Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Транзистор IGBT-принцип работы, структура, основные характеристики

Силовой транзистор IGBT управляется с помощью напряжения, подаваемого на управляемый электрод-«затвор», который изолирован от силовой цепи. Полное название прибора: биполярный транзистор с изолированным затвором.

Характерная черта для этого транзистора – очень малое значение управляющей мощности, использованной для коммутационных операций существенных токовых значений силовых цепей.

Рис. №1. Эффективность использования технологий на основе мощных IGBT-транзисторов

Преобладающее значение приобрело его использование в цепях силового предназначения для частотных преобразователей, для двигателей переменного тока, мощность, которых может доходить до 1 МВт. По своим вольтамперным характеристикам он считается аналогом биполярному транзистору, однако качественные энергетические показатели и чистота коммутационных действий намного выше, чем качество работы других полупроводниковых элементов.

Постоянно совершенствующиеся технологии позволяют улучшить качественные характеристики транзисторов. Созданы элементы, рассчитанные на большую величину напряжения, выше 3 кВ и большие значения тока до нескольких сотен ампер.

Основные характеристики мощных IGBT-транзисторов

 

  • Напряжение управления – это разрешенная проводимость, которая отпирает или запирает прибор.
  • Открытое проводящее состояние характеризуется падением напряжения, определяемым пороговым напряжением и внутренним сопротивлением, величина максимально допустимого тока.

Для применения в конструкции регуляторов скорости используются транзисторы, рассчитанные на рабочие частоты в пределах до нескольких десятков килогерц.

Преимущества IGBT транзисторов

  • Высокая плотность тока.
  • Практически отсутствие потерь статического и динамического типа.
  • Отсутствие управляющего тока позволяет не прибегать к использованию гальванически изолированных схем для работы и управления с применением дискретных элементов и предоставляет возможность создания интегральных схем – драйверов.
  • Стойкость к воздействию короткого замыкания.
  • Относительная простота параллельного соединения.

При разработке схем включения с транзисторами IGBT необходимо обращать внимание на ограничение значения максимального тока. Для этой цели используются следующие методы – это: правильный выбор параметров тока защиты и подбор резистора затвора Rg, а также применение цепей, которые формируют траекторию переключения.

Структура IGBT

Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.

Рис. №2. Структура транзистора IGBT.

Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.

Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.

Применение IGBT-транзистора

Одной из важных сфер использования солового транзистора – это использование в сетях с напряжением 6,5 кВ для создания безопасной и гарантированно надежной работы электроустановок в режиме короткого замыкания.

Для ограничения токов к. з. и приближению их к величине, которая не приведет к повреждениям оборудования. Они выполняют ограничение напряжения на затворе до уровня, не превышающем U = 15,3В. Это достигается с помощью применения следующих мер:

  1. Ограничение величины напряжения на затворе с помощью привязки к фиксированному уровню напряжения. Это возможно в том случае, если драйвер затвора обладает источником стабильного напряжения. Основной способ -добавление в схему диода с малым падением напряжения, например, диод Шотки. Высокая эффективность меры достигается снижением индуктивности цепи между клеммами источника и затвора.
  2. Ограничение значения напряжения на затворе с помощью присоединения в цепь между эмиттером и затвором — стабилитрона. Эффективность метода достигается максимально приближенным монтажом диодов к вспомогательным клеммам модуля. Для этой цели должны использоваться диоды с очень маленьким температурным дрейфом и разбросом, примером могут служить диоды ограничивающие переходные напряжения (диоды типа: 1,5КЕ6,8Са и 1,5КЕ7,5СА двунаправленные).
  3. Включение в схему отрицательной эмиттерной обратной связи. Этот метод возможен после подключения эмиттера драйвера затвора к основным клеммам эмиттера модуля. Эмиттерная связь обратного действия способствует эффективному ограничению напряжения на затворе.

Примеры расчета IGBT-транзистора

Выбор транзистора производится по следующим условиям, например, для преобразователей напряжения с резонансным контуром.

  • Транзистор должен переключался при значении нулевого тока.
  • Форма токовой синусоиды относительно силовых ключей должна быть аналогична к собственной частоте контура и составляет 100 кГц.
  • Амплитуда тока должна соответствовать средней мощности, например, как 40 А к 2000 Вт.
  • Определение максимального значения напряжения и максимальной частоты переключения транзисторов при условии, что плечи транзисторов должны работать в противофазе.

Для подбора драйвера IGBT транзистора руководствуются параметрами управления затвора, необходимого для коммутирования отпиранием и запиранием силового полупроводника. Для определения мощности управления нужно знать величину заряда затвора Q gate, частоту коммутации (fin) и реальный замеренный размах напряжения на выходе драйвера ΔVgate

 

Формула заряда затвора:

где время интегрирования должно не превышать время на управление выходных напряжений драйвера до их окончательных показателей, или при достижении выходного токового значения драйвера близкого к нулю.

Выбор максимальной величины тока управления  затвором определяется по упрощенной формуле:

Зависит от осцилляции величины тока на выходе. Если осцилляция тока управления затвором есть, то значение пикового тока должно быть очень большим, а его величина должна определяться исключительно с помощью измерения.

Не менее важны условия учета размаха выходного напряжения. Наихудший случай – это максимальное значение размаха на затворе, измеряется по реально существующей схеме.

Необходим учет максимальной рабочей температуры, руководствуются значением характерным для условия естественной конверсии без использования принудительного охлаждения.

Максимальная частота коммутации, она должна быть максимально-допустимая. На выбор оказывает влияние результирующая выходная мощность и рассеиваемая мощность резистора, используемого в цепи затвора.

Максимальный ток управления зависит от величины пикового тока, который может протекать через реальный контур управления затвором без появления осцилляций.

Проверка мощных IGBT-транзисторов

Проверка силового транзистора возникает при необходимости ревизии сгоревшего транзистора, например, при ремонте сгоревшего сварочного аппарата или с целью подбора пары для устройства, с тем, чтобы убедится, что это не «перемаркер». Проверку осуществляем с помощью мультиметра: прозваниваем вывода коллектора и эмиттера в обоих направлениях, так мы убедимся в отсутствии короткого замыкания. Входную емкость затвор-эмиттер заряжаем отрицательным напряжением. Осуществляется с помощью кратковременного и одновременного прикосновения щупом «СОМ» мультиметра затвора и щупом от гнезда «V/Ω/f» — эмиттера.

Рис. №4. Проверка транзистора IGBT.

Для проверки необходимо убедиться в рабочей функциональности транзистора. Заряжаем емкость на входе затвор-эмитер положительным напряжением. Это можно сделать, коротко прикоснувшись щупом мультиметра «V/Ω/f» — затвора, к щупу«СОМ» — эмиттера. Проверяем напряжение между коллектором и змиттером, оно должно быть не больше 1,5В, меньшая величина напряжения характерна для низковольтных транзисторов. Если напряжения мультиметра не хватает для открытия и проверки транзистора, входная емкость может заряжаться от источника постоянного напряжения со значением до 15 в.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

IGBT транзисторы. Устройство и работа. Параметры и применение

В настоящее время в электронике имеют большую популярность IGBT транзисторы. Если расшифровать эту аббревиатуру с английского языка, то это биполярный транзистор с изолированным затвором. Он применяется в виде электронного мощного ключа для систем управления приводами механизмов, в источниках питания.

Этот силовой транзистор сочетает в себе свойства биполярного и полевого транзистора. Он управляется путем подачи напряжения на затвор, изолированный от цепи. Характерным свойством этого транзистора является низкая величина мощности управления, которая применяется для переключений мощных силовых цепей.

Наибольшей популярностью пользуются IGBT в силовых цепях преобразователей частоты и электродвигателей переменного тока мощностью до 1 мегаватта. По вольтамперным свойствам эти транзисторы аналогичны биполярным моделям полупроводников, но качество и чистота коммутации у них намного больше.

Современные технологии изготовления дают возможность оптимизировать транзисторы по функциональным характеристикам. Уже разработаны полупроводники, способные работать при большем напряжении и величине тока.

Основные параметры
  • Управляющее напряжение – это разность потенциалов, способная управлять работой затвора.
  • Наибольший допустимый ток.
  • Напряжение пробоя между эмиттером и коллектором.
  • Ток отсечки эмиттер-коллектор.
  • Напряжение насыщения эмиттер-коллектор.
  • Входная емкость.
  • Выходная емкость.
  • Паразитная индуктивность.
  • Период задержки подключения.
  • Период задержки выключения.
  • Внутреннее сопротивление.

В регуляторах скорости применяются IGBT транзисторы с рабочей частотой в несколько десятков кГц.

Достоинства
  • Простая параллельная схема.
  • Отсутствие потерь.
  • Повышенная плотность тока.
  • Устойчивость к замыканиям.
  • Малые потери в открытом виде.
  • Возможность функционирования при повышенной температуре (выше 100 градусов).
  • Эксплуатация с высоким напряжением (выше 1 кВ) и мощностями (более 5 кВт).
При проектировании схем подключения с транзисторами нужно иметь ввиду, что существует ограничение по наибольшему току. Для этого применяют некоторые способы:
  • Правильный подбор тока защиты.
  • Выбор сопротивления затвора.
  • Использование обходных путей коммутации.
Устройство и работа

Внутреннее устройство IGBT транзисторов включает в себя каскад двух электронных ключей, управляющих конечным выходом.

 

Принцип действия транзистора заключается в двух этапах:
  • При подаче напряжения положительного потенциала между истоком и затвором полевой транзистор открывается, появляется n-канал между стоком и истоком.
  • Начинается движение заряженных электронов из n-области в р-область, вследствие чего открывается биполярный транзистор. В результате этого от эмиттера к коллектору протекает электрический ток.

 

IGBT транзисторы служат для приближения токов замыкания к безопасному значению. Они ограничивают напряжение затвора следующими методами:
  • С помощью привязки к определенному значению напряжения. Это достигается тогда, когда драйвер затвора имеет постоянное напряжение. Главным способом является добавление в схему диода, имеющего малое падение напряжения (диод Шоттки). Значительный эффект получается путем уменьшения индуктивности цепи затвора и питания.
  • Ограничение значения напряжения затвора путем использования стабилитрона в схеме затвора и эмиттера. Неплохая эффективность получается за счет установки диодов к дополнительным клеммам модуля. Диоды применяются с малым разбросом и температурной зависимостью.
  • Подключение в цепь отрицательной обратной связи эмиттера. Такой способ доступен, когда подключен эмиттер драйвера затвора к клеммам эмиттера модуля.
Сфера использования

IGBT транзисторы чаще всего работают в сетях высокого напряжения до 6,5 киловольт для надежной и безопасной работы электроустановок в аварийном режиме при коротких замыканиях.

Вышеперечисленные свойства транзисторов дают возможность использовать их в частотно-регулируемых приводах, инверторах, импульсных регуляторах тока, а также в сварочных аппаратах.

Также IGBT применяются в системах мощных приводов управления электровозов, троллейбусов. Это повышает КПД и создает повышенную плавность хода.

Силовые транзисторы широко используются в цепях высокого напряжения. Они входят в состав схем посудомоечных машин, бытовых кондиционеров, автомобильного зажигания, блоков питания телекоммуникационного оборудования.

Проверка исправности

IGBT транзисторы проверяются в случаях ревизии при неисправностях электрического устройства. Проверку проводят с помощью мультитестера путем прозвонки электродов эмиттера и коллектора в двух направлениях, чтобы проверить отсутствие замыкания. Емкость входа эмиттер-затвор необходимо зарядить отрицательным напряжением. Это делается кратковременным касанием щупа мультиметра «СОМ» затвора и щупа «V/Ω/f» эмиттера.

Чтобы произвести проверку, нужно убедиться, работает ли в нормальном режиме транзистор. Для этого зарядим емкость на входе эмиттер-затвор положительным полюсом.  Это делается коротким касанием щупа «V/Ω/f» затвора, а щупа «СОМ» эмиттера. Контролируется разность потенциалов эмиттера и коллектора, которая не должна превышать 1,5 вольта. Если напряжения тестера не хватит для открывания транзистора, то входную емкость можно зарядить от питания напряжением до 15 вольт.

Условное обозначение
Транзисторы имеют комбинированную структуру, то и обозначения у них соответствующие:

IGBT модули

Силовые транзисторы производятся не только в виде отдельных полупроводников, но и в виде модулей. Такие модули входят в состав частотных преобразователей для управления электромоторами.

Схема преобразователя частоты имеет технологичность изготовления выше, если в состав входят модули IGBT транзисторов. На изображенном модуле выполнен мост из двух силовых транзисторов.

IGBT транзисторы нормально функционируют при рабочей частоте до 50 кГц. Если частоту повышать, то повышаются и потери. Свои возможности силовые транзисторы проявляют максимально при напряжении выше 400 В. Поэтому такие транзисторы часто встречаются в мощных электрических приборах высокого напряжения, а также в промышленном оборудовании.

Из истории возникновения

Полевые транзисторы стали появляться в 1973 году. Затем разработали составной транзистор, который оснастили управляемым транзистором с помощью полевого полупроводника с затвором.

Первые силовые транзисторы имели недостатки, выражавшиеся в медленном переключении, низкой надежностью. После 90 годов и по настоящее время эти недостатки устранены. Силовые полупроводники имеют повышенное входное сопротивление, малый уровень управляющей мощности, малый показатель остаточного напряжения.

Сейчас существуют модели транзисторов, способных коммутировать ток до нескольких сотен ампер, с рабочим напряжением в тысячи вольт.

Похожие темы:

electrosam.ru

принцип работы, разновидности полупроводников, основные параметры силовых компонентов

Биполярные транзисторы с изолированным затвором широко используются в силовой электронике. Это надежные и недорогие компоненты, управляющиеся путем подачи напряжения на изолированный от цепи элемент. IGBT — транзистор, принцип работы которого чрезвычайно прост. Используется он в инверторах, системах управления электроприводами и импульсных источниках питания.

История появления

Первые полевые транзисторы были разработаны в 1973 году, а уже спустя 6 лет появились управляемые биполярные модели, в которых использовался изолированный затвор. По мере совершенствования технологии существенно улучшились показатели экономичности и качества работы таких элементов, а с развитием силовой электроники и автоматических систем управления они получили широкое распространение, встречаясь сегодня практически в каждом электроприборе.

Сегодня используются электронные компоненты второго поколения, которые способны коммутировать электроток в диапазоне до нескольких сотен Ампер. Рабочее напряжение у IGBT — транзисторов колеблется от сотен до тысячи Вольт. Совершенствующие технологии изготовления электротехники позволяют выполнять качественные транзисторы, обеспечивающие стабильную работу электроприборов и блоков питания.

Основные характеристики

Принцип работы транзисторов и их характеристики будут напрямую зависеть от типа устройства и его конструкции. К основным параметрам полупроводников можно отнести следующее:

  • Максимально допустимый ток.
  • Показатель управляющего напряжения.
  • Внутреннее сопротивление.
  • Период задержки подключения и выключения.
  • Паразитная индуктивность.
  • Входная и выходная емкость.
  • Напряжение насыщения у эмиттера и коллектора.
  • Ток отсечки эмиттера.
  • Напряжение пробоя коллектора и эмиттера.

Широкое распространение получили сегодня мощные IGBT транзисторы, которые применяются в блоках питания инверторов. Такие устройства одновременно сочетают мощность, высокую точность работы и минимум паразитной индуктивности. В регуляторах скорости применяются IGBT с частотой в десятки тысяч кГц, что позволяет обеспечить максимально возможную точность работы приборов.

Преимущества и недостатки

Сегодня в продаже можно подобрать различные модели полупроводников, которые будут отличаться своими показателями рабочей частоты, емкостью и рядом других характеристик. Популярность IGBT транзисторов обусловлена их отличными параметрами, характеристиками и многочисленными преимуществами:

  • Возможность эксплуатации с высокой мощностью и повышенным напряжением.
  • Работа при высокой температуре.
  • Минимальные потери тока в открытом виде.
  • Устойчивость к короткому замыканию.
  • Повышенная плотность.
  • Практически полное отсутствие потерь.
  • Простая параллельная схема.

К недостаткам IGBT относят их высокую стоимость, что приводит к некоторому увеличению расходов на изготовление электроприборов и мощных блоков питания. При планировании схемы подключения с транзисторами этого типа необходимо учитывать имеющиеся ограничения по показателю максимально допустимого тока. Чтобы решить такие проблемы, можно использовать следующие конструктивные решения:

  • Использование обходного пути коммутации.
  • Выбор сопротивления затвора.
  • Правильный подбор показателей тока защиты.

Электросхемы устройств должны разрабатывать исключительно профессионалы, что позволит обеспечить правильность работы техники, отсутствие коротких замыканий и других проблем с электроприборами. При наличии качественной схемы подключения, реализовать ее не составит труда, выполнив своими руками силовой блок, питание и различные устройства.

Устройство и принцип работы

Внутреннее устройство IGBT транзистора состоит из двух каскадных электронных ключей, которые управляют конечным выходом. В каждом конкретном случае, в зависимости от мощности и других показателей, конструкция прибора может различаться, включая дополнительные затворы и иные элементы, которые улучшают показатели мощности и допустимого напряжения, обеспечивая возможность работы при температурах свыше 100 градусов.

Полупроводники IGBT типа имеют стандартизированную комбинированную структуру и следующие обозначения:

  • К — коллектор.
  • Э — эмиттер.
  • З — затвор.

Принцип работы транзистора чрезвычайно прост. Как только на него подается напряжение положительного потенциала, в затворе и истоке полевого транзистора открывается n-канал, в результате чего происходит движение заряженных электронов. Это возбуждает действие биполярного транзистора, после чего от эмиттера напрямую к коллектору начинает протекать электрический ток.

Основным назначением IGBT транзисторов является их приближение к безопасному значению токов замыкания. Такие токи могут ограничивать напряжение затвора различными методами.

Привязкой к установленному показателю напряжения. Драйвер затвора должен иметь постоянные параметры, что достигается за счёт добавления в схему устройства диода Шоттки. Тем самым обеспечивается уменьшение индуктивности в цепи питания и затвора.

Показатели напряжения ограничиваются за счёт наличия стабилитрона в схеме эмиттера и затвора. Отличная эффективность таких IGBT транзисторов достигается за счёт установки к клеммам модуля дополнительных диодов. Используемые компоненты должны иметь высокую температурную независимость и малый разброс.

В цепь может включаться эмиттер с отрицательной обратной связью. Подобное возможно в тех случаях, когда драйвер затвора подключён к клеммам модуля.

Правильный выбор типа транзистора позволит обеспечить стабильность работы блоков питания и других электроприборов. Только в таком случае можно гарантировать полностью безопасную работу электроустановок при коротких замыканиях и в аварийных режимах эксплуатации техники.

Сфера использования

Сегодня IGBT транзисторы применяются в сетях с показателем напряжения до 6,5 кВт, обеспечивая при этом безопасную и надежную работу электрооборудования. Имеется возможность использования инвертора, частотно регулируемых приводов, сварочных аппаратов и импульсных регуляторов тока.

Сверхмощные разновидности IGBT используются в мощных приводах управления троллейбусов и электровозов. Их применение позволяет повысить КПД, обеспечив максимально возможную плавность хода техники, оперативно управляя выходом электродвигателей на их полную мощность. Силовые транзисторы применяются в цепях с высоким напряжением. Они используются в схемах бытовых кондиционеров, посудомоечных машин, блоков питания в телекоммуникационном оборудовании и в автомобильном зажигании.

Проверка исправности

Ревизия и тестирование IGBT полупроводников выполняется при наличии неисправностей электрических устройств. Такую проверку проводят с использованием мультитестера, прозванивая коллекторы и электроды с эмиттером в двух направлениях. Это позволит установить работоспособность транзистора и исключит отсутствие замыкания. При проверке необходимо отрицательно зарядить вход затвора, используя щупы мультиметров типа COM .

Для проверки правильности работы транзистора на входе и выходе затвора заряжают ёмкость положительным полюсом. Выполняется такая зарядка за счёт кратковременного касания щупом затвора, после чего проверяется разность потенциала коллектора и эмиттера. Данные потенциалов не должны иметь расхождение более 1,5 Вольта. Если тестируется мощный IGBT, а тестера не будет хватать для положительного заряда, на затвор подают напряжение питания до 15 Вольт.

Мощные модули

Силовые транзисторы изготавливаются не только отдельными полупроводниками, но и уже собранными готовыми к использованию модулями. Такие приспособления входят в состав мощных частотных преобразователей в управлении электромоторами. В каждом конкретном случае схема и принцип работы модуля будут различаться в зависимости от его типа и предназначения. Чаще всего в таких устройствах используется мост, выполненный на основе двух силовых транзисторов.

Стабильная работа IGBT обеспечивается при частоте 150 килогерц. При повышении рабочей частоты могут увеличиваться потери, что отрицательно сказывается на стабильности электроприборов. Силовые транзисторы все свои преимущества и возможности проявляют при использовании с напряжением более 400 Вольт. Поэтому такие полупроводники чаще всего применяют в промышленном оборудовании и электроприборах высокого напряжения.

220v.guru

Оригинальные силовые биполярные IGBT транзисторы из Китая и немного о ремонте

Обзор специфичный, но наверняка кому-то будет полезен. Будет много технической информации, прошу понять и простить.

Длинная, но полезная предыстория

Иногда мне попадается на ремонт различная силовая электроника, например сварочные инверторы, преобразователи напряжения и частоты, приводы, блоки питания и т.п. Их ремонт часто связан с заменой различных силовых элементов (мосты, конденсаторы, реле, транзисторы MOSFET и IGBT). В магазинах чип и дип, компел, платан, элитан их купить в принципе не проблема, но оригинальные элементы стоят очень недёшево и с учётом доставки вызывают грусть-печаль…
В заначке у меня лежит немного разных силовых элементов для быстрого ремонта всячины, но когда требуется 8 одинаковых транзисторов, дело немного осложняется…

Есть 3 основные причины поломки такой техники:
1. Неправильная эксплуатация самим пользователем — это основная причина поломки аппаратов.
Существует куча способов убить исправный аппарат, перечислять их можно бесконечно…
2. Косяки производителя — некачественные элементы и сборка. В данном случае иногда помогает гарантия (но далеко не всегда).
3. Естественный износ — происходит, если аппаратом пользоваться очень аккуратно или редко за длительный период времени. Как правило, до естественного износа аппараты не доживают 🙁

На этот раз в ремонт попал сварочный инвертор Сварог ARC205 (Jasic J96) после неудачного ремонта в мастерской. Изначальная причина выхода их строя была №2 и затем аппарат добили в мастерской Очень часто после таких «ремонтов» аппараты восстановлению уже не подлежат, т.к. отсутствуют крепёжные элементы и появляются дополнительные механические и электрические повреждения. Так и в этот раз — половина крепежа утеряна, не хватает прижимных планок, транзисторы стоят все пробитые и разные, причём которые в принципе тут работать не могли. Первопричиной неисправности явился конструктивный недостаток этого инвертора — плата управления своими элементами касалась металлической рамы. Это и привело к сбою работы управляющей схемы и выходу из строя IGBT транзисторов, а затем драйвера и схемы плавного пуска. Ремонт получался либо быстро и дорого, либо приемлемо но долго, поэтому хозяин аппарата решил его не восстанавливать и просто отдал на запчасти. Такое часто бывает… Если-бы ремонт сразу проводил нормальный мастер, проблем с восстановлением было-бы заметно меньше.
Фото внутренностей сварочника в исходном виде я не делал, т.к. писать этот обзор не планировал.
Т.к. этот сварочник более-менее приличный, решил его неспешно восстановить для себя 🙂

О подборе

При замене транзисторов, вовсе не обязательно ставить точно такие-же, как стояли с завода. Кроме того, зачастую родные транзисторы стоят не лучшего качества, ибо китайский производитель также пытается сэкономить иногда в ущерб надёжности работы. В интернете мало информации по принципам подбора аналогов, поэтому напишу из собственного опыта.
Основными критериями при подборе IGBT транзистора в сварочный инвертор являются:
1. Наличие встроенного диода. Обычно он необходим всегда, кроме схемы подключения «косой полумост», где его наличие непринципиально.
2. Максимальное напряжение коллектор-эмиттер. В бытовых сварочниках на 220В почти всегда, за редким исключением, стоят транзисторы на 600-650 вольт. Туда можно ставить только транзисторы на 600 (650) вольт. Транзисторы на 900 и 1200 вольт ставить нельзя — они будут перегреваться за счёт повышенного падения напряжения, к тому-же и стоят они дороже.
3. Максимальный ток коллектора. Обычно используют транзисторы на 30А, 40А или 60А (при температуре 100°C). На ток при температуре 25гр внимание не обращаем ибо важен именно реальный рабочий режим.
4. Входная ёмкость затвора. Желательно, чтобы ёмкость была не более, чем у родных транзисторов, чтобы не перегружать драйвер и не затягивать фронты импульсов.
5. Время включения и особенно отключения. Должно быть не более, чем у родных, чтобы не греть транзисторы коммутационными потерями.
6. Напряжение насыщения. Должно быть не более, чем у родных транзисторов, чтобы не греть транзисторы омическими потерями.
7. Если транзисторы стоят на изоляционных прокладках, на максимальную мощность внимания можно вообще не обращать — всё равно термопрокладка не позволит передать радиатору более 50Вт рассеиваемой мощности. Если транзисторы установлены на отдельные изолированные радиаторы, на мощность уже следует смотреть, т.к. при этом из транзисторов выжимается максимум мощности (там их часто ставят в уменьшенном количестве 2 шт в полумост или 4шт в мост).
Для MOSFET критерии подбора немного другие, но общий принцип тот-же.
— Встроенный диод имеется всегда т.к. он автоматически получается в технологическом процессе производства
— Время включения и отключения не имеет большого значения, т.к. оно заведомо меньше требуемого (мосфеты весьма шустрые элементы)
— Вместо напряжения насыщения огромное значение имеет сопротивление открытого канала — чем оно меньше, тем будут меньше омическиие потери

О качестве

Под видом оригинальных, китайский продавец может прислать элементы сильно разного качества — неисправные, перемаркированные, либо восстановленные. На странице заказа фото товара можно не смотреть — показать могут и оригинал, а прислать не то.
Заказывая товар недорого у непроверенного продавца, Вам наверняка пришлют товар низкого качества, даже не сомневайтесь. Этот вариант для меня совершенно неприемлем, ибо нужны гарантированно качественные новые элементы.
Основные категории данного товара:
1. Неисправные — пустышки без кристалла, либо пробитые. Работать естественно не могут никак.
2. Восстановленные бывшие в употреблении — имеют кривые короткие либо кустарно наваренные выводы, которые ломаются при попытке их согнуть. Как правило, работают нормально, но у них есть неприятная особенность — их параметры довольно сильно гуляют у каждого экземпляра, что иногда неприемлемо.
3. Перемаркированные — берут транзистор меньшей мощности, спиливают или затирают маркировку и наносят новую для покупателя. Иногда уже при изготовлении берут кристалл от маломощного транзистора (для TO-220) и помещают его в корпус TO-3PN, TO-247. Такие элементы зачастую работают, но как правило недолго, иногда всего несколько секунд…
4. Оригинальные — тут всё понятно без комментариев 🙂


Представляю на обзор оригинальные биполярные IGBT транзисторы FGA40N65SMD от ON Semiconductor (Fairchild Semiconductor)
www.onsemi.com/products/discretes-drivers/igbts/fga40n65smd
www.onsemi.com/pub/Collateral/FGA40N65SMD-D.pdf
Почему я выбрал именно эти транзисторы? Да приглянулись они мне 🙂 Мог с тем-же успехом заказать для ремонта например FGh50N60SMD и кучу других аналогичных по параметрам.
Почему именно 10шт, когда нужно всего 8шт? Да не продаются они по 8шт 🙂

Почтовый пакет


Посылку доставили неожиданно быстро — всего за 2 недели.
Продавец запаял транзисторы под вакуумом в антистатический пакет




Основные параметры из даташита:
Корпус TO-3PN
Максимальное напряжение коллектор-эмиттер: 650В
Максимальный постоянный ток коллектора при 100°C: 40А
Максимальная рассеиваемая мощность при 100°C: 174Вт
Номинальное напряжение насыщения коллектор-эмиттер: 1,9В
Номинальная входная ёмкость затвора при напряжении коллектор-эмиттер 30В: 1880пФ
Номинальное время включения / отключения: 12нс / 92нс
Транзисторы имеют встроенный обратный силовой диод, необходимый для работы в мостовом включении инвертора.
Остальные параметры большого значения не имеют.

В оригинальности транзисторов я нисколько не сомневаюсь, т.к. по опыту интуитивно их определяю.
Но для обзора сделал несколько измерений.
Ничего магнитного внутри естественно нет.
Толщина выводов и корпуса соответствуют норме

Остальные размеры также в норме

Напряжение насыщения коллектор — эмиттер при токе 10А и напряжении на затворе 10В составило 1,36В — норма

Транзисторы в партии имеют очень небольшую разницу емкостей затвор — эмиттер 2726 — 2731пФ (измерено E7-22 при не подключенном выводе коллектора). Стабильность — это косвенный показатель качества.

Небольшое замечание — некоторые пытаются определять оригинальность транзистора по ёмкости затвора. Да, это в какой-то степени возможно, но только если измерять правильно и при этом правильно анализировать результаты.
Так вот, измерять ёмкость затвора надо именно на переменном токе при конкретном напряжении коллектор-эмиттер, причём нулевое напряжение не означает висящий в воздухе коллектор.

Измеренная ёмкость затвор-эмиттер сильно зависит от измерительного прибора, что не удивительно для нелинейного элемента.
Например, один и тот-же транзистор показывает входную ёмкость 2726пФ на положительной полярности и 3381пФ на отрицательной полярности прибором UT71E, 2660пФ и 2750пФ в зависимости от полярности тестером элементов MG328 VanVell ELC, 2860 пФ в обе стороны прибором E7-22

Ёмкость затвор — эмиттер при разном напряжении эмиттер-коллектор
Измерял E7-22 на 1кГц
0В — 3920пФ
1В — 3130пФ
2В — 2750пф
3В — 2570пФ
5В — 2380пФ
10В — 2200пФ
20В — 2000пФ
30В — 1830пФ

Для сравнения, измерил ёмкость затвор-эмиттер некоторых других оригинальных IGBT.
FGh50N60SMD — 2860пФ
FGH60N60SMD — 4410пФ
HGTG40N60A4 — 2270пФ

Взвешивать, поджигать, грызть и ломать транзисторы я не стал ибо в данном случае это не имеет никакого практического смысла.
Если интересно, что внутри сгоревших транзисторов, то вот два из них HGTG30N60A4 (слева и в центре) и FGh50N60SFD (родной)

HGTG30N60A4 вообще без диода и в принципе не мог нормально работать в этой сварке 🙁

Немного о ремонте

После разборки, аппарат очистил от грязи и пыли, провёл первичную диагностику, выпаял все неисправные элементы, подобрал им замену. Доступная схема аппарата неплохо помогает ремонту. Проверил состояние термопрокладок на пробой и повреждения. Восстановил цепь заряда конденсаторов, восстановил драйвер. Перепаял на другую сторону проблемный конденсатор на плате управления (который касался рамки)

Проверил осциллографом форму импульсов с драйверов на затворы транзисторов (которые ещё не впаяны).

Смазал прокладку термопастой КПТ-8, прилепил её на место, смазал транзисторы ей-же, вставил их на место, прикрутил к радиатору и только потом запаял. Очистил плату от флюса, всё ещё раз проверил.




Отдельно подал питание на систему управления и ещё раз проверил форму импульсов на затворах транзисторов (они пока без силового питания). Если всё в норме — подключаем сварочник в сеть через ЛАТР и лампу накаливания 100Вт или 95Вт. Это позволяет вовремя и безопасно диагностировать дополнительные проблемы в работе устройства. Прямое включение сварочника после ремонта иногда приводит к неприятностям. Плавно увеличиваю входное напряжение до запуска аппарата. Проверяю, что реле сработало, вентилятор крутится, на выходе появилось напряжение и лампа при этом не горит. При плавном повышении напряжения до полного сетевого, лампа не должна загораться. Если всё прошло нормально, устанавливаю крышку на место и включаю сварочник в сеть. Проверять его на электрод пока нельзя, т.к. необходимо убедиться в нормальной работе ограничения тока. При её неисправности, сварочник тут-же сгорит при касании электродом свариваемой детали. Для проверки работы токоограничения, необходим балласт и токовые клещи на постоянный ток или шунт ампер на 200. Я в качестве балласта использую толстую нихромовую спираль сопротивлением около 0,15 Ом.

Убедившись, что ток в замкнутой цепи регулируется в нужных пределах, можно приступать к тестовой сварке на токах от минимума до максимума.
В данной сварке ток нормально регулировался от 25А до 195А
Т.к. штатный ремень неудобен для оперативной переноски, на корпус была приклёпана дверная ручка 🙂

Более подробную информацию о ремонтах сварочников можно легко найти в интернете (например от Измаил инвертор)

Вывод: при желании, в Китае вполне возможно купить качественные оригинальные комплектующие. Покупайте в проверенных магазинах и Вам не придётся изучать, чем подделка отличается от оригинала. Магазин могу смело рекомендовать, теперь с них должок за рекламу 🙂
p.s. сварочные провода из этого обзора я делал для этого сварочника.
p.p.s. судя по комментариям, когда я товар ругаю, нахожу поддержку аудитории, но когда нормальный товар начинаю хвалить — сразу идут необоснованные обвинения во всех грехах. Это похоже местная традиция…

mysku.ru

Как проверить IGBT транзистор, принцип работы IGBT.

Принцип работы IGBT транзисторов основан на применении n-канального МОП-транзистора малой мощности для управления мощным биполярным транзистором. Таким образом, удалось совместить достоинства биполярного и полевого транзистора. Малая управляющая мощность, высокое входное сопротивление, большой уровень пробивных напряжений, малое сопротивление в открытом состоянии - позволяют применять IGBT в цепях с высокими напряжениями и большими токами.

Биполярные транзисторы с изолированным затвором (IGBT или БТИЗ) целесообразно использовать в сильноточных, высоковольтных ключевых схемах. Сварочные аппараты, источники бесперебойного питания, приводы электрических двигателей, мощные преобразователи напряжения – вот сфера применения таких элементов.

Названия выводов IGBT: затвор, эмиттер, коллектор.

Биполярные транзисторы с изолированным затвором способны коммутировать токи в тысячи ампер, напряжение эмиттер-коллектор может достигать несколько киловольт. Но частота работы этих транзисторов значительно ниже, чем частота полевых транзисторов.

Как проверить IGBT транзистор мультиметром

Проверяется IGBT FGh50N60SFD. IGBT часто пробиваются накоротко, такие неисправные транзисторы легко выявить с помощью мультиметра. Перед проверкой IGBT транзистора мультиметром, необходимо обратиться к справочным данным и выяснить назначение его выводов.

Затем произвести следующие действия:

1. Переключить мультиметр в режим «прозвонка». Произвести измерение между затвором и эмиттером для выявления возможного замыкания.

2. Произвести измерение между затвором и коллектором для выявления возможного замыкания.

3. На секунду замкнуть пинцетом или перемычкой эмиттер и затвор. После этого транзистор будет гарантированно закрыт.

4. Соединить щуп мультиметра «V/Ω» с эмиттером, щуп «СОМ» с коллектором. Мультиметр должен показать падение напряжения на внутреннем диоде.

5. Соединить щуп мультиметра «V/Ω» с коллектором, щуп «СОМ» с эмиттером. Мультиметр должен показать отсутствие замыкания и утечки.

Для более надежной проверки IGBT транзистора можно собрать следующую схему:

При замыкании контактов кнопки лампочка должна загораться, при размыкании – тухнуть.

В этом видео показано как проверить IGBT мультиметром:

Опубликовано 05.11.2016

www.sdelai-sam.su

характеристики, принцип действия, применение :: SYL.ru

IGBT-транзистор – это устройство с изолированным затвором. Сфера применения его очень широка. Чаще всего его можно встретить в электроприводах, которые используются как в быту, так и в промышленности. Дополнительно указанные транзисторы необходимы для работы корректоров мощности. Источники бесперебойного питания, которые используются для персональных компьютеров, без них также не могут работать.

В некоторых случаях транзисторы данного типа целесообразно устанавливать на сварочные инверторы. Там они заменяют обычные полевые аналоги. В конечном счете следует упомянуть об источниках питания. В данном случае они выполняют там роль проводника.

Как устроен транзистор?

Различные модели по своей структуре являются похожими, и схемы на IGBT-транзисторах имеются идентичные. В центральной части устройства располагается эмиттер. Под ним находится база, которая имеет определенную толщину. Коллектор в устройстве находится над эмиттером. При этом его переход может быть также различной ширины. Дополнительно следует отметить, что у коллектора имеется свой выход.

Принцип работы устройства

В приборах используются различные IGBT-транзисторы. Принцип работы их основан на колебаниях предельной частоты. При этом параметр полосы пропускания также изменяется. В зависимости от размера базы, номинальное напряжение системой выдерживается разное. При подаче тока на эмиттер он изменяет свою полярность.

Дальше у его основы проходит процесс преобразования. При этом переходы устройства не задействуются. Для увеличения предельной частоты к цепи подключается коллектор. Через его переходы ток поступает на базу. Последняя фаза преобразования происходит на выходе через проводники. Драйверы IGBT-транзисторов подбираются, исходя из серии модели.

Какие основные параметры у него есть?

Основным параметром транзистора принято считать предельную частоту. Измеряется этот показатель в Гц. На его величину влияет толщина базы устройства. Дополнительно следует учитывать пороговое напряжение прибора. В свою очередь, точность слежения зависит от пропускной способности коллектора. Переходы в данном случае осуществляются через базу. Для эмиттера основным параметром принято считать скорость отклика сигнала. Измеряется данный показатель в мс.

Транзисторы серии IRG4BC10K

Данные IGBT-транзисторы характеристики имеют хорошие и отличаются они довольно прочным корпусом. При этом база устанавливается толщиною ровно 1,1 мм. За счет этого пропускная способность устройства довольно хорошая. Дополнительно следует отметить высокую проводимость эмиттера. С лучевыми конденсаторами данные устройства работать не способны.

В свою очередь, для модуляторов указанные транзисторы подходят хорошо. Точность слежения устройства в конечном счете будет зависеть от многих параметров. В первую очередь важно учитывать пороговое напряжение на входе. Если оно превышает 20 В, то перед транзистором многие специалисты советуют устанавливать двоичную шину. Таким образом, отрицательное сопротивление в цепи можно значительно снизить.

Переходы эмиттера в устройстве существует возможность регулировать через изменения показателя индуктивности. Если рассматривать обычные преобразователи, то там для этих целей дополнительно устанавливаются регуляторы. Для того чтобы понять, как проверить IGBT-транзистор IRG4BC10K, необходимо ознакомиться с устройством мультиметра.

Параметры транзистора серии IRG4BC8K

Серия IRG4BC8K – это новые IGBT-транзисторы. Принцип работы их основан на изменении прохода. При этом параметр предельной частоты прибора будет зависеть от скорости процесса преобразования. База в указанной модели толщину имеет 1,3 мм. В связи с этим номинальное напряжение на входе устройство способно выдерживать на уровне 4 В.

Дополнительно следует учитывать, что для усилителей представленная модель не годится. Связано это в большей степени с малой скоростью переходов. Однако преимуществом этой модели можно назвать низкий порог сопротивления. В связи с этим в регуляторах мощности данный прибор способен работать довольно успешно. Некоторые специалисты его также устанавливают в различные электроприводы.

Применение моделей IRG4BC17K

Применение IGBT-транзисторов IRG4BC17K очень широко. Указанная модель проводников имеет всего два. Толщина базы в данном случае равняется 1,2 мм. Параметр предельной частоты устройства в среднем не превышает 5 Гц. За счет этого отрицательное сопротивление системой выдерживается довольно большое. Эмиттер в данном случае обладает высокой проводимостью.

Управление IGBT-транзистором осуществляется через смену фазы в цепи. Используется конкретно эта модель чаще всего в регуляторах мощности. Дополнительно многие специалисты устанавливают эти транзисторы в качестве проводников в устройства бесперебойного питания.

Особенности модели IRG4BC15K

Указанный IGBT-транзистор отличается наличием буферного слоя в эмиттере. Пропускная способность достигает 4 мк. Для регулировки переходов используется подложка. С лучевыми конденсаторами устройства данного типа работать не способны. Дополнительно следует учитывать, что в преобразователи эти модели устанавливаются довольно редко. Связано это в большей степени с тем, что точность слежения у устройств очень низкая. Однако некоторые специалисты для решения этой проблемы устанавливают в начале цепи двоичные шины.

Для того чтобы корректно работали IGBT-транзисторы, проверка их мультиметром должна осуществляться как можно чаще. С регуляторами IRG4BC15K используются довольно часто. В этом случае особое внимание следует уделять параметру индукции, а также пороговому напряжению. Если оно на входе превышает 40 В, то процесс размагничивания эмиттера будет происходить довольно быстро. Использоваться IRG4BC15K способен при температуре свыше 40 градусов. Работа IGBT-транзистора основана на изменении предельной частоты. Регулировать ее можно несколькими способами.

В усилителях это происходит за счет быстрой смены фазы. Если рассматривать устройства бесперебойного питания, то там многое зависит от типа конденсаторов. При использовании аналоговых модификаций смена параметра предельной частоты осуществляется за счет переключения подложки. Для того чтобы понять, как проверить IGBT-транзистор IRG4BC15K, необходимо ознакомиться с устройством мультиметра.

Область применения транзистора IRG4BC3K

Данная модель, как правило, используется в электроприводах различной мощности. Если рассматривать промышленные модификации, то там они играют роль проводников. Для увеличения показателя чувствительности устройства многие специалисты советуют использовать двоичную шину в цепи. Также следует учитывать, что конденсаторы должны устанавливаться только закрытого типа. Все это необходимо для того, чтобы тепловые потери в цепи были минимальными. В результате пропускная способность эмиттера, который располагается в транзисторе, будет максимальной.

В устройствах бесперебойного питания IRG4BC3K устанавливаются довольно редко. В первую очередь это обусловлено высоким показателем отрицательного сопротивления в цепи на уровне 5 Ом. Также еще одной проблемой в данной ситуации является медленный процесс преобразования. Для того чтобы понять, как проверить IGBT-транзистор мультиметром, необходимо ознакомиться с инструкцией к устройству.

Установка транзистора в электропривод

Устанавливают мощные IGBT-транзисторы на электропривод только возле двоичной шины. В данном случае целесообразнее подбирать модель с базой не более 1,2 мм. Все это необходимо для того, чтобы пропускная способность устройства не превышала в конечном счете 3 мк. Дополнительно многие специалисты советуют обращать внимание на параметр отрицательного сопротивления в цепи. В среднем он колеблется в районе 9 Ом. Для того чтобы переходы в устройстве происходили корректно, вышеуказанный параметр не должен превышать 11 Ом.

Лучевые конденсаторы в электроприводах лучше не использовать. В этом плане более умным будет установить аналоги закрытого типа. За счет этого можно значительно снизить тепловые потери. Наиболее распространенными проблемами в данной ситуации можно считать перегорание коллектора в транзисторе. Происходит это, как правило, из-за резкого повышения порогового напряжения.

Дополнительно проблема может заключаться в неправильном подсоединении транзистора к цепи. Выходной его проводник должен в обязательном порядке соединяться с анодом. При этом скорость отклика должна составлять как минимум 5 мс. Обработка контуров, в свою очередь, может быть разной. В данной ситуации многое зависит от ширины полосы пропускания устройства.

Транзистор в блоке питания на 5 В

Транзистор в блоке питания на 5 В может устанавливаться без двоичной шины. При этом предельное напряжение на входе регулировать можно. Для того чтобы повысить порог чувствительности устройства, многие в цепи дополнительно используют лучевые конденсаторы. Однако в такой ситуации может повыситься пороговое выходное напряжение. Принцип работы транзистора в блоке питания заключается в преобразовании тока. При этом параметр предельной частоты также изменяется. Происходит это через смену переходов в коллекторе.

Транзисторы у блоков на 10 В

Для того чтобы блок питания успешно функционировал, транзистор для него следует подбирать с базой не менее 1,1 мм. При этом переходы должны осуществляться со скоростью отклика в 6 мс. При таких параметрах можно надеяться на хорошую проводимость тока. Дополнительно следует учитывать предельную нагрузку на устройство.

В среднем данный показатель колеблется в районе 3 А. За счет резкого повышения отрицательного сопротивления в цепи силовые транзисторы IGBT могут перегореть. Чтобы предотвратить такие ситуации, важно использовать двоичную шину. Дополнительно следует обращать внимание на расположение конденсаторов на микросхеме. Некоторые специалисты в данном вопросе советуют смотреть на параметр полосы пропускания. Если конденсаторы в блоке питания находятся попарно, то тепловые потери при этом буду минимальными. Обратная связь в данном случае происходит довольно быстро, если транзистор отвечает всем требованиям блока.

Устройства в блоке на 15 В

Транзисторы для блока такой мощности подходят только с базами не менее 1,5 мм. При этом затворы на них должны быть установлены кремниевого типа. Конденсаторы для блоков можно использовать различные. В конечном счете важно следить за параметром порогового напряжения. Еще важно брать во внимание характеристики конденсаторов. Если износ их проводников осуществляется довольно быстро, то нагрузка на транзистор оказывается большая.

Транзисторы в регуляторах освещения

Транзисторы для регуляторов являются необходимыми. В первую очередь они играют роль проводников. Дополнительно они принимают участие в процессе преобразования тока. В данном случае изменение полярности тока происходит через эмиттерные переходники. Также следует учитывать, что уровень отрицательного сопротивления тесно связан с чувствительностью устройства.

Для того чтобы минимизировать тепловые потери транзистора, в регуляторе необходимо использовать двоичную шину. Также многие специалисты в этой области советуют новичкам применять конденсаторы в цепи только закрытого типа.

Транзисторы для инверторов солнечных батарей

Транзисторы для инверторов солнечных батарей необходимо подбирать исходя из показателя дифференциального сопротивления. В среднем данный параметр колеблется в районе 5 Ом. Дополнительно специалисты советуют обращать внимание на базу устройства. Ели ее толщина превышает 1,3 мм, то в инверторе могут происходить довольно резкие спады температуры.

Связано это с медленным откликом сигнала. Дополнительно важно помнить о чувствительности устройства. Для повышения данного параметра многие устанавливают рядом с транзисторами еще двоичные шины. За счет этого также в цепи повышается параметр предельного напряжения до 3 В. Однако в данном случае многое зависит от типа инвертора. Еще важно учитывать амплитуду модуляции, которая влияет на работу транзистора.

Модели в устройствах бесперебойного питания

Большинство транзисторов для установки в устройства бесперебойного питания годятся. При этом необходимо обращать внимание только на толщину базы. В данном случае она не должна превышать 1,4 мм. Еще некоторые специалисты советуют осматривать транзистор на наличие дополнительного проводника. На сегодняшний день многие производители выпускают именно такие модификации.

Связано это с тем, что полоса пропускания у них значительно повышается. Однако к недостаткам следует отнести низкую скорость отклика сигнала. Также важно учитывать, что у них в последнее время наблюдаются определенные проблемы, связанные с установкой двоичной шины рядом.

Транзистор IRG4BC10K для регулятора мощности

Для регулятора мощности данные транзисторы подходят идеально. Принцип работы указанной модели заключается в изменении предельной частоты в устройстве. Осуществляется это через смену перехода. При этом важно учитывать, что толщина базы в данном случае составляет ровно 1.2 мм. Помимо прочего надо отметить высокую пропускную способность транзистора на уровне 23 мк. Все это было достигнуто за счет увеличения мощности коллектора. Устанавливать данный элемент в регуляторе целесообразнее возле модулятора.

Также нужно заранее рассчитать уровень отрицательного сопротивления. Все это необходимо для того, чтобы минимизировать риск резкого повышения температуры внутри системы. В конечном счете это приведет к прогоранию коллектора в транзисторе. Также многие специалисты в данной ситуации считают не лишним позаботиться о зачистке проводников. Все это необходимо для того, чтобы увеличить скорость отдачи сигнала. При этом чувствительность прибора также повысится.

Транзистор IRG4BC13K для регулятора мощности

IGBT-транзистор данного типа оснащен специальным кремниевым затвором. Пропускная способность эмиттера в данном случае составляет более 4 мк. Для того чтобы повысить чувствительность коллектора, многие специалисты советуют применять двоичные шины. Устанавливаются они в регуляторе сразу за транзистором. Также важно учитывать параметр выходной мощности устройства.

Если он превышает 40 В, то двоичную шину в такой ситуации лучше не использовать. В противном случае тепловые потери будут довольно значительные. Еще одна проблема с транзисторами данной серии заключается в быстром перегреве коллектора. Происходит это при смене фазы. Связан этот процесс, как правило, с понижением индукции. Для того чтобы исправить эту ситуацию, важно поменять в регуляторе конденсаторы. Некоторые специалисты вместо закрытых элементов устанавливают полевые аналоги.

Модель IRG4BC19K для регулятора мощности

Данный IGBT-транзистор на сегодняшний день в регуляторах мощности встречается довольно часто. Обусловлен этот факт в первую очередь его большой пропускной способностью. Также следует отметить, что затвор в нем стандартно применяется кремниевый. Параметр отрицательного сопротивления при использовании данного транзистора не должен превышать 5 Ом. В противном случае пользователь столкнется с перегревом коллектора.

Также параллельно может пострадать база устройства. Исправить такие повреждения в транзисторе затем будет невозможно. Для того чтобы минимизировать риски в регуляторе, лучше устанавливать конденсаторы закрытого типа. За счет своей повышенной чувствительности они способны значительно ускорить процесс передачи сигнала. При этом ширина пропускания тока зависит от модулятора, который используется в регуляторе мощности.

www.syl.ru

Основные параметры и аспекты применения дискретных IGBT

1 октября 2018

Инструкция по особенностям практического применения дискретных транзисторов IGBT с экскурсом в основы теории и результатами практических испытаний для трех моделей IGBT производства Infineon: IRG7PC35SD для резонансных приложений с мягкими переключениями, IRGB20B50PD1 для работы на высоких частотах и IRGP4069D для высокочастотных приложений с жесткими переключениями.

Требования к схеме управления затвором

Влияние импеданса цепи затвора на потери при переключениях

Эквивалентная схема биполярного транзистора с изолированным затвором (БТИЗ, IGBT) состоит из биполярного PNP-транзистора, управляемого N-канальным МОП-транзистором (MOSFET) (рисунок 1). Вывод, называемый коллектором, фактически является эмиттером для внутреннего PNP-транзистора. MOSFET управляет базой PNP-транзистора и определяет скорость включения и падение напряжения на IGBT в открытом состоянии. Таким образом, выход внешнего драйвера подключается напрямую к затвору MOSFET, ток стока которого становится базовым током PNP-транзистора. Поскольку характеристики включения IGBT сильно зависят от параметров входного МОП-транзистора, то потери на включение определяются величиной импеданса цепи затвора. С другой стороны, характеристики выключения в основном зависят от скорости рекомбинации неосновных носителей, а значит, параметры встроенного МОП-транзистора значительно меньше влияют на уровень потерь IGBT при выключении.

Рис. 1. Эквивалентная схема IGBT

В результате, в отличие от силовых МОП-транзисторов, заряд затвора IGBT не полностью определяет уровень динамических потерь. В то же время заряд затвора остается важным параметром при расчете цепей управления IGBT.

Увеличение импеданса в цепи затвора продлевает плато Миллера и уменьшает скорость спадания тока. В то же время влияние импеданса на общие потери коммутации зависит от конструкции IGBT и его динамических характеристик. При этом потери на включение для всех без исключения IGBT сильно зависят от величины импеданса. Однако влияние импеданса на потери при выключении зависит от скорости IGBT и его технологии. Например, trench-IGBT и высокоскоростные IGBT отличаются большей чувствительностью к импедансу в цепи затвора. Однако, в любом случае верно, что входной импеданс затвора IGBT имеет большое значение, а дополнительный импеданс, вносимый цепью управления, оказывает меньшее влияние на уровень потерь.

На практике импеданс в цепи затвора часто увеличивают, чтобы ограничить выбросы тока, вызванные восстановлением обратного диода, при включении. Такой подход во многих случаях способен значительно снизить динамические потери. При этом негативное влияние от увеличения импеданса можно минимизировать с помощью дополнительного обратного диода, включенного параллельно затворному резистору. Это позволит сократить потери при выключении.

Зависимость энергии переключения от величины сопротивления в цепи затвора, как правило, всегда приводится в документации на современные силовые ключи.

Влияние импеданса цепи затвора на чувствительность к шуму

В биполярных транзисторах с изолированным затвором любое изменение напряжения dv/dt на коллекторе оказывает влияние на напряжение на затворе из-за наличия паразитной емкостной связи. Эта связь определяется делителем, образованным емкостью Миллера CRES и емкостью «затвор-эмиттер» CGE (рисунок 2а). При определенном соотношении этих двух емкостей и импеданса затвора (ZG) выброс напряжения может оказаться достаточным для включения IGBT.

Если затвор не имеет жесткой связи с эмиттером, то определенный высокий уровень dv/dt на коллекторе может вызвать на затворе значительный выброс напряжения, превышающий пороговое напряжение, что приведет к переходу IGBT в открытое состояние. По мере перехода IGBT в проводящее состояние происходит ограничение dv/dt, спад напряжения на затворе и окончательное закрывание транзистора (рисунок 2б). В результате описанного выше процесса  через IGBT протекает короткий импульс сквозного тока, который вызывает дополнительные потери мощности.

Обратите внимание, что сквозной ток, протекающий через IGBT, сложно отделить от тока перезаряда выходной емкости (рисунок 2б). Сквозной ток начинает преобладать только после того, как напряжение затвора превысит пороговое значение (приблизительно от 3 до 5 В), а емкостный ток перезаряда начинает протекать сразу же, как только начинается изменение dv/dt на коллекторе.

Чтобы уменьшить чувствительность к помехам и снизить риск паразитного включения IGBT, импеданс в цепи затвора в выключенном состоянии транзистора должен быть минимальным, а напряжение затвора близким к нулю. Для решения этой задачи иногда применяют дополнительный PNP-транзистор в цепи затвора IGBT (рисунок 2а).

В приложениях с высокой мощностью для включения и выключения IGBT часто используют уровни  управляющего напряжения затвора от +15 В до -5…-15 В соответственно. Это обеспечивает дополнительный уровень помехоустойчивости и улучшает характеристики переключения. Однако такой подход требует создания дополнительного изолированного источника питания для IGBT верхнего плеча, что увеличивает стоимость схемы управления. Важно отметить, что если в приложении необходимо только лишь обеспечить защиту от dv/dt, то для решения проблемы может быть достаточно дополнительного конденсатора, включенного между затвором и истоком, или рассмотренного выше варианта с PNP-транзистором (рисунок 2а).

Рис. 2. Изменение напряжения dv/dt на коллекторе нижнего IGBT приводит к изменению напряжения на затворе и появлению сквозного тока

Таким образом, бывают случаи, когда увеличение рассеиваемой мощности из-за эффекта dv/dt оказывается меньшим из зол по сравнению с необходимостью создания сложной схемы управления с отрицательным напряжением для управления затвором. В любом случае индуктивность в цепи затвора должна быть минимизирована, например, за счет подключения затвора с помощью нескольких параллельных дорожек на печатной плате или применения нескольких скрученных проводов.

Компания Infineon предлагает большой выбор драйверов, отвечающих требованиям самих разных приложений. Например, схема, представленная на рисунке 3, обеспечивает простое, недорогое и эффективное решение для управления затвором IGBT. В качестве еще одного примера можно привести схему, изображенную на рисунке 4. В ней драйвер контролирует напряжение затвора, что позволяет ему при необходимости ограничивать ток и обеспечивать защиту от короткого замыкания.

Рис. 3. IR2110 обеспечивает простое, высокопроизводительное и недорогое решение для управления полумостовой схемой

Рис. 4. Схема управления IGBT с защитой от короткого замыкания

Вклад общей индуктивности эмиттера в импеданс цепи затвора

Под понятием «общая индуктивность эмиттера» понимается индуктивность, которая является общей для тока коллектора и тока затвора (рисунок 5а). Эта индуктивность определяет дополнительную обратную связь между коллектором и затвором, которая пропорциональна L·diC/dt. Не сложно заметить, что падение напряжения на этой индуктивности вычитается из напряжения затвор-исток при включении транзистора, и добавляется к нему при выключении. Таким образом, общая индуктивность замедляет процесс переключения IGBT.

Это явление похоже на эффект Миллера, за исключением того, что оно пропорционально скорости изменения тока коллектора di/dt, а не его напряжения dv/dt. В обоих случаях обратная связь пропорциональна крутизне передаточной характеристики IGBT, которая определяется размером кристалла и используемой технологией. Значение di/dt на уровне 0,7 A/нс является распространенным для схем с IGBT. В таком случае при наличии паразитной индуктивности 10 нГн, на ней можно ожидать падения напряжения 7 В. Стоит отметить, что обратная связь замедляет процесс включения, тем самым ограничивая diC/dt.

Простые меры предосторожности могут снизить общую индуктивность эмиттера до минимального значения, которое определяется паразитной индуктивностью корпуса транзистора. Для этого следует разделить проводники, используемые для протекания тока коллектора, и проводники, относящиеся к схеме управления затвором (рисунок 5б). При этом, чтобы дополнительно уменьшить индуктивность, необходимо свить прямой и обратный проводники в цепи затвора или разместить их параллельно, если речь идет о печатной плате. Эти методы повышают стойкость к изменению di/dt и уменьшают звон в цепи затвора.

Рис. 5. Общая индуктивность эмиттера может быть уменьшена за счет использования отдельных проводников для протекания тока коллектора и для управления затвором

Траектории переключения и область безопасной работы ОБР

При работе с большими токами и напряжениями неосновные носители могут быть неравномерно распределены по кристаллу IGBT, что в случае выхода из области безопасной работы (ОБР) приводит к отказу силового ключа. В разделе 6 руководства AN-983 от Infineon/International Rectifier рассматриваются условия, при которых это происходит.

Распределение тока внутри кристалла может быть различным и зависит от знака связанного с ним di/dt. Поэтому область безопасной работы представляется в виде двух графиков: ОБР с прямым смещением и ОБР с обратным смещением.

ОБР с прямым смещением относится к работе транзисторов в линейных режимах A и B, а также в режиме короткого замыкания, который можно рассматривать как предельный случай режима B. Данные о тепловых ограничениях при работе IGBT с импульсными токами часто включаются в график ОБР, хотя на кривой теплового отклика (Transient Thermal Response) эта же информация представляется более полно и точно. Из-за ограниченного использования IGBT в линейном режиме график ОБР с прямым смещением обычно не приводится в документации.

ОБР с обратным смещением относится к случаю выключения индуктивной нагрузки и к случаю выключения при коротком замыкании (рисунок 6). На первом этапе при отключении индуктивной нагрузки напряжение на коллекторе транзистора увеличивается от низкого значения VCE(sat) до полного напряжения питания, при этом ток коллектора остается постоянным. После этого напряжение на коллекторе продолжает нарастать и превышает напряжение питания. Когда напряжение на коллекторе превышает напряжение питания на величину прямого падения p-n-перехода, диод, включенный параллельно индуктивности, открывается, тем самым отводя ток от транзистора. Таким образом, рабочая точка движется вдоль линии постоянного тока до тех пор, пока напряжение коллектор-эмиттер не превысит напряжение питания (рисунок 6б). Дальнейшее увеличение напряжения коллектора зависит от величины паразитной индуктивности LS и скорости выключения.

Рис. 6. Отключение индуктивной нагрузки и траектория рабочей точки во время переходного процесса

Очевидно, что для обеспечения безопасной коммутации вся траектория переключения должна лежать внутри ОБР. Таким образом, ОБР накладывет ограничения на величину коммутируемой индуктивной нагрузки.

Вторичный пробой IGBT происходит при токах и напряжениях, которые значительно превышают типовые значения, встречающиеся в реальных приложениях. Обратите внимание, что значения, приведенные в документации, как правило, указаны для предельных температур. Это значит, что дополнительные снабберные цепи не требуются до тех пор, пока траектория переключения не выходит за границы ОБР. Снабберные цепи часто используются для ограничения помех и повышения качества ЭМС, но это уже не связано с безопасностью работы ключа и ОБР.

Потери проводимости

В любой момент времени энергия, рассеиваемая в IGBT, определяется выражением:

$$E=\int_{0}^{t}{V_{CE}(i)\times i(t)dt},$$

где t — длина импульса. Зная энергию, можно рассчитать рассеиваемую мощность, для чего следует умножить энергию на частоту. При этом полагается, что потери оказываются незначительными, когда транзистор выключен i(t) ≈ 0. К сожалению, не существует простых выражений для определения напряжений и токов для IGBT в момент, когда он проводит ток. Следовательно, для упрощения мы будем разделять потери на две составляющие: статические потери проводимости и динамические потери при переключениях.

К потерям проводимости относятся потери, возникающие между окончанием интервала включения и началом интервала выключения. Обычно энергия включения измеряется в интервале времени между моментом, когда ток коллектора превышает значение 5% от номинального значения, до момента, когда напряжение «коллектор-эмиттер» падает до 5% от испытательного напряжения. Аналогично, энергия выключения измеряется с момента, когда напряжение «коллектор-эмиттер» превышает 5% от испытательного напряжения. Таким образом, потери проводимости следует отсчитывать с момента, когда напряжение «коллектор-эмиттер» составляет менее 5% от испытательного или питающего напряжения (см. руководство AN-983 от  Infineon/International Rectifier, раздел 8.4). Зависимость VCE(i) в приведенной выше формуле определяет поведение IGBT в открытом состоянии. Эта информация представлена в документации в виде графиков и табличных значений.

Как правило, в таблицах приводится информация только для нескольких конкретных рабочих точек. Однако, используя дополнительные данные, получаемые из графиков, можно выполнить расчет потерь проводимости. Поиск максимального напряжения VCE при любом токе и температуре делается за три шага:

  1. Определите типовое значение напряжения коллектор-эмиттер VCE из графика типовой зависимости VCE от тока коллектора iC для заданных значений тока и температуры кристалла.
  2. Определите коэффициент разброса прямого падения напряжения VCE. Для этого разделите максимальное значение VCE на типовое значение VCE, взятые из табличных данных.
  3. Умножьте значение VCE, полученное на первом шаге, на коэффициент разброса.

Умножая полученное максимальное значение VCE на величину номинального тока и на длительность импульса, получаем энергию потерь проводимости. Если же требуется рассчитать мощность потерь, то произведение тока и напряжения следует умножать на коэффициент заполнения.

Описанный алгоритм расчета относится к случаю, когда ток коллектора имеет постоянное значение в течение интервала проводимости. Если форма сигнала в течение интервала проводимости непостоянна, то интервал следует разделить на части, и рассчитать потери проводимости для каждой из частей с последующим суммированием. В идеале самым универсальным способом является построение математической модели с аппроксимацией зависимости тока и напряжения, а также формы рабочего сигнала с дальнейшим выполнением интегрирования.

Потери при жестких переключениях

При определении динамических потерь при жестких переключениях следует отдельно рассчитывать потери при включении и потери при выключении.

Как и в случае с потерями проводимости, потери при жестких переключениях рассчитываются с учетом графиков и табличных данных, приведенных в документации.

Как поясняется в разделе 8.4 руководства AN-983 от Infineon/International Rectifier, значение энергии переключения, указанное в документации, приводится для конкретных тестовых условий и для конкретной схемы испытаний. Важно помнить, что энергия переключения значительно изменяется с температурой, и все вычисления должны проводиться с учетом данных, приведенных для заданной температуры.

Потери на включение и выключение могут быть рассчитаны с использованием методики, описанной в предыдущем разделе, с некоторыми дополнительными изменениями:

  • Показатели потерь энергии должны быть масштабированы с учетом рабочего напряжения. Как уже было сказано, данные, представленные в документации, были получены при определенном значении напряжения, которое может иметь другое значение в рассчитываемой схеме.
  • Точно так же сопротивление в цепи затвора тестовой схемы, применяемой в документации, может отличаться от сопротивления, используемого в фактическом приложении. В последнее время в документации приводится зависимость энергии переключения от сопротивления в цепи затвора.
  • чтобы получить значение потерь мощности, следует умножить энергию переключения на частоту.

Переходной процесс при включении транзистора осложняется из-за восстановления диода, подключенного параллельно индуктивной нагрузке (рисунок 6а). Когда IGBT включается, через него начинает протекать не только ток нагрузки, но и ток восстановления обратного диода. Данные о потерях из-за встроенного диода также приводят в современной документации.

Ранее при тестировании IGBT использовалась другая тестовая схема с «идеальным диодом». Поэтому в документации приводились данные о потерях на включение без потерь на диоде. Таким образом, при необходимости эти составляющие потерь следует рассчитать по отдельности и сложить.

На рисунке 7 показана типовая форма сигналов при включении. Обратите внимание, что обратное восстановление диода увеличивает динамические потери за счет двух механизмов:

Рис. 7. Обратное восстановление диода увеличивает ток нагрузки (IRGP4066D, 400 В, 75 А, 175°C)

  • из-за того, что ток восстановления диода добавляется к току транзистора, когда напряжение коллектора все еще близко к напряжению питания;
  • из-за того, что уменьшение напряжения происходит с задержкой.

Как и в случае с расчетом потерь проводимости, потери при переключениях можно рассчитать с помощью относительно простых алгоритмов.

Компромисс между потерями проводимости и потерями при переключениях: оптимизация транзисторов

Для повышения эффективности преобразовательных схем компания Infineon предлагает использовать специализированные IGBT, предназначенные для работы в составе конкретных приложений. Например, существуют транзисторы, оптимизированные для питания двигателей, для индукционного нагрева, для плазменных дисплеев и т.д.

В результате номенклатура IGBT разрастается и становится достаточно разнообразной. По этой причине  поиск оптимального транзистора превращается в сложный итерационный процесс, который практически невозможно формализовать. Кроме того, разработчикам силовых схем приходится искать компромисс между потерями на переключения, потерями проводимости и требованиями устойчивости к короткому замыканию. Чтобы продемонстрировать необходимость компромисса, приведем пример сравнения различных транзисторов в рамках типовой импульсной схемы с учетом тепловых показателей.

Для сравнения различных моделей IGBT была выбрана популярная полумостовая схема, коммутирующая индуктивную нагрузку. Условия проведения испытаний приведены на рисунке 8, и могут быть изменены в соответствии с конкретным приложением. Вместо полумоста можно использовать обратноходовые или резонансные схемы. Из рисунка 8 становится видно, что изменение рабочей частоты по-разному влияет на значение максимального коммутируемого тока для разных транзисторов.

Рис. 8. Зависимость максимального коммутируемого тока от частоты переключений для трех разных IGBT

На рисунке 8 изображены результаты испытаний для следующих моделей IGBT:

  • IRG7PC35SD – IGBT-транзистор, выполненный по trench-технологии с высокой плотностью и разработанный с целью получения минимального падения напряжения. Этот транзистор является идеальным выбором для резонансных приложений (с мягкими переключениями). Как и следовало ожидать, в результате испытаний IRG7PC35SD продемонстрировал отличные показатели на низких частотах.
  • IRGB20B50PD1 – планарный транзистор технологии Gen 5. Несмотря на то, что IRGB20B50PD1 был разработан в конце девяностых годов, он по-прежнему остается одним из лучших транзисторов для работы на высоких частотах, несмотря на то, что падение напряжения у него выше, чем у транзисторов, выполненных по trench-технологии.
  • IRGP4069D – IGBT-транзистор, производимый по trench-технологии, предназначенный для высокочастотных приложений с жесткими переключениями.

Тепловой анализ

IGBT, как и силовые МОП-транзисторы и тиристоры, имеют ограничения, связанные с тепловым режимом эксплуатации. Грамотно выполненный тепловой анализ становится ключом к их эффективному использованию. Эта тема подробно освещена в руководстве AN-1057 от Infineon/International Rectifier.

В общем случае целью теплового анализа является выбор оптимального радиатора. Для этого может потребоваться ряд расчетов, как указано в руководстве AN-949 от Infineon/International Rectifier.

Чтобы значение теплового сопротивления «корпус-радиатор» соответствовало значению, указанному в документации, следует при монтаже использовать то же самое усилие затяжки. Стоит помнить, что чрезмерное усилие затяжки приводит к деформации корпуса и может повредить кристалл. С другой стороны, недостаточный момент затяжки приводит к ухудшению теплоотвода.

Повышение температуры при работе с короткими импульсами тока может быть рассчитано с помощью кривой теплового отклика (thermal response curve), которая приводится в документации. Этот расчет рассматривается в разделе «Peak Current Rating» руководства AN-949 от Infineon/International Rectifier.

Для коротких импульсов (5 мс или менее) повышение температуры, рассчитанное с помощью кривой теплового отклика, как правило, оказывается неточным. В таких случаях требуется выполнение подробного моделирования.

Замена MOSFET-транзисторов на IGBT

Во многих высоковольтных приложениях не удается использовать МОП-транзисторы, несмотря на их отличные динамические характеристики. Причиной этого является их невысокая устойчивость к помехам и наличие значительных паразитных индуктивностей. В таких случаях IGBT становятся наиболее привлекательной альтернативой по целому ряду причин. К преимуществам IGBT можно отнести:

  • минимальные потери проводимости, которые слабо зависят от температуры.
  • меньшая площадь кристалла по сравнению с MOSFET, что приводит к уменьшению входной емкости, упрощению управления затвором и снижению стоимости.
  • отсутствие резких перепадов di/dt и dv/dt, что обеспечивает минимальный уровень генерируемых помех и хорошие показатели ЭМС.
  • высокие динамические характеристики встроенных диодов, которые значительно превосходят показатели встроенных диодов MOSFET, благодаря чему при переключениях генерируются меньшие импульсы тока. Это является большим плюсом для приложений, в которых обратный диод является обязательным элементом схемы.

Поскольку корпусные исполнения и назначение выводов у MOSFET и IGBT совпадает, то при их замене друг на друга никаких механических изменений или модификаций печатной платы не требуется.

Требования к управлению затворами IGBT и МОП-транзисторов в значительной степени совпадают. В большинстве случаев для нормального включения будет достаточно 12…15 В, а при выключении можно обойтись без отрицательных запирающих напряжений. Так как входная емкость у IGBT меньше, чем у MOSFET, то чтобы избежать звона, в ряде схем может потребоваться увеличение сопротивления резистора в цепи затвора.

Рекомендации по параллельному включению IGBT

При параллельном включении нескольких IGBT удается уменьшить потери проводимости и снизить тепловое сопротивление. В то же время потери при переключениях, наоборот, увеличиваются. Таким образом, если основной вклад в общие потери вносит динамическая составляющая, то использование параллельного включения позволит улучшить только тепловые характеристики.

Параллельное включение МОП-транзисторов можно выполнить без особых проблем из-за положительного температурного коэффициента их потерь проводимости, в то время как потери на переключения для MOSFET в значительной степени не зависят от температуры. У IGBT наблюдается обратная картина – потери проводимости слабо зависят от температуры, зато потери на переключение имеют значительный положительный температурный коэффициент. По этой причине использование параллельного включения IGBT оказывается не таким простым, как для МОП-транзисторов.

Вопросы параллельного включения МОП-транзисторов были подробно рассмотрены в руководстве AN-941 от Infineon/International Rectifier. Большинство выводов, сделанных в AN-941, справедливы и для IGBT. При необходимости читатель может ознакомиться с ними самостоятельно. Далее будут рассмотрены только те вопросы, которые характерны для IGBT.

Напряжение насыщения VCE(on) в IGBT слабо зависит от тока и температуры, в то время как для МОП-транзисторов падение напряжения на открытом канале сильно зависит от обоих параметров. Когда два IGBT работают параллельно, напряжение VCE(on) для обоих транзисторов будет одинаковым в «принудительном» порядке. Таким образом, при заданной нагрузке через один IGBT может протекать больше тока, чем через другой. Эта разбалансировка для малых значений токов очень часто оказывается достаточно значительной и достигает 75…100%. Само по себе неравномерное распределение токов не является чем-то критическим, однако это оказывает значительное влияние на перегрев и потери на переключения. Рассмотрим эти вопросы подробнее.

Температура перехода: Поскольку падение напряжения одинаково для обоих IGBT, то транзистор, через который протекает больше тока, рассеивает большую мощность и имеет больший перегрев кристалла. Это смягчается тремя факторами:

  1. Обширные испытания показали, что неравномерное распределение нагрузки имеет тенденцию к уменьшению по мере увеличения тока. Это связано с тем, что разница в напряжениях насыщения сокращается с ростом тока. Таким образом, значительная разбалансировка при малых токах оказывается не такой значительной при больших токах.
  2. Обеспечение хорошей тепловой связи между кристаллами транзисторов гарантирует, что, несмотря на значительный дисбаланс токов, температурный перепад будет находиться в пределах нескольких градусов.
  3. Существуют IGBT с небольшим положительным температурным коэффициентом. Они становятся оптимальным выбором, если требуется параллельное включение транзисторов.

Потери коммутация при рассогласовании токов: вполне очевидно, что IGBT, который проводит больше тока, переключается также при большем токе. Следовательно, на него будет приходиться не только большая часть потерь проводимости, но большая часть динамических потерь на переключения.

Казалось бы, существует лавинообразный процесс, который должен привести к тому, что из-за более высоких потерь температура перегруженного IGBT превысит допустимое значение. Однако аналитический и экспериментальный анализ показал, что с увеличением тока дисбаланс между транзисторами уменьшается, а отличие температур сокращается до нескольких градусов. Это, как было сказано выше, связано с выравниванием напряжений насыщения при увеличении токовой нагрузки.

Стоит отметить, что наиболее эффективным методом борьбы с неравномерным распределением токов при параллельном включении является отбор транзисторов. Еще одной важной причиной разбалансировки являются различия в пороговых напряжениях, что особенно заметно у trench-IGBT. Таким образом, подбор транзисторов с согласованными значениями VCE(on) и VGS(th) является эффективным способом защиты от неравномерного распределения токов.

В дополнение к совету, озвученному в предыдущем абзаце, рекомендуется следовать рекомендациям, упомянутым в руководстве AN-941:

  • Используйте отдельные резисторы затвора для устранения риска паразитных колебаний.
  • Убедитесь, что транзисторы, включенные параллельно, имеют сильную тепловую связь.
  • Выравнивайте значения общей индуктивности эмиттера и уменьшайте ее до величины, которая не оказывает большого влияния на общие потери коммутации на заданной частоте.
  • Минимизируйте индуктивность рассеяния до значения, которое обеспечивает допустимое значение выбросов напряжения при максимальном рабочем токе.
  • Убедитесь, что схема управления имеет минимальное собственное сопротивление.
  • Защитные стабилитроны в цепи затвора могут вызывать колебания. Если без них не обойтись, то следует размещать их между выходом драйвера и резистором затвора.
  • Помните, что конденсаторы в цепи затвора замедляют коммутацию, тем самым увеличивая рассогласование между устройствами, а также могут вызывать колебания.
  • Паразитные составляющие должны быть минимизированы. Проводящий рисунок и электрические соединения должны быть максимально симметричными для всех транзисторов.

Оригинал статьи

•••

Наши информационные каналы

www.compel.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о