Принцип усиления транзистора | Как усиливает транзистор
Что такое усиление
Давайте для начала разберем, что мы вообще подразумеваем под словом “усиление”? Ну… усиление это когда мы производим какое-то действие, чтобы было лучше, качественнее, комфортнее, удобнее, безопаснее. По-моему как-то так. Усиливаем подвеску на машине, чтобы езда была комфортнее. Усиливаем фундамент под дом, загоняя туда железную арматуру, чтобы дом стоял долго и не трещал. Усиливаем армию военной техникой, чтобы обеспечить себе и своему народу безопасность, усиливаем свое тело, чтобы выглядеть уверенно и дать отпор гопникам.
Но какое слово идет рядом в паре со словом “усиление”? Мне кажется – это слово “мощность”.
Усиливаем подвеску на машине, то есть делаем ее мощнее. Усиливаем фундамент – делаем его мощнее. Усиливаем армию танками и самолетами – делаем ее мощнее :-), усиливаем свою тушку – значит делаем ее опять же мощнее.
Давайте рассмотрим на примере человека. Как же его усилить? Здесь я вижу два варианта:
Увеличить человека в размерах
Либо усилить его с помощью экзоскелета:
Тут уже даже и ежу понятно, что мощности каждого из этих персонажей хватит для того, чтобы размотать целую роту вояк в рукопашном бою. В первом случае их проще будет давить либо пяточкой, а если попадется воспитанный великан с хорошими манерами – то пальчиками :-). Во втором случае, с экзоскелетом – хуком справа и слева.
Значит, для того, чтобы сделать сигнал мощнее, мы должны либо увеличить его амплитуду, либо увеличить его…Хм… Зачем наш Тони Старк сделал себе костюм? Чтобы он защищал его тело, то есть чтобы оказывать сопротивление ударам, пулям и тд. Какая-бы пулька или удар не влетали в него, он бы стоял колом (разумеется в разумных пределах) То есть его экзоскелет защищает его от разного рода сопротивления.
Получается, для нашего сигнала какое бы сопротивление он не встретил на своем пути, он будет таким же “бодрым и энергичным”, каким был и до встречи с нагрузкой. Если Тони Старк брал энергию из своей реактора на груди, то сигнал должен брать энергию от какого-либо мощного источника 😉 Сравнение, конечно, так себе, но думаю, суть вы уловили.
Как усиливает транзистор
Итак, представим себе нашу сборную России по футболу. Ну да, ребята частенько лажают), но суть не в этом. Для того, чтобы наши футболисты играли хорошо, нужно к каждому футболисту приставить хорошего тренера, установить нормальный график труда и отдыха, кормить самой лучшей спортивной едой, пичкать допингами и тд. Как результат – команда может быть дотянет до полуфинала на чемпионате мира.
Но… есть и другой вариант. Почему бы в команду не пригласить таких футболистов, как Месси, Рональдо, Роналду, Бекхэма и других знаменитостей? То есть в этом варианте мы полностью заменили всю команду. Но для нас ведь главное – победа, и не волнует, кто играет в нашей команде. Главное, чтобы наша команда порвала всех на чемпионате.
И там и там мы усилили эти команды. Но как вы думаете, какой вариант будет лучше? Ну тут уже и ежу понятно, что второй вариант – стопроцентный! Если провести параллельную грань с электроникой, то можно сказать, что транзистор использует именно второй вариант. В нем нет ничего такого, чтобы он сам бы усиливал сигнал. Он его полностью заменяет другим сигналом. То есть усиливаемый сигнал, который выходит из транзистора, является копией входного слабенького сигнала, но это не тот же самый слабенький сигнал.
Тяжко для понимания? Ну давайте приведем тогда еще один пример.
Вернемся в детство. Вам купили маленького хомячка. Вы за ним ухаживаете, меняете водичку, убираете какашки, покупаете колесико, чтобы он бегал и радовался жизни. Через год из маленького хомячка вырастает здоровый пушистый хомяк. Вы очень рады, что у вас вырос такой здоровый хомячок. Но… как-то летом вы решили съездить в деревню к бабушке, за хомяком никто не ухаживал и он сдох. Ваши предки, конечно же, ничего вам не сказали. Они быстренько сбегали в зоомагазин и купили точно такого же хомяка! Один в один! Вы приезжаете к себе домой и продолжаете радоваться своему хомяку, даже не догадываясь, что это вообще не он))). Именно точно также ведет себя транзистор). Он не усиливает сигнал, а просто выводит усиленную копию на выходе.
Откуда берется энергия для усиления
Вспомните также в своей жизни моменты, когда вы или кто-то другой прилагали очень малую силушку, но наворотили делов.
Получается, какое-то слабенькое движение хвостиком привело к нехорошим последствиям, но энергия использовалась извне. Для мышки-норушки это будет гравитационная сила. Тот же самый принцип заложен и в транзисторе. Он не может сам по себе усиливать. Он использует энергию извне. А для энергии извне используется источник постоянного тока.
Можно сказать, транзистор представляет из себя именно такую же систему – слабенький управляющий базовый ток управляет огромным током коллектор-эмиттер. Справа это все показано на бачке с водой. То есть чуток открыв краник, чтобы из трубки “База”(Б) полилась водичка, мы открываем клапан, который держит закрытым бачок “Коллектор” (К). Вода сразу же из бачка “Коллектор” стремится в тазик “Эмиттер” (Э). Если же мы закрываем краник “База”, то пружинка возвращает клапан и закрывает прохождение водички из бачка “Коллектор”.
Из всего выше рассказанного и показанного можно сделать некоторые выводы:
– выходной сигнал с транзистора – это усиленная копия входного сигнала
– транзистор для усиления сигнала использует энергию извне, а точнее, источник постоянного тока.
– малый управляющий базовый ток управляет намного большим коллекторным током (рисунок выше)
– независимо от схемы включения управляющий P-N переход – эмиттерный, а управляемая цепь – эмиттер-коллектор
Усиление в электронике
Увеличивая амплитуду сигнала, мы меняем его напряжение, а делая сигнал “неуязвимым”, мы добавляем ему силу. Силу тока. Поэтому, увеличивая или напряжение, или силу тока, либо сразу два этих параметра, мы сделаем сигнал мощнее.
Для тех, кто позабыл:
P=IU
где
P – это мощность, измеряется в Ваттах
I – сила тока, в Амперах
U – напряжение, в Вольтах
В своих электронных разработках вы должны точно решить для себя, что именно собираетесь делать с сигналом:
– увеличить его амплитуду напряжения, при этом силу тока оставить неизменной
– оставить амплитуду напряжение такой же, но прибавить мощности с помощью силы тока
– увеличить и напряжение и силу тока
В основном применяют усиление сразу по обоим параметрам. Поэтому в электронике чаще всего используется схема с ОЭ (Общим Эмиттером), которая увеличивает сигнал и по силе тока, и по напряжению одновременно.
Для транзистора PNP проводимости подключение транзистора с ОЭ выглядит так:
А для NPN транзистора вот так:
Но вы также должны иметь ввиду, что в электронике нам не просто надо усилить сигнал, а усилить его правильно, чтобы он не потерял свой первозданный вид. Мощная копия сигнала должна пропорционально усиливаться по амплитуде. По времени мы не должны ее трогать, иначе изменится частота сигнала. Но тогда это уже будет совсем другой сигнал.
На рисунке ниже мы можем увидеть входной слабенький сигнал, а на выходе усиленный сигнал после транзисторного каскада.
Как мы видим, сигнал по амплитуде изменился линейно и пропорционально, но период сигнала не изменился. То есть T1=T2. Это пример идеального усилителя.
Принцип усиления
Усилители в электронике в большинстве случаев усиливают именно напряжение. То есть на вход загоняем какой-либо маленький сигнал напряжения, а на выходе мы должны уже получить точную копию сигнала, но бОльшего напряжения. Но как это сделать с практической точки зрения?
А почему бы нам не использовать делитель напряжения, у которого один резистор будет постоянным, а другой – переменным:
Что будет, если мы на переменном резисторе будем менять сопротивление? Правильно! Будем меняться напряжение на выходе U. А теперь представьте, что мы не ручками меняли бы сопротивление, а за нас это бы делало напряжение? Чем больше меняем напряжение, тем больше меняется сопротивление. То есть сопротивление переменного резистора менялось бы прямо пропорционально напряжению. Было бы круто, так ведь?
Помните, как в одной из статей мы сравнивали транзистор с краником? Открываем чуток – напор воды слабый, открываем больше – сильнее. Открываем полностью – вода бежит полным потоком
В биполярном транзисторе происходят похожие процессы. Меняя значение напряжения на базе, а следовательно силу тока в цепи база-эмиттер, мы тем самым меняем сопротивление между коллектором и эмиттером 😉 Следовательно, наша схема из такого вида:
примет вот такой вид
Выглядеть должно все приблизительно так, но не совсем так… и далее вы поймете почему.
Опыт с транзистором
Итак, для того, чтобы все это показать нам понадобится:
1) Генератор частоты. Он у меня китайского происхождения.
2) Двухканальный цифровой осциллограф OWON
3) Блок питания постоянного напряжения
А также мелочевка… Транзистор и резистор. Собираем все это дело вот по такой схеме:
Осциллограммы будем снимать с красной и желтой точек на схеме.
Загоняю на базу сигнал с частотой в 1 КилоГерц и амплитудой в 1 Вольт. Смотрим, что у нас получилось:
На осциллограмме, снятой с желтой точки, мы видим только шумы.
Ладно, ставлю амплитуду в 2 Вольта:
Ничего не изменилось…
И только тогда, когда уже амплитуда стала больше, чем 2 Вольта, на желтой осциллограмме появился уже какой-то периодический сигнал
С увеличением амплитуды его импульсы просто стали шире.
Итак, теперь обо все по порядку:
Первый косяк этой схемы в том, что мы не учли напряжение для открытия транзистора. Оно, как вы помните, составляет 0,6-0,7 Вольт.
Режимы работы транзистора
Второй косяк. Для того, чтобы транзистор усиливал, мы его должны вогнать в активный режим. Это промежуточный режим между режимом насыщения и режимом отсечки транзистора.
Режим отсечки – это когда транзистор полностью закрытый, то есть нет напряжения смещения на базе-эмиттере 0,6-0,7. Вольт. В этом случае у нас сопротивление между коллектором и эмиттером очень большое.
Режим насыщения – это когда транзистор полностью открытый. В этом режиме смещение на базе-эмиттере более, чем 0,6-0,7 Вольт и сопротивление между коллектором и эмиттером равняется почти нулю.
В режиме отсечки и насыщения работает транзисторный ключ.
В активном режиме напряжение смещения более, чем 0,6-0,7 Вольт, но у нас сопротивление между коллектором и эмиттером не равняется ни нулю, ни бесконечности. В этом режиме мы можем регулировать сопротивление с помощью силы тока, проходящего между базой и эмиттером. А чтобы регулировать эту силу тока , мы можем подавать большее или меньшее напряжение на базу.
Если все объяснить заумной фразой получается так: небольшое изменение силы тока в цепи базы-эмиттер приводит к пропорциональному изменению силы тока в цепи коллектор-эмиттер. Коэффициент, показывающий, во сколько раз увеличивается сила тока коллектор-эмиттер от силы тока базы-эмиттер называется коэффициентом усиления по току в схеме с ОЭ. Этот коэффициент часто называют h21э или просто β.
Думаю, большинство из вас сидело за рулем авто. Может быть, вы когда-нибудь даже пользовались педалью газа)
Допустим, мы поставили первую скорость и решили проехаться по трассе. Топим педаль в пол и едем на всей первой скорости, не переключая коробку скоростей. По аналогии с транзистором – это и есть режим насыщения.
Вообще убираем ногу от педали – машина встает колом. Это режим отсечки (о понятии отсечки в самом авто мы с вами сейчас не говорим). В этом режиме мы вообще не касаемся педали.
Ну а в активном режиме мы нажимаем педаль с такой силой, которая нам нужна 😉 В этом режиме мы сами регулируем скорость. Хотим – едем быстрее, а хотим медленнее 😉 То есть мы управляем автомобилем между режимами отсечки и насыщения. Именно в этом режиме работает транзистор в режиме усиления сигналов.
Недостатки усилителя на транзисторе
Честно говоря, усилитель на биполярном транзисторе – тот еще геморрой.
Во-первых, он управляется силой тока, а не напряжением.
Во-вторых, мы должны обязательно предусмотреть напряжение смещения.
В-третьих, схема каскада усилителя на биполярном транзисторе получается довольно таки громоздкая
В-четвертых, даже тогда, когда мы не подаем сигнал на такой транзисторный каскад, то схема все равно жрет ток.
Как тогда должны выглядеть схема, чтобы мы могли из слабого сигнала получать усиленную копию?
Основные схемы включения транзистора
Итак, существуют три основные схемы соединения биполярного транзистора:
– с Общей Базой (ОБ)
Эта схема усиливает по напряжению. Схема с общей базой используется редко.
– с Общим Эмиттером (ОЭ)
Эта схема усиливает и по напряжению, и по току, и на практике используется наиболее часто.
– с Общим Коллектором (ОК)
Эта схема усиливает по току. Ее часто называют эмиттерный повторитель.
Здесь все просто: какой вывод является общим для входного и выходного сигнала, такая значит и схема включения транзистора.
Обозначение напряжений выводов транзистора
А теперь давайте поговорим об условностях, которые применяются в схемотехническом жаргоне транзистора.
Итак, если вы слышите, что напряжение на базе равно 1 Вольт, то это означает, что это напряжение между базой и общим проводником. На общий в основном садят “минус” и обозначается общий проводник вот таким значком:
Например, UБ (напряжение на базе) транзистора VT1 замеряется как-то вот так:
Напряжение между выводами обозначается двумя индексами, например, напряжение между базой и эмиттером обозначается как UБЭ . Также на схемах часто можно увидеть обозначения типа UКК (в буржуйском варианте VCC ) – это напряжение питания коллектора, обычно положительное. Также есть и UЭЭ (в буржуйском варианте VEE) – напряжение питания эмиттера, обычно отрицательное. Короче говоря, это в основном напряжение питания схемы.
Также имейте ввиду, что каждый транзистор характеризуется основными максимальными параметрами такими как:
1) Iк – ток коллектора
2) UКЭ – напряжение между коллектором и эмиттером
3) P – мощность, которая рассеивается на транзисторе. Р = IК UКЭ
4) UБЭ – напряжение между базой и эмиттером
Attention!
Превышение какого-либо параметра из списка выше приведет к неминуемой гибели транзистора!
Принцип работы транзистора
Для того, чтобы понять принцип работы транзистора, давайте рассмотрим вот такое фото:
Условимся считать, что это самая простая модель транзистора. Направление потока воды – это направление электрического тока. Пусть у нашего “транзистора” будет проводимость N-P-N, то есть он будет выглядеть вот так:
С помощью краника (Базы) мы уменьшаем или увеличиваем скорость потока воды через трубу. В нашем случае вода бежит с жёлтой трубы к чёрной трубе, или по аналогии с транзистором: от коллектора к эмиттеру, потому что стрелочка эмиттера показывает направление электрического тока.
Итак, в таком положении краник полностью закрыт, следовательно поток воды не проходит через трубу:
А вот так краник полностью открыт и поток воды бежит на полной мощности через трубу:
Краник открыли, вода через трубу побежала на полной мощности:
Краник закрыли, вода не бежит:
С помощью одного только пальчика, я включал и выключал ОГРОМНЫЙ поток воды, который бы мог смыть все какашки на вашей тельняшке). То есть поток воды из трубы обладает огромнейшей силой, по сравнению с силой пальчика, которую я прикладывал к рыжачку краника.
Транзистор работает аналогичным образом! Прикладывая небольшое напряжение к базе, я могу управлять огромнейшим током проходящим через коллектор и эмиттер. В данном случае я показал только два положения, краник полностью включен, или краник полностью выключен. Режим, при котором я включал и отключал краник до упора, в транзисторе называется “ключевым режимом”. Не от слова “ключевой” – типа главный, важный, а от слова “ключ”. А что у нас делает ключ? Что-то отпирает и закрывает, да хотя бы те же самые двери или бабушкин комод.
Режим, когда я ЗАКРЫВАЛ краник полностью, называется в транзисторе закрытый или в простонародье “зАпертый”. В этом случае на базу ток не идет и транзистор не пропускает электрический ток между коллектором и эмиттером.
Режим, когда я полностью ОТКРЫВАЛ краник, называется в транзисторе режимом “насыщения”. В этом случае через эмиттер и коллектор ток бежит по полной. Хочу сказать, что дальнейшее открывание краника бессмысленно, так как от этого ток не увеличится между коллектором и эмиттером, то есть нет резона подавать еще большее напряжение на базу, если транзистор уже работает в режиме насыщения.
Опыты на практике
Ну что же, надо теперь все это дело проверить на реальном транзисторе. У нас в гостях всеми вами любимый транзистор КТ815Б:
Его проводимость N-P-N, то есть он выглядит вот так:
Мы с вами разобрали, что краник – это база, а большой поток воды должен течь с коллектора на эмиттер. Направление стрелки на эмиттере показывает направление движения электрического тока.
В транзисторе все то же самое. Давайте используем его в деле. Для этого собираем вот такую схемку:
Ну что, вроде бы все элементарно и просто. Есть батарея, есть лампочка. Электрический ток должен бежать от “плюса” к “минусу” и лампа должна гореть. Собираем схему в реале. Щупы-крокодилы идут от Блока питания. Красный – плюс, черный – минус. Напряжение на них около 13,5 Вольт, лампа на такое же напряжение. Лампа не горит… В чем же дело?
Помните эту картинку?
Елки-палки, нам базу-то надо “повернуть” так, чтобы электрический ток мог бежать от коллектора к эмиттеру! Но как “повернуть” базу? Да все просто! Для этого нам надо всего-то подать на нее напряжение ;-).
Теперь наша схема будет выглядеть вот так:
Собираем схему. Крокодилы с синими проводами идут от блока питания Bat1.
Но теперь вопрос. Какое минимальное напряжение должно быть на Bat1, чтобы “краник открылся”?
Помните мы с вами разбирали статью, что на PN переходе у кремниевых транзисторов (а у нас как раз кремниевый) “падает” напряжение где-то 0,5-0,7 В? Кто не помнит, читаем эту статью. А давайте выставим на Bat1 где-то 0,5 В.
Нет… не канает.
Кручу крутилку и выставляю 0,6 Вольт и вуаля! В простонародье говорят, что транзистор “открылся”.
Отсюда делаем вывод: для того, чтобы через коллектор-эмиттер побежал электрический ток, мы должны на базу подать напряжение более чем 0,5-0,7 В, то есть больше падения напряжения на PN переходе.
Но как много мы можем подать напряжения в базу? Давайте крутанем крутилку на уровень 0,7 В.
При 0,7 В базовый ток составляет уже 20 мА.
Давайте еще чуток добавим:
При 0,8 В уже 140 мА.
А при 0,9 Вольтах:
чуть меньше пол-Ампера! Дальнейшее увеличение напряжения может привести … к полному выходу транзистора из строя.
Максимальные параметры транзистора
Каждый транзистор характеризуется основными максимальными параметрами такими как:
1) Iк – ток коллектора
2) UКЭ – напряжение между коллектором и эмиттером
3) P – мощность, которая рассеивается на транзисторе. Р = IКЭ х UКЭ
4) UБЭ – напряжение между базой и эмиттером
Более подробно про них можно прочитать здесь.
Если глянуть в даташит, то можно узнать, что максимальный допустимый ток коллектора транзистора КТ815Б составляет 1,5 А. Но как же теперь быть? Наша аппаратура ведь не может работать с такими маленькими допусками напряжения? А что если вдруг случись, напряжение на базе скаканет на 0,3 В? Транзистору сразу придет жопа… Поэтому, чтобы такого не случилось, в базу транзистора ставят токоограничительный резистор. Резистора на 500 Ом вполне хватит, чтобы транзистор был “открытым” от 1 В и до 40 В (ну это в данном опыте). Все, конечно же, зависит от токоограничительного резистора и самого транзистора.
В основном токоограничительный резистор высчитывают по формулам или на практике.
Итак, сколько у нас потребляет транзистор в открытом состоянии?
P = IU
0,7 В х 20 х 10-3 А = 14 мВт.
А коммутирует нагрузку мощностью 13,5 х 115 х 10-3 = 1,55 Вт
То есть 14 милливатт управляют 1,55 Ваттами. Это получилось почти в 110 раз больше. В этом одна из “фишек” транзистора 😉
www.ruselectronic.com
Как проверить транзистор мультиметром | Для дома, для семьи
Здравствуйте уважаемые читатели сайта sesaga.ru. Сегодня хочу рассказать, как проверить исправность транзистора обычным мультиметром. Хотя для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h31э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.
Мы знаем, что транзистор имеет два p-n перехода, причем каждый переход можно представить в виде диода (полупроводника). Поэтому можно утверждать, что транзистор — это два диода включенных встречно, а точка их соединения будет являться «базой».
Отсюда получается, что один диод образован выводами, например, базы и коллектора, а другой диод выводами базы
Начнем с транзисторов структуры (проводимость) p-n-p. На принципиальных схемах структура транзисторов обозначается стрелкой эмиттерного перехода. Если стрелка направлена к базе, значит это структура p-n-p, а если от базы, значит это транзистор структуры n-p-n. Смотрите рисунок выше.
Так вот, чтобы открыть p-n-p транзистор, на вывод базы подается отрицательное напряжение (минус). Мультиметр переводим в режим измерения сопротивлений на предел «2000», можно в режиме «прозвонка» — не критично.
Минусовым щупом (черного цвета) садимся на вывод базы, а плюсовым (красного цвета) поочередно касаемся выводов коллектора и эмиттера — так называемые коллекторный и эмиттерный переходы. Если переходы целы, то их прямое сопротивление
будет находиться в пределах 500 – 1200 Ом.Теперь проверяем обратное сопротивление коллекторного и эмиттерного переходов.
Плюсовым щупом садимся на вывод базы, а минусовым касаемся выводов коллектора и эмиттера. На этот раз мультиметр должен показать большое сопротивление на обоих p-n переходах.
В данном случае на индикаторе высветилась «1», означающая, что для предела измерения «2000» величина сопротивления велика, и составляет более 2000 Ом. А это говорит о том, что коллекторный и эмиттерный переходы целы, а значит, наш транзистор исправен.
Таким способом можно проверять исправность транзистора и на печатной плате, не выпаивая его из схемы.
Конечно, встречаются схемы, где p-n переходы транзистора сильно зашунтированы низкоомными резисторами. Но это редкость. Если при измерении будет видно, что прямое и обратное сопротивление коллекторного или эмиттерного переходов слишком мало, тогда придется выпаять вывод базы.
Исправность транзисторов структуры n-p-n проверяется так же, только уже к базе подключается плюсовой щуп мультиметра.
Мы рассмотрели, как проверить исправный транзистор. А как понять, что транзистор неисправный?
Здесь тоже все просто. Если прямое и обратное сопротивление одного из p-n переходов бесконечно велико, т.е. на пределе измерения «2000» и выше мультиметр показывает «1», значит, этот переход находится в обрыве, и транзистор однозначно неисправен.
Вторая распространенная неисправность транзистора – это когда прямое и обратное сопротивления одного из p-n переходов равны нулю или около того. Это говорит о том, что переход пробит, и транзистор не годен.
И тут уважаемый читатель Вы меня спросите: — А где у этого транзистора находится база, коллектор и эмиттер. Я его вообще в первый раз вижу. И будете правы. А ведь действительно, где они? Как их определить? Значит, будем искать.
В первую очередь, нужно определить вывод базы.
Плюсовым щупом мультиметра садимся, например, на левый вывод транзистора, а минусовым касаемся среднего и правого выводов. При этом смотрим, какую величину сопротивления показывает мультиметр.
Между левым и средним выводами величина сопротивления составила «1», а между левым и правым мультиметр показал 816 Ом. На данном этапе это нам ничего не говорит. Идем дальше.
Плюсовым щупом садимся на средний вывод, а минусовым касаемся левого и правого.
Здесь результат измерения получился почти таким же, как и на рисунке выше. Между средним и левым величина сопротивления составила «1», а между средним и правым получилось 807 Ом. Тут опять ничего не ясно, поэтому идем дальше.
Теперь садимся плюсовым щупом на правый вывод, а минусовым касаемся среднего и левого выводов транзистора.
На рисунке видно, что величина сопротивления между правым-средним и правым-левым выводами одинаковая и составила бесконечность. То есть получается, что мы нашли и измерили обратное сопротивление обоих p-n переходов транзистора. В принципе, уже можно смело утверждать, что вывод базы найден. Он оказался правым. Но нам еще надо определить, где у транзистора коллектор и эмиттер. Для этого измеряем прямое сопротивление переходов. Минусовым щупом садимся на вывод базы, а плюсовым касаемся среднего и левого выводов.
Величина сопротивления на левой ножке транзистора составила 816 Ом – это эмиттер, а на средней 807 Ом – это коллектор.
Запомните! Величина сопротивления коллекторного перехода всегда будет меньше по отношению к эмиттерному. Т.е. вывод коллектора будет там, где сопротивление p-n перехода меньше, а эмиттера, где сопротивление p-n перехода больше.
Отсюда делаем вывод:
1. Транзистор структуры p-n-p;
2. Вывод базы находится с правой стороны;
3. Вывод коллектора в середине;
4. Вывод эмиттера – слева.
А если у Вас остались вопросы, то можно дополнительно посмотреть мой видеоролик о проверке обычных транзисторов мультиметром.
Ну и напоследок надо сказать, что транзисторы бывают малой, средней мощности и мощные. Так вот, у транзисторов средней мощности и мощных, вывод коллектора напрямую связан с корпусом и находится в середине между базой и эмиттером. Такие транзисторы устанавливаются на специальные радиаторы, предназначенные для отвода тепла от корпуса транзистора.
Зная расположение коллектора, базу и эмиттер определить будет легко.
sesaga.ru
1.Описание основных элементов цепи
Биполярный транзистор.
Биполярный транзистор – электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного(полевого) транзистора, в работе которого участвует только один тип носителей заряда.
Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока – основной “большой” ток, и управляющий “маленький” ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.
Устройство биполярного транзистора.
Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.
У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер
Работа биполярного транзистора.
Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.
Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы – дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.
Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.
Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE – 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет “дотянуться” своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.
В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.
В итоге мы получаем два тока: маленький – от базы к эмиттеру IBE, и большой – от коллектора к эмиттеру ICE.
Если увеличить напряжение на базе, то в прослойке P собереться еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом,при небольшом изменении тока базы IB, сильно меняеться ток коллектора IС. Так и происходитусиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IBназывается коэффициентом усиления по току. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзистором.
β = IC / IB
Простейший усилитель на биполярном транзисторе
Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.
Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.
2. Расчет входного тока базы Ib
Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно – Ibmax и Ibmin.
Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить – около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).
Посчитаем Ibmax и Ibmin с помощью закона Ома:
2. Расчет выходного тока коллектора iс
Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).
3. Расчет выходного напряжения Vout
Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи – это напряжение на коллекторе VC.
Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:
4. Анализ результатов
Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз – далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.
Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.
Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.
Режимы работы биполярного транзистора
В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:
Режим отсечки (cut off mode).
Активный режим (active mode).
Режим насыщения (saturation mode).
Инверсный ражим (reverse mode ).
Режим отсечки
Когда напряжение база-эмиттер ниже, чем 0.6V – 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.
Активный режим
В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.
Режим насыщения
Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.
В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».
Инверсный режим
В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.
Основные параметры биполярного транзистора.
Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначаетсяβ, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзисторов.
β – величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий – в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.
Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше – тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.
Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).
Выходная проводимость – проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.
Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).
Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.
studfile.net
Эквивалентная схема биполярного транзистора
Итак, как же нам распознать биполярный транзистор среди кучи радиоэлементов, имеющих схожий корпус? Давайте рассмотрим еще раз его внутреннюю структуру. Для транзистора прямой проводимости она будет выглядеть так:
а для транзистора обратной проводимости вот так:
А знаете что? Давайте-ка резанём серединный слой пополам… Предположим, мы взяли тонкий-тонкий ножик и разделили полупроводник базы на две части.
Итак, рисуночки у нас становятся такими:
для транзистора прямой проводимости
для транзистора обратной проводимости
Вот этот или вот этот участок транзистора вам ничего не напоминает?
Едрить-колотить! Так ведь это же диод!
Так что тогда получается? Что транзистор тупо состоит из двух диодов??? Грубо говоря, дорогие читатели, так оно и есть ;-).
Значит, схематически мы можем транзистор нарисовать как два диода. Итак, что у нас тогда получиться? Для транзистора прямой проводимости:
схема будет выглядеть вот так:
а для транзистора обратной проводимости
вот так:
Все элементарно и просто, господа! Итак, мы с вами узнали, что схематически транзистор можно заменить как два диода, которые соединены катодами или анодами. А проверять диоды мы с вами умеем без проблем, не так ли? Кто подзабыл, читаем статью как проверить диод мультиметром.
Приступаем к “практической электронике” 😉
У нас имеются два транзистора. Стоп! А с чего мы взяли что это вообще транзисторы?
Внимательно смотрим на них и видим какие то буквы и цифры. КТ815Б и КТ814Б. Блин, снизу еще какие-то цифры. Во дела! Ладно, ничего страшного. Для этого открываем яндекс или гугл и вбиваем первую строчку названия транзистора. Получается вбиваем “КТ815Б” и рядышком пишем незамысловатое слово “даташит” или на буржуйский манер “datasheet”. Качаем документацию на этот радиоэлемент и узнаем что это такое и что он из себя представляет. А вот я и даташит на него нашел ——> вот он. Теперь я знаю, что это транзистор N-P-N структуры, а также знаю расположение его выводов 😉 И еще знаю, что вам лень его качать, поэтому вот вам скрины:
Вон сколько сразу можно узнать!
А вот и вторая страничка даташита:
Здесь мы видим уже тот же самый транзистор, но в другом корпусе. У нас же на фото транзистор в корпусе КТ-27. Видите цифры на выводах транзистора? Смотрим в табличку и узнаем где какой вывод ;-). Значит на фото у нас выводы идут таким образом:
Теперь рассмотрим другой транзистор:
Из даташита транзистора КТ815Б мы узнали, что у него есть комплиментарная пара: транзистор КТ814
Комплиментарная пара для кого-либо транзистора – это транзистор точно с такими же характеристиками и параметрами, НО у него просто-напросто другая проводимость. Это значит, что транзистор КТ815 у нас обратной проводимости, то есть N-P-N, а КТ814 прямой проводимости, то есть P-N-P 😉 Справедливо также и обратное: для транзистора КТ814 комплиментарной парой является транзистор КТ815 ! Короче говоря, зеркальные братья-близнецы. Также самой популярной комплиментарной парой транзисторов в Советском Союзе были транзисторы КТ315 и КТ361.
Обратите внимание на даташит транзистора КТ814:
Берем наш знаменитый мультиметр, цепляем щупы-крокодилы и ставим на значок “прозвонка”
Будем проверять транзистор КТ815. Так как он структуры N-P-N, следовательно, его можно схемотехнически заменить вот на такую диодную схему:
Вспоминаем распиновку нашего транзистора:
Как мы помним, диод пропускает постоянный ток только в одном направлении. Проверяем первый диод транзистора. Для этого ставим на базу плюс, на эмиттер минус:
Видим падение напряжения при прямом включении на P-N переходе в милливольтах.
Меняем щупы местами. То есть на базу подаем минус, а на эмиттер – плюс:
Единичка, значит первый диод транзистора исправен.
Проверяем второй диод транзистора. Ставим на базу плюс, а на коллектор – минус:
Видим падение напряжения на P-N переходе. Все гуд.
Меняем щупы местами:
Мультик показывает единичку. Все ОК. Второй диод тоже в полном здравии. Значит транзистор в полной боевой готовности!
Ну что, теперь проверим комплиментарный транзистор – КТ814 ;-).Его диодная схема будет выглядеть уже по другому, так как он у нас прямой проводимости:
Здесь так же проверяем два диода. Для этого ставим минус на базу, а на эмиттер – плюс:
Ишь ты какое число). Падение напряжения на PN-переходе. Все ОК.
Меняем так же местами щупы:
Единичка – все ОК.
Проверяем второй диод транзистора точно так же. Для этого на базу также ставим минус, а на коллектор – плюс:
Опять видим падение напряжения при прямом включении на PN-переходе.
Меняем щупы местами:
Единичка – гуд!
КТ814 у нас тоже полностью жив и здоров! Все те же самые операции я ещё описал в статье Как проверить биполярный транзистор мультиметром.
Но постойте-ка… Так что же это получается? Соединив простые диоды, как на рисунках выше, мы можем получить транзистор? А вот кукиш! 🙂 Весь прикол заключается в том, что в транзисторах оба P-N перехода расположены очень близко к друг другу, поэтому между ними возникает взаимодействие. Взаимодействие эти двух P-N переходов называют транзисторным эффектом. Именно поэтому биполярный транзистор обладает усилительными свойствами.
Итак, сделаем глубокомысленные выводы.
Транзистор схематически можно заменить двумя диодами, но если спаять два диода и “сделать” из них транзистора, то ничего не получится. Почему? Читаем здесь. Для того, чтобы узнать, живой ли у нас транзистор и можно ли его паять в схему, достаточно проверить целостность этих двух диодов. Ну и для определения эмиттера, базы и коллектора надо скачать даташит на исследуемый транзистор или копаться в бумажных справочниках (с появлением интернета, не помню, когда в последний раз открывал справочник).
P.S. Во я удод! Слово “эмиттер” пишется не с двумя “мм” , а с двумя “тт”. Косяк за мной… Рисунки переправлять лень).
Продолжение——->
<——-Предыдущая статья
www.ruselectronic.com
PNP и NPN транзисторы | Практическая электроника
PNP и NPN транзисторы – это два вида биполярных транзисторов, которые имеют разную проводимость. О них мы как раз и поговорим в этой статье.
Из прошлой статьи мы с вами узнали что такое P-N переход и какими свойствами он обладает. Как вы помните, P-N переход пропускает электрический ток только в одном направлении. В другом направлении блокирует прохождение электрического тока.
История возникновения
На дворе стоял послевоенный 1947 год. Декабрь. Холодно, голодно, жутко… Но только не в лаборатории Bell Labs! Трое ученых: Джон Бардин, Уильям Шокли и Уолтер Браттейн, бились над радиоэлементом, который перевернул весь мир с ног на голову! 16 декабря 1947 года можно назвать днем второго рождения электроники! Да, черт побери! В этот день впервые миру был продемонстрирован биполярный транзистор.
Именно биполярный транзистор сотворил революцию в электронике. Обладая усилительными свойствами (мы об этом еще с вами поговорим), он заменил собой электронные лампы, что сделало электронику намного надежнее, мобильнее и компактнее. Без такого изобретения, как транзистор, мы с вами до сих пор бы жили без компьютеров, мобильных телефонов, планшетов и другой различной электронной мелочевки.
Внутреннее строение биполярных транзисторов
Помните, о чем мы беседовали в прошлых статьях? Да-да, о полупроводниках P и N типа, а также об их совместном воздействии, и в итоге у нас получался радиоэлемент диод.
А почему бы нам не добавить еще один полупроводник с такой же проводимостью, как слева? Сказано – сделано! Ну что же, прошу любить и жаловать! Получился БИПОЛЯРНЫЙ ТРАНЗИСТОР!
Если читать слева-направо или справа-налево, из каких полупроводников он состоит, то можно узнать какой он проводимости. Значит, транзистор на рисуночке выше у нас проводимости P-N-P, или, как у нас говорят, прямой проводимости.
А вот у этого транзистора проводимость N-P-N или обратная проводимость.
Проводочек со среднего полупроводникового материала называется базой, ну а по краям эмиттер и коллектор. Откуда такие названия? Так как транзистор придумали англомены, то и названия они дали соответствующие:
Эмиттер – на буржуйском Emitter – источник, излучатель, генератор. То есть вывод, на который что-то подается. В данном случае электрический ток.
База – Base – основа. Короче, самый главный вывод. Работу базы мы разберем в следующих статьях.
Коллектор – Collector – сборщик, собиратель, токоприемник. Он типа как “собирает” электрический ток.
Ну что, тяжко? )) Как же на схемах обозначаются биполярные транзисторы? Мы разобрали, что существуют транзисторы прямой и обратной проводимости, значит и на схемах они будут обозначатся совсем по-другому.
Схемотехническое обозначение P-N-P транзистора, то есть транзистора прямой проводимости
будет выглядеть вот так:
А схемотехническое обозначение транзистора обратной проводимости или N-P-N транзистора
будет выглядеть вот так:
В старинных советских схемах транзисторы еще обозначались буквой T, в современных схемах они уже обозначаются буквами VT. Как нетрудно догадаться, вывод со стрелочкой – это эмиттер.
Как не путаться в проводимостях транзистора и в их схемотехнических изображениях? Тут все просто. Как вы помните, в полупроводнике P-типа у нас очень много дырок, а дырки обладают положительным зарядом, то есть они со знаком “плюс”.
Полупроводник N-типа содержит большое количество электронов, а электроны – это отрицательные частицы со знаком “минус”. Как вы помните, электрический ток течет от “плюса” к “минусу”. Стрелка эмиттера показывает направление движения электрического тока ;-). То есть, если у нас база состоит из полупроводника P-типа, то значит ток течет от базы, следовательно, стрелка эмиттера направлена от базы, если же база из N-полупроводника, то стрелка эмиттера направлена в базу. Все просто как трижды три))).
Как же в реале выглядят транзисторы? Уууу…. тут фантазиям разработчиков нет предела. Ниже фоты самых распространенных корпусов транзисторов:
Но! Имейте ввиду! Если вам попался радиоэлемент в таком корпусе – это не обязательно транзистор! Это может быть и тиристор, и диодная сборка или даже стабилизатор напряжен ия, или вообще что угодно. Как же тогда распознать транзистор? Об этом мы с вами поговорим в следующей статье…
Продолжение ——->
<——-Предыдущая статья
www.ruselectronic.com
РадиоКот :: Страшное слово – Транзистор
РадиоКот >Обучалка >Аналоговая техника >Основы электроники >Страшное слово – Транзистор
Современная электроника не смогла бы существовать, если бы не этот элемент! Ведь даже самая навороченная микросхема, где-то в глубине своей силиконовой души состоит из тех же самых транзисторов. Только – очень маленьких.
Транзистор – это усилительный элемент. Он усиливает слабую энергию подаваемого на него сигнала за счет энергии дополнительного источника питания.
Поясняю. Все мы ездили хоть раз на поезде, на электричке или, хотя бы, на трамвае. Когда поезд тормозит, всегда слышно характерное шипение. Это работает пневматический привод тормозов. Иными словами, сжатый воздух идет от бака к тормозам. Тормозные колодки подключены к поршню. Когда на поршень начинает давить сжатый воздух – поршень движется вперед и прижимает колодки плотно к колесу. Поезд тормозит…
А отчего воздух начинает поступать на поршень? Вероятно, так хочет машинист. Он открывает у себя в кабине вентиль, и воздух идет. Все до неприличия просто!
Небольшая поясняющая картинка:
Теперь зададимся вопросом, а смог бы машинист остановить поезд, если бы тормозной рычаг был непосредственно связан с тормозными колодками? Наверно, нет. Каким бы качком он не был, остановить поезд человеку не под силу. А сжатый воздух делает это запросто, достаточно лишь открыть вентиль.
Посмотрим, что получилось: машинист тратит маленькую энергию на то, чтоб нажать тормозной рычаг. Открывается клапан, и мощный поток сжатого воздуха, с много большей энергией, прижимает тормозные колодки. То есть, клапан можно назвать усилительным элементом, который усиливает слабую энергию, затрачиваемую человеком за счет сильной энергии сжатого воздуха.
Смею Вас заверить, в транзисторе все абсолютно так же. Только через него проходит не сжатый воздух, а электрический ток. У транзистора три вывода: коллектор, эмиттер и база.
Между коллектором и эмиттером течет сильный ток, он называется коллекторный ток (Iк), между базой и эмиттером – слабый управляющий ток базы (Iб). Величина коллекторного тока зависит от величины тока базы, так же как и напор сжатого воздуха зависит от того, насколько открыт клапан. Причем, коллекторый ток всегда больше тока базы в определенное количество раз. Эта величина называется коэффициент усиления по току, обозначается h31э. У различных типов транзисторов это значение колеблется от единиц до сотен раз.
Итак, коэффициент усиления по току – это отношение коллекторного тока к току базы:
h31э = Iк / Iб
Для того, чтобы вычислить коллекторный ток, нужно умножить ток базы на коэффициент усиления:
Iк = Iб * h31э
Рисуем схему.
В этой схеме транзистор управляет яркостью свечения лампочки. Иными словами, он регулирует ток, протекающий через лампочку. Поскольку лампочка подключена к коллектору транзистора, то и ток, текущий через нее является током коллектора.
Управляющий ток базы ограничивается резистором R1. Зная этот ток и коэффициент усиления транзистора (h31э), можно легко узнать ток коллектора. С другой стороны, зная, какой нам нужен ток коллектора, мы всегда можем вычислить ток базы и подобрать соответствующий резистор.
Немножко посчитаем 🙂
.
Пусть наша лампочка кушает ток 0,33 А,
а транзистор имеет h31э = 100.
Какой нужен ток базы, чтобы лампочка горела в полный накал?
И каким при этом будет сопротивление R1?
Полный накал – это когда ток потребления равен номинальному.
Номинальный – 0,33 А. Таким образом, необходимый ток коллектора – 0,33 А.
Ток базы должен быть меньше коллекторного в h31э раз. То есть – в 100 раз. То есть, он должен быть равен 0,33/100 = 0,0033А = 3,3 мА.
Ура, решили!!!
Теперь осталось вычислить сопротивление резистора в цепи базы. Вычисляем (по закону Ома):
R = U/I
U – нам известно – это напряжение питания, 9В
I – только что нашли – 0,0033 А
Арифметика, 2 класс: R = 9/0,0033 = 2700 Ом = 2,7 кОм.
Ответ: сопротивление резистора = 2,7 кОм
Просто? Еще бы! Но – не обольщайтесь. Дальше – хуже! =)
В следующих нескольких параграфах мы поговорим о вещах, отвлеченных от транзистора. Но после этого, обязательно к нему вернемся, уже с новыми интересными знаниями. И сможем уже более широко использовать этот элемент.
<<–Вспомним пройденное—-Поехали дальше–>>
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
Поймем вместе принципы работы транзистора :: SYL.ru
Транзисторы являются активными компонентами и используются повсеместно в электронных цепях в качестве усилителей и коммутационных устройств (транзисторных ключей). Как усилительные приборы они применяются в приборах высокой и низкой частоты, генераторах сигналов, модуляторах, детекторах и многих других цепях. В цифровых схемах, в импульсных блоках питания и управляемых электроприводах они служат в качестве ключей.
Биполярные транзисторы
Так называется наиболее распространенный тип транзистора. Они делятся на npn и pnp типы. Материалом для них наиболее часто является кремний или германий. Поначалу транзисторы делались из германия, но они были очень чувствительны к температуре. Кремниевые приборы гораздо более стойки к ее колебаниям и дешевле в производстве.
Различные биполярные транзисторы показаны на фото ниже.
Маломощные приборы расположены в небольших пластиковых прямоугольных или металлический цилиндрических корпусах. Они имеют три вывода: для базы (Б), эмиттер (Э) и коллектор (К). Каждый из них подключен к одному из трех слоев кремния с проводимостью либо n- (ток образуют свободные электроны), либо p-типа (ток образуют так называемые положительно заряженные «дырки»), из которых и состоит структура транзистора.Принципы работы транзистора нужно изучать, начиная с его устройства. Рассмотрим структуру npn-транзистора, которая изображена на рис.ниже.
Как видим, он содержит три слоя: два с проводимостью n-типа и один – p-типа. Тип проводимости слоев определяется степенью легирования специальными примесями различных частей кремниевого кристалла. Эмиттер n-типа очень сильно легирован, чтобы получить множество свободных электронов как основных носителей тока. Очень тонкая база p-типа слегка легирована примесями и имеет высокое сопротивление, а коллектор n- типа очень сильно легирован, чтобы придать ему низкое сопротивление.
Принципы работы транзистора
Лучшим способом познакомиться с ними является экспериментальный путь. Ниже приведена схема простой цепи.
Она использует силовой транзистор для управления свечением лампочки. Вам также понадобится батарейка, небольшаю лампочка от фонарика примерно 4,5 В/0,3 А, потенциометр в виде переменного резистора (5К) и резистор 470 Ом. Эти компоненты должны быть соединены, как показано на рисунке справа от схемы.Поверните движок потенциометра в крайнее нижнее положение. Это понизит напряжение на базе (между базой и землёй) до нуля вольт (UBE = 0). Лампа не светится, что означает отсутствие тока через транзистор.
Если теперь поворачивать рукоятку от ее нижней позиции, то UBE постепенно увеличивается. Когда оно достигает 0,6 В, ток начинает втекать в базу транзистора, и лампа начинает светиться. Когда рукоятка сдвигается дальше, напряжение UBE остается на уровне 0,6 В, но ток базы увеличивается и это увеличивает ток через цепь коллектор-эмиттер. Если рукоятка сдвинута в верхнее положение, напряжение на базе будет немного увеличено до 0,75 В, но ток значительно возрастет и лампа будет светиться ярко.
А если измерить токи транзистора?
Если мы включим амперметр между коллектором (C) и лампой (для измерения IC), другой амперметр между базой (B) и потенциометром (для измерения IB), а также вольтметр между общим проводом и базой и повторим весь эксперимент, мы сможем получить некоторые интересные данные. Когда рукоятка потенциометра находится в его низшей позиции, UBE равно 0 В, также как и токи IC и IB. Когда рукоятку сдвигают, эти значения растут до тех пор, пока лампочка не начинает светиться, когда они равны: UBE = 0.6 В, IB = 0,8 мА и IC = 36 мА.
В итоге мы получаем от этого эксперимента следующие принципы работы транзистора: при отсутствии положительного (для npn-типа) напряжения смещения на базе токи через его выводы равны нулю, а при наличии напряжения и тока базы их изменения влияют на ток в цепи коллектор – эмиттер.
Что происходит при включении питания транзистора
Во время нормальной работы, напряжение, приложенное к переходу база-эмиттер, распределяется так, что потенциал базы (p-типа) приблизительно на 0,6 В выше, чем у эмиттера (n-типа). При этом к данному переходу приложено прямое напряжение, он смещен в прямом направлении и открыт для протекания тока из базы в эмиттер.
Гораздо более высокое напряжение приложено к переходу база-коллектор, причем потенциал коллектора (n-типа) оказывается более высоким, чем у базы (p-типа). Так что к переходу приложено обратное напряжение и он смещен в обратном направлении. Это приводит к образованию довольно толстого обедненного электронами слоя в коллекторе вблизи базы, когда к транзистору прикладывается напряжение питания. В результате ток через цепь коллектор-эмиттер не проходит. Распределение зарядов в зонах переходов npn-транзистора показан на рисунке ниже.
Какова роль тока базы?
Как же заставить работать наш электронный прибор? Принцип действия транзистора заключается во влиянии тока базы на состояние закрытого перехода база-коллектор. Когда переход база-эмиттер смещен в прямом направлении, небольшой ток будет поступать в базу. Здесь его носителями являются положительно заряженные дырки. Они комбинируются с электронами, поступающими из эмиттера, обеспечивая ток IBE. Однако вследствие того, что эмиттер очень сильно легирован, гораздо больше электронов поступает из него в базу, чем способно соединиться с дырками. Это означает, что возникает большая концентрация электронов в базе, и большинство из них пересекает ее и попадает в обедненный электронами слой коллектора. Здесь они попадают под влияние сильного электрического поля, приложенного к переходу база-коллектор, проходят через обедненный электронами слой и основной объем коллектора к его выводу.
Изменения тока, втекающего в базу, влияют на количество привлеченных от эмиттера электронов. Таким образом, принципы работы транзистора могут быть дополнены следующим утверждением: очень небольшие изменения в базовом токе вызывают очень большие изменения в токе, протекающем от эмиттера к коллектору, т.е. происходит усиление тока.
Типы полевых транзисторов
По английски они обозначаются FETs – Field Effect Transistors, что можно перевести как «транзисторы с полевым эффектом». Хотя есть много путаницы в названиях для них, но встречаются в основном два основных их типа:
1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.
2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.
Внешне они очень похожи на биполярные, что подтверждает фото ниже.
Устройство полевого транзистора
Все полевые транзисторы могут быть названы УНИПОЛЯРНЫМИ приборами, потому что носители заряда, которые образуют ток через них, относятся к единственному для данного транзистора типу – либо электроны, либо «дырки», но не оба одновременно. Это отличает принцип работы транзистора полевого от биполярного, в котором ток образуется одновременно обоими этими типами носителей.
Носители тока протекают в полевых транзисторах с управляющим pn-переходом по слою кремния без pn-переходов, называемому каналом, с проводимостью либо n-, либо p-типа между двумя выводами, именуемыми «истоком» и «стоком» – аналогами эмиттера и коллектора или, точнее ,катода и анода вакуумного триода. Третий вывод – затвор (аналог сетки триода) – присоединен к слою кремния с другим типом проводимости, чем у канала исток-сток. Структура такого прибора показана на рисунке ниже.
Как же работает полевой транзистор? Принцип работы его заключается в управлении поперечным сечением канала путем приложения напряжения к переходу затвор-канал. Его всегда смещают в обратном направлении, поэтому транзистор практически не потребляет тока по цепи затвора, тогда как биполярному прибору для работы нужен определенный ток базы. При изменении входного напряжения область затвора может расширяться, перекрывая канал исток-сток вплоть до полного его закрытия, управляя таким образом током стока.
www.syl.ru