Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Подключение теплового. Изучение магнитного пускателя с тепловым реле

Схема подключения магнитного пускателя и теплового реле

Магнитным пускателем называют специальную установку, с помощью которой производится дистанционный запуск и управление работой асинхронного электрического двигателя. Данное приспособление характеризуется простотой конструкции, что позволяет произвести подключение мастеру без соответствующего опыта.

Проведение подготовительных работ

Перед подключением теплового реле и магнитного участка необходимо помнить, что вы работаете с электрическим прибором. Именно поэтому, чтобы обезопасить себя от поражения электрическим током, нужно произвести обесточивание участка и проверить его. С этой целью, наиболее часто, используется специальная индикаторная отвертка.

Следующим этапом подготовительных работ является определение величины рабочего напряжения катушки. В зависимости от производителя приспособления увидеть показатели можно на корпусе или на самой катушке.

Важно! Величина рабочего напряжения катушки может быть 220 или 380 Вольт. При наличии первого показателя необходимо знать, что на ее контакты осуществляется подача фазы и ноля. Во втором случае это обозначает о наличии двух разноименных фаз.

Этап правильного определения катушки достаточно важен при подключении магнитного пускателя. В противном случае она может перегореть во время работы устройства.

Для подключения данного оборудования необходимо использовать две кнопки:

Первая из них, может иметь черный или зеленый цвет. Эта кнопка характеризуется постоянно разомкнутыми контактами. Вторая кнопка имеет красный цвет и постоянно замкнутые контакты.

Во время подключения теплового реле необходимо помнить о том, что с помощью силовых контактов производится включение и выключение фаз. Нули, которые подходят и отходят, а также проводники, которые заземляют, между собой необходимо соединять в области клеммника. При этом, в обязательном порядке, пускатель необходимо отходить.

Коммутация этих приспособлений не производится.

Для того чтобы произвести подключение катушки, величина рабочего напряжения которой составляет 220 Вольт, необходимо взять ноль с клеммника и подсоединить его к схеме, которая предназначается для работы пускателя.

Особенности подключения магнитных пускателей

Схема магнитного пускателя характеризуется наличием:

  • трех пар контактов, с помощью которых производится подача питания на электрическое оборудование;
  • Схемы управления, в состав которой входит катушка, дополнительные контакты и кнопки. С помощью дополнительных контактов производится поддержка работоспособности катушки, а также блокировка ошибочных включений.

Внимание. Наиболее часто используют схему, которая требует использования одного пускателя. Это объясняется ее простотой, что позволяет с ней справиться даже малоопытному мастеру.

Для сборки магнитного пускателя требуется использование трехжильного кабеля, который подводится к кнопкам, а также одной пары контактов, которые хорошо разомкнуты.

При использовании катушки в 220 Вольт необходимо произвести подключение проводов красного или черного цветов. При использовании катушки 380 Вольт используется разноименная фаза. Четвертую свободную пару в этой схеме используют как блок контакт. Три пары силовых контактов включаются наряду с этой свободной парой. Расположение всех проводников производится сверху. В том случае, если есть два дополнительных проводника, то их размещают сбоку.

Силовые контакты пускателя характеризуются наличием трех фаз. Для их включения во время нажатия кнопки Пуск, необходимо произвести подачу на катушку напряжения. Это позволит цепи замкнуться. Для размыкания цепи необходимо произвести отключение катушки. Для сборки цепи управления зеленая фаза напрямую подключается к катушке.

Важно. При этом необходимо к кнопке Пуск подключить провод, который идет с контакта катушки. С него также делают перемычку, которая идет к замкнутому контакту кнопки Стоп.

Включение работы магнитного пускателя производится с помощью Пуск, которая смыкает цепь, а отключение – с помощью кнопки Стоп, которая производит расцепление цепи.

Особенности подключения теплового реле

Между магнитным пускателем и электрическим двигателем располагается тепловое реле. Его подключение осуществляется к выходу магнитного пускателя. Через данное приспособление осуществляется прохождение электрического тока. Тепловое реле характеризуется наличием дополнительных контактов. Их необходимо соединить последовательно с катушкой пускателя.


Тепловое реле характеризуется наличием специальных нагревателей, через которые может проходить электрический ток определенной величины. При возникновении опасных ситуаций (возрастание тока выше указанных пределов), благодаря наличию биметаллических контактов, производится разрыв цепи и в последствии отключения пускателя. Для того чтобы запустить работу механизма, необходимо включить биметаллические контакты с помощью кнопки.

Внимание. При подключении теплового реле, необходимо учитывать наличие на нем регулятора тока, который срабатывает в небольших пределах.

Подключение электромагнитного пускателя и теплового реле производится достаточно просто. Для этого необходимо всего лишь придерживаться схемы.

Магнитный пускатель — это электротехнический препарат, предназначенный для дистанционного запуска, поддержания работы, остановки и защиты асинхронного электрического двигателя.

Нередко пускатели применяются и для автоматического (с помощью датчиков света, таймеров и т. п.) или удаленного включения мощных линий освещения, электрообогревателей и т. п.

Для того, что бы разобраться в том, как подключить магнитный пускатель, необходимо вначале узнать как он работает и на какие характеристики стоит обратить внимание при покупке. Повторяться не буду, потому что об этом подробно рассказано в предыдущей статье.

Подключить пускатель своими руками несложно , как это сделать Мы расскажем дальше, но можно поступить проще и купить один пускатель или реверсивный сразу в сборе в металлическом, но лучше в пластиковом корпусе. В нем уже полностью собрана схема и подключены кнопки управления на крышке. Вам только остается подключить кабели электропитания сверху и отходящий кабель к нагрузке.

Подготовительные работы

Перед тем как приступить к сборке схемы подключения необходимо:

Схема подключения магнитного пускателя

Основная схема состоит из 2-ух частей:

  1. Силовых 3 пар контактов , которые подают электропитание на электрооборудование.
  2. Схемы управления , которая состоит из катушки, кнопок и дополнительных контактов, которые участвуют в поддержании работы катушки или блокируют ошибочные включения.

Самая распространенная схема подключения с одним пускателем. Она самая простая с ней самостоятельно справится любой человек. Для ее сборки нам понадобится 3 жильный кабель до кнопок и одна пара нормально разомкнутых контактов в отключенном положении пускателя.

Рассмотрим схему с подключением катушки на 220 вольт , если у Вас на 380 Вольт тогда вместо синего ноля необходимо подключить другую разноименную фазу. В нашем случае черного или красного цвета. В качестве блок контакта будет использоваться четвертая свободная пара, которая включается вместе с тремя парами силовых.

Они все расположены сверху, но могут дополнительные находится и сбоку.

На силовые контакты пускателя с автомата приходят три фазы A, B и C. Для того, что бы при нажатии кнопки «Пуск» они включились, необходимо подать 220 Вольт напряжения на катушку, которая при этом потянет якорь и подвижные контакты сомкнуться с не подвижными. Цепь замкнется, а для того что бы ее разомкнуть понадобится отключить катушку.

Для того чтобы собрать цепь управления необходимо одну фазу, в нашем случае зеленную, подключить сразу напрямую к контакту катушки, а со второго №5- подключаем проводом к контакту №4 пусковой кнопки. Так же со второго контакта катушки пускаем еще один провод (на схеме желтого цвета) через блок контакты на другой парный разомкнутый контакт кнопки «Пуск». С него же делается перемычка (синего цвета) на замкнутый контакт кнопки «Стоп», на второй контакт которой подключается ноль от электропитания.

Принцип работы прост. При нажатии кнопки «Пуск» замыкаются ее контакты и на катушку подается 220 Вольт- она включает основные и дополнительные контакты. Отпускаем кнопку- размыкаем контакты пусковой кнопки, но пускатель остается включенным, потому что ноль подается на катушку через замкнутые блок контакты.

Для отключения необходимо разорвать ноль- это делается при помощи размыкания контактов кнопки «Стоп». Обратно пускатель не включится, потому что ноль будет разорван на блок контактах. Для включения понадобится снова нажать кнопку «Пуск».

Главное отличие магнитного пускателя от рубильника или автомата: при пропадании электричества пускатель всегда отключится и для повторного включения необходимо опять нажать на кнопку «Пуск».

Для реверсивной схемы подключения асинхронного двигателя необходимо собрать схему из одной кнопки «Стоп», 2 пускателей и кнопок «Пуск». Об этом Вы узнаете из этой нашей статьи.

Как подключить тепловое реле

Между магнитным пускателем и асинхронным электродвигателем подключается последовательно тепловое реле, которое подбирается под рабочий ток каждого конкретного двигателя. Тепловое реле защищает мотор от поломки и работы в аварийном режиме, например пропадании одной из трех фаз.

Тепловое реле подключается к выходу с магнитного пускателя на электродвигатель, ток в нем проходит последовательно через нагреватели термореле, и далее- к электромотору.

На тепловом реле сверху есть дополнительные контакты, которые последовательно соединяются с катушкой пускателя.

Принцип работы.

Нагреватели теплореле рассчитаны на определенную максимальную величину, проходящего через них тока. В опасных ситуациях для электродвигателя, когда электрический ток в одной или нескольких фазах вырастает выше безопасных пределов- нагреватели воздействует на биметаллические контакты, которые разрывают цепь управления катушкой, тем самым отключая пускатель. Для повторного включения необходимо будет включить кнопкой биметаллические контакты.

Учитывайте, что сверху на тепловом реле есть регулятор тока срабатывания в небольших пределах. Если его часто выбивает после установки, рекомендую увеличить регулятором значение тока.

В этой статье мы подробно рассмотрим нереверсивную схему подключения магнитного пускателя для управления трехфазным асинхронным электродвигателем.

Также я для Вас записал видео с подробным описанием работы схемы, которое Вы можете просмотреть в конце этой статьи.

Вначале давайте рассмотрим схему подключения магнитного пускателя с катушкой на 220В .

Три фазы питающего напряжения подаются на клеммы асинхронного двигателя через:

— силовые контакты магнитного пускателя КМ ;

— тепловое реле Р .

Обмотка катушки магнитного пускателя подключена с одной стороны к нулевому рабочему проводу N, с другой, через кнопочный пост к одной из фаз, в нашей схеме — к фазе С .

Кнопочный пост содержит 2 кнопки:

1) нормально-разомкнутую кнопку ПУСК ;

2) нормально-замкнутую — СТОП .

Нормально-разомкнутый вспомогательный контакт пускателя КМ подключен параллельно кнопке ПУСК .

Для защиты электродвигателя от перегрузок используется тепловое реле Р , которое устанавливается в разрыв питающих фаз. Вспомогательный нормально-замкнутый контакт теплового реле Р включен в цепь обмотки магнитного пускателя.

Рассмотрим работу схемы.

Включаем трехполюсный , его контакты замыкаются, питающее напряжение подается к силовым контактам пускателя и в цепь управления. Схема готова к работе.

Запуск.

Для запуска двигателя нажимаем кнопкуПУСК .Цепь питания обмотки магнитного пускателя замыкается, якорь катушки притягивается, замыкая силовые контакты КМ и подавая три питающих фазы на обмотки двигателя. Происходит запуск и двигатель начинает вращаться.

Одновременно с этим замыкается вспомогательный контакт пускателя КМ, шунтируя кнопку ПУСК .

Теперь, отпуская кнопку ПУСК , питание на обмотку пускателя продолжает поступать через его замкнутый вспомогательный контакт КМ. Двигатель запущен и продолжает работать.

Останов.

Чтобы остановить двигатель, нажимаем кнопку СТОП . Цепь питания обмотки пускателя разрывается. Якорь под действием пружины возвращается в исходное состояние, размыкая силовые контакты, обесточивая тем самым обмотки электродвигателя. Он начинает останавливаться.

Одновременно с этим размыкается вспомогательный контакт КМ в цепи питания обмотки пускателя.

После отпускания кнопки СТОП питание на обмотку не подается, поскольку вспомогательный контакт КМ разомкнут. Двигатель выключен и цепь готова к следующему запуску.

Защита от перегрузок.

Предположим, что двигатель запущен. Если по каким-то причинам ток нагрузки двигателя увеличится, биметаллические пластины теплового реле Р под действием повышенного тока начнут изгибаться, и приведут в действие механизм расцепителя. Он разомкнет вспомогательный контакт Р в цепи обмотки магнитного пускателя. Цепь обмотки пускателя разомкнется, силовые и вспомогательный контакты пускателя вернуться в исходное разомкнутое состояние, двигатель остановится.

Если катушка магнитного пускателя рассчитана на 380В, то схема подключения будет, как на рисунке ниже.

В этом случае, обмотка пускателя подключается к любым двум фазам, на схеме к фазам В и С.

Для дополнительной защиты цепи управления магнитным пускателем устанавливают предохранитель FU . В случае, например, межвиткового замыкания в катушке пускателя, плавкая вставка предохранителя перегорит, обесточив цепь управления.

Пускатель, схема «звезда-треугольник»

Сразу отсылаю читателя к статьям, которые предшествуют этой — , и . Очень рекомендую ознакомиться, перед дальнейшим чтением.

Скажу также, что на языке электриков «контактор» и «пускатель» очень переплетены, и я в статье буду говорить и так, и эдак.

Повторюсь, чтобы освежить в памяти. Магнитный пускатель — устройство, которое обязательно содержит контактор (как главный коммутационный элемент), а также может содержать:

  • мотор-автомат либо (как устройство рабочего или аварийного отключения),
  • (как устройство аварийного отключения при перегрузке и обрыве фазы),
  • кнопки «Пуск», «Стоп», различные переключатели режимов схемы,
  • схема управления (может содержать те же кнопки, а может — контроллер),
  • индикация работы и аварии.

Различные схемы подключения магнитных пускателей и их отличия рассмотрим ниже.

Типовая схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских станках и другом простом оборудовании на 2-3 двигателя используется и по сей день.

Электрик, который её не знает — как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Чтобы всем было понятно, о чем идет речь — вот ссылка , там можно посмотреть и заказать по почте контактор. Не забудьте сообщить продавцу напряжение катушки!

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками «Пуск » и «Стоп » , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы — в статье про , см. последнюю в статье схему, пускатель КМ0.


5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1 ) через нормально замкнутую (НЗ) кнопку «Стоп» (провод 2 ).

Часто в таких схемах пускатель не включается из-за того, что у этой кнопки «подгорают» контакты.

На схеме не показан защитный автомат цепи управления, он ставится последовательно с кнопкой «Стоп», номинал — несколько ампер.

Если теперь нажать на кнопку «Пуск», то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3 ), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх «силовых» контактов у пускателя есть ещё один дополнительный контакт. Его называют «блокировочным» или «контактом самоподхвата».

Не путать с блокировкой в реверсивных схемах, см. ниже.

Контакты «Самоподхвата» физически расположены на одном креплении с силовыми контактами контактора, и работают одновременно.

Когда электромагнитный пускатель включается нажатием кнопки SB1 «Пуск», замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка «Пуск» будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка «Стоп».

Часто в таких схемах бывает, что пускатель не становится на «самоподхват». Дело в том самом четвертом контакте.

Схема подключения пускателя с тепловым реле

В схеме выше я упустил из виду тепловую защиту ради простоты схемы. На практике обязательно применяют (по крайней мере, это было принято до 2000 г. у нас и до 1990 г. у «них»)


6. Схема подключения пускателя с кнопками и тепловым реле

Как только ток двигателя возрастает выше установленного (из-за перегрузки, пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя рвётся.

Таким образом, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

Однако, тепловое реле не спасает от КЗ на корпус и между фазами. Поэтому в таких схемах обязательно ставят защитный автомат, как показано на схеме 7:


7. Схема подключения пускателя с кнопками автоматом и тепловым реле. ПРАКТИЧЕСКАЯ СХЕМА

Внимание! Цепь управления (цепь, через которую питается катушка пускателя КМ) должна обязательно быть защищена автоматом с током не более 10А. Данный защитный автомат на схеме не показан. Спасибо внимательным читателям!)

Ток защитного автомата двигателя QF не надо подбирать так тщательно, как в схеме 3, поскольку с тепловой перегрузкой справится РТЛ. Достаточно, чтобы он .

Пример. Двигатель 1,5кВт, ток по каждой фазе 3А, ток теплового реле — 3,5 А. Провода питания двигателя можно взять 1,5 мм2. Ток они держат до 16А. И автомат вроде можно поставить на 16А? Однако, не надо действовать топорно. Лучше поставить что-то среднее — 6 или 10А.

Может, это будет интересно:

Схема подключения магнитного пускателя от контроллера

Последние 10 лет в новой промышленной автоматике широко применяются контроллеры. Катушки пускателей также включаются с выходов контроллера. И в данном случае для защиты от КЗ и теплового перегрева используется схема подключения двигателя номер 8:


8. Схема подключения пускателя с управлением от контроллера. ПРАКТИЧЕСКАЯ СХЕМА

На схеме QF — это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя «спрятана» в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы «проинформировать» контроллер о аварии. Часто этот контакт просто-напросто входит в , и останавливает весь станок.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Правое вращение (применяется чаще всего) — когда двигатель крутится по часовой стрелке, если смотреть ему «в зад». Левое вращение — против часовой.

Смена направления вращения реализуется общеизвестным способом — меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:


9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед » и «Пуск назад «, выключение — одной, общей кнопкой «Стоп » , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает «защиту от дурака». Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, «Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!» А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это — электрическая защита от того же дурака . Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки «Пуск» сразу, ничего не получится — двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую — моветон среди электриков .

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

здесь .

Различие пускателей на 220В и 380В

Катушки магнитных пускателей для работы в сетях 380В могут быть на 220 и 380 Вольт без особых переделок схемы. Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение 220 В. Что же делать, если в руки попал пускатель не на 220В, а на 380В?

Всё очень просто — надо нижний (по схеме) вывод катушки пускателя на 380В подключить не к нулю (N), а к L2 или L3. Эта схема даже более предпочтительна, так как вся схема с пускателем на 380В может быть собрана вообще без нуля. Три фазы приходят, и три фазы уходят на двигатель, не считая управления.

Варианты нагрузок

К выходу магнитного пускателя можно подключить что душе угодно, не только двигателя, как в статье. Привожу примеры статей, в которых через пускатели включаются ТЭНы:

На этом всё, жду комментариев и обмена опытом!

Схема подключения магнитного пускателя и теплового реле

Магнитный пускатель— это электротехнический препарат, предназначенный для дистанционного запуска, поддержания работы, остановки и защиты асинхронного электрического двигателя. Нередко пускатели применяются и для автоматического (с помощью датчиков света, таймеров и т. п.) или удаленного включения мощных линий освещения, электрообогревателей и т. п.

Для того, что бы разобраться в том, как подключить магнитный пускатель, необходимо вначале узнать как он работает и на какие характеристики стоит обратить внимание при покупке. Повторяться не буду, потому что об этом подробно рассказано в предыдущей статье.

Подключить пускатель своими руками несложно, как это сделать Мы расскажем дальше, но можно поступить проще и купить один пускатель или реверсивный сразу в сборе в металлическом, но лучше в пластиковом корпусе. В нем уже полностью собрана схема и подключены кнопки управления на крышке. Вам только остается подключить кабели электропитания сверху и отходящий кабель к нагрузке.

Подготовительные работы

Перед тем как приступить к сборке схемы подключения необходимо:

  1. Обесточить участок работы и проверить отсутствие напряжения индикаторной отверткой.
  2. Определить величину рабочего напряжения катушки, которая указывается всегда не на корпусе пускателя, а на самой катушке. Тут 2 варианта- 220 или 380 Вольт. Если 220 В, тогда на контакты катушки подается фаза и ноль. Если 380- 2 разноименные фазы. Это важно, а иначе при неправильном подключении катушка может перегореть или будет не включать силовые контакты до конца.
  3. Вам понадобится одна кнопка «Стоп» красного цвета с постоянно замкнутыми контактами и одна кнопка «Пуск» черного или зеленного цвета с постоянно разомкнутыми контактами.
  4. Запомните, что силовые контакты включают или выключают только фазы, а приходящие и отходящие нули и заземляющие проводники всегда соединяются между собой на клеммнике в обход пускателя. Они не коммутируются, для подключения катушки на 220 Вольт дополнительно с клеммника берется ноль в схему управления пускателем.

 

Схема подключения магнитного пускателя

Основная схема состоит из 2-ух частей:

  1. Силовых 3 пар контактов, которые подают электропитание на электрооборудование.
  2. Схемы управления, которая состоит из катушки, кнопок и дополнительных контактов, которые участвуют в поддержании работы катушки или блокируют ошибочные включения.

Самая распространенная схема подключения с одним пускателем. Она самая простая с ней самостоятельно справится любой человек. Для ее сборки нам понадобится 3 жильный кабель до кнопок и одна пара нормально разомкнутых контактов в отключенном положении пускателя.

Рассмотрим схему с подключением катушки на 220 вольт, если у Вас на 380 Вольт тогда вместо синего ноля необходимо подключить другую разноименную фазу. В нашем случае черного или красного цвета. В качестве блок контакта будет использоваться четвертая свободная пара, которая включается вместе с тремя парами силовых. Они все расположены сверху, но могут дополнительные находится и сбоку.

На силовые контакты пускателя с автомата приходят  три фазы A, B и C. Для того, что бы при нажатии кнопки «Пуск» они включились, необходимо подать 220 Вольт напряжения на катушку, которая при этом потянет якорь и подвижные контакты сомкнуться с не подвижными. Цепь замкнется, а для того что бы ее разомкнуть понадобится отключить катушку.

Для того чтобы собрать цепь управления необходимо одну фазу, в нашем случае зеленную, подключить сразу напрямую к контакту катушки, а со второго №5- подключаем проводом к контакту №4 пусковой кнопки. Так же со второго контакта катушки пускаем еще один провод (на схеме желтого цвета) через блок контакты на другой парный разомкнутый контакт кнопки «Пуск». С него же делается перемычка (синего цвета) на замкнутый контакт кнопки «Стоп», на второй контакт которой подключается ноль от электропитания.

Принцип работы прост. При нажатии кнопки «Пуск» замыкаются ее контакты и на катушку подается 220 Вольт- она включает основные и дополнительные контакты. Отпускаем кнопку- размыкаем  контакты пусковой кнопки, но пускатель остается включенным, потому что ноль подается на катушку через замкнутые блок контакты.

Для отключения необходимо разорвать ноль- это делается при помощи размыкания контактов кнопки «Стоп». Обратно пускатель не включится, потому что ноль будет разорван на блок контактах. Для включения понадобится снова нажать кнопку «Пуск».

Главное отличие магнитного пускателя от рубильника или автомата: при пропадании электричества пускатель всегда отключится и для повторного включения необходимо опять нажать на кнопку «Пуск».

Для реверсивной схемы подключения асинхронного двигателя необходимо собрать схему из одной кнопки «Стоп», 2 пускателей и кнопок «Пуск». Об этом Вы узнаете из этой нашей статьи.

Как подключить тепловое реле

Между магнитным пускателем и асинхронным электродвигателем подключается последовательно тепловое реле, которое подбирается под рабочий ток каждого конкретного двигателя. Тепловое реле защищает мотор от поломки и работы в аварийном режиме, например пропадании одной из трех фаз.

Тепловое реле подключается к выходу с магнитного пускателя на электродвигатель,  ток в нем проходит последовательно через нагреватели термореле, и далее-  к электромотору.

На тепловом реле сверху есть дополнительные контакты, которые последовательно соединяются с катушкой пускателя.

Принцип работы. Нагреватели теплореле рассчитаны на определенную максимальную величину, проходящего через них тока. В опасных ситуациях для электродвигателя, когда электрический ток в одной или нескольких фазах вырастает выше безопасных пределов- нагреватели воздействует на биметаллические контакты, которые разрывают цепь управления катушкой, тем самым отключая пускатель. Для повторного включения необходимо будет включить кнопкой биметаллические контакты.

Учитывайте, что сверху на тепловом реле есть  регулятор тока срабатывания в небольших пределах. Если его часто выбивает после установки, рекомендую увеличить регулятором значение тока.

РЕЛЕ

   В этой статье мы поговорим о Реле. Реле это устройство, созданное для коммутации электрических цепей, которое может осуществляться в устройствах автоматики даже без помощи человека. Рассмотрим поподробнее, какие существуют типы, и для каких целей служат реле. Самое распространенное электромагнитное реле может быть в двух положениях: включено и отключено. Состоит реле из контактов, катушки, подвижного якоря, толкателя контактной системы, выводов реле. Фото катушки магнитного пускателя (реле), изображено на нижеприведенном рисунке, все катушки сделаны по одному принципу:

Катушка магнитного пускателя

   Катушка представляет собой медный провод, намотанный на оправке, и представляет собой, в простейшем случае цилиндр, внутри которого находиться сердечник электромагнита. При подаче напряжения на выводы катушки, она втягивает в себя сердечник по принципу электромагнита, при этом толкатель двигает (толкает) подвижную систему контактов, часть из которых при этом замыкается, а часть размыкается.

Рисунок строение реле

   Далее изображено схематическое обозначение основных деталей, из которых состоит реле и которые необходимы нам для понимания его работы:

Схематические обозначения деталей реле

 – Под цифрой один изображена катушка электромагнитного реле, так она обозначается на принципиальных схемах.
 – Под цифрой два изображен свободно разомкнутый контакт.
 – Под цифрой три изображен свободно замкнутый контакт. 

   А здесь изображены катушка и группы контактов вместе:

Схематическое обозначение катушки и контактов

   Контакты реле могут быть, как свободно замкнутыми, так и свободно разомкнутыми. Свободно замкнутые, это те контакты, которые в отсутствие напряжения на катушке реле находятся в замкнутом состоянии. Свободно разомкнутые контакты соответственно в отсутствие напряжения находятся в разомкнутом состоянии. Реле бывают рассчитанные на работу, как от переменного, так и от постоянного тока. На фотографии можно видеть маломощное электромагнитное реле:

Фотография электромагнитного реле

   Электромагнитные реле выпускаются на разную мощность, начиная от низковольтных малогабаритных реле, магнитных пускателей осуществляющих управление двигателями и цепями управления станков, до мощных контакторов (сделанных тоже по типу реле) осуществляющих коммутацию значительных токов и позволяющих управлять работой больших двигателей в насосных станциях, котельных и других объектах электроустановок. На рисунке ниже изображен магнитный пускатель серии ПМЕ:

Магнитный пускатель ПМЕ

   Подобные магнитные пускатели имеют катушку, рассчитанную на напряжение питания от 110 до 380 вольт для работы от сети переменного тока. Магнитные пускатели помимо силовых контактов, рассчитанных на большую нагрузку, имеют вспомогательные свободно замкнутые и свободно разомкнутые контакты. Вспомогательные контакты используются в цепях управления устройством, например токарным или сверлильным станком. Ниже на рисунке схема нереверсивного пуска электродвигателя.

Схема нереверсивного пуска электродвигателя

   В левой части, как нам известно, из приведенных выше схематических изображений, изображены под обозначением КМ три спаренных для одновременного включения силовых контактов включения электродвигателя. Прямоугольник, обозначенный КМ, это как мы знаем, обозначение катушки пускателя. Свободно разомкнутый контакт, находящийся под обозначением кнопки SBC (которая, кстати, является кнопкой включения электродвигателя) служит контактом так называемого “самоподхвата питания”. Рассмотрим вкратце эту схему, являющуюся типичной схемой нереверсивного включения двигателя (по такой схеме устроены приводы наждаков на производстве”:

Наждачная бабка фото

   После нажатия кнопки SBC питание подается на катушку пускателя (реле) КМ. Замыкаются силовые и вспомогательный контакт магнитного пускателя. При этом включается двигатель. Для какой цели нам служит вспомогательный контакт “самоподхвата питания” ? Если бы его не было и мы отпустили кнопку включения SBC, то катушка была бы у нас обесточена и двигатель остановился. Контакт “самоподхвата питания”, замыкаясь враз с силовыми контактами, шунтирует кнопку включения своими контактами и после её отпускания питание с катушки не пропадает, до тех пор, пока не будет нажата кнопка остановки двигателя SBT. Либо не будет обесточен станок или иное устройство, в котором будут установлены этот двигатель и схемы управления. Дальше изображен мощный контактор, устройство которого как уже писалось выше также основано на принципе действия электромагнитного реле:

Реле контактор

Тепловые реле


   Второй тип реле, также широко используемый в электротехнике, это тепловые реле. Фото теплового реле приводится на следующем рисунке:

Фото тепловое реле

   Эти реле очень часто используются в паре с электромагнитными реле (пускателями и контакторами) для защиты электрических цепей с электродвигателями от перегрузок. Если кто-нибудь обратил внимание, на рисунке, где была приведена схема нереверсивного пуска электродвигателя, присутствует и такое схематическое изображение:

Изображение на схеме тепловое реле

   Ниже на рисунке показано устройство теплового реле:

Рисунок устройство теплового реле

   Как устроено тепловое реле: в его состав входит биметаллическая пластина, сделанная из двух металлов имеющих различный коэффициент расширения. При нагреве биметаллическая пластина изгибается и освобождает пружину, которая размыкает силовые контакты теплового реле. Происходит это мгновенно, в целях быстрого гашения дуги. Так обозначается, на схемах (выделено красным) тепловое реле.

Обозначение на схема теплового реле

   На рисунке под цифрой 2 изображены контакты теплового реле, которые размыкаются при срабатывании теплового реле и обесточивают двигатель. Под цифрой 1 показаны контакты теплового реле, которые входят в цепь с биметаллической пластиной. После срабатывания реле можно включить заново, после остывания пластины нажав на толкатель, размещенный на тепловом реле.

Реле времени

   В радиоэлектронике и электротехнике часто используются так называемые реле времени:

Реле времени фото

   Такие реле предназначены для выдержки времени, по истечении которого включается другое устройство, подключенное к реле времени. Существуют и находят применение в электронике также герконовые реле. Герконы – это герметичные устройства управляемые магнитным воздействием. Фото герконового реле и его устройство приведено на картинках расположенных ниже:

Герконовое реле фото

   Современным трендом является использование твердотельных реле – где полностью отсутствуют подвижные части, а функцию коммутатора берут на себя силовые тиристоры или транзисторы, но об этом вы можете почитать здесь. Обзор подготовлен специально для сайта Радиосхемы, с вами был AKV.

   Форум по автоматике и реле 

   Форум по обсуждению материала РЕЛЕ





ЧИП-АНТЕННЫ SMD

Чип-антенны на печатных платах – особенности конструкции, установка и согласование с волноводом.



Тепловое реле – защита для электродвигателя

 

Для того, что бы защитить электродвигатель  от токов высокой нагрузки в дополнение к защитному автомату необходимо поставить тепловое реле.  Принцип работы теплового реле до безобразия прост.  В тот момент, когда на электродвигателе возникает нагрузка сверх нормы, тепловое реле отсекает питание от катушки магнитного пускателя. 

Отсекание фазы на катушку происходит за счёт нагрева биметаллических пластин, которые расходятся при высокой нагрузке.  Завод изготовитель рассчитывает расширение пластин,  которые нагреваются  при прохождении через них тока сверх  допустимой нормы.

 

 

Говоря проще, когда возникла нагрузка,  биметаллические пластины расширились, и оборвали питание магнитного пускателя.  Тепловое реле необходимо выбирать исходя из мощности  электродвигателя. Для более точной настройки,  все тепловые реле имеют настраиваемый диапазон,  который можно выставить вплоть до одного ампера.

 

 

Тепловое реле подключается  между магнитным пускателем и электродвигателем.   В некоторых моделях через тепловое реле  проходят все три фазы,  но в  основном через теплушку пропускается две фазы, а третья идет напрямую от магнитного пускателя.

 

С силовыми концами  идущими на электродвигатель, мы разобрались, теперь давайте рассмотрим, как сделать что бы при высокой нагрузке, магнитный пускатель отсекал питание на электродвигатель.

 

 

Для того чтобы подключить тепловое реле, вам необходимо прочитать статью подключение магнитного пускателя.  Если вы это уже знаете, то идем дальше. Как вы помните, фаза идущая на стоповую кнопку берется с верхних контактов пускателя.

Фазу идущую на кнопки необходимо пропустить через специальные контакты на тепловом реле. Принцип прост, фаза зашла – фаза вышла. Если  на электродвигателе возникла нагрузка  пластины между этими контактами разомкнуться и пускатель отключиться.  Местоположение контактов на реле вы найдете сами, Всего там идёт пять зажимных контактов, три силовые и два на управление.  Как видите всё просто и без лишней болтовни.

 

 

Для того чтобы правильно выбрать тепловое реле необходимо взглянуть на мощность электродвигателя и на его номинальные характеристики тока , которые указаны на табличке электродвигателя.  Бывает такое, что табличка отсутствует, тогда берите клещи и замеряйте токи на каждой фазе желательно при нагрузке. Если электродвигатель не горячий смело ориентируйтесь  на показания прибора.  Допустим, у вас показало 16 ампер, прибавляйте 20% процентов на пусковые токи и выбирайте тепловое реле, где можно выставить 20 ампер и смело его подключайте. 

При срабатывании на тепловом реле выскакивает кнопочка, которую потом можно включить.   Если срабатывание начинает происходить часто, а нагрузка на ваш взгляд не повышается то вполне возможно, что у вас межвитковое замыкание, о котором вы тоже можете прочитать на нашем сайте про электричество.

< Охлаждение и устранение нагрева электродвигателей

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя » сайт для электриков

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

{SOURCE}

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением

Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль

Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Особенности монтажа

Но при этом тепловое реле срабатывает в отличие от магнитного пускателя не по воле человека, а от перегрузки по току асинхронного двигателя. Его также можно без особых проблем задействовать своими руками в схеме управления асинхронным движком. В связи с этим не будет лишним напомнить умельцам о том, что любые работы по присоединению электрических цепей к сети должны начинаться с гарантированного отключения напряжения в месте подключения с последующим контролем этого индикаторной отвёрткой или тестером.

  • Чтобы правильно подключить магнитный пускатель и тепловое реле надо вначале определить величину напряжения, на которое они рассчитаны. Его значение указывается как в техническом паспорте, так и на шильдике, расположенном на корпусе устройства.
  • Если указано напряжение 220 В устройство необходимо подключать к фазному напряжению, то есть к фазному и нулевому проводам. Если указано напряжение 380 В для подключения используется линейное напряжение, то есть к фазным проводам двух любых фаз.
  • Если напряжение не будет соответствовать паспортным данным устройства, возможна, либо его порча от перегрева, либо неправильная работа по причине недостаточно сильного магнитного поля в катушке управления.

Особенностью работы магнитного пускателя является его контакт, который, замыкаясь, шунтирует кнопку включения его управляющей катушки. Это позволяет выполнять коммутацию электрических цепей кратковременным нажатием кнопки «пуск», что удобно и легко для пользователя. При подключении пускателя надо будет присоединять нормально разомкнутый контакт и нормально замкнутый контакт. Их вид в самом устройстве и на электрической схеме показан на изображении. Они используются для управления катушкой пускателя и располагаются в управляющем блоке пускателя. Он называется «кнопочный пост». В нём установлены две кнопки. Каждая из них приводит в действие: одна нормально замкнутый контакт и одна нормально разомкнутый контакт. Кнопки окрашены обычно в чёрный цвет (используется для пуска или реверса), и в красный цвет (используется для остановки двигателя отключением катушки пускателя).

Преимущества реализации такой схемы подключения

  1. Коммутатор и манипулятор управления (кнопка) могут быть разнесены. То есть, управляющий элемент располагается в непосредственной близости от оператора, а массивный коммутатор можно разместить в любом удобном месте.
  2. Возможно управление с помощью ножного привода (руки остаются свободными). Это позволяет лучше контролировать электроустановку и удерживать обрабатываемую деталь.
  3. Схема подключения выносного пускателя позволяет разместить устройства безопасности. Например, защиту от короткого замыкания или тепловые реле, срабатывающие при температурных перегрузках. Кроме того, такая схема позволяет реализовать механическую защиту: при перемещении подвижных частей электроустановки до критической отметки, срабатывает концевой выключатель, и магнитный пускатель размыкается.
  4. Дистанционное расположение управляющих элементов позволяет расположить аварийную кнопку в удобном месте, что повышает безопасность эксплуатации.
  5. Есть возможность установить единый кнопочный пост для управления большим количеством магнитных пускателей при расположении электроустановок в разных местах и на большом удалении. Схема подключения через такой пост предполагает использование слаботочной управляющей проводки, что экономит средства на приобретение дорогостоящих силовых кабелей.
  6. Для управления одним пускателем можно установить несколько кнопочных постов. В таком случае управление электроустановкой с каждого поста будет равнозначным. То есть, можно запустить электродвигатель с одной точки, а выключить с другой. Схема подключения нескольких кнопочных постов на иллюстрации:
  7. Магнитные контакторы можно интегрировать в электронную систему управления. В этом случае команды на пуск и отключение электроустановок подаются автоматически, по заданному алгоритму. Организовать такую систему с помощью механических (ручных) включателей невозможно.

Фактически, такая коммутация представляет собой релейную схему.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Смена направления вращения реализуется общеизвестным способом — меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:

9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед

» и «Пуск назад

«, выключение — одной, общей кнопкой «Стоп

» , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает «защиту от дурака»

Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, «Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!» А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения
двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это — электрическая защита от того же дурака
. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки «Пуск» сразу, ничего не получится — двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую — моветон среди электриков
.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

здесь .

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:

Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:

Устройство и принцип работы

Термореле (ТР) предназначено для обеспечения защиты электродвигателей от перегрева и преждевременного выхода из строя. При долговременном запуске электродвигатель подвержен токовым перегрузкам, т.к. во время пуска происходит потребление семикратного значения тока, приводящего к нагреву обмоток. Номинальный ток (Iн) — сила тока, потребляемая двигателем при работе. Кроме того, ТР увеличивают срок эксплуатации электрооборудования.

Тепловое реле, устройство которого составляют простейшие элементы:

  1. Термочувствительный элемент.
  2. Контакт с самовозвратом.
  3. Контакты.
  4. Пружина.
  5. Биметаллический проводник в виде пластины.
  6. Кнопка.
  7. Регулятор тока уставки.

Термочувствительный элемент является датчиком температуры, служащий для передачи тепла на биметаллическую пластину или другой элемент тепловой защиты. Контакт с самовозвратом позволяет при нагреве мгновенно разомкнуть цепь питания электрического потребителя для избежания его перегрева.

Пластина состоит из двух видов металла (биметалл), причем один из них обладает высоким температурным коэффициентом расширения (Kр). Они скреплены между собой при помощи сварки или проката при высоких значениях температуры. При нагреве изгибается пластина тепловой защиты в сторону материала с меньшим Kр, а после остывания пластина принимает исходное положение. В основном пластины изготавливаются из инвара (меньшее значение Kр) и немагнитной или хромоникелевой стали (больший Kр).

Кнопка включает ТР, регулятор тока уставки необходим для установки оптимального значения I для потребителя, причем его превышение приведет к срабатыванию ТР.

Принцип действия ТР основан на законе Джоуля-Ленца. Ток представляет собой направленное движение заряженных частиц, которые сталкиваются с атомами кристаллической решетки проводника (эта величина является сопротивление и обозначается R). Это взаимодействие вызывает появление тепловой энергии, получаемой из электрической. Зависимость длительности протекания от температуры проводника определяется по закону Джоуля-Ленца.

Формулировка этого закона следующая: при прохождении I по проводнику количество теплоты Q, выделяемой током, при взаимодействии с атомами кристаллической решетки проводника прямо пропорционально квадрату I, величине R проводника и времени воздействия тока на проводник. Математически можно записать следующим образом: Q = a * I * I * R * t, где a — коэффициент преобразования, I — ток, протекающий через искомый проводник, R — величина сопротивления и t — время протекания I.

При коэффициенте a = 1 результат расчета измеряется в джоулях, а при условии, что a = 0.24, результат измеряется в калориях.

Нагрев биметаллического материала происходит двумя способами. При первом случае I проходит через биметалл, а во втором — через обмотку. Изоляция обмотки замедляет поток тепловой энергии. Термореле нагревается сильнее при высоких значениях I, чем при контакте с термочувствительным элементом. Происходит задержка сигнала срабатывания контактов. В современных моделях ТР используются оба принципа.

Нагрев биметаллической пластины теплового устройства защиты производится при подключенной нагрузке. Комбинированный нагрев позволяет получить устройство с оптимальными характеристиками. Пластина нагревается при помощи тепла, выделяемого I при прохождении через нее, и специальным нагревателем при I нагрузки. Во время нагрева биметаллическая пластина деформируется и воздействует на контакт с самовозвратом.

Watch this video on YouTube

1.Принцип действия тепловых реле.

Тепловые
реле

это электрические аппараты, предназначенные
для защиты электродвигателей от токовой
перегрузки. Наиболее распространенные
типы тепловых реле — ТРП, ТРН, РТЛ и РТТ.
Принцип действия тепловых реле основан
на свойствах биметаллической пластины
изменять свою форму при нагревании. В
общем случае тепловое реле представляет
собой расцепитель, в основе которого
лежит биметаллическая пластина, по
которой протекает ток. Под воздействием
теплового эффекта протекающего тока,
биметаллическая пластина изгибается,
разрывая цепи. При этом происходит
изменение состояния дополнительных
контактов. Первая и основная функция
тепловых реле — защита электрооборудования
от перегрузки.

Рис.1.Тепловое
реле
.

Долговечность
энергетического оборудования в
значительной степени зависит от
перегрузок, которым оно подвергается
во время работы. Для любого объекта
можно найти зависимость длительности
протекания тока от его величины, при
которых обеспечивается надежная и
длительная эксплуатация оборудования.
Эта зависимость представлена на рисунке
2 (кривая 1).

Рис.2.
Зависимость длительности протекания
тока от его величины.

При
номинальном токе допустимая длительность
его протекания равна бесконечности.
Протекание тока, большего, чем номинальный,
приводит к дополнительному повышению
температуры и дополнительному старению
изоляции. Поэтому чем больше перегрузка,
тем кратковременнее она допустима.
Кривая 1 на рисунке устанавливается
исходя из требуемой продолжительности
жизни оборудования. Чем короче его
жизнь, тем большие перегрузки допустимы.
При идеальной защите объекта зависимость
t
ср
(I) для реле должна идти немного ниже
кривой для объекта. Для защиты от
перегрузок, наиболее широкое распространение
получили тепловые реле с биметаллической
пластиной. Биметаллическая пластина
теплового реле состоит из двух пластин,
одна из которых имеет больший температурный
коэффициент расширения, другая —
меньший. В месте прилегания друг к другу
пластины жестко скреплены либо за счет
проката в горячем состоянии, либо за
счет сварки. Если закрепить неподвижно
такую пластину и нагреть, то произойдет
изгиб пластины в сторону материала с
меньшим. Именно это явление используется
в тепловых реле. Широкое распространение
в тепловых реле получили материалы
инвар (малое значение a) и немагнитная
или хромоникелевая сталь (большое
значение a). Нагрев биметаллического
элемента теплового реле может производиться
за счет тепла, выделяемого в пластине
током нагрузки. Очень часто нагрев
биметалла производится от специального
нагревателя, по которому протекает ток
нагрузки. Лучшие характеристики
получаются при комбинированном нагреве,
когда пластина нагревается и за счет
тепла, выделяемого током, проходящим
через биметалл, и за счет тепла, выделяемого
специальным нагревателем, также
обтекаемым током нагрузки. Прогибаясь,
биметаллическая пластина своим свободным
концом воздействует на контактную
систему теплового реле.

Как выбрать тепловое реле

Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.

Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.

Базовые характеристики приспособлений

Базовыми данными устройства, защищающего двигатель, являются:

  1. Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
  2. Рабочий ток, при котором ТП срабатывает.
  3. Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
  4. Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
  5. Токовый диапазон, в котором срабатывает реле.

Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.

Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.

Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.

Выбор устройства по правилам

Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.

Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния. Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные

Первая должна находиться ниже, чем вторая

Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.

Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток. Его значение связано с номинальным током нагрузки электродвигателя.

Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле.

Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.

Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.

Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.

В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.

Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2*2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.

Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.

Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов

При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.

Заключение

Все электромонтажные работы по подключению реле и прочего высоковольтного оборудования должен выполнять квалифицированный специалист, имеющий допуск и профильное образование. Самостоятельное проведение подобных работ сопряжено с опасностью для жизни и работоспособности электрических устройств. Если же все-таки необходимо разобраться с тем, как подключить реле, при его покупке нужно требовать распечатку схемы, которая обычно идет в комплекте с изделием.

Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов. Однако в значительной мере на срок службы мотора влияют токовые перегрузки. Чтобы их предупредить подключают тепловое реле, защищающее основной рабочий орган электромашины.

Мы расскажем, как подобрать устройство, предсказывающее назревание аварийных ситуаций с превышением максимально допустимых показателей тока. В представленной нами статье описан принцип действия, приведены разновидности и их характеристики. Даны советы по подключению и грамотной настройке.

схема, принцип действия, технические характеристики. Схема подключения пускателя с тепловым реле

Магнитным пускателем называют специальную установку, с помощью которой производится дистанционный запуск и управление работой асинхронного электрического двигателя. Данное приспособление характеризуется простотой конструкции, что позволяет произвести подключение мастеру без соответствующего опыта.

Проведение подготовительных работ

Перед подключением теплового реле и магнитного участка необходимо помнить, что вы работаете с электрическим прибором. Именно поэтому, чтобы обезопасить себя от поражения электрическим током, нужно произвести обесточивание участка и проверить его. С этой целью, наиболее часто, используется специальная индикаторная отвертка.

Следующим этапом подготовительных работ является определение величины рабочего напряжения катушки. В зависимости от производителя приспособления увидеть показатели можно на корпусе или на самой катушке.

Важно! Величина рабочего напряжения катушки может быть 220 или 380 Вольт. При наличии первого показателя необходимо знать, что на ее контакты осуществляется подача фазы и ноля. Во втором случае это обозначает о наличии двух разноименных фаз.

Этап правильного определения катушки достаточно важен при подключении магнитного пускателя. В противном случае она может перегореть во время работы устройства.

Для подключения данного оборудования необходимо использовать две кнопки:

Первая из них, может иметь черный или зеленый цвет. Эта кнопка характеризуется постоянно разомкнутыми контактами. Вторая кнопка имеет красный цвет и постоянно замкнутые контакты.

Во время подключения теплового реле необходимо помнить о том, что с помощью силовых контактов производится включение и выключение фаз. Нули, которые подходят и отходят, а также проводники, которые заземляют, между собой необходимо соединять в области клеммника. При этом, в обязательном порядке, пускатель необходимо отходить. Коммутация этих приспособлений не производится.

Для того чтобы произвести подключение катушки, величина рабочего напряжения которой составляет 220 Вольт, необходимо взять ноль с клеммника и подсоединить его к схеме, которая предназначается для работы пускателя.

Особенности подключения магнитных пускателей

Схема магнитного пускателя характеризуется наличием:

  • трех пар контактов, с помощью которых производится подача питания на электрическое оборудование;
  • Схемы управления, в состав которой входит катушка, дополнительные контакты и кнопки. С помощью дополнительных контактов производится поддержка работоспособности катушки, а также блокировка ошибочных включений.

Внимание. Наиболее часто используют схему, которая требует использования одного пускателя. Это объясняется ее простотой, что позволяет с ней справиться даже малоопытному мастеру.

Для сборки магнитного пускателя требуется использование трехжильного кабеля, который подводится к кнопкам, а также одной пары контактов, которые хорошо разомкнуты.

При использовании катушки в 220 Вольт необходимо произвести подключение проводов красного или черного цветов. При использовании катушки 380 Вольт используется разноименная фаза. Четвертую свободную пару в этой схеме используют как блок-контакт. Три пары силовых контактов включаются наряду с этой свободной парой. Расположение всех проводников производится сверху. В том случае, если есть два дополнительных проводника, то их размещают сбоку.

Силовые контакты пускателя характеризуются наличием трех фаз. Для их включения во время нажатия кнопки Пуск, необходимо произвести подачу на катушку напряжения. Это позволит цепи замкнуться. Для размыкания цепи необходимо произвести отключение катушки. Для сборки цепи управления зеленая фаза напрямую подключается к катушке.

Важно. При этом необходимо к кнопке Пуск подключить провод, который идет с контакта катушки. С него также делают перемычку, которая идет к замкнутому контакту кнопки Стоп.

Включение работы магнитного пускателя производится с помощью кнопки Пуск, которая смыкает цепь, а отключение – с помощью кнопки Стоп, которая производит расцепление цепи.

Особенности подключения теплового реле

Между магнитным пускателем и электрическим двигателем располагается тепловое реле. Его подключение осуществляется к выходу магнитного пускателя. Через данное приспособление осуществляется прохождение электрического тока. Тепловое реле характеризуется наличием дополнительных контактов. Их необходимо соединить последовательно с катушкой пускателя.

Схема подключения магнитного пускателя на первый взгляд кажется сложной, однако справиться с таким устройством не составит труда, если придерживаться правил и рекомендаций по установке.
По своей сути, магнитный пускатель (кнопочный или бесконтактный) – это аппарат, который можно отнести к типу электромагнитных контактов, позволяющий справляться с нагрузками тока.

Он работает во время постоянных включений и выключений цепей.

С подключением магнитного пускателя становится реальным дистанционно управлять пуском, остановкой и общей работой трехфазного электродвигателя.

Однако подобное реле настолько неприхотливое, что позволяет управлять и другими механизмами: освещением, компрессорами, насосами, кранами, тепловым обогревателем или печью, кондиционерами.

Покупая подобный механизм, обращайте внимание: ведь кнопочный магнитный пускатель мало чем отличается от современного контактора.

Функции у них практически одинаковые, так что особых трудностей при подключении возникнуть не должно.

Принцип работы схемы довольно прост. Напряжение подается на катушку пускателя, после чего в ней возникает магнитное поле.

Именно за счет него внутрь катушки как бы втягивается сердечник из металла.

К сердечнику мы прикрепляет силовые контакты, при активации замыкающиеся, что позволяет току свободно протекать через провода.

Схема магнитного пускателя содержит пост, где установлены кнопки, активирующие пусковые и остановочные механизмы.

Как устроен механизм пускателя?

Прежде чем заниматься подключением магнитного пускателя, нужно понимать его схему комплектации: в нее входит сам прибор и пост (блок) с важнейшими контактами.

Хотя он не входит в основную часть схемы реле, при работе в схеме с дополнительными проводными элементами, например, с реверсом электродвигателя, нужно обеспечить разветвление проводов.

Здесь и необходим блок, который еще называют приставкой контактного типа к схеме.

Внутри такой приставки подключена контактная схема, которая плотно соединена с обычной контактной системой магнитного пускателя.

Такой механизм для трехфазного двигателя, например, состоит из двух пар замкнутых и двух пар разомкнутых контактов.

Чтобы снять блокирующую составляющую (при ремонте или подключении) достаточно отодвинуть специальные полозья, удерживающие крышку.

Схема состоит из двух частей: верхней и нижней. Кнопочный механизм для трехфазного двигателя легко различать по цвету. Например, кнопка «Стоп» имеет красный цвет.

В ней подключен размыкающий контакт, через который пройдет напряжение в схему. Кнопку, которая будет отвечать за запускание, окрашивают в зеленый.

В ней применяется замыкающий контакт, который при подключении проводит через схему электрический ток.

Схема подключения реверсивного магнитного пускателя имеет обычно защиту от случайных нажатий.

Для этого устанавливают дополнительные боковые контакты, где при срабатывании одного — второй будет блокироваться.

Монтажная схема выполняется в пару действий, зато на практике получается удобный кнопочный механизм.

Схема подключения устройства

Перед тем, как схема магнитного пускателя будет подключена, необходимо:

  • Обеспечить обесточивание на всем фронте нашей работы (обесточивание двигателя, части проводки). Проверить отсутствие напряжения можно специальными индикаторными инструментами, самое простое из них – отвертка, продается в любом строительном магазине;
  • Выяснить рабочее напряжение, особенно это актуально для элемента катушки. Оно пишется не на самой упаковке пускателя, а непосредственно на устройстве. Варианта тут только два: 380в или 220 вольт. Когда выбираем 220 вольт,а не 380в, то при подключении фотореле на катушку подаются фаза и ноль. Если речь идет о 380в, а не о 229, то используем две разноименные фазы. Если не разобраться между 220 и 380 вольтовыми реле, то схема просто может перегореть от разности напряжений;
  • Подбираем подходящие кнопки соответствующих цветов;
  • Для реле все нули, которые являются приходящими и отходящими, а также элементы, позволяющие достигнуть заземления, соединяются в схеме на клеммнике через устройство, не задевая его. Для катушки в 220 вольт берется ноль во время подсоединения, чего не следует делать для 380 вольт.

Последовательность подключения состоит из таких частей:

  • трех пар силовых элементов, которые будут отвечать за подачу электропитания, будь это схема электродвигателя или любого прибора;
  • схемы управления, включающей катушку, дополнительные провода и кнопки.

Самым простым считается процесс подключения реверсивного магнитного пускателя в количестве одной единицы. Это самая простая схема (на 220 или 380 вольт), чаще всего ее используют в работе двигателя.

Для фотореле нам понадобиться трехжильный , который мы подключим к кнопкам, а также пара разомкнутых контактов.

Рассмотрим типичную схему подключения на 220 вольт. Если же Вы выбрали схему подключения на 380 вольт, то вместо синего ноля важно подключить другую разноименную фазу.

Пост контакта фотореле – это четвертая свободная фаза. На силовые контакты через схему идут три фазы.

Чтобы их можно было нормально подключить, на катушку подаем 220 вольт (или 380, а зависимости от выбора реле). Цепь замкнется — и мы сможем управлять работой электродвигателя.

Подключаем тепловое реле

Между магнитным пускателем и устройством двигателя можно пустить тепловое реле, которое может понадобиться для безопасной подачи тока к устройству двигателя.

Для чего нужно подключать тепловое реле? Неважно, какое напряжение идет в нашей схеме, 220 или 380 вольт: при скачках любой мотор может сгореть. Именно поэтому стоит поставить пост для защиты.

Фотореле позволяет схеме работать, даже если перегорела одна из фаз.

Подключают фотореле у выхода магнитного пускателя на устройство двигателя. Тогда ток напряжением 220 или 380 вольт проходит через пост с нагревателя фотореле и попадает внутрь двигателя.

На самом фотореле можно найти контакты, которые следует подключать к катушке.

Нагреватели теплового реле (фотореле) не вечны и имеют свой предел работы.

Так, пост такого магнитного пускателя сможет пропустить через себя только определенный показатель тока, который может иметь максимальный предел.

В противном случае последствия работы фотореле для двигателя будут плачевными – несмотря на защитный пост, он сгорит.

Если возникает неприятная ситуация, когда через пост пропускается ток выше заданных пределов, то нагреватели начинают воздействовать на контакты, нарушая общую цепь в приборе.

Как итог, пускатель выключается.

Выбирая фотореле для двигателя, обращайте внимание на его характеристики. Ток механизма должен подходить мощности двигателя (быть рассчитанным на 220 или 380 вольт).

Ставить такой защитный пост на обычные приборы не рекомендуется – только на моторы.

Как правильно выбрать магнитный пускатель?

Чтобы устройство не сгорело после подключения через пару недель, нужно внимательно относиться к выбору. Самые популярные серии пускателя ПМЛ и ПМ12.

Они поставляются как отечественными, так и зарубежными фирмами.

Каждая цифра величины указывается на тот ток, который пост сможет провести через схему без поломок и возгораний. Если ток нагрузки выше 63 А, то лучше покупать для подключения в схему контакторы.

Важная характеристика при подключении – класс износостойкости. Она показывает, сколько раз устройство сможет без затруднений срабатывать на нажатие.

Важный показатель, если механизм предстоит часто включать и выключать. Если в час предстоит много нажатий, то выбирают бесконтактные пускатели.

Кроме того, устройства могут продаваться с реверсами и без них. Применяют для реверсивных двигателей, где вращение идет сразу в две стороны.

Пускатель такого типа имеет сразу две катушки и две пары силовых контактов. К дополнительным элементам относят защитный механизм, лампочку, кнопки.

Для защиты электродвигателя от недопустимых длительных токовых перегрузок, которые могут возникнуть при увеличении нагрузки на вал или потери одной из фаз применяется тепловое защитное реле. Также защитное реле защитит обмотки от дальнейшего разрушения при возникшем междувитковом замыкании.

Тепловым данное реле (сокращенно ТР) называют из-за принципа действия, который схож с работой автоматического выключателя, в котором изгибающиеся при нагреве электрическим током биметаллические пластины разрывают электрическую цепь, надавливая на спусковой механизм.

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.


Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

  • Номинальный ток защиты;
  • Предел регулировки уставки тока срабатывания;
  • Напряжение силовой цепи;
  • Количество и тип вспомогательных контактов управления;
  • Мощность коммутации контактов управления;
  • Порог срабатывания (коэффициент отношения к номинальному току)
  • Чувствительность к асимметричности фаз;
  • Класс отключения;

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).


Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с и на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».


Тепловое реле в схеме реверсивного подключения контакторов
Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.


Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения перегрузки , при котором реле отключит катушку контактора, который обесточит электродвигатель.


Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,


Защита настроек и маркировка

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.


Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:


Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.


Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.


Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.


Элемент крепежа на корпусе теплового реле
Специальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».


ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.


Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.


Система рычагов

Если убрать рычаги, то будут видны контактные группы теплового реле.


Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.

Реле называется тепловым из-за его принципа действия, во многом подобного на принцип работы выключателя-автомата, в котором биметаллические пластины, нагретые электротоком, выполняют разрыв цепи и давят на механизм спуска.

Так как тепловое реле в схемах требуется подключать за магнитным пускателем, отсутствует необходимость дублирования функции контактора после размыкания цепей в аварийных случаях. Выбор в пользу такой защиты позволяет достичь существенной экономии материала для силовых контактных групп. Ведь гораздо проще коммутировать малые токи единой управляющей цепи, чем разрывать сразу три контакта под высокой токовой нагрузкой.

Совет №1: При подключении прибора следует помнить, что тепловым реле силовые цепи не разрываются напрямую, им подается управляющий сигнал при повышении нагрузок.

Обычно в конструкции тепловых реле предусмотрено наличие двух контактов:

  • нормально замкнутого;
  • разомкнутого в нормальном положении.

После сработки реле оба этих контакта одновременно изменяют сове положение.

Устройство и виды

Реле тепловые выпускаются нескольких типов, для каждого из них характерны свои конструктивные особенности и область использования. Основными типами являются следующие реле:

  • твердотельные;

РТЛ представляют собой 3-х фазные устройства, предназначенные для защиты электродвигателей от перегрузок, заклинивания ротора, продолжительного пуска, фазного перекоса. Устройства ставятся на клеммные контакты пускателя ПМЛ. Могут самостоятельно работать как защитный прибор с клеммами типа КРЛ.

Реле типа РТТ — также трехфазное устройство, обеспечивающее защиту короткозамкнутых двигателей от затяжных пусков, заклинивания, токовых перегрузок, иных, не менее опасных аварийных ситуаций. Благодаря особенностям конструкции реле крепятся к корпусу магнитных пускателей типов ПМА и ПМЕ, а также в качестве отдельного устройства на специальной панели.

Трехфазные реле РТИ используются для защиты электромотора от перегрузок, перекосов фаз, стопорения и других тяжелых режимов функционирования. Крепятся к корпусу пускателей КМТ и КМИ.

ТРН — тепловой 2-х фазное реле, посредством которого осуществляется контроль за пуском и работой приборов. Оснащается механизмом ручного возврата клемм в первоначальное положение, при этом температура среды на эффективность функционирования реле не влияет.

Твердотельные реле — 3-х фазные устройства, конструкция которого не предусматривает наличия подвижных частей. Реле также не восприимчивы к воздействию окружающей среды, применяются в местах с риском разрыва.

В реле типа РТК контроль температуры выполняется посредством щупа, размещенного в корпусе прибора.

Как выбрать реле по характеристикам?

При подборе реле следует изначально разобраться в его основных параметрах:

  • значению номинального тока;
  • диапазона регулирования тока сработки;
  • сетевого напряжения;
  • тип и количество клемм;
  • расчетной мощности подключаемого устройства;
  • минимальной границы сработки;
  • класса устройства;
  • реакции на фазный перекос.

Номинальный ток реле должен быть идентичным указанному на электромоторе, к которому устройство будет подсоединяться. Величину тока двигателя можно увидеть на планке, размещенной на его крышке или корпусе.

Сетевое напряжение для реле должно быть равным значению сети, в которой оно будет располагаться — 220 либо 380/400 В. Также значение имеет тип и число клемм, так как в контакторах различных типов реализованы различные способы подсоединения.

Реле также должно выдерживать мощность электромотора для недопущения ложной сработки. Для двигателей трехфазных следует подбирать реле, обеспечивающее дополнительную защиту от фазного перекоса.

Особенности подключения

Обычно монтаж теплового реле осуществляется вместе с магнитным пускателем, выполняющим соединение и запуск электродвигателя. Выпускаются также и устройства, устанавливающиеся как самостоятельный прибор на DIN-рейке либо на монтажной панели — ТРН или РТТ.

Если у реле ТРН присутствует лишь пара входящих подключений, фаз в нем все равно три. Отключенный фазный провод выходит с пускателя к двигателю, минуя устройство. Изменение тока в электромоторе происходит пропорционально во всех фазах, потому достаточно выполнять контроль только за двумя из них.


Устройства снабжаются двумя группами клемм в нормально открытой и нормально замкнутой группах.


Ниже представлена схема управления, отключающая мотор от сети при возникновении нештатной ситуации от обрыва фазы либо перегрузки. Вращение двигателя осуществляется в одну сторону, управление включением выполняется с одного места посредством кнопок ПУСК и СТОП.


Автомат подключен и к верхним контактом поступает напряжение. После нажима кнопки ПУСК происходит подключение катушки пускателя А1 и А2 к сети L1 и L2. В представленной схеме установлен пускатель, катушка которого рассчитана на 380 В.

При включении пускателя катушкой происходит замыкание дополнительных контактов 13 и 14. Кнопку ПУСК теперь можно отпустить, но контактор останется включенным. Такая схема получила название «Пуск с самоподхватом».

Для отключения электромотора от сети нужно обесточить катушку. Проследив на представленной схеме направление течения тока, можно заметить, что отключение произойдет при нажиме кнопки СТОП либо размыкании клемм теплового реле (на схеме прибор обозначен прямоугольником красного цвета).

Таким образом, при возникновении нештатной ситуации при сработке реле разрывается цепь, пускатель снимается с самоподхвата, обесточивая при этом электромотор. Перед повторным пуском после сработки необходимо выполнить осмотр механизма для выявления причин внепланового отключения и не включать вновь до их устранения.

Зачастую причиной сработки служит повышенная температура внешнего воздуха — такой момент также следует учесть при настройке механизмов и их эксплуатации.

Совет№2: В домашних хозяйствах область использования тепловых реле не ограничивается лишь станками и иными механизмами собственного производства. Не лишним было бы применять устройства для установки в системах, контролирующих ток в насосах отопительной системы.

Работа циркуляционного агрегата выполняется весьма специфическая. Дело в том, что на улитке и лопастях со временем появляется известковый налет, служащий одной из причин заклинивания и выхода из строя электродвигателя. Применяя приведенные схемы подключения можно собственными силами собрать контролирующий блок и блок защиты. В питающей цепи достаточно выставить номинал теплового реле и подключить контакты.


Красным цветом на схеме указаны трансформаторы тока, подключающиеся к амперметру и реле контроля, для визуального представления о проходящих в цепи процессов. Подключение трансформатора выполняется по схеме «звездочка» с одной общей точкой.

Обзор моделей

В таблице приведен краткий сравнительный обзор моделей тепловых реле с указанием основных параметров и примерной стоимости.


Ошибки при установке

  • Главной ошибкой неопытных мастеров является приобретение и установка реле с параметрами, не подходящими к параметрам электродвигателя. Необходимо внимательно ознакомиться с описанием товара и его характеристиками, приведенными в паспорте устройства.
  • Также при подборе и установке реле часто не учитывается температура внешнего воздуха при эксплуатации устройства. Слишком высокая температура может являться причиной частых срабатываний.
  • Еще одна серьезная ошибка — слишком плотное затягивание контактов устройства при помощи отвертки. При выполнении этой работы следует проявить осторожность, чтобы не вывести реле из строя.


Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.

Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.

Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического “отключения” оборудования при “пропадание” электричества.
Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка “Пуск” .

Схемы подключения магнитного пускателя

Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на “3” контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

Обратите внимание . В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.
Например если катушка магнитного пускателя на 220 вольт – один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.

Если номинал катушки на 380 вольт – один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.

В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.


Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.


Как выглядит монтажная (практическая) схема подключения магнитного пускателя?

Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на “3” контакт кнопки «Пуск».

Как подключить магнитный пускатель в однофазной сети



Схема подключения электродвигателя с тепловым реле и защитным автоматом

Как выбрать автоматический выключатель (автомат) для защиты схемы?

Прежде всего выбираем сколько “полюсов”, в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.

Следующим важным параметром будет ток сработки.

Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.

Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.

Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.

Например для двигателя на 4кВт, можно ставить автомат на 10А.

Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.

В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.

Подключение электродвигателя через реверсивный пускатель

Данная необходимость возникает, тогда когда нужно чтобы движок вращался поочередно в обоих направлениях.

Смена направления вращения реализуется простим способом, меняются местами любые две фазы.

Предохранители и тепловые реле – Справочник химика 21


    Для защиты электродвигателей от перегрузки и коротких замыканий проектом предусматриваются плавкие предохранители, тепловые реле, тепловые элементы или реле максимального тока, [c.186]

    Прим. ред. В настоящее время широко используются регулируемые автоматы защиты двигателей, которые совмещают в себе функции теплового реле и предохранителей типа аМ, что позволяет при правильном подборе и настройке автомата надежно защитить двигатель. Поэтому все выше указанное о тепловых реле и предохранителях типа аМ можно отнести и к регулируемым автоматам защиты двигателей. Тем не менее при выборе автомата мы рекомендуем строго следовать рекомендациям производителя. [c.313]

    Наконец, напомним, что тепловое реле оказывается совершенно бесполезным для защиты от перегрева электронагревателей, поскольку этот тип потребителя рассчитан на постоянную силу тока (1=и/Р). Если в электронагревателе произошло короткое замыкание, гораздо более эффективным средством его защиты является простой плавкий предохранитель, который к тому же, значительно дешевле. [c.312]

    Включается выключатель В, благодаря чему катушка пускателя ПМ получает питание и осуществляется пуск электродвигателя гидронасоса. Питание катушки пускателя ПМ (при включении выключателя В) происходит через предохранитель П1, блок-контакт теплового реле БК, переключатель ЯК, нижний ограничитель спуска грузового аккумулятора НО, контакты которого замкнуты, верхний ограничитель подъема грузового аккумулятора ВО п предохранитель П2. [c.522]

    Электрическая схема (рис. 136, б) мало чем отличается от ранее рассмотренных схем с применением термореле. В силовой части схемы применен автоматический предохранитель типа АП-50 ЗМТ, при использовании которого отпадает необходимость в плавких предохранителях, общем рубильнике и тепловом реле магнитного пускателя, включающего в себя нагревательные элементы Я, [c.275]

    Р — рубильник П — предохранители К — пускатель РТ — тепловое реле Д — асинхронный двигатель В — возбудитель ДП — дополнительные полюса ОВВ — обмотка возбуждения возбудителя и Дг регулировочные реостаты 1 , — вольтметр (150 е) ОВГ— обмотка возбуждения генератора Г — генератор постоянного тока с двумя коллекторами . 01 и Яг — коллекторы 2— вольтметр (15 е) Ш— шунт А — амперметр ЭВ — электролитическая ванна. [c.210]

    Предохранители и тепловые реле [c.55]

    Для защиты от коротких замыканий применены автоматические выключатели 1А, 2А, 1АВ, 2АВ и предохранители 1Пр — бПр. Для контроля за перегрузкой двигателей 1Д, 2Д и ЗД предусмотрена мигающая сигнализация, выполненная на реле 1РП и 2РП, катушки которых включены последовательно с размыкающими контактами тепловых реле 1РТ, 2РТ, ЗРТ, на лампах 1ЛА, 2ЛА, сопротивлениях Ш, 2Р, ЗР, 4Р и стартерах 1СТ и 2СТ. Схемой предусматривается также междусторонняя звуковая и световая сигнализация машины с помощью кнопок 1КУ-1 —2КУ-УП1 2КУ-1 —2КУ-УП1, ламп 1Л-1 — 1Л-УП1, 2Л-1 — 2Л-У1П, промежуточного реле РП и сирены 1С. [c.223]


    Защита электродвигателей от перегрузки и коротких замыканий осуществляется плавкими предохранителями, максимальными реле или катушками и тепловыми реле, а от снижения или исчезновения напряжения — нулевыми катушками или реле напряжения. [c.219]

    Заданная температура поддерживается в охлаждаемом объеме витрины при помощи реле давления РД-1, осуществляющего периодическое включение и выключение холодильного агрегата по давлению кипения. Электродвигатель компрессора защищается от перегрузки тепловым реле типа ТРН-8, а от токов короткого замыкания — плавкими предохранителями. Тумблер позволяет включать и выключать компрессор вручную. [c.12]

    К аппаратам защиты относятся предохранители с плавкой вставкой, тепловые реле и автоматические выключатели. [c.68]

    Автоматическое управление электродвигателем основано на изменениях тока, времени, частоты вращения и пути, происходящих при пуске и работе электродвигателя и приводимого им механизма. В соответствии с этим автоматическое управление выполняют в функции тока, времени, частоты вращения и- пути. При описании схем автоматического управления, кроме приводимых в тексте буквенных обозначений аппаратов, на рисунках встречаются следующие обозначения АВ — автоматический выключатель, Р — рубильник, Пр — предохранитель, ТР — тепловое реле защиты, КнП и КнС — кнопки пуск и стоп, я — магнитный пускатель, ПВ и ПН — пускатели с контакторами пуска электродвигателя вперед и назад. [c.81]

    В схеме предусмотрена защита двигателя плавкими предохранителями П от коротких замыканий и тепловыми реле РТ — от перегрузки. Кроме того, в этой схеме осуществляется так называемая нулевая защита, которая при исчезновении или значительном снижении напряжения в сети отключает двигатель от сети. После восстановления нормального напряжения самопроизвольный пуск двигателя не произойдет. [c.32]

    Силовые цепи и цепи управления электропривода защищаются от к. 3. и длительных (перегрузок предохранителями 1П—ЗП, 8П, МП и тепловыми реле 1РТ—6РТ. [c.91]

    Для защиты электрических установок и питающих линий от перегрузок применяются плавкие предохранители, автоматические выключатели и тепловые реле. [c.195]

    Сечения проводов и кабелей, защищаемые автоматами с расцепителями и тепловыми реле, так же как я при защите предохранителями, должны быть проверены по. соотношениям, рекомендуемым ПУЭ  [c.199]

    Номинальный ток предохранителя должен быть меньше пускового тока примерно в 2,5 раза или в 1,6—2,8 раза больше номинального. Но даже при защите двигателей с фазным ротором, когда предохранитель может быть выбран на ток, близкий к номинальному такая защита менее чувствительна к небольшим перегрузкам, чем тепловые реле. [c.164]

    Тепловое реле не защищает электродвигатель при мгновенном повышении силы тока (например, при коротком замыкании), поэтому наличие плавких предохранителей в электросети обязательно. [c.405]

    Термобиметаллы применяют в качестве чувствительных элементов для измерения температуры окружающей среды, а также определения изменения состояния процессов и параметров, связанных с колебаниями температуры. Применяют их также в качестве защитных элементов в предохранителях, тепловых, и защитных реле. [c.173]

    Для защиты используются плавкие предохранители, реле максимального тока, тепловое реле, конденсаторы для отвода в землю токов высокой частоты, искровой разрядник. [c.65]

    Однако главные контакты магнитных пускателей не рассчитаны на отключение токов КЗ. Кроме того, тепловые реле большинства существующих конструкций магнитных пускателей сами нуждаются в защите от КЗ, так как при прохождении токов КЗ нагревательный элемент может перегореть быстрее, чем реле успеет отключить электродвигатель. Поэтому при применении магнитных пускателей с тепловыми реле для защиты от перегрузок необходимо дополнительно устанавливать в этих цепях предохранители или автоматические выключатели для защиты от КЗ. [c.174]

    Сечение установочных проводов, нагревательные элементы тепловых реле магнитных пускателей, автоматические выключатели или плавкие предохранители должны соответствовать значениям, приведенным в табл. 43. [c.346]

    Действительно, если новый мотор может потреблять явно большую мощность, возрастет сила тока и необходимо, чтобы все электрооборудование было рассчитано на это увеличение (сечение электропроводки, соединительных проводов, мощность плавких предохранителей, размер контакторов, диапазон регулирования реле тепловой защиты…). [c.118]

    Защита электродвигателей от перегрузки и коротких замыканий осуществляется плавкими предохранителями, реле максимального тока, тепловыми реле или тедловыми элементами, а от снижения или исчезновения напряжения — реле напряжения или нулевыми катушками выключателей. Указанные элементы защиты обычно встраиваются в аппараты управления приемниками электроэнергии. [c.146]

    Когда температура в объекте достигнет нижнего значения, установленного на терморегуляторе, контакты его разомкнутся и цепь катушки МП обесточится, что приведет к отключению магнитного пускателя, остановке двигателя и компрессора. Повторные включения компрессора возможны только при условии замыкания гкантактов термореле ТР. Вручную установку можно отключать выключателем ВК. Схема предусматривает и автоматическое отключение двигателя в случае ненормального токового режима. В случае короткого замыкания электрическую цепь должен прерывать один из трех плавких предохранителей ПП, в результате чего должно сработать тепловое реле магнитного пускателя, от нагрева нагревателей Я[ или Яг разомкнется какой-либо из контактов Г, или Т2. В этом случае обесточивается катушка магнитного пускателя и двигатель выключается. [c.272]


    Установка общего рубильника ОР позволяет при снятом напряжении устранять возникающие в двигателе и магнитном пускателе неполадки. Приведенная электрическая схема автоматики состоит из двух частей силовой цепи, в которую входит общий рубильник ОР, плавкие предохранители ПП, силовые контакты магнитного пускателя МП, нагрввател Я и Яд и двигатель ЭД. обеспечивающий силовой электроэнергией питание двигателя ЭД. и цепи управления, состоящей из выключателя ВК, контактов термореле ТР, контактов теплового реле магнитного пускателя Г] и Гг и катушки магнитного пускателя МП, осуществляющей управление электродвигателем (его включение и выключение). В дальнейшем будут приводиться как электрические цепи управления, так и совместные схемы цепей управления и силовой. [c.272]

    У, ПМ — магнитный пускатель П 322М РТ — тепловое реле магнитного пускателя 1Пр — предохранитель ПТ-10/2, ПК — пакетный выключатель ПВ2-10, ПРУ, РО, ПРМ, РРП, РПИ, РЗО — реле электромагнитные МКУ-48 ВС — выпрямитель селеновый АВС-15-13 КП, КС — кнопки управления КУ-12111 1лб — арматура белой сигнальной лампы АСДС 2Лз — арматура зеленой сигнальной лампы ЛСДС Т — 6Т — табло световое ГС-55 Тр — понижающий трансформатор ТПВ 50 РУ — реле электромагнитное РКП, Зв — звонок переменного тока ЗВП-220 СУ — сигнализатор уровня С57 2 РП — реле протока РП-3/4 [c.317]

    В текстильных цехах устанавливаются перегонные и перемоточные машины, машины для производства эластичных и высокообъемных нитей, ткацкие станки. Ткатций станок АТ-175к предназначен для выработки кордных тканей из капроновой основы и хлопчатобумажного утка. Для электропривода станка (рис. VIII.13) применен асинхронный короткозамкнутый электродвигатель Д мощностью 1 кВт. Управление электроприводом осуществляется с помощью реверсивного пускателя ШМ и 2ПМ, кнопок управления КП и КС и педально-кнопочного выключателя ВК. Кнопкой КП (пуск) включают магнитный пускатель ШМ и пускают электродвигатель Д. Замыкающий контакт ШМ шунтирует кнопку КП. Отключается электродвигатель кнопкой КС (стоп). Нажатием на педаль кнопочного выключателя ВК электродвигатель переключается на обратный ход, при этом катушка пускателя ШМ обесточивается, а катушка пускателя 2ПМ получает питание. Последовательность чередования фаз у электродвигателя изменяется и он начинает вращаться в обратном направлении. При обрыве основной нити замыкаются контакты КО, получает питание реле 1РУ и своим замыкающим контактом включает электромагнит ЭМ муфты сцепления и станок останавливается. Лампа ЛО сигнализирует об обрыве нити. Защита от коротких замыканий выполнена предохранителями с плавкой вставкой от перегрузки — тепловым реле РТ. [c.228]

    Электрооборудование, работающее во взрывоопасных установках, не должно служить источником возникновения взрывов. Поэтому температура нагрева любой части работающего электрооборудования должна быть во всех случаях ниже температуры самовоспламенения окружающей взрывоопасной среды. Во избежание чрезмерного повыщения температуры при перегорании предохранителя в одной фазе защиту от перегрузки электрических двигателей следует выполнять на трех фазах (автоматами или тепловыми реле). Нормально искрящие части пусковых аппаратов (контакты) заключают в специальную оболочку, не допускающую передачи искр в окружающую взрывоопасную среду. Изоляцию обмоток машин и аппаратов делают из материалов повышенной прочности — механической, противосыростной и химической нагре-востойкость изоляции принимают не ниже класса В. Такая изоляция меньше повреждается, и, следовательно, меньше опасность возникновения искрения. [c.7]

    РП1, РП2 —реле промежуточные . К1 —контактор РВ —реле времени РМ —реле максимального тока ТР —тепловое реле ВС —селеновый вы прямитель ПК1, ПК2 —пакетные выключатели ПКЗ —пакетный переключатель КП1, КС1, КП2, КС2 —кнопки ПП —пробивной предохранитель ЭД —электродвигатель синхронизированный С1, С2 —конденсаторы БС —буферное сопротивление РА — разрядник шА —миллиамперметр А —амперметр V—вольтметр П, П1— предохранители РС —регу лировочное сопротивление Др —дроссель, защитный от радиопомех Тр —трансформатор высоковольтный ВМ —механический выпрямитель ДБ—дверной блок-контакт Синхр, —синхронизатор ОВС —обмотка воз ждения синхронизатора ОПС —обмотка, полюсов синхронизатора пв — высоковольтный переключатель ТСУ— трансформатор сигнализации и управления ЛЗ — сигнальная лампа (зеленый свет) ЛК — сигнальная лампа (красный свет) АТР — автотрансформатор КР — контроллер Д1, Д2, ДЗ, Д4, Д5 —клеммы на распределительном щитке. [c.89]

    Д—4Д — асинхронные электродвигатели 1ЭВ В0ЭВ — электроверетена 1А. 2А. /АВ, 2АВ — автоматические выключатели ПВ — ЗПВ — пакетные выключатели /Я — 80П — переключатели /РГ — ЗРТ — тепловые реле 1Пр — бПр — предохранители 1ЛА, 2ЛА, 1ЛС — зле — сигнальные лампы 1К—ЗК — контакторы РВ — реле времени РП, 1РП, 2РП — промежуточные сигнальные реле КУ, 1КУ-1 — 1КУ-У1И, 2КУ-1 — 2КУ-У111 — кнопки управления /С — сирена Тр — трансформатор Щ — 4К — сопротивления СТ, 2СТ — стартеры. [c.79]

    Автоматические выключатели и тепловые реле. Плавкие предохранители плохо защищают асинхронные короткозамкнутые электродвигатели от перегрузок. Нередко бывает, что перегорает лишь один предохранитель и двигатель, оставшийся работать на двух фазах, перегревается и выходит из строя. Кроме того, плавкие предохранители не всегда обеспечивают избирательность (селективность) защиты сети. Это и привело к широкому использованию на предприятиях химических волокон автоматических выключателей с тепловыми и электромагнитными элементами. Обладая большой инерцией, тепловые элементы не реагируют на пусковые токи электродвигателей и хорошо защищают их от перегрузки. В то же время тепловые реле имеют характеристику, подобную характеристике предохранителей, и при коротких замыканиях не успевают быстро отключить электрическую цепь, что приводит к развитию аварии и повреждениям при замыкании в электродвигателях. Поэтому в дополнение к магнитным пускателям, контакторам и автоматам устанавливают предохранители, защищающие двигатели от короткого замыкания. Применяются также комбинированные автоматы с тепловыми и электромагнитными расцепителями. Электромагнитные расцепители отключают автоматиче-,ские выключатели мгновенно при прохождении через их катушки токов больше определенной величины. Таким образом, они защищают электрооборудование от коротких замыканий, заменяя предохранители. [c.198]

    Выбор расцепителей и тепловых реле. Номинальные гоки для расцепителей и тепловых реле выбирают так же, как плавкие вставки для инерционных предохранителей, т. е. из условия [c.199]


Том 5 Вкладка 2

% PDF-1.6 % 462 0 объект > эндобдж 458 0 объект > поток 2019-02-15T16: 41: 24ZPreview2019-02-15T11: 00: 49-06: 002019-02-15T11: 00: 49-06: 00Mac OS X 10.13.6 Quartz PDFContextapplication / pdf

  • Volume 5 Tab 2
  • Контакторы и пускатели NEMA
  • Золтун Дизайн
  • uuid: 2cbd5ff0-44d8-1a4d-9f2f-63cdd6827440uuid: 28aff279-1d5d-e040-bbb7-8508b28ef47d конечный поток эндобдж 434 0 объект > эндобдж 435 0 объект > эндобдж 444 0 объект > эндобдж 453 0 объект > эндобдж 454 0 объект > эндобдж 455 0 объект > эндобдж 456 0 объект > эндобдж 457 0 объект > эндобдж 385 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] >> / Rotate 0 / Type / Page >> эндобдж 386 0 объект > поток HWYo + xNf’k’Er!) Z-Z.6 {“JҧB; | 3 + JGi ߗ?!: TR *” ? BfQh ~, $ v_Fcʼn7

    5 / Zrlê˿ = * ؃ h) | 4ĉ YlQ + ֜ v} h – (w _ # = Xt’J *% V “ÆCWNchzX% 0 aS2% uX} w1tIv / Ou! q F-PhE \ ### a = `Qhq’Ӕ8pJ $ & $ zu (l (Z80 # suloOpE0r M`L + bErK7 $ MĐ³`Oq񗆐H`0Orf bD FgX $ Z! P: 9) VjZ] hŚ:% 4 + / BgUf3> $ ujf + bPVB

    Основная разница между контактором и пускателем

    Разница между контактором и пускателем двигателя

    Магнитный пускатель очень похож на магнитный контактор по конструкции и работе.Оба имеют функцию рабочих контактов, когда катушка находится под напряжением. Основное различие между контакторами и пускателями заключается в использовании нагревательного элемента от перегрузки (чувствительной катушки, которая отслеживает выделяемое тепло из-за чрезмерного тока и изменений температуры окружающей среды) в пускателе для защиты двигателя от перегрева и обеспечения защиты нагрузки).

    Пускатель двигателя – это, по сути, контактор с добавлением реле перегрузки, которое сбрасывает напряжение катушки в случае перегрузки двигателя.

    A Контактор представляет собой переключатель с электрическим управлением, аналогичный реле. Он используется для переключения тока на включение и выключение цепи. Контактор не обеспечивает защиты от перегрузки. Применяется для управления отопительными контурами, электродвигателем и автоматизированным промышленным оборудованием.

    A Пускатель двигателя представляет собой комбинированное устройство, состоящее из контактора и реле максимальной нагрузки. В пускателе двигателя контактор управляет потоком электрического тока к подключенному двигателю и многократно замыкает и размыкает (прерывает) силовую цепь от основного источника питания.Блок защиты от перегрузки в пускателе защищает двигатель от чрезмерного тока, перегрева и выгорания цепи.

    A Контактор – это отдельная часть пускателя двигателя, которая также может использоваться как устройство регулирования мощности. Он используется там, где требуется частое размыкание и замыкание (ВКЛ-ВЫКЛ) электрического оборудования, такого как двигатели, свет, нагреватели и т. Д. Согласно NEMA, основная функция контактора состоит в том, чтобы многократно устанавливать и прерывать электрическую цепь питания i.е. Замыкать и размыкать цепь нагрузки от источника питания.

    A Контактор зависит от информации от системы управления пускателем двигателя и включает и отключает цепь двигателя.

    A Пускатель двигателя получает информацию от контактора и систем контакторов для включения и выключения двигателя.

    A Контактор работает так же, как выключатель или выключатель, но принцип работы другой. Например, если переключатель или автоматический выключатель находится в положении ВКЛ. И система управления посылает «сигнал разомкнутой операции», она не откроет цепь до тех пор, пока кто-нибудь не откроет переключатель вручную, иначе он расплавится или сгорит.Это не относится к контактору, т.е. если что-то происходит не так с источником питания, подключенным к цепи контактора, цепь контактора немедленно размыкает замкнутые контакты, удерживаемые под напряжением катушки. Таким образом, контактор защищает двигатель и рабочий процесс цепи двигателя.

    Пускатель двигателя может быть одиночным выключателем или контактором или системой пускателей двигателя, автотрансформатором для снижения напряжения для запуска двигателя или твердотельным устройством, таким как VFD (частотно-регулируемый привод), которое управляет формой волны, отправляемой на двигатель для управление пуском двигателя.Стартер рассчитывается в амперах или зависит от мощности двигателя (номинальная мощность в лошадиных силах) и защищает цепь двигателя от скачков перегрузки и предотвращает перегрев.

    Контактор – одна из модифицированных версий реле и часть пускателя двигателя. Он имеет номинальное напряжение (или расчетный ток нагрузки на контакт (полюс) и подает напряжение на катушки контактора, чтобы включить или отключить силовую цепь.

    Короче говоря, если у вас есть пускатель , то у вас есть контактор и защита от перегрузки в одном устройстве.Если у вас есть контактор, у вас нет блока защиты от перегрузки.

    Термин «пускатель двигателя» относится к закрытой монтажной коробке, которая включает «контактор, управление или автотрансформатор (если есть), предохранители и реле перегрузки»?

    т.е.

    Стартер = контактор + реле перегрузки

    Похожие сообщения:

    404 Не найдено | Fuji Electric FA Components & Systems Co., Ltd.

    Информация о новых продуктах

    Информация об изменениях в продукте

    Отображается информация об изменении продукта за последний месяц.Прошедшую информацию можно просмотреть, выполнив поиск по типу, категории продукта, времени и т. Д.

    Поиск товаров, снятых с производства

    Отображается информация о последних пяти изделиях, производство которых было прекращено. Прошедшую информацию можно просмотреть, выполнив поиск по типу, категории продукта, времени и т. Д.

    FUJI ED&C TIMES News Letter

    Распределение низкого напряжения

    С ускорением глобализации рынка оборудования для приема и распределения энергии мы предлагаем различные устройства для приема и распределения энергии, которые можно использовать на международных рынках, благодаря нашему широкому ассортименту продукции, соответствующему основным мировым стандартам.

    Управление двигателем

    Благодаря слиянию Fuji Electric FA Components & Systems, имеющей самую высокую долю рынка в Японии в области устройств управления электродвигателями, и Schneider Electric, имеющей самую высокую долю рынка в мире, мы теперь можем предложить превосходную ценность для наших клиентов как подлинный производитель №1 в мире.

    Контроль

    Мы будем удовлетворять потребности наших клиентов, добавляя широкий спектр устройств управления и индикации и датчиков мирового стандарта, а также предлагая комплексные решения, такие как реле и реле с выдержкой времени.

    Распределение среднего напряжения

    Мы удовлетворяем потребности наших клиентов с помощью высоконадежных продуктов и различных типов аппаратов среднего напряжения, которые поддерживают современные сложные системы приема и распределения энергии, включая наш вакуумный выключатель среднего напряжения, который обеспечивает безопасность электрического оборудования.

    Оборудование для контроля энергии

    Мы помогаем нашим клиентам «визуализировать электроэнергию» с помощью широкого спектра продуктов и наших надежных инженерных возможностей.Мы делаем предложения по энергосбережению в соответствии с энергетической средой наших клиентов в различных областях, от обеспечения качества и защиты электроэнергии высокого напряжения до управления уровнем потребления низкого напряжения.

    GE CR306D005 – NEMA, размер 2, трехфазный, 600 В, макс. 25 л.с., магнитный пускатель

    GE CR306D005 – NEMA, размер 2, трехфазный, 600 В, макс. 25 л.с. Магнитный пускатель

    Магнитный пускатель двигателя GE с полным напряжением (максимум 600 В) имеет герметизированную катушку и трехполюсное реле перегрузки для защиты от перегрузок на всех фазах.Он входит в стандартные спецификации основных производителей. Линия предлагает функции и преимущества, которые наиболее востребованы пользователями.

    • NEMA Size 2
    • Трехфазный
    • 575 – 600 В
    • Макс.25 л.с.
    • Разборка контактора без инструментов (размеры 00-4) – обеспечивает быстрый доступ для осмотра и обслуживания. Просто освободите два фиксатора и потяните за зажим, чтобы добраться до магнита, катушки и контактов.
    • Седловидные зажимы (размеры 00-1) – подходят для кольцевых, плоских и зачищенных проводов и несут постоянную штампованную идентификацию.Расположение в шахматном порядке упрощает электромонтаж и помогает предотвратить короткое замыкание между фазами.
    • Токоведущие компоненты – контактные наконечники изготовлены из стойкого к сварке оксида серебра и кадмия (чистое серебро только для размеров 00 и 0). Контакты устанавливаются по схеме «клин» для обеспечения надежного замыкания с минимальным дребезгом.
    • Дополнительные клеммы для конденсаторов PF – позволяют легко подключать конденсаторы для коррекции коэффициента мощности между контактором и реле перегрузки для экономии энергии.
    • Защита от перегрузки класса 20
    • Визуальный индикатор отключения с ручным сбросом – во избежание неожиданных перезапусков.Сброс происходит при движении руки вверх, поэтому состояние срабатывания не может быть отменено удерживанием руки вниз.
    • Ручная проверка сварных швов – обеспечивает удобный тест на сварку контактов реле перегрузки. Просто нажмите кнопку проверки сварки, чтобы сработать реле, запустите простую проверку целостности контактов реле, затем нажмите кнопку ручного сброса, чтобы вернуть стартер в рабочее состояние.
    • Дополнительный изолированный замыкающий контакт на реле перегрузки – обеспечивает средства прямого интерфейса с контроллером программирования или компьютером для контроля производительности и диагностики неисправностей.
    • Двойные биметаллы – предотвращают перегрузки, реагируя на повышение тока и температуры, с более быстрым отключением при серьезных перегрузках для лучшей защиты двигателя. Точки срабатывания калибруются на заводе-изготовителе для обеспечения точности.
    • Регулировка срабатывания ± 10% – поворот ручки на лицевой стороне реле перегрузки позволяет «настроить» защиту двигателя на месте.
    • Самый большой выбор модификаций и комплектов принадлежностей – включает вспомогательные контакты, катушки, дополнения пятого полюса, вертикальные и горизонтальные механические блокировки, ограничители перенапряжения, предохранители цепи управления, корпуса типа NEMA, кнопки, селекторные переключатели, сигнальные лампы, управляющие трансформаторы, обогреватели и многое другое.

    Ручной пускатель двигателя: принцип работы, применение

    Вы когда-нибудь использовали ручной пускатель двигателя в своих приложениях? Вы знаете, что такое ручной пускатель двигателя и как он работает? Если ваш ответ отрицательный, предоставляется следующая информация, которая поможет вам правильно использовать ручные пускатели двигателей и все их возможности / функции.

    Продолжайте читать!

    Что такое ручной пускатель двигателя?

    Ручной пускатель двигателя – это устройство защиты, которое объединяет функции автоматического выключателя и реле перегрузки.Он защищает электродвигатель от перегрузки, короткого замыкания и потери фазы. Его можно использовать в качестве разъединителя с помощью рукоятки, и он отключает двигатель от электросети.

    Другие распространенные псевдонимы для ручного пускателя двигателя включают:

    • Автоматический выключатель двигателя (MPCB)
    • Ручной предохранитель двигателя (MMP)
    • Ручной контроллер двигателя (MMC)
    • Ручной предохранитель стартера (MSP)
    • Устройство защиты двигателя (MCP)

    С помощью ручного управления Комбинация пускателя двигателя и контактора, функция дистанционного управления обеспечивается контактором.Функции защиты и отключения обеспечивает ручной пускатель двигателя.

    Электродвигатели должны быть защищены от перегрузок и коротких замыканий. Кроме того, двигатели должны быть изолированы от электросети. Для этого доступно множество схемных устройств, таких как контакторы, реле перегрузки, автоматические выключатели и выключатели-разъединители. У каждого устройства разные функции в цепи двигателя.

    Как работает ручной пускатель двигателя?

    После обнаружения перегрузки или короткого замыкания ручной пускатель двигателя отключает все фазы от питания и изолирует двигатель от питания.Кроме того, ручные пускатели двигателя повышают надежность устройства за счет очень быстрой реакции. Он защищает цепи на стороне нагрузки от повреждений.

    Как и автоматические выключатели в литом корпусе, стандартные ручные пускатели двигателей имеют два расцепителя:

    – Регулируемый расцепитель максимального тока с обратнозависимой выдержкой времени для защиты от перегрузки (тепловая защита)

    – Фиксированный расцепитель мгновенного действия для защиты от короткого замыкания (магнитная защита)

    Характеристики срабатывания теплового расцепителя максимального тока с обратнозависимой выдержкой времени применимы для постоянного (DC) и переменного (AC) тока с частотами 50/60 Гц.Для трехполюсных нагрузок и токов в 3-8 раз превышающих установленный ток, допуск времени отключения составляет ± 20%.

    Характеристики отключения мгновенных расцепителей короткого замыкания основаны на номинальном рабочем токе Ie, который в случае ручного пускателя двигателя совпадает с верхним значением диапазона настройки. Более низкие значения тока приводят к увеличению кратного тока срабатывания расцепителей мгновенного короткого замыкания. Кривые отключающей характеристики действительны для холодного состояния; и теплое состояние, в то время как времена срабатывания теплового расцепителя максимального тока с обратнозависимой выдержкой времени имеют больший разброс.

    Чувствительность к обрыву фазы является характеристикой расцепителей с обратнозависимой выдержкой времени и тепловых сверхтоков. Сильный дисбаланс между фазами может повредить двигатели и другие нагрузки. Ручные пускатели двигателя предназначены для обнаружения этих неисправностей и отключения, чтобы предотвратить повреждение цепи на стороне нагрузки и двигателя.

    Применение ручного пускателя двигателя

    Ручной пускатель двигателя – надежное и экономичное решение для защиты двигателя во многих промышленных приложениях, таких как:

    • Отопление, вентиляция, кондиционирование воздуха (HVAC)
    • Горнодобывающая промышленность
    • Лесопилки
    • Очистка воды и сточных вод
    • Конвейерные системы
    • Насосы
    • Упаковочные машины
    • Вентиляторы
    • Миксеры

      a

    ручной электродвигатель ?

    Во время нормальной работы устройство должно быть симметрично нагружено на всех трех полюсах, чтобы предотвратить преждевременное отключение из-за чувствительности к потере фазы.3-х фазные устройства можно напрямую подключать к основным полюсам. Для защиты однофазных устройств или устройств постоянного тока все три главных полюса должны быть запитаны и подключены последовательно.

    Схема электрических соединений ручного пускателя двигателя 3 фазы, 1 фазы, постоянного тока

    Ручной пускатель двигателя и автоматический выключатель

    Нет большой разницы между двумя продуктами в плане рабочей логики. Оба они обеспечивают защиту от теплового и магнитного тока. Ручные пускатели двигателей в основном предназначены для цепей двигателей и имеют более компактные размеры.Они также обеспечивают защиту от потери фазы.

    Обычно MMS выпускаются до 100А. Хотя тепловые токи можно регулировать с помощью потенциометра, пределы защиты магнитных токов являются фиксированными. Отключающая способность при коротком замыкании не превышает 100кА. Количество аксессуаров, которые можно прикрепить к MMS, ограничено. Например, нельзя установить механическую блокировку между двумя MMS и управлять ими напротив друг друга (переключение).

    Автоматические выключатели

    (MCCB и ACB) имеют более широкие возможности термомагнитной защиты.Они могут достигать тока до 6300 А и отключающей способности при коротком замыкании до 150 кА. Тепловые и магнитные токи можно регулировать с помощью микропереключателей или электронных микропроцессоров на передней панели. Для обеспечения селективности можно использовать функции временной задержки. Разнообразие аксессуаров намного больше.

    Ручной пускатель двигателя и контактор

    Ручной пускатель двигателя – устройство защиты, контактор – устройство управления. Контактор не имеет функции защиты.

    Ручной пускатель двигателя и реле перегрузки

    Ручной пускатель двигателя имеет как тепловую, так и магнитную защиту. Реле перегрузки имеет только тепловую защиту. Невозможно изолировать нагрузку с помощью реле перегрузки. Реле перегрузки нуждается в таком устройстве, как контактор, для отключения нагрузки. MMS можно использовать в качестве кулачкового переключателя для запуска двигателя. Также дистанционное управление возможно с аксессуарами, которые можно прикрепить к нему.

    Принадлежности для ручных пускателей электродвигателей

    Вспомогательные контакты

    Вспомогательные контакты дистанционно индицируют состояние контактов в стартере.Вспомогательные контакты могут использоваться для сигнализации, электрического запирания или реле. Они меняют положение с главными контактами ручного пускателя двигателя. Они открывают и замыкают отдельную цепь в зависимости от положения устройства. Вспомогательные контакты доступны в различных версиях: нормально разомкнутые или нормально замкнутые.

    Сигнальные контакты

    Сигнальные контакты сигнализируют об отключении ручного пускателя двигателя. Как и вспомогательные контакты, сигнальные контакты также доступны как нормально разомкнутые или нормально замкнутые.

    Независимый расцепитель

    Независимый расцепитель размыкает пускатель двигателя, когда управляющее напряжение превышает 0,7 номинального напряжения. Отключение происходит при подаче питающего тока.

    Расцепитель минимального напряжения

    Расцепитель минимального напряжения размыкает пускатель двигателя, когда управляющее напряжение падает ниже порога срабатывания. Расцепитель минимального напряжения отключает ручной пускатель двигателя или предотвращает его включение при прерывании подачи напряжения.Это может быть использовано в цепях аварийного переключения или может предотвратить автоматический перезапуск после прерывания напряжения.

    Сборные шины

    Ручные пускатели двигателей часто изготавливаются вместе с контакторами для различных комбинаций пускателей. Трехфазные шины с соответствующими клеммами защиты фидеров обеспечивают быстрое и безопасное подключение нескольких ручных пускателей двигателей.

    Ручки и стержни

    С помощью этого решения, использующего поворотный механизм дверной муфты, можно управлять ручным пускателем двигателя в задней части распределительного шкафа снаружи.

    Продолжить чтение

    UL 508A – Традиционные комбинированные пускатели в Северной Америке

    В США существует несколько типов пускателей двигателей (тип A, тип B, тип C, тип D, тип E и тип F), которые различаются в зависимости от используемых защитных устройств. Пускатель двигателя типа A, например, включает в себя устройство ручной выключатель , предохранитель , контроллер двигателя и реле перегрузки .Тип A – единственный пускатель двигателя, для которого требуется предохранитель, который играет роль магнитной защиты и, следовательно, устройства защиты параллельной цепи (BCPD), то есть устройства, которое должно гарантировать защиту от токов короткого замыкания и ограничивать параллельную цепь.

    Тип B, который больше не используется сегодня, включает ручной разъединитель , магнитный предохранитель двигателя от короткого замыкания , контроллер двигателя и реле перегрузки .

    Тип C, с другой стороны, отличается от типа A и типа B, потому что вместо предохранителя и устройства защиты двигателя от короткого замыкания он включает автоматический выключатель с обратнозависимой выдержкой времени , который не только обеспечивает магнитное и тепловое сопротивление. защиты, но обеспечивает такую ​​же функцию выключателя-разъединителя .

    Тип D, который не очень используется, имеет автоматический выключатель мгновенного отключения (который выполняет функции разъединителя и защиты от короткого замыкания ), контроллер двигателя и реле перегрузки .

    Тип E, принятый UL в 1990 году, был создан как ручной самозащищенный комбинированный контроллер двигателя (выключатель , реле перегрузки и защита от короткого замыкания в одном устройстве). Сегодня пускатель двигателя типа E включает в себя также контроллер двигателя , таким образом предлагая компактное устройство , называемое комбинированным контроллером двигателя с самозащитой , состоящее из ручного комбинированного контроллера двигателя с самозащитой и контроллера двигателя .

    Тип F (принят UL только в 2002 г.) означает хорошо известный «европейский» пускатель двигателя, то есть ручной автономный комбинированный контроллер двигателя + отдельный контроллер двигателя . В этом случае координация между контроллером мотора и защитой внутри ручного самозащитного комбинированного контроллера мотора играет фундаментальную роль с точки зрения SCCR.

    Определения, принятые в UL 508A в отношении функций защиты:

    ЗАЩИТА ОТ ПЕРЕГРУЗКИ ПО ТОКУ: защита от перегрузки, короткого замыкания и замыкания на землю.
    ЗАЩИТА ОТ ПЕРЕГРУЗКИ: защита, необходимая для цепей двигателя, цель которой – избежать чрезмерного перегрева из-за перегрузок.
    Термин «Комбинированный контроллер двигателя» относится к комбинации устройств для обеспечения средств отключения цепи, защиты параллельной цепи (короткого замыкания), управления двигателем и защиты двигателя от перегрузки. Внутри устройства находится:

    Пускатель двигателя: комбинация защиты от перегрева и контроллера двигателя.
    Ручной контроллер двигателя: комбинация реле перегрузки , разъединителя и защиты от короткого замыкания.

    Тепловое реле перегрузки, для стартера двигателя Dol, 125 рупий / единица Katariya (торговая марка Electromates, Индия)

    Тепловое реле перегрузки, для стартера двигателя Dol, 125 рупий за единицу Katariya (марка Electromates, Индия) | ID: 14548489062

    Технические характеристики продукта

    Industries)
    Номинальное напряжение 440 В
    Включающая способность 25000 в месяц
    Частота 50 Гц
    Стартовый двигатель
    Количество полюсов 3 полюса
    Ток (А) 1.5-2,5, 2,5-4, 4-6,5, 6-10, 9-14, 13-21, 11-18, 20-32
    Применение Для пускателя прямого двигателя
    Фаза 3
    Температура окружающей среды от -5 до +55
    Марка Катария
    Минимальное количество заказа 180 Единица

    Описание продукта

    Опираясь на навыки нашей квалифицированной команды профессионалов, мы занимаемся поставкой тепловых реле перегрузки.

    Прочая информация

    • Реле защиты двигателя защищает двигатели от перегрева. Эти реле помогают контролировать ток, идущий на двигатель, чтобы предотвратить его перегрев. Если двигатель потребляет слишком много электроэнергии в течение длительного периода времени, реле может перевернуться и отключить питание двигателя, чтобы предотвратить повреждение двигателя. Реле тепловой перегрузки имеет три биметаллических планки, поэтому эти реле также называются трехполюсными реле перегрузки.
    • Наши реле подходят для многих комбинаций прямой / треугольник. Реле бывают разных диапазонов. Выбор реле для стартера зависит от мощности двигателя и его режима работы.

    Диапазон номинального тока

    • 1,5-2,5 А
    • 2,5-4 А
    • 4-6,5 А
    • 6-10 ампер
    • 9-14 ампер
    • 11-18 ампер
    • 13-22 А
    • 20-32 А (с латунными деталями большого калибра)

    Характеристики

    • Простота эксплуатации и установки
    • Подходит для прямого монтажа на различных контакторах (пускатели DOL и SASD)
    • Компенсация температуры окружающей среды
    • Антикоррозийный
    • Подходит для прямого монтажа на различных контакторах (DOL пускатели и SASD)
    • Легко регулируемая настройка тока (ручной сброс).Диапазон настройки реле можно регулировать с помощью ползунка
    • .
    • Реле помещено в бакелит, что делает его более термостойким

    Оценка

    Диапазон реле

    ППМ / Единица

    1,5-2,5 А

    150

    2,5-4 А

    125

    4-6.5 ампер

    125

    6-10 ампер

    125

    9-14 ампер

    125

    11-18 ампер

    125

    13-22 А

    125

    20-32 А

    (с латунными деталями большой толщины)

    150


    Дополнительная информация

    Заинтересовал этот товар? Получите последнюю цену у продавца

    Связаться с продавцом


    О компании

    Год основания 2009

    Юридический статус Фирмы Физическое лицо – Собственник

    Характер бизнеса Производитель

    Количество сотрудников До 10 человек

    Годовой оборот до рупий50 лакх

    IndiaMART Участник с октября 2014 г.

    GST29AKOPK5760B1ZZ

    Electromates India основана в 2009 . Мы работаем как индивидуальное предприятие , основанное на . Мы находимся в Бангалоре, Карнатака. На протяжении многих лет мы специализируемся на производстве реле тепловой перегрузки высшего качества , реле защиты двигателя и многих других.У нас отличный послужной список по своевременной доставке грузов.

    Видео компании

    Вернуться к началу 1

    Есть потребность?
    Получите лучшую цену

    1

    Есть потребность?
    Получите лучшую цену

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Срок поставки В течение 10 рабочих дней
    Производственные мощности 25000
    Детали упаковки Гофроящики