с нижней полосой F(кГц)=499,4 – П. 
Напряжение сигнала второго гетеродина частотой около 500 кГц (в авторском экземпляре 498,33 кГц) и величиной порядка 1,5…3 Вэфф  поступает на второй затвор VT5 и в результате преобразования спектр однополосного сигнала переносится с ПЧ в область звуковых частот. Коэффициент преобразования (усиления) детектора примерно 4.
Выделенный вторым смесителем на резисторе R16 сигнал звуковой частоты величиной порядка  30-40 мкВ проходит через трехзвенный ФНЧ с частотой среза примерно 3кГц, образованный цепью С40R17С38R18С42. Очищенный от паразитных продуктов преобразования  и остатков сигнала второго гетеродина сигнал поступает через разделительный конденсатор С41 на вход УЗЧ (вывод 3 DA2), сделанный на основе популярной LM386N-1. Для получения требуемой чувствительности и обеспечения эффективной работы АРУ, коэффициент усиления УЗЧ повышен до 500 благодаря включению цепи R21С43 в цепи ООС. Нагрузка УЗЧ – регулятор громкости подключается через дополнительный однозвенный ФНЧ (R23С48) с частотой среза примерно 3кГц, дополнительно снижающий внеполосные шумы, что заметно повышает комфортность прослушивания эфира на современные широкополосные малогабаритные динамики или низкоомные телефоны, например компьютерные мультимедийные.
Усиленный УЗЧ сигнал детектируется диодами VD1,VD2 , и управляющее напряжение АРУ поступает в цепь затвора регулирующего VT6. 
Как только величина регулирующего напряжение превысит пороговое (примерно 1В), транзистор открывается и образованный им совместно с резистором R18 делитель напряжения  за счет отличных пороговых свойств такого регулятора весьма эффективно стабилизирует выходной сигнал звуковой частоты на уровне примерно 0,65-0,7 Вэфф, что соответствует максимальной выходной мощности примерно 60 мВт, а на 16 Ом – 30 мВт и приемник будет достаточно экономичным. При такой мощности современные импортные динамики с высоких КПД  способны озвучить трехкомнатную квартиру, а вот для некоторых отечественных динамиков может показаться маловато, тогда можно повысить в 2 раза порог АРУ, установив в качестве VD1,VD2 красные светодиоды, при этом питание УНЧ нужно будет поднять до 12 В.
Приёмник собирается на плате из одностороннего фольгированного стеклотекстолита размерами 95х68 мм с маской и маркировкой. Следует обратить внимание на то, что применены пассивные радиокомпоненты для поверхностного монтажа типоразмера 0805 и 1206, транзисторы и диоды в корпусах SOT-143 и SOT-23, электролиты и подстроечные конденсаторы выводные.


Привожу немного фотографий пошаговой сборки приёмника:

 



На плате предусмотрено посадочное место под три наиболее распространенных конструктива ЭМФ (круглых и прямоугольных). С целью уменьшения размеров, плата рассчитана на установку в основном SMD компонентов – резисторы и дроссель L6 типоразмера 1206, а конденсаторы 0805, электролитические – выводные импортные малогабаритные. Триммеры CVN6 фирмы BARONS или аналогичные малогабаритные. В качестве SA1,SA2  применены переключатели  П2К с независимой фиксацией и четырьмя переключающими группами. Технологические перемычки “джамперы” J1,J2, подобные применяемым на компьютерных материнских платах и адаптерах.

В качестве VT1,VT3  можно применить практически любые  современные полевые транзисторы с p-n переходом, с начальным током стока не менее 5-6мА  – BF245В,С, J(U)309 -310, КП307Б, Г, КП303Г, Д, Е, КП302 А,Б. В качестве VT4 применимы любые кремниевые с коэффициентом передачи тока на менее 100, BC847- ВС850, MMBT3904, MMBT2222 и т.п.
Катушки приемника L1-L4 выполнены на  малогабаритных секционированных каркасах с подстроечным ферритовым сердечником, миеющим шлиц под отвертку. Катушки L2-L3 содержат по 15 витков провода ПЭЛ, ПЭВ  диаметром 0,13-0,18 мм. Катушка связи L1 наматывается поверх нижней части катушки L2 и содержит 2 витка, а катушка связи L4 наматывается поверх нижней части катушки L3 и содержит 8 витков такого же провода. Гетеродинная катушка L3 содержит 15 витков провода ПЭЛ (ПЭВ) диаметром 0,13-0,17 мм, отвод от 6 витка. Намотку следует проводить с максимальным натяжением провода, равномерно размещая витки во всех секциях каркаса, после чего катушка плотно фиксируется штатной капроновой гильзой. Все контура заключены в штатные латунные экраны. Намотка контуров ведётся снизу вверх от горячего конца к холодному (заземлённому).
При необходимости все катушки можно выполнить на любых других, доступных радиолюбителю каркасах, разумеется изменив число витков для получения требуемой индуктивности и, соответственно, подкорректировав чертеж печатной платы под новый конструктив.
В режиме покоя или при работе на высокоомные головные телефоны приемник довольно экономичен – потребляет ток порядка 12 мА. При максимальной громкости звучания, подключенной к его выходу динамической головки сопротивлением 8 Ом, потребляемый ток может достигать 45 мА. Блок питания годится любой промышленного изготовления или самодельный, обеспечивающий стабилизированное напряжение +9…12 В при токе не менее 50 мА. Для автономного питания удобно применять  батарейки, размещенные в специальном контейнере или аккумуляторы. Например, аккумулятора на 8,4 В размером с «Крону» и емкостью 200 мА/час хватает более чем на 3 часа прослушивания эфира на динамик  при средней громкости, а при применении высокоомных телефонов – более 10 часов.

Настройка приёмника:
При исправном УНЧ прикосновение руки к выводу 3 DA2 должно вызывать появление в динамике громкого, рычащего звука. Прикосновение руки к общей точке соединения С36R17R18 должно привести к появлению такого же по тембру звука, но заметно меньшей громкости – это включилась в работу АРУ. Проверяем токи стоков ДПТ по падению напряжения на истоковых резисторах R7 и R14, если оно превышает 0,44 В, т.е. ток стока ДПТ превышает 2мА, нужно, увеличивая сопротивление истоковых резисторов, добиться уменьшения тока до уровня порядка 1-1,5 мА. 
Далее, подключив высокоомный вольтметр (например, китайский цифровой мультиметр) через развязывающий резистор 51-100 кОм к затвору VT3, убеждаемся, что на всех диапазонах отрицательное напряжение автосмещение не менее 1В. Затем по падению напряжения на R4 проверяем ток стока VT1 и если он более 7-8 мА, увеличиваем R4 до получения требуемого, допустимо порядка 5-8 мА. Затем снимаем технологическую перемычку (джампер) J1  и вместо нее к этому разъему подключаем частотомер и приступаем к укладке диапазонов ГПД, которую начинаем с диапазона 20 м (переключатели SA1, SA2 отжаты). Подбором растягивающих конденсаторов С18С19 добиваемся требуемой ширины перестройки (с небольшим запасом – порядка 15-20 кГц по краям), а сердечником катушки L5 совмещаем начало диапазона и больше катушку не трогаем. Далее, нажав переключатель SA2, переходим к укладке  диапазона 40 м, для чего  сначала устанавливаем триммер С12 в среднее положение (это легко определить по изменению частоты при его регулировке), подбором  растягивающих конденсаторов С6С7 добиваемся как требуемой ширины перестройки, так и примерного совпадения начала диапазонов, после чего подстройкой С12 совмещаем их более точно. Затем переходим на диапазон 80 м (отжав SA2 и нажав SA1) и аналогично, подбором растягивающих конденсаторов С6С7,  укладываем его границы и триммером С3 совмещаем начало диапазона с предыдущими. 
При указанной выше конструкции катушки и использовании термостабильных конденсаторов группы NPО (а по сведениям автора к ним относятся практически все импортные SMD конденсаторы емкостью менее 910 пФ) стабильность частоты получилась вполне приличной – после 15 мин прогрева приемник держит SSB станции не менее получаса на 20 м диапазоне и не менее часа – на нижних и это без всяких дополнительных усилий по термокомпенсации. 
Настройку контуров ДПФ можно сделать по упрощенной методике и  следует начинать с диапазона 80 м. Подключив к выходу приемника индикатор уровня выходного сигнала (милливольтметр переменного тока, осциллограф, а то и просто мультиметр в режиме измерения напряжения постоянного тока к выводам конденсатора С42) устанавливаем частоту ГСС на середину диапазона, т.е. 3,65МГц. Расчетная АЧХ ПДФ на этом диапазоне широкая «двугорбая», с провалом в середине диапазона примерно на 1дБ.
Чтобы правильно настроить этот ПДФ без ГКЧ, воспользуемся следующим приемом. Временно зашунтируем катушку L3 резистором 150-220 Ом и настроившись приемником на сигнал ГСС  вращением сердечника катушки L2 добьемся максимального уровня сигнала (максимальной громкости приема). По мере роста громкости следует при помощи плавного аттенюатора R1 поддерживать уровень  сигнала на выходе УНЧ примерно 0,3-0,5 В. Если при вращении сердечника после достижения максимума наблюдается снижение шумов, это свидетельствует что входной контур у нас настроен правильно, возвращаем сердечник в положение максимума и можем приступать к следующему диапазону.  Если вращением сердечника (в обе стороны) не получается зафиксировать четкий максимум, т.е. сигнал продолжает расти, то наш контур неправильно настроен и понадобится подбор конденсатора. Так если сигнал продолжает увеличиваться при полном выкручивании сердечника, емкость конденсатора  контура С5(или С11) надо немного уменьшить, как правило (если катушка выполнена правильно) достаточно поставить следующий ближайший номинал. И опять проверяем возможность настройки входного контура в резонанс. И наоборот, если сигнал продолжает уменьшаться при полном вкручивании сердечника, емкость конденсатора  контура С5(или С11)  надо увеличить.  После этого перенесем шунтирующий резистор на катушку L2 и вращением сердечника катушки L3 добьемся максимального уровня сигнала. Вот теперь ПДФ диапазона 80 м настроен правильно. Больше катушки не трогаем и переходим на диапазон 20 м и 40 м. АЧХ ПДФ этих диапазонов узкие, одногорбые, поэтому они настраиваются просто по максимуму сигнала в средней части диапазона – частоты соответственно 14,175 и 7,1 МГц. Сначала настраиваем ПДФ диапазона 20 м регулировкой триммеров С5С21, а затем – 40 м, соответственно  регулировкой триммеров С4С20. При достаточно большой антенне настройку ПДФ по приведенной выше методике можно сделать  непосредственно по шумам (сигналам) эфира, памятуя, что лучшее прохождение, а значит, более сильные сигналы,  на диапазонах 80 и 40 м будут в темное время суток, а на 20 м – в светлое.




Набор для сборки приемника RX204080EMF предлагается к продаже в нескольких вариантах:
Понятное дело, что найти новенький без следов пайки в упаковке ЭМФ в настоящее время нелегко, а если и найдётся такой, то его стоимость будет сравнима со стоимостью данного набора для сборки приёмника 🙂 поэтому комплектую квадратными ЭМФ, в основном 2,75…3,1 В и Н, есть некоторое количество ЭМФ с полосой 2,35 с буквами В и Н. Кому нужны отдельно кварцы 500 кГц и 501 кГц – есть немного в наличии. Все ЭМФ рабочие 🙂 Блок КПЕ не входит ни в один из наборов, поскольку наверняка у каждого радиолюбителя в столе есть “десяток ненужных” КПЕ от старых радиоприёмников 🙂
Все вопросы связанные с конструкцией данного приёмника обсуждаются здесь на форуме Сергея Беленецкого (US5MSQ).
1. Печатная плата с маской и маркировкой (см. фото выше) – 130 грн.
2. Печатная плата с маской и маркировкой + комплект деталей (кроме блока КПЕ и без ЭМФ),
устанавливаемых на неё – 360 грн.
3. Печатная плата с маской и маркировкой + комплект деталей (всё кроме блока КПЕ),
устанавливаемых на неё – 650 грн.
4. Печатная плата с маской и маркировкой + полный комплект деталей (кроме блока КПЕ),
включая все органы регулировки, разъёмы,провода – 760 грн.
5. Если необходимо, то могу припаять все элементы поверхностного монтажа, стоимость пайки – 100 грн.
6. Полностью собранная и проверенная плата приёмника (кроме блока КПЕ), включая все органы регулировки,
разъёмы,провода – 980 грн.

Состав набора (перечень радиодеталей и компонентов) приведён в таблице здесь.
Цветами отмечены разные комплектации.

ВИДЕО РАБОТЫ ПРИЁМНИКА:




Подключение ЦШ к приемнику RX204080EMF

Изначально этот приёмник мной проектировался как простой и экономичный с механической шкалой, подключение ЦШ к разъёму (технологической перемычке) J1 предполагалось только при настройке (укладке диапазонов) частоты ГПД, поэтому цепи управления ЦШ в режиме учёта (складывания или вычитания) значения ПЧ при переходе с нижних на верхние КВ диапазоны не было предусмотрено…
Но жизнь диктует свои правила и многие коллеги, повторившие приемник, сейчас хотят установить в приемник ЦШ. 
Как простой и недорогой в реализации компромиссный вариант, не требующий лезть в работающий приемник с паяльником, возможно применение 5 разрядного частотомера/ЦШ.
Он в режиме ЦШ умеет суммировать или вычитать ПЧ, но само переключение этих режимов производится кнопкой программирования, т.е. в ручном режиме, поэтому она хороша именно как экономичный частотомер с автоматическим переключением диапазонов и как ЦШ в приемниках (трансиверах), где режим счёта (суммирование или вычитания) задается только один раз – при установке ЦШ. Это целый ряд бытовых или старых военных приемников, коротковолновые приемники (трансиверы) рассчитанные на работу либо только на НЧ или только на ВЧ диапазонах. 
Для применения в нашем же приемнике значение ПЧ=496,3 кГц уже зашито в таблице прошивки, но при переходе на 20 м диапазон всё равно придётся кнопкой (её при этом лучше вывести на переднюю панель) перепрограммировать режим счёта, что в общем-то не очень кузяво… 🙂 
При применении типовых ЦШ, дабы автоматизировать при смене диапазонов, переключение режима учёта значения ПЧ схема приемника должна сформировать соответствующий сигнал управления для ЦШ, но свободной контактной группы у переключателей диапазонов в приемнике нет. 
Поэтому нам нужно научить переключатель диапазонов ГПД выполнять две функции: по переменному току – переключать диапазоны, а по постоянному току – коммутировать электронный ключ 0VT1 цепи управления ЦШ, для чего потребуется небольшая доработка (см. схему ниже, вновь устанавливаемые детали показаны красным цветом). 
На диапазоне 20 м транзистор 0VT1 открыт напряжением +6В поступающий через резистор 0R4. При переключении на диапазоны 40 или 80 м к затворной цепи подключаются соответственно шунтирующие резисторы 0R3 или 0R2 и напряжение на затворе 0VT1 уменьшается до уровня не более +0,4В, что существенно ниже порогового напряжения открывания (не менее 1В для 2N7000 или 2N70002) и транзистор закрывается. Т.о. производится управление режимом счёта ЦШ. Фильтр 0R1,0C1 исключает попадание переменного напряжения ГПД на затвор полевого транзистора.
Резисторы 0R2,0R3 в SMD исполнении типоразмера 0805 можно припаять непосредственно на конденсаторы С2,С7, а выводной резистор 0R4 между шиной +6В и общей точкой С18,С19 со стороны печатных проводников, т.к. показано на рисунке. Если это затруднительно, то можно обычные выводные резисторы припаять со стороны установки деталей прямо на контакты переключателя, как показано на втором рисунке.
0VT1,0R1 и 0C1 удобнее всего смонтировать на маленькой макетке и укрепить прямо на КПЕ, благо крепёжных отверстий там хватает.
Ну и разумеется. что ЦШ нужно запрограммировать так, чтобы при замкнутом ключе она прибавляла значение ПЧ к измеренной частоте ГПД, а при разомкнутом – вычитала.

Для подключения ЦАПЧ и переключения ±ПЧ цифровой шкалы “Макеевская BEST” необходимо помимо установки трёх постоянных резисторов на плате приёмника (2х68 кОм и 1х1 МОм) собрать простую схемку 🙂




Подключение синтезатора к приемнику RX204080EMF

Вместо штатного гетеродина плавного диапазона (ГПД) и опорного генератора (ОГ) приёмника можно использовать синтезатор 🙂 Схема подключения синтезатора “Ёжик” приведена здесь >>> и на рисунке ниже. Потратив практически те же деньги можно забыть о нестабильности ГПД 🙂 но диапазоны придётся переключать кнопками на синтезаторе и переключателями на плате приёмника 🙁 Но схема имеет право на воплощение в жизнь и это не может не радовать 🙂




Заказы можно оформлять через форму обратной связи или по телефону указанному в разделе контакты, доставка и оплата

Всем мирного неба, удачи, добра, 73!

radio-kits.ucoz.ru

РАДИО для ВСЕХ – Четырёхламповый приёмник коротковолновика

Ламповый КВ приёмник для прослушивания SSB/CW радиолюбительских станций работающих на диапазонах 20/40/80 метров. 

Приёмник разработан Сергеем Эдуардовичем Беленецким (US5MSQ). Приёмник позволяет принимать сигналы радиолюбительских CW/SSB радиостанций, работающих на диапазонах 20, 40 и 80 метров. Подробное описание конструкции выложено на сайте автора здесь http://us5msq.com.ua Кроме того, там Вы сможете найти информацию по другим его конструкциям, задать вопросы на форуме, а также приобрести наборы для сборки.  Данная конструкция опубликована с любезного разрешения автора и, надеюсь, заинтересует радиолюбителей. Его принципиальная схема приведена здесь и на чертеже ниже.

Вместо штатного ГПД можно использовать синтезатор частот “Ёжик” 🙂 тогда схема приобретёт вот такой внешний вид

При подключении синтезатора Ёжик к этому приёмнику можно применить простой дешифратор диапазонов, выполненный всего на двух транзисторах и двух резисторах. При поступлении с синтезатора на разъём ABCD кода диапазона 80м (1000) высокий уровень напряжения (примерно +5в) на входе А одновременно на оба транзистора – через резистор R1 поступает на базу VT1 и отпирает его и напрямую на эмиттер VT2 и запирает его. На входе В при этом напряжение низкого уровня (менее 0,7в), т.е. вывод практически заземлён и обеспечивает протекание через открытый ключ VT1 тока реле 80 м диапазона. Допустимый выходной ток на любом их выводов регистра 74HC595 не менее 35 мА. Этого вполне достаточно для надёжного управления практически любым современным реле.

При включении диапазона 40 м (на разъёме ABCD код 0100) ситуация с ключами меняется на противоположную. При включении диапазона 20 м (на разъёме ABCD код 0010) на обоих входах (А и В) низкий уровень и об транзистора закрыты. Разумеется, что на других, не рабочих диапазонах, ключи будут срабатывать, пощёлкивая реле согласно поступающим кодам на входы А и В, но это на мой взгляд, не большая плата за простоту решения и совершенно не существенно.

Транзисторы можно применить практически любые n-p-n типа с беттой не менее 100. Дешифратор можно смонтировать на небольшой макетке и разместить его либо на разъёме ABCD (см. фото) либо на свободном месте платы приёмника. А если применить SMD компоненты, то размеры будут настолько маленькие, что его можно будет сделать в виде миниатюрного кабельного переходника 🙂

Набор позволяет самостоятельно собрать одноплатный четырёхламповый трёхдиапазонный приемник для наблюдений за любительскими станциями на самых оживлённых диапазонах 20/40/80 метров. Приёмник RX204080EMF TUBE представляет собой улучшенный по многим параметрам вариант приёмника, описанного здесь https://us5msq.com.ua/trexlampovyj-trexdiapazonnyj-priyomnik-korotkovolnovika-3/. Использование новых схемных и конструкторских решений позволило значительно снизить трудоёмкость изготовления и упростить повторение в домашних условиях.

Основные технические характеристики приемника RX204080EMF TUBE:

Диапазоны рабочих частот, МГц ……………………………………………… 3,5, 7, 14

Полоса пропускания приемного тракта (по уровню –6 дБ), Гц ……………….. 3000…3400*

Чувствительность на всех диапазонах, мкВ (сигнал/шум 10 дБ), не хуже ………0,6

Общийй коэффициент усиления приёмного тракта не менее 200 тысяч раз

Уровень собственных шумов при максимальной громкости, мВэфф, не более … 45

Избирательность по соседнему каналу, дБ, не менее …………………………. 60*

Коэффициент прямоугольности сквозной АЧХ по уровням 6/60 дБ ……………. 1,6*

Диапазон регулировки АРУ при изменении уровня выходного сигнала

не более, чем в 2,5 раза (8 дБ) ………………………………………………. 3000 раз (70 дБ)

Выходная мощность тракта НЧ на нагрузке 8 Ом, Вт, не менее ………………. 0,25

Ток потребления по цепи анодного напряжения +140 В, мА, не более ………. 65

Ток потребления по цепи накального напряжения +6,3 В, А, не более ……… 1,25

Мощность, потребляемая от электросети, Вт, не более……………………….. 30

* – определяются параметрами применённого ЭМФ.

В комплекте набора для самостоятельной сборки есть все радиокомпоненты, устанавливаемые на плату: резисторы, конденсаторы, диоды, транзисторы, ферритовое кольцо для катушки ГПД, катушки ПДФ, разъёмы и их ответные части на провод, реле, керамические панельки для радиоламп, варикап, подстроечные конденсаторы и т.п.. Печатная плата для большей универсальности применения разработана с учётом возможности установки ЭМФ практически всех известных типоразмеров (круглых и прямоугольных) с полосой пропускания 2,35 кГц, 2,75 кГц, 3,0 и 3,1 кГц. Внешние подключения выполняются при помощи разъёмов, входящих в комплект набора. Все детали самые обычные выводные. Их маркировка нанесена на плату и просверлены отверстия для выводов, которые также для большей универсальности применения сделаны для большей части контурных элементов с шагом 5 и 10 мм, что позволяет устанавливать на плату не только современные малогабаритные конденсаторы и дроссели, но и старые советские типа КТ1, КД и т.п.

Набор для сборки платы приёмника (лампами комплектуется по желанию Заказчика)

Стабилизированный блок питания ламповой техники.

Блок питания для лампового приёмника описан здесь >>

Плата “S – метра”

Трансформатор выходной для ламповых УНЧ от старых ламповых радиоприёмников 🙂 

Трансформатор сетевой с обмотками:
71 Вт: (0-220В-230 В) / (0-60-80 В х 0,2 А; 150 В х 0,2 А; 6,3 В – 0 – 6,3 В х 2 А), размерами 90 х 45 мм 

Конденсатор переменой ёмкости 2х(12-495 пФ)

Любителям зелёного “глаза” 😉 лампа индикатор уровня 6Е5С

Схема подключения лампы-индикатора 6Е5С:

Видео работы S-метра на 6Е5С:

Микроамперметр 35х35 мм с подсветкой:

Материал: пластик
Цвет: черный
Размеры: 35х35 ммСопротивление DC: 630 Ом
Ток полного отклонения стрелки: 500 мкА
Напряжение нити накала лампочки подсветки: DC/AC 6 ~ 12 В

Стоимость микроамперметра –  260 грн.

Лампа 6Ф12П (новые с хранения)

Лампа 6Ж2П-ЕВ (новые с хранения)

Микроамперметр стрелочный М68502 250±25 мкА – 90 грн.

Микроамперметр стрелочный М476/2 150-250 мкА – 25 грн.

 

Макеевская 3-х входовая цифровая шкала с ЦАПЧ

Краткая инструкция по сборке и настройке приёмника находится здесь 🙂 >>>

1. Стоимость печатной платы с маской и маркировкой приёмника RX204080EMF TUBE (175х105 мм) – 250 грн.
2. Стоимость набора для сборки приёмника RX204080EMF TUBE без учёта ламп и без ЭМФ (печатная плата, керамические панельки для ламп, разъёмы с ответными частями, все радиокомпоненты для платы, регулятор громкости, ручка регулятора громкости) – 775 грн.
С перечнем комплектующих набора для сборки можно ознакомиться здесь >>>
3. ЭМФ в состав набора не входит, если нужно укомплектовать набор фильтром, то комплектую б/у демонтированными рабочими фильтрами нижними или средними, на своё усмотрение, стоимость фильтра – 200 грн.
4. Стоимость нового круглого и толстого 🙂 “нижнего” эектромеханического фильтра ЭМФ-500-3Н – 300 грн.
5. Стоимость комплекта новых с хранения радиоламп 6Ф12П – 3 шт., 6Ж2П-ЕВ – 1 шт. – 150 грн.

6. Стоимость сетевого трансформатора (71 Вт: (0-220В-230 В) / (0-60-80 В х 0,2 А; 150 В х 0,2 А; 6,3 В – 0 – 6,3 В х 2 А), размерами 90 х 45 мм) – 760 грн. (к сожалению трансформаторов ТАН у меня нет, они дешевле, но увы)
7. Стоимость КПЕ 2х(12-495 пФ) – 150 грн.
8. Стоимость выходного звукового Б/У трансформатора от лампового радиоприёмника – 140 грн.
9. Стоимость платы с маской и маркировкой “S” метра (52х15 мм) – 15 грн.
10. Стоимость наборчика 🙂 для сборки платы “S” метра – 30 грн.
11. Стоимость набора для сборки платы стабилизированного блока питания приёмника – 300 грн.
Вся информация по блоку питания у меня на сайте здесь >>>
12. Электронно-световой индикатор 6Е5С – 160 грн.
13. 
Панель ламповая (8-конт. ) под печатную плату и под шасси (для 6Е5С) – 44 грн. /шт.
14. 
Панель ламповая (9-конт. ) под печатную плату – 36 грн. /шт.

15. Индикатор стрелочный М68502 250±25 мкА – 90 грн.

16. Индикатор стрелочный М476/2 150-250 мкА – 25 грн.

Немного видео первого включения 🙂

НЕБОЛЬШИЕ КОРРЕКТИРОВКИ 🙂 В ходе активных испытаний приемника был сделано несколько небольших, но полезных доработок схемы приемника:

1. Один из коллег, собравших приемник из набора, написал, что после нескольких дней прослушивания временами стало проявляться самовозбуждение приемника. Мой тестовый экземпляр работает без проблем, поэтому автору пришлось немало попотеть, чтобы добиться этого явления . Оказалось, что при достаточно длинных (40-50 см) проводах подключения выходного трансформатора и при их определённом положении образовывался паразитный контур (на основе этой суррогатной длинной линии) и возбуждалась на СВЧ анодная цепь пентода VL3.2. Для устранения этого был введён плёночный конденсатор С70, который одним выводом монтируется на плате в заземлённое отверстие маркированное как С60, а другим припаивается к выводу С63 (см. фото в инструкции по монтажу и настройке). 2. Большие уровни (до 20 В) переменного напряжения на контурных элементах обоих гетеродинов не способствуют получению хорошей стабильности частоты, поэтому после некоторых экспериментов было решено выполнить цепи стабилизации амплитуды гетеродинов (гридлик) на кремниевых диодах. В результате не только понизилось в 2-3 раза напряжение на контурах, повысилась надёжность работы и стабильность частоты гетеродинов, но и почти в 5 раз!!! увеличилось усиление детектора, так что пришлось излишки усиления «гасить» резисторами R21,R25, уменьшив их сопротивление до 2 кОм, дабы общее усиление приемника и его уровень собственных шумов вернуть к исходным значениям. Припаиваются вновь введённые диоды VD4,VD5 и VD6 поверх, соответственно, резисторов R5 и R15 (см. фото в инструкции по монтажу и настройке). Заменить импортные 1N4148 можно отечественными малоёмкостными КД522,КД521,КД510 и т.п. Все описанные выше изменения отражены в принципиальной схеме версии 3.0 и приведён в соответствие состав деталей в наборе.

Примечания:

Схема подключения двухвходовой ЦШ “A16-PLL” совпадает с показанной на общей схеме приемника, с двумя отличиями:

1. Первый вход подключается к ГПД (разъём FM) через дополнительный гасящий резистор 4,7 кОм.

2. Для оптимальной работы ЦАПЧ ЦШ A16-PLL ёмкость С2 увеличина до 30 пФ.



Очень полезное и информативное видео сборки и настройки приёмника от Володи Карпелянского R2AJI

 

  А также много другого интересного и полезного у Володи на канале здесь 🙂




Заказы можно оформлять через форму обратной связи или по телефону указанному в разделе контакты, доставка и оплата

Всем мирного неба, удачи, добра, 73!

radio-kits.ucoz.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *