Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как работает трансформатор, его принцип действия и устройство на простом языке.

 

 

 

Тема: пояснение работы и устройства силового трансформатора электрического.

 

Обычный силовой трансформатор является достаточно важным и распространенным электротехническим устройством. Он позволяет преобразовывать напряжение и ток в нужные величины. Конструктивно он прост, имеется магнитный сердечник определенной формы, на который наматываются обмотки изолированного провода (медный, чаще всего). Эти обмотки делятся на первичную (входную) и вторичную (выходная). Их может быть не две (входная и выходная), а более двух (несколько входных и выходных) в зависимости от конкретного назначения силового трансформатора.

 

электромагнитная индукция в основе принципа работы трансформатораВ основе работы любого трансформатора заложен один простой принцип, точнее электро физическое явление — это электромагнитная индукция. Что это такое? Все очень просто! Электрический ток представляет собой упорядоченное движение заряженных частиц (в твердых телах это электроны. а в жидких и газообразных это ионы). При движении заряда по проводнику вокруг него образуется магнитное поле (именно движущегося заряда, вокруг недвижущегося имеется только электрическое поле). Магнитное поле также существует вокруг постоянных магнитов. Так вот, если взять кусок изолированного провода, намотать из него катушку, подсоединить к концам этой катушки вольтметр, после чего быстро провести возле катушки магнитом, то мы на вольтметре увидим скачок электрического напряжения. Получается, что если постоянно воздействовать на катушку магнитным полем (движущемся), то можно из нее получить некий источник или преобразователь электрической энергии.

 

В трансформаторе одна катушка (первичная, входная) выполняет роль источника магнитного поля. Стоит учесть, что магнитное поле должно быть обязательно переменным (постоянно меняющееся в направлении и величине). На эту входную катушку подается переменное напряжение определенной величины (то, на которую рассчитана эта катушка, чтобы основная часть электрической энергии тратилось именно на создание магнитного поля, и лишь минимальная его часть тратилась на выделение тепла, это неизбежные потери).

 

 

 

 

В результате вокруг этой входной катушки образуется переменное магнитное поле, которое по сердечнику передается на вторую катушку. Как было сказано выше, если воздействовать на проводник переменным магнитным полем, на нем индуцируется электродвижущая сила (ЭДС). То есть, на выходной катушке появляется напряжение. Вот и получаем простой электромагнитный преобразователь электрической энергии.

 

устройство и работа трансформатора, принцип действия электрических и магнитных потоков

 

Материал сердечника трансформатора подбирается так, чтобы он максимально хорошо проводил через себя электромагнитные поля, усиливая их. В итоге мы имеем несколько цепей. Первая — электрическая, которая образована движением зарядов по первичной обмотке. Она вокруг себя образовывает магнитное поле, которое замыкается по контуру магнитного сердечника, и это вторая цепь (электромагнитная, смещена на 90 градусов). Ну, а третья цепь опять электрическая, которая образована вторичной обмоткой (где индуцируется напряжение) и подключенной к ней нагрузкой (она также смещена на 90 градусов относительно магнитной цепи).

 

От количества витков на катушке зависит напряжение, а от сечения провода этой катушки зависит сила тока. То есть, если первичная и вторичная катушка будут иметь одинаковое количество витков — выходное напряжение будет такое же как и входное. Если вторичную обмотку намотать в два раза больше (по количеству витков), то и выходное напряжение увеличится вдвое (относительно входного). От диаметра провода катушки зависит выходной ток. При большой нагрузке и слишком малом сечении провода будет происходит нагрев катушки, что может привести к перегреву, повреждению изоляции и выходу из строя трансформатора.

 

Существуют специальные таблицы, в которых указаны нужные сечения проводов с учетом определенной плотности тока в них. При расчете трансформатора и выборе сечения провода под нужный выходной ток необходимо брать данные с этих таблиц.

 

 

Что касается магнитопровода, который замыкает магнитные поля на себе. Чем лучше материал магнитопровода проводит через себя электромагнитные поля, тем выше коэффициент полезного действия трансформатора. Следовательно, существуют специальные сплавы, имеющие лучшие электромагнитные характеристики, которые и используют в сердечнике трансформаторов. Помимо этого в трансформаторе не должны быть зазоров между частями магнитопровода (на пути течения магнитного поля). Только лишь при полной замкнутости магнитопровода можно получить минимальные потери при трансформации электрической энергии.

 

высокочастотный трансформатор устройство работа действиеРабота трансформатора также зависит от частоты тока, который подается на входную обмотку. Чем выше частота тока, тем лучше происходит трансформация энергии. То есть, с повышением частоты будут уменьшаться размеры трансформатора при тех же выходных мощностях. Если взять обычный трансформатор, который рассчитан на сетевое напряжение стандартной частоты в 50 герц, то он по размерам будет значительно больше того, который будет работать на килогерцовых частотах. Но там уже и магнитопровод используется из других ферромагнитных материалов.

 

Более короче работу трансформатора можно выразить так — на входную обмотку подается переменное напряжение (которое должно быть изначально рассчитано), в катушке начинает течь переменный ток, который образовывает переменное магнитное поле вокруг себя. Это магнитное поле начинает протекать по магнитопроводу сердечника трансформатора проходя также через выходную катушку. В результате на этой выходной обмотке образуется переменное напряжение, величина которого зависит от количества витков катушек. При подключении нагрузки к выходной обмотки мы получаем течение переменного тока в выходной цепи.

 

ps smail

P.S. В нынешнее время все чаще стали использовать электрические схемы, где для источников питания делается специальный модуль, работающий на более высоких частотах, отличных от стандартных 50 герц. То есть, если раньше повсеместно для блоков питания использовали обычные силовые трансформаторы, имеющие железный магнитопровод, рассчитанный на сетевую частоту, имеющие только выпрямительный диодный мост и фильтрующий конденсатор электролит, то сейчас схемы блоков питания более сложнее. Они уже содержать выпрямитель, фильтр, электронный преобразователь напряжения и частоты (на транзисторах, микросхемах), стабилизатор, обратную связь (гальваническую развязку) и т.д. Размеры, масса и выходные характеристики таких источников питания гораздо выше, чем у их предшественников (обычных силовых трансформаторов). Хотя по надежности все же классический вариант блоков питания будет получше.

 

принцип работы, схема подключения, типы

В данной статье мы подробно рассмотрим что такое трансформатор тока, опишем принцип его работы, какие бывают типы, а так же расчеты и схемы трансформатора тока.

Описание и принцип работы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства переменного тока в его вторичной обмотки, которое пропорционально току измеряется в его первичном. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра. Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

Типичный трансформатор токаТипичный трансформатор тока

В отличие от трансформатора напряжения или мощности, рассматриваемого ранее, трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке. Купить трансформатор тока вы можете в популярном интернет магазине Алиэкспресс:

Типичный трансформатор токаТипичный трансформатор тока

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока: обмоточныйтороидальный и стержневой.

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Трансформаторы тока могут снизить или «понизить» уровни тока с тысяч ампер до стандартного выходного сигнала с известным отношением либо к 5 А, либо к 1 А для нормальной работы. Таким образом, небольшие и точные приборы и устройства управления могут использоваться с трансформаторами тока, потому что они изолированы от любых высоковольтных линий электропередач. Существует множество применений для измерения и использования для трансформаторов тока, таких как ваттметры, измерители коэффициента мощности, защитные реле или в качестве катушек отключения в магнитных выключателях или MCB.

Конструкция и схема трансформатора тока

конструкция и символ на схеме трансформатора токаконструкция и символ на схеме трансформатора тока

Обычно трансформаторы тока и амперметры используются вместе как согласованная пара, в которой конструкция трансформатора тока такова, чтобы обеспечить максимальный вторичный ток, соответствующий полномасштабному отклонению амперметра. В большинстве трансформаторов тока существует приблизительное соотношение обратных витков между двумя токами в первичной и вторичной обмотках. Вот почему калибровка трансформатора тока обычно для определенного типа амперметра.

Большинство трансформаторов тока имеют стандартную вторичную номинальную мощность 5 А, при этом первичные и вторичные токи выражаются в таком соотношении, как 100/5. Это означает, что ток первичной обмотки в 20 раз больше, чем ток вторичной обмотки, поэтому, когда в первичном проводнике протекает 100 ампер, во вторичной обмотке будет протекать 5 ампер. Трансформатор тока, скажем, 500/5, будет производить 5 А во вторичной обмотке при 500 А в первичной обмотке, что в 100 раз больше.

Увеличивая количество вторичных обмоток Ns, ток вторичной обмотки можно сделать намного меньшим, чем ток в измеряемой первичной цепи, потому что, когда Ns увеличивается, Is уменьшается пропорционально. Другими словами, число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Трансформатор тока, как и любой другой трансформатор, должен удовлетворять уравнению ампер-виток, и мы знаем из нашего учебника по трансформаторам напряжения с двойной обмоткой, что это отношение витков равно:

отношение витковотношение витков

из которого мы получаем:

вторичный токвторичный ток

Коэффициент тока устанавливает коэффициент витков, и, поскольку первичный обычно состоит из одного или двух витков, тогда как вторичный может иметь несколько сотен витков, соотношение между первичным и вторичным может быть довольно большим. Например, предположим, что номинальный ток первичной обмотки составляет 100А. Вторичная обмотка имеет стандартный рейтинг 5А. Тогда соотношение между первичным и вторичным токами составляет 100А-5А или 20: 1. Другими словами, первичный ток в 20 раз больше вторичного тока.

Однако следует отметить, что трансформатор тока с номиналом 100/5 не совпадает с трансформатором с номиналом 20/1 или подразделениями 100/5. Это связано с тем, что отношение 100/5 выражает «номинальный ток на входе / выходе», а не фактическое соотношение первичных и вторичных токов. Также обратите внимание, что число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения первичных витков через окно трансформатора ток, где один первичный виток равен одному проходу, а более одного прохода через окно приводит к изменению электрического соотношения.

Так, например, трансформатор тока с отношением, скажем, 300 / 5А можно преобразовать в другой из 150 / 5А или даже 100 / 5А, пропустив основной первичный проводник через его внутреннее окно два или три раза, как показано ниже. Это позволяет более высокому значению трансформатора тока обеспечивать максимальный выходной ток для амперметра, когда используется на меньших первичных линиях тока.

Коэффициент первичных оборотов трансформатора токаКоэффициент первичных оборотов трансформатора тока

Пример трансформатора тока

Трансформатор тока стержневого типа, который имеет 1 виток на своей первичной обмотке и 160 витков на своей вторичной обмотке, должен использоваться со стандартным диапазоном амперметров с внутренним сопротивлением 0,2 Ом. Амперметр необходим для полного отклонения шкалы, когда первичный ток составляет 800 А. Рассчитайте максимальный вторичный ток и вторичное напряжение на амперметре.

Вторичный ток:

расчет вторичного токарасчет вторичного тока

Напряжение через амперметр:

напряжение через амперметрнапряжение через амперметр

Выше мы видим, что, поскольку вторичная обмотка трансформатора тока подключена к амперметру с очень малым сопротивлением, падение напряжения на вторичной обмотке составляет всего 1,0 В при полном первичном токе.

Однако, если амперметр был удален, вторичная обмотка фактически разомкнута, и, таким образом, трансформатор действует как повышающий трансформатор. Это частично связано с очень большим увеличением намагничивающего потока во вторичном сердечнике, поскольку реактивное сопротивление вторичной утечки влияет на вторичное индуцированное напряжение, потому что во вторичной обмотке нет противоположного тока, чтобы предотвратить это.

Результатом является очень высокое напряжение, наведенное во вторичной обмотке, равное отношению: Vp (Ns / Np), развиваемое через вторичную обмотку. Например, предположим, что наш трансформатор тока сверху используется на трехфазной линии электропередачи напряжением 480 вольт. Следовательно:

расчет высокого напряжениярасчет высокого напряжения

Это высокое напряжение связано с тем, что отношение вольт на витки в первичной и вторичной обмотках практически постоянно, а поскольку Vs = Ns * Vp, значения Ns и Vp являются высокими значениями, поэтому Vs чрезвычайно велико.

По этой причине трансформатор тока никогда не следует оставлять разомкнутым или работать без нагрузки, когда через него протекает основной первичный ток, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании. Если амперметр (или нагрузка) должен быть удален, сначала следует установить короткое замыкание на вторичных клеммах, чтобы исключить риск удара током.

Это высокое напряжение объясняется тем, что когда вторичная обмотка разомкнута, железный сердечник трансформатора работает с высокой степенью насыщения и ничто не может его остановить, он создает аномально большое вторичное напряжение, и в нашем простом примере выше это было рассчитано на 76,8 кВ ! Это высокое вторичное напряжение может повредить изоляцию или привести к поражению электрическим током при случайном прикосновении к клеммам трансформатора тока.

Ручные трансформаторы тока

ручной трансформатор токаручной трансформатор тока

В настоящее время доступно много специализированных типов трансформаторов тока. Популярный и портативный тип, который может быть использован для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Измерители зажимов открывают и закрывают вокруг проводника с током и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое считывание результатов измерений, как правило, на цифровом дисплее без отключения или размыкания цепи.

Наряду с ручным зажимом типа трансформатора тока имеются трансформаторы тока с разделенным сердечником, у которых один конец съемный, поэтому нет необходимости отсоединять проводник нагрузки или шину для его установки. Они доступны для измерения токов от 100 до 5000 ампер, с квадратными размерами окна от 1 ″ до более 12 ″ (от 25 до 300 мм).

Подводя итог, можно сказать, что трансформатор тока (ТТ) представляет собой тип измерительного трансформатора, используемого для преобразования первичного тока во вторичный ток через магнитную среду. Его вторичная обмотка обеспечивает значительно уменьшенный ток, который можно использовать для обнаружения условий сверхтока, пониженного тока, пикового или среднего тока.

Первичная катушка трансформатора тока всегда соединена последовательно с главным проводником, в результате чего ее также называют последовательным трансформатором. Номинальный вторичный ток рассчитан на 1А или 5А для простоты измерения. Конструкция может представлять собой один первичный виток, как в типах тороидальных, кольцевых или стержневых, или несколько витков первичной обмотки, как правило, для малых коэффициентов тока.

Трансформаторы тока предназначены для использования в качестве устройств пропорционального тока. Поэтому вторичная обмотка трансформаторов тока никогда не должна эксплуатироваться в разомкнутой цепи, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании.

Очень высокое напряжение возникает в результате разомкнутой цепи вторичной цепи трансформатора тока под напряжением, поэтому их клеммы должны быть замкнуты накоротко, если амперметр должен быть удален или когда ТТ не используется перед включением питания системы.

В следующей статье о трансформаторах мы рассмотрим, что происходит, когда мы соединяем вместе три отдельных трансформатора в конфигурации «звезда» или «треугольник», чтобы получить более мощный силовой трансформатор, называемый трехфазным трансформатором, который используется для питания трехфазных источников питания.

Трансформатор своими руками: пошаговая инструкция

Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить  трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

Что понадобится для сборки?

Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.

В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

Для изготовления трансформатора своими руками вам понадобятся:

  • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
  • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
  • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
  • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
  • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

Расчеты

Принципиальная схема трансформатораРис. 1: принципиальная схема трансформатора

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S, 

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P/ U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по  формуле: : I2 = P/ U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Медный проводник Алюминиевый проводник
Сечение жил, мм2 Ток, А Сечение  жил. мм2 Ток, А
0,5 11
0,75 15
1 17
1.5 19 2,5 22
2.5 27 4 28
4 38 6 36
6 46 10 50
10 70 16 60
16 80 25 85
25 115 35 100
35 135 50 135
50 175 70 165
70 215 95 200
95 265 120 230
120 300

Сборка повышающего трансформатора

Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.

Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.

Для сборки вам потребуется выполнить такую последовательность действий:

  • Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея. Изготовьте каркас для трансформатораРис. 2: изготовьте каркас для трансформатора

Если у вас имеется готовый образец, можете переходить к следующему этапу.

  • Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы. Проденьте вывод первичной обмоткиРис. 3: проденьте вывод первичной обмотки
  • Уложите первый слой изоляции под первичку. Нанесите слой изоляции на катушкуРис. 4: нанесите слой изоляции на катушку
  • Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания. Намотайте первичкуРис. 5: намотайте первичку

В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.

  • Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
  • После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Намотайте вторичную обмоткуРис. 6: намотайте вторичную обмотку

Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.

  • Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек. Заизолируйте первый слойРис. 7: заизолируйте первый слой
  • Выведете концы вторичной обмотки на щечку каркаса.
  • Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации. Поместите катушки на сердечникРис. 8: поместите катушки на сердечник

Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.

Сборка понижающего трансформатора

Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.

Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.

Процесс изготовления заключается в следующем:

  1. Возьмите старое или изготовьте основание для катушки.
  2. Зафиксируйте на трансформаторном каркасе слой изоляции.
  3. Намотайте первичную обмотку с попеременной изоляцией слоев.
  4. Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
  5. Зафиксируйте выводы обеих катушек.
  6. Установите пластины сердечника.

Испытание

Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем  проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.

Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

Видео инструкции

КПД трансформатора | Советы электрика

26 Март 2012 База знаний электрика, Новости

При передаче электрической энергии на большие расстояния происходят потери энергии вследствие нагревания проводов.

Для уменьшения этих потерь можно было бы уменьшить сопротивление проводов путем увеличения их поперечного сечения.

Однако это невыгодно, так как потребовало бы большого расхода металла и чрезвычайно утяжелило бы провода.

Поэтому пошли по пути уменьшения силы передаваемого тока. Что бы мощность тока при меньшей силе тока оставалась неизменной, необходимо во столько раз повысить напряжение, во сколько раз уменьшается сила тока.

Изменять напряжение необходимо и в тех случаях, когда приходится пользоваться электрическими приборами, расчитанными на другое напряжение, чем имеющееся в распоряжении.

Напряжение постоянного тока изменить сложно.

Напряжение переменного тока можно изменить, использовав явление электромагнитной индукции. Поэтому в технике удобнее пользоваться переменным током.

Преобразователь напряжения переменного тока, основанный на явлении электромагнитной индукции, называется трансформатором.

Трансформатор состоит из железного сердечника в виде рамки, на которую навиты две катушки из изолированной проволоки.

Сердечник составляется из листов специального трансформаторного железа, изолированных друг от друга во избежании вихревых токов.

Катушка, которая присоединяется к источнику (на которую подается напряжение из сети), называется первичной.

Другая катушка, дающая рабочее напряжение и подключенная на нагрузку, называется вторичной.

Создаваемый первичным током магнитный поток почти весь проходит внутри сердечника, а так называемой “магнитной утечкой” можно пренебречь.

Если цепь вторичной обмотки (катушки) разомкнута, то вследствие большого коэффициента самоиндукции трансформатора э.д.с. самоиндукции, возникающая в первичной обмотке, почти точно равна напряжению на ее концах.

Отношение напряжений на концах первичной и вторичной обмоток при разомкнутой вторичной цепи, т.е. при холостом ходе трансформатора называется коэффициентом трансформации.

При холостом ходе трансформатора коэффициент  трансформации k равен отношению числа витков вторичной катушки n1 к числу витков первичной n2.

Трансформатор называют повышающим, если число витков вторичной катушки больше числа витков первичной.

Если же число витков вторичной меньше чем у первичной обмотки, то такой трансформатор- понижающий.
Потери энергии на нагревание проводов и на магнитную утечку в трансформаторе очень малы, и

Коэффициент полезного действия у хороших трансформаторов достигает 99%

Поэтому можно считать, что при работе трансформатора с нагрузкой мощность, подводимая от генератора переменного тока к первичной обмотке (входная мощность), почти равна мощности, потребляемой в цепи вторичной обмотки (выходной мощности).

Отсюда следует, что

Токи в обмотках трансформатора, работающего с нагрузкой, обратно пропорциональны напряжениям на обмотках.

Теги: коэффициент трансформатора тока, силовой трансформатор, трансформатор

Основы электроники: что нужно знать о трансформаторах

  1. Программирование
  2. Электроника
  3. Компоненты
  4. Основы электроники: что нужно знать о трансформаторах

Дуг Лоу

Трансформатор сочетает в себе два основных принципа магнетизма и индуктивности, помещая две катушки с проволокой в ​​непосредственной близости друг от друга. Вот принципы, которые использует трансформатор:

Когда источник переменного тока подключен к одной из катушек, эта катушка создает магнитное поле, которое расширяется и сжимается вместе с изменяющимся напряжением переменного тока.Другими словами, когда напряжение на катушке увеличивается, катушка создает расширяющееся магнитное поле. Когда напряжение достигает пика и начинает уменьшаться, магнитное поле, создаваемое вокруг катушки, начинает разрушаться.

Вторая катушка расположена в магнитном поле, создаваемом первой катушкой. Когда магнитное поле расширяется, оно индуцирует ток во второй катушке. Напряжение на второй катушке увеличивается по мере расширения магнитного поля. Когда магнитное поле начинает разрушаться, напряжение на второй катушке начинает уменьшаться.

Таким образом, ток, индуцированный во второй катушке, отражает ток, который проходит через первую катушку. При этом теряется небольшое количество энергии, но если трансформатор хорошо сконструирован, сила тока, индуцируемого во второй катушке, очень близка к силе тока, проходящего через первую катушку.

Первая катушка в трансформаторе - та, которая подключена к переменному напряжению - называется первичной катушкой . Вторая катушка - та, в которой индуцируется переменное напряжение - называется вторичной катушкой .Все трансформаторы имеют как первичную, так и вторичную обмотку.

Трансформатор, первичная обмотка которого имеет больше витков, чем вторичная обмотка, называется понижающим трансформатором , потому что он снижает напряжение, то есть напряжение на вторичной обмотке меньше напряжения на первичной обмотке. Точно так же трансформатор, у которого больше витков во вторичной обмотке, чем в первичной, называется повышающим трансформатором , потому что он увеличивает напряжение.

Хотя напряжение повышающего трансформатора увеличивается, ток уменьшается пропорционально.Например, если первичная обмотка имеет вдвое меньше витков, чем вторичная обмотка, индуцированное во вторичной обмотке напряжение будет в два раза больше напряжения, приложенного к первичной обмотке, но ток, протекающий через вторичную обмотку, будет вдвое меньше тока. протекает через первичную обмотку.

Аналогично, когда напряжение в понижающем трансформаторе уменьшается, ток увеличивается пропорционально. Таким образом, если напряжение уменьшается вдвое, ток удваивается.

Запомните основную формулу расчета электроэнергии:

P = V I

Другими словами, мощность равна напряжению, умноженному на ток.Трансформатор передает мощность от первичной обмотки к вторичной обмотке. Поскольку мощность должна оставаться неизменной, при увеличении напряжения ток должен уменьшаться. Точно так же, если напряжение уменьшается, ток должен увеличиваться.

Трансформаторы - основная причина, по которой мы используем переменный ток вместо постоянного в крупных распределительных сетях. Это связано с тем, что, когда вы отправляете большие объемы энергии на большие расстояния, гораздо эффективнее отправлять энергию в виде высокого напряжения и низкого тока.

Трансформаторы работают только с переменным током. Это потому, что это изменение магнитного поля, создаваемого первичной катушкой, которое индуцирует напряжение во вторичной катушке. Чтобы создать изменяющееся магнитное поле, напряжение, приложенное к первичной катушке, должно постоянно изменяться. Поскольку постоянный ток - это постоянное фиксированное напряжение, он создает фиксированное магнитное поле, которое не вызывает напряжения во вторичной катушке.

,

Трансформаторы с малыми потерями в сердечнике для чайников

Трансформаторы с малыми потерями в сердечнике для чайников

Описание:
Трехфазные стабилизаторы напряжения разработаны для стабилизации переменного напряжения и изготовлены с использованием передовых технологий Западной Европы и на основе национальных условий нашей страны. Трехфазный стабилизатор напряжения может автоматически поддерживать выходное напряжение в стабильном состоянии при колебаниях напряжения питания или тока нагрузки.

По сравнению с другими стабилизаторами напряжения, он имеет преимущество большой емкости, высокой эффективности, отсутствия волновых искажений, стабильной регулировки напряжения, пригодности для различных типов нагрузок, выдерживания мгновенной перегрузки, непрерывной работы в течение длительного времени, а также свободного переключения между ручными управление и автоматическое управление и т. д., кроме того, трехфазный стабилизатор напряжения снабжен защитой от перенапряжения, перегрузки по току, обрыва фазы и защиты от чередования фаз и имеет следующие достоинства: небольшой объем, легкий вес, удобство установки и надежная работа и скоро.

Применение:
Трехфазный стабилизатор напряжения может применяться в крупногабаритном электромеханическом оборудовании, металлообрабатывающем оборудовании, производственной линии, строительной технике, лифте, медицинском оборудовании, оборудовании легкой и текстильной промышленности, кондиционировании воздуха, телевизоре, бытовой технике. и освещение, используемое в промышленности, сельском хозяйстве, дорожном движении, военном деле, железной дороге, науке и т. д., где необходима стабилизация напряжения.

Условия эксплуатации:
1. Изделие используется внутри помещений;
2.Температура окружающей среды: -15 ℃ ~ + 40 ℃;
3. Высота: <1000 м;
4. Относительная влажность: 90%;
5. Отсутствие газа, пара, химических осадков, пыли, грязи, взрывоопасных или агрессивных сред, которые могут серьезно повлиять на изоляцию стабилизатора напряжения в месте установки.
6. Отсутствие серьезной вибрации или толчков в месте установки.

.

использовать небольшой фиктивный трансформатор для теста copynet (# 83) · allenai / allennlp-models @ cc60ab9 · GitHub

перейти к содержанию
  • Почему именно GitHub? Особенности →
    • Обзор кода
    • Управление проектами
    • Интеграции
    • Действия
    • Пакеты
    • Безопасность
    • Управление командой
    • Хостинг
    • мобильный
    • Отзывы клиентов →
    • Безопасность →
  • команда
  • предприятие
  • Проводить исследования
    • Изучите GitHub →
    Учитесь и вносите свой вклад
    • Темы
    • Коллекции
    • Тенденции
    • Учебная лаборатория
    • Руководства с открытым исходным кодом
    Общайтесь с другими
    • События
    • Форум сообщества
    • GitHub Education
  • базарная площадь
  • ценообразование
.

использовать небольшой фиктивный трансформатор для теста copynet (# 83) · allenai / allennlp-models @ cc60ab9 · GitHub

перейти к содержанию
  • Почему именно GitHub? Особенности →
    • Обзор кода
    • Управление проектами
    • Интеграции
    • Действия
    • Пакеты
    • Безопасность
    • Управление командой
    • Хостинг
    • мобильный
    • Отзывы клиентов →
    • Безопасность →
  • команда
  • предприятие
  • Проводить исследования
    • Изучите GitHub →
    Учитесь и вносите свой вклад
    • Темы
    • Коллекции
    • Тенденции
    • Учебная лаборатория
    • Руководства с открытым исходным кодом
    Общайтесь с другими
    • События
    • Форум сообщества
    • GitHub Education
  • базарная площадь
  • ценообразование
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *