Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как сделать простой блок питания на 12 вольт из трансформатора, выпрямителя, конденсатора.

 

 

 

Тема: как можно спаять источник питания на 12 вольт своими руками (схема).

 

Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

 

Схема простого блока питания на 12 вольт из трансформатроа моста конденсатора

 

Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

 

Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

 

 

 

 

С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

 

Как спаять диодный мост выпрямительный своими рукамиИтак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

 

Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

 

 

ps smail

P.S. Учтите, что ёмкость конденсатора электролита имеет полярность (плюс и минус), которую нужно соблюдать при подключении его к схеме нашего самодельного блока питания. В противном случае может произойти так, что конденсатор просто у вас взорвется, либо просто выйти из строя. Ну, а в целом, данная схема БП является наиболее простой. Она не имеет стабилизации, рассчитана на питания электроприборов, не нуждающихся в большой точности и стабильности напряжения.

 

electrohobby.ru

Самодельный блок питания на 12 вольт

Блок питания достаточно прост в изготовлении, если немножко разобраться с теоретической частью и понять, как он работает. Все не так сложно, как кажется. Из чего состоит блок питания на 12 вольт, с фото и примерами, а также описание его элементов и принцип работы – далее в статье.

Краткое содержимое статьи:

Основные элементы и принцип действия блоков питания

Главной частью является понижающий трансформатор, причем при отсутствии его с необходимыми параметрами, то вторичная обмотка перематывается вручную и получается необходимое выходное напряжение. Посредством трансформатора происходит уменьшение напряжения сети 220 вольт до 12, идущих дальше к потребителю.

Принципиальной разницы между штатными устройствами и с перемотанной вторичной обмоткой нет, главное – правильно рассчитать сечение провода и количество его витков на обмотке.

Далее ток идет на выпрямитель. Состоит из полупроводников, например, диодов. Диодный мост, в разных схемах, может состоять из одного, двух или четырех диодов. После выпрямителя ток поступает на конденсатор, также в схеме для выдачи стабильного напряжения желательно включение стабилитрона с соответствующими характеристиками.

Трансформатор

Состоит трансформатор из сердечника, изготовленного из ферромагнетика, а также первичной и вторичной обмоток. На первичную обмотку приходит 220 вольт, а со вторичной, в данном случае, снимается 12, идущие на выпрямитель. Сердечники в данном типе блоков питания по большей части изготавливают Ш-образной и U-образной формы.

Расположение обмоток допускается как одна на другой на общей катушке, так и по отдельности. К примеру, у U-образного сердечника пара катушек, на каждую из которых намотано по половине обмоток. Выводы при подсоединении трансформатора подключают последовательно.

electrikexpert.ru

Самодельный выпрямитель на 12 вольт

В блоках питания радио- и электроаппаратуры почти всегда используются выпрямители, предназначенные для преобразования переменного тока в постоянный. Связано это с тем, что практически все электронные схемы и многие другие устройства должны питаться от источников постоянного тока. Выпрямителем может служить любой элемент с нелинейной вольт-амперной характеристикой, другими словами, по-разному пропускающий ток в противоположных направлениях. В современных устройствах в качестве таких элементов, как правило, используются плоскостные полупроводниковые диоды.

Схема полупроводникового диода.

Плоскостные полупроводниковые диоды

Наряду с хорошими проводниками и изоляторами существует очень много веществ, занимающих по проводимости промежуточное положение между двумя этими классами. Называют такие вещества полупроводниками. Сопротивление чистого полупроводника с ростом температуры уменьшается в отличие от металлов, сопротивление которых в этих условиях возрастает.

Добавляя к чистому полупроводнику небольшое количество примеси, можно в значительной степени изменить его проводимость. Существует два класса таких примесей:

Рисунок 1. Плоскостной диод: а. устройство диода; б. обозначение диода в электротехнических схемах; в. внешний вид плоскостных диодов различной мощности.

  1. Донорные — превращающие чистый материал в полупроводник n-типа, содержащий избыток свободных электронов. Проводимость такого типа называют электронной.
  2. Акцепторные — превращающие такой же материал в полупроводник p-типа, обладающий искусственно созданным недостатком свободных электронов. Проводимость такого полупроводника называют дырочной. «Дырка» — место, которое покинул электрон, ведет себя аналогично положительному заряду.

Слой на границе полупроводников p- и n-типа (p-n переход) обладает односторонней проводимостью — хорошо проводит ток в одном (прямом) направлении и очень плохо в противоположном (обратном). Устройство плоскостного диода показано на рисунке 1а. Основа — пластинка из полупроводника (германий) с небольшим количеством донорной примеси (n-типа), на которую помещается кусочек индия, являющегося акцепторной примесью.

После нагрева индий диффундирует в прилегающие области полупроводника, превращая их в полупроводник p-типа. На границе областей с двумя типами проводимости и возникает p-n переход. Вывод, соединенный с полупроводником p-типа, называют анодом получившегося диода, противоположный — его катодом. Изображение полупроводникового диода на принципиальных схемах приведено на рис. 1б, внешний вид плоскостных диодов различной мощности — на рис. 1в.

Простейший выпрямитель

Рисунок 2. Характеристики тока в различных схемах.

Ток, протекающий в обычной осветительной сети, является переменным. Его величина и направление меняются 50 раз в течение одной секунды. График зависимости его напряжения от времени показан на рис. 2а. Красным цветом показаны положительные полупериоды, синим — отрицательные.

Поскольку величина тока изменяется от нуля до максимального (амплитудного) значения, вводится понятие действующего значения тока и напряжения. Например, в осветительной сети действующее значение напряжения 220 В — во включенном в эту сеть нагревательном приборе за одинаковые промежутки времени выделяется столько же тепла, сколько в том же устройстве, в цепи постоянного тока напряжением 220 В.

Но на самом деле напряжение в сети меняется за 0,02 с следующим образом:

  • первую четверть этого времени (периода) — увеличивается от 0 до 311 В;
  • вторую четверть периода — уменьшается от 311 В до 0;
  • третью четверть периода — уменьшается от 0 до 311 В;
  • последнюю четверть периода — возрастает от 311 В до 0.

В этом случае 311 В — амплитуда напряжения Uо. Амплитудное и действующее (U) напряжения связаны между собой формулой:

Рисунок 3. Диодный мост.

При включении в цепь переменного тока последовательно соединенных диода (VD) и нагрузки (рис. 2б), ток через нее протекает только во время положительных полупериодов (рис. 2в). Происходит это благодаря односторонней проводимости диода. Называется такой выпрямитель однополупериодным — одну половину периода ток в цепи есть, во время второй — отсутствует.

Ток, протекающий через нагрузку в таком выпрямителе, не постоянный, а пульсирующий. Превратить его практически в постоянный можно, включив параллельно нагрузке конденсатор фильтра Cф достаточно большой емкости. В течение первой четверти периода конденсатор заряжается до амплитудного значения, а в промежутках между пульсациями разряжается на нагрузку. Напряжение становится почти постоянным. Эффект сглаживания тем сильнее, чем больше емкость конденсатора.

Схема диодного моста

Более совершенной является двухполупериодная схема выпрямления, когда используются и положительный, и отрицательный полупериод. Существует несколько разновидностей таких схем, но чаще всего используется мостовая. Схема диодного моста приведена на рис. 3в. На ней красная линия показывает, как протекает ток через нагрузку во время положительных, а синяя — отрицательных полупериодов.

Рисунок 4. Схема выпрямителя на 12 вольт с использованием диодного моста.

И первую, и вторую половину периода ток через нагрузку протекает в одном и том же направлении (рис. 3б). Количество пульсации в течение одной секунды не 50, как при однополупериодном выпрямлении, а 100. Соответственно, при той же емкости конденсатора фильтра эффект сглаживания будет более ярко выражен.

Как видно, для построения диодного моста необходимо 4 диода — VD1-VD4. Раньше диодные мосты на принципиальных схемах изображали именно так, как на рис. 3в. Ныне общепринятым считается изображение, показанное на рис. 3г. Хотя на ней только одно изображение диода, не следует забывать, что мост состоит из четырех диодов.

Мостовая схема чаще всего собирается из отдельных диодов, но иногда применяются и монолитные диодные сборки. Их проще монтировать на плате, но зато при выходе из строя одного плеча моста, заменяется вся сборка. Выбирают диоды, из которых монтируется мост, исходя из величины протекающего через них тока и величины допустимого обратного напряжения. Эти данные позволяет получить инструкция к диодам или справочники.

Полная схема выпрямителя на 12 вольт с использованием диодного моста приведена на рис. 4. Т1 — понижающий трансформатор, вторичная обмотка которого обеспечивает напряжение 10-12 В. Предохранитель FU1 — нелишняя деталь с точки зрения техники безопасности и пренебрегать им не стоит. Марка диодов VD1-VD4, как уже говорилось, определяется величиной тока, который будет потребляться от выпрямителя. Конденсатор С1 — электролитический, емкостью 1000,0 мкФ или выше на напряжение не ниже 16 В.

Напряжение на выходе — фиксированное, величина его зависит от нагрузки. Чем больше ток, тем меньше величина этого напряжения. Для получения регулируемого и стабильного выходного напряжения требуется более сложная схема. Получить регулируемое напряжение от схемы, приведенной на рис. 4 можно двумя способами:

  1. Подавая на первичную обмотку трансформатора Т1 регулируемое напряжение, например, от ЛАТРа.
  2. Сделав от вторичной обмотки трансформатора несколько отводов и поставив, соответственно, переключатель.

Остается надеяться, что описания и схемы, приведенные выше, окажут практическую помощь в сборке простого выпрямителя для практических нужд.

Делаем простой выпрямитель тока на 12 вольт, для заряда аккумуляторов авто. Всё началось с того, что привезли мне на роботу нерабочий блок питания на 22В и 110В. Решил из него сделать зарядное устройство для своей машины для аккумулятора. Аккумулятор естественно на 12В. Сначала разобрал блок питания и посмотрел что там есть внутри. Как оказалось, кроме трансформатора ничего и не было. Не работал БП из-за того, что один провод на подачу электроэнергии просто каким-то образом отвалился. Все же прибор советских времен и со временем поизносился. Корпус и все провода решил выкинуть и смастерить все заново.

Достал из прибора трансформатор. Там было две вторичные обмотки. Одна была на 22В, вторая — 110В. Но этот вольтаж мне не подходил для зарядки аккумулятора.

Разобрал трансформатор, достал все пластины, размотал вторичную обмотку на 22 В. Намотал новым, более толстым, проводом новую обмотку на 12В. Она содержала наполовину меньше витков чем прежняя, но так как сечение провода увеличил, заполнило окно полностью. Все аккуратно собрал и проверил. На выходе оказалось 13.4В. Это отлично подходило для АКБ.

Схема выпрямителя тока на 12 вольт

Далее решил не усложнять дело всякими хитроумными зарядными на микросхемах, а собрать простой и надежный выпрямитель на диодах. Взял диоды Д242. Они очень надежные, но немного греются, следует установить на радиаторы.

Спаял по стандартной схеме диодного моста. Подключил — все отлично работало, на выходе теперь было 13.7В. Как и должно быть, немного увеличилось напряжение после выпрямления. Но ничего страшного. Для аккумуляторов ведь надо не строго 12, а примерно 14 вольт для нормального заряда.

Все аккуратно вместил в новый корпус. Сделал выход на выпрямитель. Подключаю и с удовольствием пользуюсь. Сделал еще индикатор наличия электроэнергии — просто подключил к сети 220В обычный светодиод через резистор. Получился простой и надёжный выпрямитель для ЗУ на 12 вольт .

Блок питания 12 Вольт позволит осуществить питание практически любой бытовой техники, включая даже ноутбук. Обратите внимание на то, что на вход ноутбука подается напряжение до 19 Вольт. Но он прекрасно будет работать, если провести запитку от 12. Правда, максимальный ток составляет 10 Ампер. Только до такого значения потребление доходит очень редко, среднее держится на уровне 2-4 Ампер. Единственное, что следует учесть – при замене стандартного источника питания на самодельный использовать встроенную батарею не получится. Но все равно блок питания на 12 вольт идеально подходит даже для такого устройства.

Параметры блока питания

Самые главные параметры любого блока питания – это выходное напряжение и ток. Зависят их значения от одного – от используемого провода во вторичной обмотке трансформатора. О том, как провести выбор его, будет рассказано немного ниже. Для себя вы должны заранее решить, для каких целей планируется использовать блок питания 12 Вольт. Если необходимо запитывать маломощную аппаратуру – навигаторы, светодиоды, и прочее, то вполне достаточно на выходе 2-3 Ампер. И то этого будет много.

Но если вы планируете с его помощью осуществлять более серьезные действия – например, заряжать аккумуляторную батарею автомобиля, то потребуется на выходе 6-8 Ампер. Ток зарядки должен быть в десять раз меньше емкости АКБ – это требование обязательно учитывается. Если же возникает необходимость в подключении приборов, напряжение питания которых существенно отличается от 12 Вольт, то разумнее установить регулировку.

Как выбрать трансформатор

Первый элемент – это преобразователь напряжения. Трансформатор способствует преобразованию переменного напряжения 220 Вольт в такое же по амплитуде, только со значением, намного меньше. По крайней мере, вам нужно меньшее значение. Для мощных блоков питания за основу можно взять трансформатор типа ТС-270. У него высокая мощность, даже имеются 4 обмотки, которые выдают по 6,3 Вольт каждая. Они использовались для питания накала радиоламп. Без особого труда из него можно сделать блок питания 12 Вольт 12 Ампер, который сможет даже АКБ автомобиля заряжать.

Но если вас полностью не устраивают его обмотки, то можно вторичные все убрать, оставить только сетевую. И провести намотку провода. Проблема в том, как посчитать необходимое количество витков. Для этого можно воспользоваться простой схемой вычисления – посчитайте, сколько витков содержит вторичная обмотка, которая выдает 6,3 Вольт. Теперь просто разделите 6,3 на число витков. И вы получите величину напряжения, которое можно снять с одного витка провода. Осталось только высчитать, сколько нужно намотать витков, чтобы на выходе получить 12,5-13 Вольт. Будет даже лучше, если на выходе окажется на 1-2 Вольт напряжение выше требуемого.

Изготовление выпрямителя

Что такое выпрямитель и для чего он нужен? Это устройство на полупроводниковых диодах, которое является преобразователем. С его помощью переменный ток превращается в постоянный. Для анализа работы выпрямительного каскада нагляднее использовать осциллограф. Если на перед диодами вы увидите синусоиду, то после них окажется практически ровная линия. Но мелкие куски от синусоиды все равно останутся. От них избавитесь после.

К выбору диодов стоит отнестись с максимальной серьезностью. Если блок питания на 12 Вольт будет использоваться в качестве зарядчика аккумулятора, то потребуется использовать элементы, у которых величина обратного тока до 10 Ампер. Если же намерены осуществлять питание слаботочных потребителей, то вполне достаточно окажется мостовой сборки. Вот тут стоит остановиться. Предпочтение стоит отдавать схеме выпрямителя, собранного по типу мост – из четырех диодов. Если применить на одном полупроводнике (однополупериодная схема), то КПД блока питания уменьшается практически вдвое.

Блок фильтров

Теперь, когда на выходе имеется постоянное напряжение, то необходимо, чтобы схема блока питания на 12 Вольт была немного усовершенствована. Для этой цели нужно использовать фильтры. Для питания бытовой техники достаточно применить LC-цепочку. О ней стоит рассказать более подробно. К плюсовому выходу выпрямительного каскада подключается индуктивность – дроссель. Ток должен проходить через него, это первая ступень фильтрации. Далее идет вторая – электролитический конденсатор с большой емкостью (несколько тысяч микрофарад).

После дросселя к плюсу подключается электролитический конденсатор. Второй его вывод соединяется с общим проводом (минусом). Суть работы электролитического конденсатора в том, что он позволяет избавиться от всей переменной составляющей тока. Помните, на выходе выпрямителя оставались небольшие кусочки синусоиды? Вот, именно от нее нужно избавиться, иначе блок питания 12 Вольт 12 Ампер будет создавать помеху для устройства, подключаемого к нему. Например, магнитола или радиоприемник будет издавать сильный гул.

Стабилизация напряжения на выходе

Для осуществления стабилизации выходного напряжения можно воспользоваться одним всего полупроводниковым элементом. Это может быть как стабилитрон с напряжением рабочим 12 Вольт, так и более современные и совершенные сборки типа LM317, LM7812. Последние рассчитаны на стабилизацию напряжения на уровне 12 Вольт. Следовательно, даже при условии, что на выходе выпрямительного каскада 15 Вольт, после стабилизации останется всего 12. Все остальное уходит в тепло. А это значит, что крайне важно устанавливать стабилизатор на радиатор.

Регулировка напряжения 0-12 Вольт

Для большей универсальности прибора стоит воспользоваться несложной схемой, которую можно соорудить за несколько минут. Такое можно воплотить при помощи ранее упомянутой сборки LM317. Только отличие от схемы включения в режиме стабилизации будет небольшое. В разрыв провода, который идет на минус, включается переменный резистор 5 кОм. Между выходом сборки и переменным резистором включено сопротивление около 220 Ом. А между входом и выходом стабилизатора защита от обратного напряжения – полупроводниковый диод. Таким образом, блок питания 12 Вольт, своими руками собранный, превращается в многофункциональное устройство. Теперь остается только произвести сборку его и градуировку шкалы. А можно и вовсе на выходе поставить электронный вольтметр, по которому и смотреть текущее значение напряжения.

crast.ru

Выпрямитель тока на 12 вольт

Делаем простой выпрямитель тока на 12 вольт, для заряда аккумуляторов авто. Всё началось с того, что привезли мне на роботу нерабочий блок питания на 22В и 110В. Решил из него сделать зарядное устройство для своей машины для аккумулятора. Аккумулятор естественно на 12В. Сначала разобрал блок питания и посмотрел что там есть внутри. Как оказалось, кроме трансформатора ничего и не было. Не работал БП из-за того, что один провод на подачу электроэнергии просто каким-то образом отвалился. Все же прибор советских времен и со временем поизносился. Корпус и все провода решил выкинуть и смастерить все заново. 

vyprjamitel-12-10

Достал из прибора трансформатор. Там было две вторичные обмотки. Одна была на 22В, вторая — 110В. Но этот вольтаж мне не подходил для зарядки аккумулятора.

vyprjamitel-12-11

Разобрал трансформатор, достал все пластины, размотал вторичную обмотку на 22 В. Намотал новым, более толстым, проводом новую обмотку на 12В. Она содержала наполовину меньше витков чем прежняя, но так как сечение провода увеличил, заполнило окно полностью. Все аккуратно собрал и проверил. На выходе оказалось 13.4В. Это отлично подходило для АКБ.

Схема выпрямителя тока на 12 вольт

image.php

Далее решил не усложнять дело всякими хитроумными зарядными на микросхемах, а собрать простой и надежный выпрямитель на диодах. Взял диоды Д242. Они очень надежные, но немного греются, следует установить на радиаторы.

vyprjamitel-12-1

s01581036

Спаял по стандартной схеме диодного моста. Подключил — все отлично работало, на выходе теперь было 13.7В. Как и должно быть, немного увеличилось напряжение после выпрямления. Но ничего страшного. Для аккумуляторов ведь надо не строго 12, а примерно 14 вольт для нормального заряда.

vyprjamitel-12-3

vyprjamitel-12-4

Все аккуратно вместил в новый корпус. Сделал выход на выпрямитель. Подключаю и с удовольствием пользуюсь. Сделал еще индикатор наличия электроэнергии — просто подключил к сети 220В обычный светодиод через резистор. Получился простой и надёжный выпрямитель для ЗУ на 12 вольт .

serp1.ru

Классическая схема диодного моста на 12 вольт

Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток.

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические конденсаторы с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.

Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Применение диодных мостов

В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком является блок питания компьютера.

Кроме того диодные мосты применяются в люминесцентных компактных лампах или в энергосберегающих лампах. Они дают очень хороший эффект при использовании их в пускорегулирующих электронных аппаратах. Широко применяются и во всех моделях современных сварочных аппаратов.

Как сделать диодный мост

electric-220.ru

ВЫПРЯМИТЕЛИ

   В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

Фото трансформаторный блок питания

   Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Фото трансформатора

Фотография трансформатора

   Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Схема однополупериодный выпрямитель

   Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

Выпрямленный ток после однополупериодного выпрямителя

   На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

Электролитический конденсатор большой емкости

    Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

   Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

   И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Диодный мост рисунок

   Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому. 

Объяснение работы диодного моста

Объяснение работы диодного моста

   Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

График мостого выпрямителя

   При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Еще одно изображение диодного моста

   Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

Фото импортного диодного моста

   На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц-405

Фото диодный мост кц405

Трехфазные выпрямители

   Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

Фото трехфазного трансформатора

   Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Схема Миткевича

Схема Миткевича

   Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова

Схема Ларионова

   Схема Ларионова может использоваться как “звезда-Ларионов” и “треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи – AKV.

   Форум

   Обсудить статью ВЫПРЯМИТЕЛИ


radioskot.ru

Самодельный выжигатель 12 вольт


Доброго времени суток всем самоделкиным. Как известно в далеких 90-х наши предки занимались таким искусством, как выжигание по дереву, это выглядело красиво и имело свое направление в искусстве. Так как с тех времен выжигатели не остались или же просто вышли из строя, а многие деревянные вещи хочется как-то приукрасить, то в этой статье я расскажу как сделать выжигатель своими руками.

Чтобы собрать наш выжигатель нам понадобится:
*Дубовая дощечка длинной 12 см.
*4 болтика среднего размера не длиннее 10мм.
*Пара скрепок.
*2 диода, скрученные со старого диодного моста.
*Нихромовая проволока.
* Медная проволока.
*Два провода, способные выдержать большую нагрузку.
*Плоскогубцы, отвертка и паяльник.

Первым шагом будет просверливание отверстий в нашей ручке для выжигателя, делается это с помощью дрели и мелкого сверла, которое подбирается по диаметру вкручиваемых болтов.


Сверлим их по паре на две стороны.


С помощью круглого напильника немного сделаем скругления, как на фото, там будут надежно держаться наши диоды.

Две скрепки нужно выгнуть и сделать из них подобие того, что на фото, это кольцо для закручивания на диод и крючок на конце.

Так как диод служит преобразователем из переменного тока в постоянный, то нам необходимо исключить это свойство диода, поэтому запаиваем перемычку из медной проволоки между массой диода и его контактом. Делаем тоже самое со вторым.

Далее припаиваем два провода к диодам, выбираем провода потолще, сечением в 2 мм, как минимум, так как при использования выжигателя провода будут перегреваться, что не очень то и хорошо.
С помощью болтов прикручиваем диод с двух сторон, тем самым зажимая его.

Второй крепим идентично первому, шляпки болтов не дают возможности диоду свободно вращаться, что как раз таки очень важно.

Закрепленные на деревянной ручке два диода выглядят так, на них еще не хватаем нити накаливания и крепления под нее.

Добавим на них наши крючки из скрепок, повернуты они будут внутрь.


Сбоку видно, что крючки под нашу нить накала уже готовы, поэтому следующий этап будет зажимание их на крючках.

Нить накаливания должна содержать две спирали по сторонам и небольшой ровный участок, с помощью которого и будет происходит выжигание.

Эту саму нить зажимаем с помощью плоскогубцев в крючки, старайтесь не пережать и перекусить ее при сжимании.

Так как нить при сильном нажатии может лопнуть, старайтесь на прикладывать больших усилий на выжигатель.

На этом выжигатель готов, но перед тем как его использовать нужно его протестировать.
Тест заключается в проверке его износостойкости, так как нить нагревается до высокой температуры, способной расплавлять свинец.

Подключается выжигатель к источнику тока на выходе которого будет постоянный или же переменный ток, напряжением в 12 вольт и мощностью не менее 20 ватт, для более лучшего накала.
После того, как выжигатель спокойно может пролежать в рабочем состоянии более 5 минут его можно считать пригодным для выжигания.
Для запуска своего выжигателя я применил свой лабораторный блок питания.

На этом самоделка готова, всем удачных изобретений и куча интересных идей для них. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *