Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Составной транзистор. Транзисторная сборка Дарлингтона.

Если открыть любую книгу по электронной технике, сразу видно как много элементов названы по именам их создателей: диод Шоттки, диод Зенера (он же стабилитрон), диод Ганна, транзистор Дарлингтона.

Инженер-электрик Сидни Дарлингтон (Sidney Darlington) экспериментировал с коллекторными двигателями постоянного тока и схемами управления для них. В схемах использовались усилители тока.

Инженер Дарлингтон изобрёл и запатентовал транзистор, состоящий из двух биполярных и выполненный на одном кристалле кремния с диффундированными n (негатив) и p (позитив) переходами. Новый полупроводниковый прибор был назван его именем.

В отечественной технической литературе транзистор Дарлингтона называют составным. Итак, давайте познакомимся с ним поближе!

Устройство составного транзистора.

Как уже говорилось, это два или более транзисторов, изготовленных на одном полупроводниковом кристалле и запакованные в один общий корпус. Там же находится нагрузочный резистор в цепи эмиттера первого транзистора.

У транзистора Дарлингтона те же выводы, что и у всем знакомого биполярного: база (Base), эмиттер (Emitter) и коллектор (Collector).


Схема Дарлингтона

Как видим, такой транзистор представляет собой комбинацию нескольких. В зависимости от мощности в его составе может быть и более двух биполярных транзисторов. Стоит отметить, что в высоковольтной электронике также применяется транзистор, состоящий из биполярного и полевого. Это IGBT транзистор. Его также можно причислить к составным, гибридным полупроводниковым приборам.

Основные особенности транзистора Дарлингтона.

Основное достоинство составного транзистора это большой коэффициент усиления по току.

Следует вспомнить один из основных параметров биполярного транзистора. Это коэффициент усиления (h21). Он ещё обозначается буквой β («бета») греческого алфавита. Он всегда больше или равен 1. Если коэффициент усиления первого транзистора равен 120, а второго 60 то коэффициент усиления составного уже равен произведению этих величин, то есть 7200, а это очень даже неплохо. В результате достаточно очень небольшого тока базы, чтобы транзистор открылся.

Инженер Шиклаи (Sziklai) несколько видоизменил соединение Дарлингтона и получил транзистор, который назвали комплементарный транзистор Дарлингтона. Вспомним, что комплементарной парой называют два элемента с абсолютно одинаковыми электрическими параметрами, но разной проводимости. Такой парой в своё время были КТ315 и КТ361. В отличие от транзистора Дарлингтона, составной транзистор по схеме Шиклаи собран из биполярных разной проводимости:

p-n-p и n-p-n. Вот пример составного транзистора по схеме Шиклаи, который работает как транзистор с n-p-n проводимостью, хотя и состоит из двух различной структуры.


схема Шиклаи

К недостаткам составных транзисторов следует отнести невысокое быстродействие, поэтому они нашли широкое применение только в низкочастотных схемах. Такие транзисторы прекрасно зарекомендовали себя в выходных каскадах мощных усилителей низкой частоты, в схемах управления электродвигателями, в коммутаторах электронных схем зажигания автомобилей.

Хорошо зарекомендовал себя для работы в электронных схемах зажигания мощный n-p-n транзистор Дарлингтона BU931.

Основные электрические параметры:

  • Напряжение коллектор – эмиттер 500 V;

  • Напряжение эмиттер – база 5 V;

  • Ток коллектора – 15 А;

  • Ток коллектора максимальный – 30 А;

  • Мощность рассеивания при 25°C – 135 W;

  • Температура кристалла (перехода) – 175°C.

На принципиальных схемах нет какого-либо специального значка-символа для обозначения составных транзисторов. В подавляющем большинстве случаев он обозначается на схеме как обычный транзистор. Хотя бывают и исключения. Вот одно из его возможных обозначений на принципиальной схеме.

Напомню, что сборка Дарлингтона может иметь как p-n-p структуру, так n-p-n. В связи с этим, производители электронных компонентов выпускают комплементарные пары. К таким можно отнести серии TIP120-127 и MJ11028-33. Так, например, транзисторы TIP120, TIP121, TIP122 имеют структуру

n-p-n, а TIP125, TIP126, TIP127 – p-n-p.

Также на принципиальных схемах можно встретить и вот такое обозначение.

Примеры применения составного транзистора.

Рассмотрим схему управления коллекторным двигателем с помощью транзистора Дарлингтона.

При подаче на базу первого транзистора тока порядка 1мА через его коллектор потечёт ток уже в 1000 раз больше, то есть 1000мА. Получается, что несложная схема обладает приличным коэффициентом усиления. Вместо двигателя можно подключить электрическую лампочку или реле, с помощью которого можно коммутировать мощные нагрузки.

Если вместо сборки Дарлингтона использовать сборку Шиклаи то нагрузка подключается в цепь эмиттера второго транзистора и соединяется не с плюсом, а с минусом питания.

Если совместить транзистор Дарлингтона и сборку Шиклаи, то получится двухтактный усилитель тока. Двухтактным он называется потому, что в конкретный момент времени открытым может быть только один из двух транзисторов, верхний или нижний. Данная схема инвертирует входной сигнал, то есть выходное напряжение будет обратно входному.

Это не всегда удобно и поэтому на входе двухтактного усилителя тока добавляют ещё один инвертор. В этом случае выходной сигнал в точности повторяет сигнал на входе.

Применение сборки Дарлингтона в микросхемах.

Широко используются интегральные микросхемы, содержащие несколько составных транзисторов. Одной из самых распространённых является интегральная сборка L293D. Её частенько применяют в своих самоделках любители робототехники. Микросхема L293D – это четыре усилителя тока в общем корпусе. Поскольку в рассмотренном выше двухтактном усилителе всегда открыт только один транзистор, то выход усилителя поочерёдно подключается или к плюсу или к минусу источника питания. Это зависит от величины входного напряжения. По сути дела мы имеем электронный ключ. То есть микросхему L293 можно определить как четыре электронных ключа.

Вот «кусочек» схемы выходного каскада микросхемы L293D, взятого из её даташита (справочного листа).

Как видим, выходной каскад состоит из комбинации схем Дарлингтона и Шиклаи. Верхняя часть схемы – это составной транзистор по схеме Шиклаи, а нижняя часть выполнена по схеме Дарлингтона.

Многие помнят те времена, когда вместо DVD-плееров были видеомагнитофоны. И с помощью микросхемы L293 осуществлялось управление двумя электродвигателями видеомагнитофона, причём в полнофункциональном режиме. У каждого двигателя можно было управлять не только направлением вращения, но подавая сигналы с ШИМ-контроллера можно было в больших пределах управлять скоростью вращения.

Весьма обширное применение получили и специализированные микросхемы на основе схемы Дарлингтона. Примером может служить микросхема ULN2003A (аналог К1109КТ22). Эта интегральная схема является матрицей из семи транзисторов Дарлингтона. Такие универсальные сборки можно легко применять в радиолюбительских схемах, например, радиоуправляемом реле. Об этом я поведал тут.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Параметры транзисторов MOSFET.

  • Что такое супрессор?

 

Что такое транзистор Дарлингтона | Уголок радиолюбителя

В этой статье мы расскажем о транзисторе Дарлингтона или паре Дарлингтона, приведем несколько примеров схем, покажем варианты применения, преимущества и недостатки.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

На современном рынке доступны самые разнообразные транзисторы Дарлингтона, которые различаются по проводимости, току коллектора, мощности рассеяния, типу корпуса, максимальному напряжению CE и т. д.

Эти транзисторы встречаются в различных типах устройств, таких как регуляторы мощности, контроллеры двигателя, аудиоусилители и т. д. Многие оптико-изоляторные схемы изготавливаются на транзисторах Дарлингтона, чтобы иметь высокую токовую нагрузку на выходном каскаде.

Почему мы используем транзистор Дарлингтона?

Как известно, для перевода транзистора в режим проводимости требуется небольшой базовый ток в схеме с общим эмиттером. Иногда этого малого тока базы (коэффициент усиления по току) может быть недостаточно, чтобы перевести транзистор в состояние проводимости.

Коэффициент усиления по току или бета транзистора — это отношение тока коллектора к току базы.

Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…

Подробнее

Коэффициент усиления транзистора или коэффициент усиления по току (β) = ток нагрузки или коллектора / входной или базовый ток.

Ток нагрузки = коэффициент усиления по току (β) × базовый ток

 

Для обычного транзистора значение β составляет примерно 100. Приведенное выше соотношение говорит о том, что ток нагрузки превышает в 100 раз базовый ток транзистора.

Рассмотрим схематичный рисунок, приведенный ниже. Здесь транзистор с переменным резистором, подключенным между источником питания и базой транзистора, используется для изменения яркости лампы.

В этой схеме базовый ток является единственным фактором, который определяет ток, протекающий через коллектор — эмиттер. Таким образом, изменяя сопротивление переменного резистора, можно добиться изменения яркости свечения лампы.

Если значение сопротивления переменного резистора больше, то базовый ток уменьшается — транзистор выключается. Когда сопротивление слишком мало, достаточное количество тока будет протекать через базу, что приведет к увеличению тока коллектор-эмиттер, соответственно лампа будет светить ярче. Это усиление тока в транзисторе.

В приведенном выше примере мы видели управление нагрузкой (лампой) с использованием одного транзистора. Но в некоторых схемах входной базовый ток от источника может быть недостаточным для управления нагрузкой. Мы знаем, что величина тока, протекающего через коллектор-эмиттер, является произведением тока базы и коэффициента усиления транзистора.

Поскольку увеличение тока от источника невозможно, единственный способ увеличить ток нагрузки — это увеличить коэффициент усиления транзистора. Но для каждого транзистора это постоянный коэффициент. Однако мы можем увеличить усиление, используя комбинацию из двух транзисторов. Эта конфигурация называется конфигурацией Дарлингтона.

Транзистор Дарлингтона представляет собой соединение двух транзисторов определенным образом. Пара биполярных транзисторов обеспечивает очень высокое усиление тока по сравнению с одним стандартным транзистором, как упомянуто выше.

Пара этих транзисторов может быть PNP или NP. На рисунке ниже показана конфигурация пары Дарлингтона с NPN, а также с транзисторами PNP.

Конфигурации транзисторов Дарлингтона

Рассмотрим конфигурацию NPN транзистора Дарлингтона. В этом случае очень маленький базовый ток вызывает протекание большого тока эмиттера, который затем подается на базу следующего транзистора.

Усиленный ток в первом транзисторе снова усиливается вторым транзистором. Следовательно, ток коллектор-эмиттер второго транзистора становиться значительным.

Предположим, что если коэффициент усиления по току первого транзистора равен β1, а коэффициент усиления по току второго транзистора равен β2, то общий коэффициент усиления по току транзисторов будет равен произведению β1 и β2. Если взять два транзистора с β равным 100, то общее усиление тока составит 10000. Это значение очень высокое по сравнению с одним транзистором, поэтому этот высокий коэффициент усиления по току дает высокий ток нагрузки.

Как правило, для включения транзистора базовое входное напряжение должно быть больше 0,7 В. Поскольку в этой конфигурации используются два транзистора, базовое напряжение должно быть не менее 1,4 В.

Из рисунка, усиление тока первого транзистора

β1= IC1/IB1,

следовательно, IC1 = β1 IB1

Аналогично, коэффициент усиления по току следующего транзистора

β2= IC2/IB2, then IC2 = βIB2

Общий ток на коллекторе IC= IC1+IC2

IC = β1 IB1 + β2 IB2

базовый ток второго транзистора

IB2 = I+ IC1

IB2 = β1 I+ IB

IB2 = IB (1 + β1)

Подставляя в вышеприведенное уравнение

I= β1 I+ β2IB (1 + β1)

IC = IB (β+ β2 + β1 β2)

В приведенном выше соотношении можно сделать вывод, что

IC= IB (β1 β2)

β = (β1 β2)

VBE = VBE1 + VBE2

Пример транзисторной схемы Дарлингтона

Рассмотрим следующую схему, где пара Дарлингтона используется для переключения нагрузки, которая рассчитана на 12 В и 80 Вт. Усиление тока первого и второго транзисторов возьмем как 50 и 60 соответственно. Таким образом, базовый ток, необходимый для полного включения лампы, рассчитывается следующим образом.

Ток коллектора равен току нагрузки,

C = 80/12 = 6,67 A

Выходной ток транзистора Дарлингтона задается как Ic = I B (β 1 + β 2  + β 1 β 2 ),

B = I C  / (β 1 + β 2  + β 1 β 2 )

Коэффициент усиления по току, β= 50 and β2 = 60

Итак, IB= 6.67 / (50 + 60 + (60 × 50))

IB = 2.2 mA

Из приведенного выше расчета ясно, что при небольшом базовом токе мы можем переключать большие нагрузки. Этот небольшой базовый ток может подаваться с любого выхода микроконтроллера или любых цифровых логических схем.

Применение транзистора Дарлингтона

Транзисторы Дарлингтона в основном используются в схемах коммутации и усиления для обеспечения очень высокого усиления постоянного тока. Некоторые из ключевых схем — это переключатели на стороне высокого и низкого уровня, сенсорные усилители и усилители звука. Для светочувствительных устройств используются фотодарлингтон. Давайте посмотрим работу транзистора Дарлингтона на конкретном примере.

Транзистор Дарлингтон (NPN) в качестве переключателя

На рисунке ниже показано управление светодиодом с использованием транзистора Дарлингтона. Переключатель на базе также может быть заменен сенсорным датчиком, так что при касании сенсора будет загораться светодиод. Резистор на 100 кОм действует как защитный резистор для пары транзисторов.

Дарлингтонский Транзистор как Переключатель

Когда переключатель замкнут, на транзистор Дарлингтона подается напряжение более 1,4 В. Это приводит к тому, что пара Дарлингтона становится активной и пропускает ток через нагрузку. Это приводит к тому, что светодиоды начинают светиться очень ярко, даже при изменении сопротивления у базы.

Когда переключатель разомкнут, оба биполярных транзистора находятся в режиме отсечки, и ток через нагрузку равен нулю. Таким образом, светодиод гаснет.

Также возможно использовать пару Дарлингтона для управления индуктивными нагрузками, такими как реле, двигатели. По сравнению с одним транзистором, управление индуктивными нагрузками с помощью пары Дарлингтона является более эффективным, поскольку обеспечивается высокий ток нагрузки при небольшом входном токе базы.

На рисунке ниже показана пара Дарлингтона, которая управляет катушкой реле. При коммутации индуктивной нагрузки необходимо параллельно подключить диод, чтобы защитить цепь от индуцированных токов. Как и в приведенной выше схеме работы светодиодов, катушка реле получает питание при подаче тока базы. Мы также можем использовать двигатель постоянного тока в качестве индуктивной нагрузки вместо катушки реле.

Транзистор Дарлингтон (PNP) в качестве переключателя

Мы можем использовать PNP-транзисторы в качестве пары Дарлингтона, но чаще всего используются NPN-транзисторы. Нет большой разницы в схеме с использованием NPN или PNP. Ниже на рисунке показана простая схема датчика, которая выдает аварийный сигнал с использованием пары Дарлингтона.

Этот контур представляет собой простой индикатор уровня воды, в котором пара Дарлингтона используется в качестве переключателя. Мы знаем, что эта конфигурация транзистора обеспечивает большой ток коллектора, поэтому он может управлять зуммером на выходе.

Когда уровень воды недостаточен для замыкания датчика, транзистор Дарлингтона находится в выключенном состоянии. Следовательно, цепь разорвана, и через нее не протекает ток.

По мере повышения уровня воды датчик замыкается, в результате чего поступает необходимый базовый ток на пару Дарлингтона. Следовательно, цепь замыкается, и ток нагрузки протекает так, что зуммер подает сигнал.

Преимущества пары Дарлингтон

Пара Дарлингтона имеет несколько преимуществ по сравнению со стандартным одиночным транзистором. Вот некоторые из них:

  • Он обеспечивает очень высокий коэффициент усиления по току, чем стандартный одиночный транзистор
  • Он обеспечивает очень высокий входной импеданс или хорошее преобразование импеданса.
  • Они могут быть двумя отдельными транзисторами или поставляются в одном корпусе.
  • Простая и удобная конфигурация схемы, так как используется всего несколько компонентов.
  • В случае пары фотодарлингтон внешний шум намного меньше по сравнению с фототранзистором с внешним усилителем.

Недостатки пары Дарлингтон

  • Низкая скорость переключения
  • Пропускная способность ограничена
  • На определенных частотах в цепи отрицательной обратной связи эта конфигурация вводит фазовый сдвиг.
  • Требуемое напряжение базы-эмиттера высокое и в два раза больше, чем у стандартного транзистора.
  • Высокое рассеивание мощности из-за высокого напряжения насыщения.
  • Общий ток утечки высокий, потому что ток утечки первого транзистора усиливается следующим транзистором. Вот почему три или более ступений Дарлингтона невозможны.

Следовательно, пара Дарлингтона очень полезна в большинстве приложений, поскольку она обеспечивает высокий коэффициент усиления по току при низких базовых токах.

Хотя это имеет некоторые ограничения, эти пары широко используются в приложениях, где не требуется высокочастотная характеристика, а требуются высокие уровни усиления по току. В случае схем усилителя мощности звука эта конфигурация обеспечивает лучшую выходную мощность.

Портативный паяльник TS80P

TS80P- это обновленная версия паяльника TS80 Smart, работающий от USB…

Подробнее

Дополнительные кремниевые силовые транзисторы

Darlington

%PDF-1.4 % 1 0 объект > эндообъект 5 0 объект /Заголовок (BDW42 – Комплементарные кремниевые силовые транзисторы Дарлингтона) >> эндообъект 2 0 объект > эндообъект 3 0 объект > транслировать application/pdf

  • BDW42 – Комплементарные кремниевые силовые транзисторы Дарлингтона
  • ОН Полупроводник
  • Эта серия пластиковых, средней мощности кремниевых НПН и ПНП Транзисторы Дарлингтона предназначены для общего назначения и низкоскоростных переключение приложений.
  • 2016-08-01T16:22:09-07:00BroadVision, Inc.2020-09-29T15:12:44+02:002020-09-29T15:12:44+02:00Acrobat Distiller 10.1.16 (Windows)uuid: 071945b7-8c9f-483d-a7c4-8db83f844a1auuid:7ed68be7-5644-4faf-aacd-41589267fe5dPrint конечный поток эндообъект 4 0 объект >
    эндообъект 6 0 объект > эндообъект 7 0 объект > эндообъект 8 0 объект > эндообъект 90 объект > эндообъект 10 0 объект > эндообъект 11 0 объект > эндообъект 12 0 объект > эндообъект 13 0 объект > эндообъект 14 0 объект > эндообъект 15 0 объект > эндообъект 16 0 объект > эндообъект 17 0 объект > транслировать HUnV>Y|}

    Транзисторы Дарлингтона | Nexperia

    Транзисторы Дарлингтона | Нексперия

    Логин

    Имя пользователя/электронная почта Пожалуйста, введите ваше имя пользователя/email

    Пароль Пожалуйста введите ваш пароль Имя пользователя/электронная почта и пароль не совпадают Ваш аккаунт нуждается в дополнительной проверке.
    Пожалуйста Проверьте свой адрес электронной почты продолжать. Что-то пошло не так. Пожалуйста, повторите попытку позже!

    Создать учетную запись Забыли пароль?

    Вы можете изменить настройки уведомления об изменении (CN) в My Nexperia. Эти настройки позволяют настроить представление CN в My Nexperia и электронных письмах CN.

    По умолчанию вы увидите все доступные вам уведомления об изменениях.

    Изменить настройки

    Удовлетворите ваши потребности в усилении и коммутации

    Вы можете выбирать из множества устройств PNP и NPN, все они обеспечивают очень высокий коэффициент усиления по постоянному току.

    • Параметрический поиск
    • Детали
    • Параметрический поиск
    • Продукты
    • Документация
    • Спецификации
    • Поддержка
    • Перекрестная ссылка

    Основные характеристики и преимущества

    • Очень высокий коэффициент усиления по постоянному току (h FE = 20000)
    • Высокий постоянный ток коллектора
    • V CEO from 30 V to 80 V

    Key applications

    • Low and high side switches
    • Audio amplifiers
    • Sensor amplifiers

    Parametric search

    Darlington transistors

    Please wait loading data. .

    Параметрический поиск недоступен.

    Как пользоваться параметрическим поиском?

    • Вы можете выбрать количество результатов на странице: 10, 25, 50, 100 или все результаты.
    • Вы можете использовать фильтры во второй строке, чтобы сузить выбор. Нажмите на одно или несколько значений в списках, которые вы хотите выбрать. Или используйте ползунки, перетаскивая манипуляторы или заполняя поля.
    • Общие характеристики — это параметры с одинаковыми значениями для всех номеров типов.
    • Дополнительную информацию о номере типа можно найти, наведя указатель мыши на номер типа и щелкнув одну из ссылок во всплывающем окне.
    • Вы можете сравнить два или более типовых номеров, установив флажки для типовых номеров и нажав Сравнить. Все остальные строки будут скрыты.
    • Чтобы скрыть строку с параметрами фильтрации, нажмите на серую полосу со стрелками под параметрами.
    • Чтобы добавить или удалить столбцы с параметрами, нажмите кнопку «Добавить/удалить параметры» в правом верхнем углу. Вы можете проверить столбцы, которые хотите видеть.
    • Вы можете изменить порядок столбцов, перетащив их в нужное место.
    • Вы можете загрузить результаты вашего (отфильтрованного) выбора в Excel, нажав кнопку «Загрузить Excel».

    Продукты

    Посетите наш центр документации для получения всей документации

    SOT89_mk пластиковый корпус для накладного монтажа; 3 отведения; шаг 1,5 мм; Корпус 4,5 мм x 2,5 мм x 1,5 мм Графика Marcom 28.01.2017
    Nexperia_Selection_guide_2022 Руководство по выбору Nexperia 2022 Руководство по выбору 05.01.2022

    Если у вас есть вопрос в службу поддержки, сообщите нам об этом. Если вам нужна поддержка дизайна, дайте нам знать и заполните форму ответа, и мы свяжемся с вами в ближайшее время.

    Или свяжитесь с нами для получения дополнительной поддержки.

    Выбрать подразделение категории

    Выбрать субботную категорию

    Фильтр по типу

    Datahasthets

    Примечания Примечания,
    Руководства и бумаги

    Пакет и упаковки

    Качество

    Brochures, Listlets &
    Guides

    Качество

    , листовые бельбы и

    .

    Модели

    Поддержка

    Поиск в документах

    Документация ({{ всего }})

    Спецификации ({{ всего }})

    Результаты поиска не найдены

    Выберите фильтры или используйте поле поиска выше, чтобы найти документы

    Тип Название Дата Скачать
    {{entry.type}} {{ запись.название }} {{ entry.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *