Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments
Как работает усилитель класса D, или Не такой как все / Stereo.ru

Содержание

История

В мире Hi-Fi класс D имеет самую тяжелую судьбу, и его развитие происходило не благодаря объективным преимуществам, а скорее вопреки сложившемуся мнению. Началось все с того, что классу D буквально сразу повесили обидный, по мнению некоторых аудиофилов, ярлык «цифровой усилитель». И хотя некоторые принципы его работы действительно напоминают работу цифровых схем, по своей сути это абсолютно аналоговое устройство.

Еще одно заблуждение сопровождающее класс D — возраст. Есть мнение, что класс D был разработан совсем недавно и является побочным продуктом современных цифровых технологий. На самом деле, класс D имеет богатую историю, и его первые реализации проектировались еще в эпоху радиоламп. Использовать схемотехнику такого типа для усиления звука (класс D в ламповом исполнении) предложил наш соотечественник Дмитрий Агеев, и произошло это в 1951 году. Примерно в это же время над практической реализацией подобного устройства работал английский ученый Алекс Ривз, а в 1955 году их коллега Роже Шарбонье из Франции, создавая аналогичную схему, впервые применил термин «класс D».

В самом начале, когда велись главным образом теоретические изыскания, судьба класса D казалась безоблачной. Его расчетные характеристики в буквальном смысле достигали предела совершенства. Однако, первая коммерческая реализация 1964 года выявила массу слабых мест, главное из которых — невозможность добиться по-настоящему достойного качества звучания на элементной базе того времени.

Производители не оставляли надежд, и в семидесятых годах попытки вывести усилители класса D на рынок предпринимали такие гиганты Hi-Fi-индустрии, как Infinity и Sony. Обе затеи провалились по той же самой причине, что и в первый раз. Подходящие по быстродействию и классу точности транзисторы стали производиться серийно лишь в восьмидесятых годах, после чего качественная реализация усилителей класса D и стала реальностью. В наше время усилители класса D можно встретить в совершенно различных устройствах: от смартфонов и бытовой аппаратуры до студийного оборудования и High End-систем.

Принцип работы

В основе принципа работы усилителей класса D и любых его модификаций, в том числе имеющих самостоятельные буквенные обозначения (классы T, J, Z, TD и другие), лежит принцип Широтно-Импульсной Модуляции или, сокращенно, ШИМ. Модуляция сигнала как метод существует довольно давно и используется как способ хранения и передачи информации. Суть ее заключается в том, чтобы модулировать полезным сигналом некую несущую частоту. Частота выбирается таким образом, чтобы ее было удобно передавать или записывать на носитель. Процесс воспроизведения подразумевает обратную последовательность: выделение полезного сигнала из модулированной несущей частоты. По такому принципу работает и цифровая техника, и радиосвязь, и теле-радиовещание. Тонкость состоит в том, что в случае с ШИМ преследуется совершенно иная цель. Модуляция позволяет привести сигнал в такой вид, чтобы его усиление было максимально простым и эффективным процессом.

В основе схемотехники класса D лежит генератор СВЧ-импульсов (исчисляемых сотнями МГц) несущей частоты и компаратор — устройство, модулирующие эти импульсы, соответственно форме входящего аналогового сигнала. Далее все просто. Модулированный сигнал имеет форму импульсов равной амплитуды, но разной продолжительности, которые усиливаются с помощью пары симметрично включенных быстродействующих транзисторов типа MOSFET. Далее в схеме используется простейший LC-фильтр, демодулирующий усиленный сигнал, а также отсекающий несущую частоту и сопутствующий высокочастотный шум.

Упоминание транзисторов, используемых для усиления порождает резонный вопрос: «а не проще было бы сразу усилить аналоговый сигнал без всяких модуляций?». И именно этот вопрос раскрывает суть усилителей класса D. В обычных усилителях классов A, B, G и прочих их производных транзистор работает с широкополосным сигналом, постоянно меняющимся и по амплитуде, и по частоте. Поведение даже самого лучшего транзистора на разных амплитудах и частотах не 100% одинаково, что неизбежно приводит к искажениям, которые мы знаем как окрашенность или «характер» усилителя. Модулированный сигнал в усилителях класса D меняется дискретно и на полную амплитуду. Таким образом, режим работы транзисторов существенно упрощается и становится куда более прогнозируемым. По сути, они выступают в роли ключа, находясь либо в закрытом, либо в открытом состоянии без промежуточных значений.

Все, что требуется в таком режиме от транзистора — максимально быстро реагировать на изменение уровня сигнала, а поведение его на промежуточных значениях амплитуды не имеет значения. Кроме того, данный режим работы транзистора крайне положительно сказывается на энергоэффективности усилителя, доводя его теоретический КПД до 100%.

Второй наиболее очевидный вопрос касается сходства модулированного аналогового и цифрового сигналов. Обычно это даже не вопрос, а утверждение: «Усилитель класса D — цифровой, а значит правильно подавать на его вход цифровой сигнал, а не аналоговый». Процесс модуляции аналогового сигнала на входе усилителя класса D, действительно, очень напоминает то, что происходит в АЦП при оцифровке звука, однако принцип модуляции принципиально отличается от того, что используется в формате PCM.

Именно по этой причине цифровые входы интегрированных усилителей, работающих в классе D, используют вполне традиционную схему ЦАПа, с аналогового выхода которой сигнал и поступает на вход платы усилителя мощности. Таким образом, аналоговый сигнал является основным и естественным входящим сигналом для усилителей класса D.

Впрочем, существуют и исключения, которые, если разобраться более детально, ничего не меняют в общей картине, а лишь дополняют типовую схемотехнику класса D. Небезызвестный Питер Лингдорф, еще будучи разработчиком в компании NAD, успешно реализовал схему прямого преобразования PCM-потока напрямую в формат ШИМ без традиционной процедуры цифроаналогового преобразования. Эта технология получила название Direct Digital, или говоря по-русски: прямое усиление цифрового сигнала.

Таким образом удалось сократить протяженность и понизить сложность звукового тракта, а единственное цифроаналоговое преобразование в подобной схеме производится непосредственно перед акустическими клеммами. Однако стоит заметить, что для работы такого усилителя с аналоговым сигналом он должен также иметь и классический входной каскад, использующийся в традиционных усилителях класса D.

На текущий момент технология прямого усиления «цифры» еще не стала массовым явлением, вероятно, потому что г-н Лингдорф грамотно оформил патентные права на технологию или просто предпочитает не раскрывать коллегам всех секретов. Но не так давно подобная схема была успешно реализована в портативной технике, что позволяет надеяться на более широкое распространение технологии в будущем. Не исключено, что спустя некоторое время класс D действительно станет цифровым усилителем.

Плюсы

Главный плюс усилителей класса D, ради которого и затевалась история с модуляцией сигнала — энергоэффективность. Причем и в теоретических выкладках, и в реальных цифрах это дает такой прирост КПД, с которым хоть как-то может сравниться разве что переход от класса А к классам В и АВ, а все достижения класса G и прочих на его фоне кажутся довольно слабой попыткой.

Работая в импульсном режиме, половину времени транзистор проводит в полностью закрытом состоянии, а значит имеет нулевой ток покоя и не потребляет энергии. При этом в момент включения транзистор работает на полную мощность, перенаправляя всю энергию, поступающую от блока питания, на выход усилителя.

В итоге, эти самые теоретические 100% КПД при практической реализации дают действительно превосходные значения порядка 90–95%. А поскольку лишь единицы процента энергии расходуются на нагрев транзисторов, радиаторы можно использовать исчезающе малого размера. Для получения на выходе 100–200 Вт на канал усилитель класса АВ должен иметь радиаторы, занимающие одну или обе боковых стенки корпуса, а усилитель класса D обойдется кусочком алюминия размером в один-два спичечных коробка.

Кстати, то же самое можно сказать о размере платы усилителя мощности: в классе D она получается в разы компактнее, даже если собирается не на микросхемах, а на дискретных элементах. Ну и в завершение всего, усилители класса D имеют меньшую себестоимость, нежели сопоставимые по мощности модели других классов. Впрочем, последнее касается скорее DIY-проектов — производители же предпочитают вкладывать сэкономленные деньги в повышение качества звучания и прочие усовершенствования, тем более что в классе D и вправду есть что улучшать.

Минусы

Обладая совершенно убийственными преимуществами, класс D не завоевал рынок Hi-Fi целиком и полностью лишь потому, что имеет свои слабые места, которые для многих ценителей качественного звука выглядят куда более значительными, нежели энергоэффективность. Наличие в схеме высокочастотного генератора само по себе является потенциальным источником электромагнитных помех, негативно влияющих на звучание самого усилителя и на работу соседствующих с ним компонентов звукового тракта.

Неподготовленный слушатель, возможно, не заметит данного эффекта или не придаст ему значения, но в индустрии Hi-Fi и High End, когда всякая мелочь имеет значение, такое соседство не приветствуется и вынуждает инженеров совершенствовать фильтрующие схемы и идти на прочие ухищрения, чтобы исключить влияние вредоносного СВЧ-генератора несущей частоты на воспроизводимый аудиосигнал.

Высокий КПД усилителей класса D стал причиной одной специфической особенности: высокой зависимости качества и характера звучания от блока питания. Если производитель решит использовать импульсный источник питания и не озаботится достаточным количеством фильтрующих схем, часть шумов обязательно проникнет в колонки и подпортит впечатление от звучания. Плохой блок питания, конечно, и классу АВ на пользу не пойдет, но именно в классе D эта проблема проявляется наиболее остро.

Особенности

Описание плюсов и минусов схемотехники класса D дают совершенно недвусмысленные намеки на то, чем в первую очередь должны заниматься разработчики, которые стремятся добиться от усилителей максимального качественного звука.

Проблему питания усилителей класса D разработчики решают двумя способами. Одни идут проверенным путем, используя классические линейные блоки питания с огромными тороидальными трансформаторами и прочими классическими решениями. Но есть и другой путь, которым идет меньшая часть разработчиков. При должном умении вполне можно создать малошумящий импульсный блок питания, пригодный для установки в усилителях высшего класса качества. И именно они способны дать фору самым мощным и солидным линейным блокам питания за счет лучшего КПД и быстродействия, а как следствие — лучшей динамики звучания и мгновенной реакции усилителя на большие перепады уровней сигнала.

Что же касается специфики работы самого усилителя класса D, его схемотехника обеспечивает существенно более высокий коэффициент демпфирования в сравнении с классом АВ и другими схемотехническими решениями. Это гарантирует не только стабильную работу со сложной нагрузкой, быстрый, четкий бас и большой динамический диапазон, но также обеспечивает меньший уровень искажений, отсутствие каши, вялой атаки или смазывания фронтов и самое главное — способность усилителя одинаково справляться с совершенно разноплановой музыкой.

Практика

Почетная обязанность отстаивать честь усилителей класса D в нашем исследовании выпала усилителю Marantz PM-KI RUBY. Этот аппарат имеет образцово-показательную компоновку, демонстрирующую, как нужно создавать современные усилители. Два модуля Hypex NCore 500, работающие в классе D, питаются от специального малошумящего импульсного блока питания. При этом в конструкции усилителя присутствует классический предварительный каскад, выстроенный на дискретных элементах, согласно фирменной технологии HDAM от Marantz, которая использовалась и в традиционных усилителях класса АВ.

Предварительный каскад питается от линейного блока питания, тороидальный трансформатор которого, судя по размерам, имеет многократный запас мощности, чтобы никоим образом не повлиять на динамику и чистоту звучания. Другими словами, в одном корпусе сочетаются два подхода: классический для предварительного усилителя и современный для усилителя мощности.

Все это обильно приправлено типичным для High End-моделей вниманием к мелочам вроде омедненного шасси, улучшенной виброразвязки, сокращения путей сигнала, симметричной топологии плат, строгого отбора деталей по параметрам и т.п.

В результате, мы имеем едва ли не самый совершенный с технической точки зрения аппарат с коэффициентом демпфирования 500, искажениями менее 0,005% и энергопотреблением 130 Вт при выходной мощности до 200 Вт на канал при 4 Ом нагрузки. Впрочем, всякую претензию на совершенство в мире звука надлежит проверить практикой.

Звук

Усилитель выдает очень свободное красивое звучание с превосходной детализацией, богатыми тембрами и длинными естественными послезвучиями живых инструментов. Сцена выстраивается максимально точно и масштабно, с достоверной передачей пропорций и местоположения виртуальных источников звука в пространстве. Все вполне соответствует представлениям о том, как должен играть хороший усилитель категории High End. Никакой синтетики, жесткости или «дискретности», которую в звучании класса D обнаруживают некоторые адепты старой школы, не наблюдается. Напротив, Marantz PM-KI RUBY успешно сочетает лучшие объективные характеристики с фирменной утонченной и легкой подачей музыкального материала.

Это типично «марантцовское» звучание проявляется, в первую очередь, в излишней интеллигентности при воспроизведении металла и тяжелого рока. В то же время классика любых составов, джаз и вокал звучат очень живо и натурально. Весьма похожий, возможно, даже чуть более красивый и приторный характер звучания проявляли усилители Marantz прошлых лет, работающие в классе АВ, что позволяет сделать вывод о нейтральном характере звучания усилителей мощности класса D.

Подключение к усилителю Marantz PM-KI RUBY акустики разной мощности, с разной чувствительностью и разным импедансом дало вполне ожидаемый результат: отсутствие какой либо выраженной реакции на изменение этих параметров. С любой стереопарой усилитель справлялся одинаково уверенно.

Даже на самой сложной нагрузке и на высокой громкости на удивление стабильно воспроизводились нижние ноты контрабаса — они звучали абсолютно четко, без гула, с натуральной передачей ощущения вибрирующей струны и откликающейся на эту вибрацию деки инструмента. Одним словом, все происходило ровно так, как и должно происходить с усилителем, имеющим заявленное сочетание мощности и коэффициента демпфирования.

Выводы

Все основные преимущества класса D вполне подтверждаются практикой. Но если с точки зрения энергопотребления и других измеряемых характеристик ситуация абсолютно очевидная и бесспорная, звучание по-прежнему остается вопросом дискуссионным. Класс D в чистом виде дает максимально качественный и, как следствие, — нейтральный, не окрашенный звук. Такое придется по вкусу далеко не всем и с наименьшей степенью вероятности порадует тех, чьи предпочтения формировались через прослушивание ламповой и прочей ретро-техники. С этой точки зрения разработчики Marantz продемонстрировали житейскую мудрость, придав своему усилителю фирменный характер звучания путем установки оригинальных модулей предварительного усиления. Одновременно с этим существуют другие производители, в том числе адепты максимально точного и нейтрального звучания, которые используют потенциал класса D, согласно своим представлениям о прекрасном.

В целом же, вывод такой: если производитель не экономил на ключевых элементах схемы, в результате мы получаем усилитель максимально близкий к совершенству. Остальное — дело вкуса.

Продолжение следует…

Другие материалы цикла:

Как работает усилитель класса «А», или Истинный High End и много тепла

Как работает усилитель класса «АВ», или Практичность правит миром

Как работает усилитель класса «G» и «H», или На ступень выше

Как работает усилитель класса XD и XA, или Немного экзотики

Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.

Полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:

• Слушаем музыку с компьютера правильно. Три основных способа

• Что за музыка была «зашита» в популярных ОС

• Что такое Roon? [видео]

УСИЛИТЕЛЬ МОЩНОСТИ КЛАССА D

Мощный усилитель класса “D”, так называемый импульсный УМЗЧ, вполне по силам построить самостоятельно. Эффективность его действительно впечатляет – радиатор едва прогревается! Но так как опыта соборки таких УНЧ у радиолюбителей немного, вначале кратко объясним, как они работают.

Что такое усилитель класса D?

Ответ может звучать просто: это усилитель работающий в ключевом режиме. Но для того, чтобы полностью понять как они работают, рассмотрим традиционные усилители класса AB, что работают как линейные устройства. В импульсных переключающих усилителях, силовые транзисторы (Мосфеты) действуют как переключатели, быстро изменяя свое состояние с off на on. Это обеспечивает очень высокую эффективность, до 95%. Из-за этого усилитель не вырабатывает много тепла и соответственно не требует большой теплоотвод, в отличии от линейных усилителей класса АВ. Для сравнения, даже усилитель класса B может достигнуть максимальной эффективности в 78% (и то в теории). Ниже смотрите блок-схему УМЗЧ класса D, или усилителя с ШИМ.

блок-схема УМЗЧ класса D

Входной сигнал преобразуется в широтно-импульсный, прямоугольный сигнал с помощью компаратора. Это означает, что входные данные, закодированы в скважности прямоугольных импульсов. Прямоугольный сигнал усиливается, а затем проходят через низкочастотный фильтр для получения похожего на исходный аналоговый сигнал.

Существуют и другие методы для преобразования сигнала в импульсы, такие как Дельта-Сигма модуляция, но для этого проекта будем использовать более простую ШИМ.

На осциллограмме ниже можно посмотреть, как преобразовывается синусоидальный входной сигнал в прямоугольный, сравнивая его с треугольным.

АЧХ УМЗЧ класса D

При положительном пике синусоиды, скважность прямоугольного импульса составляет 100%, а на отрицательном пике она составляет 0%. Фактическая частота сигнала треугольника гораздо выше, порядка сотен килогерц, так что мы позже можем выделить исходный сигнала. Фильтр не идеален, поэтому треугольный сигнал нужен с частотой как минимум в 10 раз выше, чем максимальная звуковая в 20 кГц.

Схема УНЧ Д-класса

Схема УНЧ Д-класса

Теперь, когда мы знаем, как работает усилитель звука класса D, давайте попробуем его собрать своими руками. Вот схема принципиальная такого усилителя с ШИМ.

Транзисторы предлагаем использовать IRF540N или IRFB41N15D. Эти полевые транзисторы имеют низкий заряд затвора для быстрого переключения и низкое значение RDS(on) (сопротивление перехода) для снижения энергопотребления. Вы также должны убедиться, что транзистор имеет достаточно высокое значение Vdc (напряжение сток-исток). Можно использовать и IRF640N, но RDS существенно выше, что приведёт к меньшей эффективности.

Схема УНЧ Д-класса

Выше приведена таблица со сравнением основных параметров этих трех транзисторов:

УСИЛИТЕЛЬ МОЩНОСТИ КЛАССА D САМОДЕЛЬНЫЙ

Для монтажа платы можно использовать SMD компоненты, попробовать применить микросхему IR2011S вместо IR2110. Возможно УНЧ и не заработает с первой попытки, но когда вы услышите четкий и мощный звук, исходящий из колонок – поймёте что схема того стоит.

   Форум

   Обсудить статью УСИЛИТЕЛЬ МОЩНОСТИ КЛАССА D


Схема усилителя класса D 4500Вт на драйвере IR2110

Схема усилителя класса D 4500Вт

Схема усилителя класса D-1

Схема усилителя класса D-1

Схема усилителя класса D — в этой статье хочу поделится с вами схемой усилителя D класса сверх высокой мощности, он способен отдать в нагрузку 4Ом 3000Вт а на нагрузку 2Ом 4500Вт. Такой усилитель можно использовать как на соревнованиях по автозвуку так и на разных эстрадных мероприятиях на открытом воздухе.

Схема усилителя:

Схема усилителя класса D-2Схема усилителя класса D-2

Усилитель построен с использованием всем известного драйвера IR2110 выход которого усилен транзисторами BD139/BD140. На выходе используется 3 пары выходных транзисторов типа IRFP260 что дает возможность усилителю, работать на мало омные нагрузки.

Такой мощности усилитель обязательно нуждается в хорошей защите от перегрузок и коротких замыканий на выходе. В этой схеме защита построена с использованием таймера NE555 и быстрого компаратора LM311 что обеспечивает быстрое срабатывание защиты не приводя к выходу из строя выходных транзисторов и драйвера.

Печатная плата усилителя:

Схема усилителя класса D-3Схема усилителя класса D-3

Настройка усилителя сводится к установки срабатывания защиты переменным резистором RV1. Напряжение питания усилителя двухполярное от 32В до 100В. В выходном каскаде усилителя можно использовать транзисторы типа: IRFP260, IRFP4227, IRFP4242 и другие подобные, транзисторы следует обязательно закрепить на радиатор.

Список деталей:

Резисторы
R1, R3, R4, R9, R13, R18, R19, R20= 1K
R2, R16, R39= 100K
R5, R6= 10R
R7, R8=6K8/2W
R10, R21, R26, R27=4K7
R11, R17=6K8
R12=100R
R14, R15=4R7
R22, R23, R24, R25, R31, R33=47R
R28, R29, R30=0,1R/2W
R36, R38=22R/2W
R40=1K5/5W
R41=10R/2W
RV1=10K

Конденсаторы
C1=10uF/16V
C2=10N
C3, C4=1N
C5=470uF/16V
C6=220uF/16V
C7, C9, C11, C12, C13, C15, C16, C18, C19=100N MKP
C8=470uF/16V
C10, C14, C17=100uF/16V
C20=10uF/50V
C21, C22, C23=220N/475V
C24, C25, C26=470uF/180V
C27, C31, C33=100N/275V
C28, C29, C30=470uF/180V
C32=470N/250V

Диоды
D1, D2, D5, D10, D11= 1N4148
D3, D4= ZD5V6
D6, D18, D19= MUR460
D7= LED (RED) OCP
D8= ZD5V6
D9= LED (BLUE)

D12,D13,D14,D15,D16,D17= 1N5819

Транзисторы
Q1= 2N5401
Q4, Q6= BD139
Q5, Q7= BD140
Q8, Q9, Q10, Q11, Q12, Q13= IRFP260

Микросхемы
U1= TL071
Q2= CD4049
Q3= IR2110
U2= NE555
U3= LM311

Фото собранного усилителя:

Схема усилителя класса D-4Схема усилителя класса D-4

Скачать: Печатная плата, схема усилителя

 Изготовление печатной платы усилителя:

Тест усилителя:

Источник: soundbass

Чем отличаются усилители D-класса от усилителей АВ-класса

Чем отличаются усилители D-класса от усилителей АВ-класса?

 

Все наверняка слышали о том, что усилители могут работать в классах А, АВ или, скажем, в классе D. Но, как показывает практика, далеко не все знают о том, что кроется под этими обозначениями. Сейчас мы вам расскажем, что это такое, и постараемся сделать выводы – какой усилитель и в каких случаях подойдёт вашей аудиосистеме лучше всего.

 

Как работают усилители?

 

Для начала нужно понимать, как вообще работает любой усилитель. Возможно, вы удивитесь, но на самом деле он… ничего не усиливает. Принцип его работы больше похож на работу обычного водопроводного крана – вы крутите ручку, и вода льётся то сильнее, то слабее, то не льётся совсем.

 

В усилителях всё происходит точно так же – ток от мощного блока питания пропускается через подключенный к усилителю динамик. Роль “крана” выполняют выходные транзисторы, а управляет их открытием и закрытием сигнал, который поступает на усилитель с головного устройства. И вот то, каким образом работает этот “кран” (выходные транзисторы), как раз и определяет класс усилителя.

 

Как работают усилители АВ-класса?

 

Очевидно, что хороший усилитель должен работать без искажений. Иными словами, выходной сигнал своей формой должен в точности повторять входной. Но ничего идеального, к сожалению, не бывает, в том числе и электронных компонентов.

 

Например, транзисторы имеют свойство – они открываются и закрываются не совсем пропорционально входному сигналу. Иными словами, их работа нелинейна. Это как если вы будете поворачивать ручку крана, вода сначала будет течь слабо, а потом в какой-то момент напор вдруг резко усилится.

 

По причине такой нелинейности транзисторы в усилителях АВ-класса обычно приходится держать приоткрытыми даже когда сигнала нет. Это нужно, чтобы при появлении даже малейшего сигнала они вступали в работу сразу же, а не ждали, когда сигнал достигнет какого-то уровня. Так усилитель будет работать с минимальными искажениями, и это, казалось бы, решает проблему.

 

На деле же это означает, что какая-то часть полезной энергии будет тратиться усилителем впустую. Просто представьте, что вы приоткроете все краны у себя в доме, и через каждый них постоянно будет течь струйка воды.

 

Но и полностью открытыми транзисторы тоже никогда не бывают. Если это происходит, то это означает, что выходной сигнал достиг своего максимума, и дальше усилитель начнёт его просто ограничивать (клиппировать).

 

В итоге получается, что потери полезной энергии в усилителях АВ-класса будут всегда, а КПД – далёк от идеальных 100%. На практике их эффективность обычно лежит в пределах от 40% до 70%. Невысокий КПД – это и есть главный недостаток усилителей АВ-класса.

 

Как работают усилители D-класса

 

Основной принцип работы D-класса абсолютно тот же, что и у АВ-класса – у таких усилителей тоже есть выходные транзисторы, которые умеют открываться или закрываться, регулируя ток через подключенные к ним динамики. Только управляет их открытием сигнал, который своей формой очень далёк от входного.

 

Сигнал, который пришёл на усилитель от головного устройства, непрерывен, но его амплитуда постоянно меняется. На входе усилителя D-класса он преобразуется в импульсный – амплитуда постоянная, но зато сигнал прерывается. Длительности импульсов и пауз между ними меняются пропорционально входному сигналу. Например, выше амплитуда входного сигнала – импульсы длиннее, ниже амплитуда – импульсы короче.

Именно такой сигнал и подаётся на выходные транзисторы. И очевидно, что в этом случае они будут работать совершенно по-другому – либо полностью открываться, либо полностью закрываться, без промежуточных вариантов. Это означает, что потери на ненужный нагрев будут минимальными, а значит, КПД усилителя D-класса может вплотную приближаться к идеалу в 100%.

Разумеется, подавать такой прерывающийся сигнал сразу же на акустические системы ещё рано, перед этим его нужно “вернуть” в обычную форму. Это делается с помощью специальных элементов – выходного дросселя (катушки индуктивности) и конденсатора. После них на выходе и получается усиленный сигнал, своей формой повторяющий входной. Вот он и идёт на динамики.

 

Главное достоинство усилителей D-класса – высокий КПД, а значит, и более экономное расходование энергии блока питания. При прочих равных усилители D-класса мощнее и компактнее, чем традиционные усилители.

 

Какой усилитель лучше – D-класса или АВ-класса?

 

Долгое время считалось, что для подключения акустических систем нужно выбирать усилители АВ-класса, потому что им не нужны большие мощности, и у них меньше искажений. Это было связано с тем, что в усилителях D-класса входной сигнал обычно преобразовывался в импульсный с невысокой частотой, и в итоге они хорошо работали лишь в сабвуферном диапазоне.

 

Сегодня технологии шагнули далеко вперёд, появились мощные быстродействующие транзисторы, которые умеют переключаться (открываться и закрываться) практически мгновенно. На рынке появилось немало широкополосных усилителей D-класса. Широкополосные – это такие усилители D-класса, которые рассчитаны на использование не только с сабвуферами, но и с акустическими системами. Для тех случаев, когда большая мощность не нужна, такие усилители можно сделать чрезвычайно компактными.

 

Как выбрать усилитель?

 

Если позволяет место, для подключения акустических систем вы можете смело выбрать усилитель АВ-класса. Схемотехника таких усилителей за долгие годы хорошо отработана, они имеют высокое качество звучания и, в случае неисправности, их можно легко отремонтировать в ближайшей мастерской.

 

Когда место для инсталляции усилителя сильно ограничено, обратите внимание на широкополосные модели D-класса. При той же мощности, что и у моделей АВ-класса они намного компактнее, в большинстве своём меньше греются, и их можно установить даже скрытно, с минимальными вмешательствами в штатные элементы автомобиля.

 

Для подключения сабвуферов больше преимуществ имеют усилители D-класса. Бас – это самый “энергозатратный” частотный диапазон, а потому КПД усилителя может иметь решающее значение. А этом у D-класса конкурентов нет.

Усилитель класса D | Микросхема

Как ни странно, но усилители D класса были разработаны ещё в 1958 году. Хотя, если упоминание про нанотехнологии относить к 1959 году, то нисколько не странно (прим. AndReas). И вообще середина прошлого столетия была богата научными разработками, которыми мы лишь сейчас начинаем использовать, а нового, на мой взгляд, практически ничего не предлагается. В полной мере сказанное относится и к усилителям класса D, которые завоевали особую популярность именно в начале 21 века.

Преимущества усилителей D класса

Вообще каждому классу усилителей звуковой частоты присущи свои достоинства и недостатки (подробнее о классах усилителей), определяющие диапазоны их применения. Для D класса неоспоримыми плюсами являются низкая мощность рассеяния и тепловыделение, малые размеры (на фото размер готового устройства на 400 ватт сопоставим с размером батарейки) и стоимость, продолжительное время работы в автономных устройствах (при автономном питании линейный выходной каскад опустошит батарею гораздо быстрее, чем усилитель класса D).

Ключи выходного каскада такого усилителя коммутируют выход с отрицательной и положительной шиной питания, создавая тем самым серии положительных и отрицательных импульсов. Теоретический КПД усилителей класса D равен 100%. То есть, все питание подается на нагрузку. Но, конечно же, на практике MOSFET (МОП-транзисторы) не являются идеальными переключателями и обладают сопротивлением. Соответственно, на них тратится часть энергии. Но все же КПД усилителей звуковой частоты D класса выше 90%. По сравнению с коэффициентом полезного действия максимум 78% для УНЧ B класса, являющимся самым производительным из линейных, показатель >90% это весомый аргумент экономичности класса D.

Цифровой или все-таки импульсный?!

Часто подобные усилители называют цифровыми. Этот термин прочно за ними закрепился, однако название цифровой усилитель некорректно. Работа УНЧ класса D основана на широтно-импульсной модуляции (PWM). Следовательно правильнее их называть импульсными усилителями. Почему же их называют цифровыми? Все очень просто. Принцип работы усилителя схож с принципом работы цифровой логики. Как вы знаете, в цифровой технике и электронике применяется двоичная система счисления. А иначе можно сказать «есть» и «нет» или «истина» и «ложь» или «1» и «0» или 5 вольт и 0 вольт. Примерно также работает и усилитель класса D, что связано с применением в выходном каскаде МОП-транзисторов. В последние годы все более упоминаемым является класс T. В коммерческих целях он выделен в отдельную линейку усилителей. Но, по сути, он является дальнейшей реализацией класса D.

Кратко о принципе работы усилителя

Существует полумостовая топология включения и мостовая. Ниже на рисунках приведена их реализация на практике.

Как можно увидеть по полумостовой схеме включения, в каждый момент времени должен быть открыт только один транзистор. Если откроются оба, то произойдет короткое замыкание, сила тока резко увеличится, что приведет к выходу из строя выходные МОП-транзисторы. В момент открытия один из транзисторов усиливает положительную составляющую напряжения, другой – отрицательную относительно нулевого проводника. Но существует период времени, названный «мертвым», когда оба ключа закрыты. Так вот это время должно быть в пределах 5…100 нс. В конечном счете, оно влияет на все характеристики готового усилителя: и качественные, и мощностные.

Если вы хотите получить качественный звук, то «мертвое время» должно быть наименьшим. Но при этом увеличивается вероятность короткого замыкания (как говорилось выше). Поскольку МОП-транзисторы могут не успеть переключиться. Поэтому при выборе радиодеталей для усилителей класса D нужно выбирать высокоскоростные компоненты.

Ключевые рекомендации

При выборе мощных полевых транзисторов нужно отдавать предпочтение МОПам с низким сопротивлением канала и низким уровнем заряда затвора. Наиболее удачным решением для этого служат транзисторы серии IRFI4024x-117P в изолированных 5-выводных корпусах TO-220 FullPak компании International Rectifier.

Во многом идеальная форма тока нагрузки зависит от ШИМ-компаратора. Вот лишь некоторые ШИМ-контроллеры:

Одной из последних разработок компараторов такого класса стал ШИМ-контроллер IRS20955S. Применение IRS20955S исключает из схемы до 27 внешних компонентов. Встроенный генератор «мертвого времени» устанавливает точное значение данного параметра для обеспечения максимального уровня качественных параметров усилителя D класса, а именно, низкий коэффициент гармонических искажений и шум, а также высокая устойчивость к помехам. Задержка на переключение МОП-транзисторов может устанавливаться в 15, 25, 35, 45 нс. IRS20955S работает на частотах до 800 кГц и может применяться не только в полумостовых схемах с двухполярным питанием, но и в мостовых схемах с однополярным. Совместно с транзисторами серии IRFI4024x-117P можно вдвое уменьшить общий размер печатной платы для усилителя мощности до 500 ватт.

При проектировании печатной платы для усилителей мощности класса D нужно обязательно придерживаться схемотехнических способов конструирования высокочастотных устройств. Располагать дорожки на печатной плате нужно только в одном направлении, а не в хаотичном порядке. Это поможет избежать появления ВЧ составляющей. Минусовые дорожки нуждаются в устранении наводок с силовых линий путем установки керамических конденсаторов емкостью 1 нФ и 10 нФ.

Практическая часть: схема усилителя класса D

В заключение теоретической части нашего обзора хотелось бы отметить, что все классы усилителей имеют достоинства и недостатки. Где-то оправдано применение одних и совершенно нерационально применение других. Некоторые радиолюбители при конструировании усилителей мощности звуковой частоты отдают предпочтение одному-двум классам и совершенно не приемлют остальные. Другие же, являясь универсалами, пробуют свои силы в большинстве классов усилителей, выбирая лучшие конструкции. Мы же советуем обратить внимание на D-класс. Их сборка не так и сложна, как может показаться.

Если вас, уважаемые радиолюбители, заинтересовала затронутая тема, можете высказываться, делиться идеями, и мы в дальнейшем ещё не раз вернемся к рассмотрению подобных самых популярных схем усилителей. Из ранее опубликованного можем посоветовать усилители D класса на 300, 900 и 1200 Вт от Алексея Королькова. А сейчас хотим представить простую полумостовую схему усилителя D класса с выходной мощностью 120 ватт.

КПД усилителя составляет 96% при нагрузке на динамик импедансом 4 Ом. В качестве ШИМ-контроллера применяется IRS20955S. На выходе стоят мощные МОП-транзисторы IRFI4212-117P, разработанные специально для D класса. Точнее, это сборка из двух MOSFET, соединенных по полумостовой схеме. КНИ при полной мощности составляет 1%; при 60 Вт – 0,05%. Диапазон воспроизводимых частот от 20 Гц до 35 кГц. Питается усилитель от двуполярного источника напряжением +/-40 вольт. Все номиналы радиодеталей указаны на схеме.

Обсуждайте в социальных сетях и микроблогах

Метки: УНЧ

Радиолюбителей интересуют электрические схемы:

УНЧ 900 Вт – Класс D
Ламповый усилитель

РадиоКот :: Мощный усилитель класса D.

РадиоКот >Схемы >Аудио >Усилители >

Мощный усилитель класса D.

Всем привет. Сейчас у нас пойдет речь об усилителе мощности, работающем в классе D. Теорию по этому вопросу мы уже обсуждали, пора перейти к практике. Усилитель довольно мощный – 240 Вт (правда, при коэфф. гармоник 10%). Но, обо всем по порядку. Итак, усилитель выполнен на микросхеме фирмы Philips – TDA8924. Микросхема сравнительно новая, поэтому, сравнительно недешевая. Ну недешевая – это, конечно, смотря с чем сравнивать. (во накаламбурил то)
Основные характеристики следующие:

Напряжение питания, В+/-12…+/-30
Потребляемый ток отсутствие сигнала, мА100
Выходная мощность(максимальная), Вт:
в режиме стерео120
в режиме моно240
КПД, %90

Микросхема так же имеет защиту от КЗ на выходе, термическую защиту и защиту акустики от “бум-бац” при включении и выключении. В общем, спалить её довольно тяжело. Ну, разумеется, товарищ производитель основательно лукавит, когда выставляет такие значения выходной мощности. Все дело в том, что они даны с учетом коэффициента гармонических искажений – 10%, что есть полный бедлам. Но, тем не менее, усилитель стоит того, чтобы на него посмотрели поближе, более того – даже спаяли. А о реальных значениях мощности поговорим чуть ниже, после того, как посмотрим на схему.


Схема предусматривает два варианта включения усилителя – как стерео, так и моно по мостовой схеме. Особенно удобно, на мой взгляд, использовать этот усилитель для сабвуфера – дури у него – мало никому не покажется. Кстати о дури. Согласитесь, 10% – многовато. Однако с уменьшением коэффициента гармоник падает и выходная мощность, но к счастью для нас не катастрофически. При вполне приемлемых 0,5%, усилитель отдает на нагрузку 4 Ома 70 ватт в стерео режиме и 200 ватт в моно режиме. Кстати, в стерео режиме его можно подключать и к 2-омной нагрузке, тогда он будет отдавать 95 ватт при тех же 0,5% искажений. Переход из стерео режима в моно осуществляется следующим образом: переподключаем акустику, замыкаем джамперы JP3 и JP4 и убираем компоненты R3, R4, C3, C4 и C6. Питание к усилителю подключается по следующее схеме:


Все это можно монтировать на одной плате, размеры получаются относительно небольшими, тем более что радиатор для микросхемы нужен чисто символический. О килограмме алюминия, висящем на фланце микросхемы, как это бывает с обычными усилителями можно забыть. Все индуктивности, которые используются в этой схеме можно купить в готовом виде. L1-L4 – это дроссели, рассчитанные на ток 4-5А. L1 и L2 усилителя – индуктивности 10мкГн, рассчитанные на ток 6-7А.
Теперь список компонентов – довольно объемный, но однотипный:

Обозначение на схеме

Номинал

C1, C2, С3, С4

470нФ

C5, С6

330

С7, С11, С17, С20, С8, С12, С18, С22

100

C23, С24, С32, С31

15нФ

C25, С26

560

C28, С27

1мкФ

C30, С29, С9, С19, С15, С13, С10, С21, С14

220нФ

C16

47

 

 

D1

КС156А

 

 

L1, L2

10 мкГн

 

 

R1, R2, R3, R4

5,6кОм

R9, R8

4,7

R10, R11

22

R6, R7

39кОм

R5

30кОм

 

 

DA1

TDA8924

 

 

Источник питания

С1, С2

100нФ

С3, С4

470мкФх35В

С7, С5, С6

47мкФх63В

L1, L2, L3, L4

MURATA BL01RN1A2A2B


Ну вроде бы и все.
Чего забыл – спрашивайте в Форуме.
Удачи.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

«холод» ламп без трансформатора, DIY-компиляции, десятилетия мучений с классом «Д» / Блог компании Pult.ru / ХабрКак я и обещал, мы продолжим цикл о легендарных усилителях прошлого и настоящего. На этот раз мы опишем непростую судьбу УМЗЧ класса D, оригинальные разработки в области ламповой схемотехники, не обойдём стороной и DIY-наборы для тех чьи руки выросли из туловища.
При создании материала я постарался отжать всё информационно ценное из шедевров аудиофильской журналистики, сухих технических описаний и публикаций таких товарищей, как Нил Гадер, Гарри Пирсон, Роберт Грин. Как и в предыдущем материале, я старался отыскать основные характеристики и принципиальные схемы этих устройств, а также цены (на момент производства), о которых нередко умалчивают современные авторы.

Futterman h4 OTL – нужно просто выбросить выходной трансформатор


Начнём по традиции с самой «тёплой» в ламповом отношении эпохи, с 50-х в США, где в губернском городе Нью-Йорке, изобретатель Юлиус Футтерман (Julius Futterman) разработал один из наиболее оригинальных ламповых усилителей своего времени. В 1954-м на свет появился ламповый УМЗЧ Futterman h4 OTL, особенностью которого стало отсутствие выходного трансформатора.
В оригинальной схемотехнике усилителя Футтермана катодный резистор фазоинвертора соединялся не с землей, а с выходом усилителя. 100%-ная ООС катодного повторителя Futterman h4 OTL компенсировалась 100%-ной ПОС через катодный резистор фазоинвертора. Интересно, что уникальную для того времени (и высоко оцененную потомками) схему разработал не профессиональный инженер, а радиолюбитель-самоучка.
Причиной необходимости в оригинальном решении было то, что около 30-35 % себестоимости ламповых усилителей тех лет приходилась на выходной трансформатор. Что было крайне существенным фактором, учитывая, что первые усилители производились вручную.
Благодаря конструкторскому решению цена усилителя стала немногим выше стоимости наборов для самостоятельной сборки и составила около $ 180 – 200, что сегодня с учетом инфляции является эквивалентом $ 1600 — 1800. Помимо существенного удешевления продукта инновация избавила УМЗЧ от (так любимой некоторыми аудиофилами и гитаристами) характерной «тёплой» окраски звука.
Следует отметить, что сравнительно небольшая стоимость усилителя соседствовала с почти уникальными для того времени характеристиками.

Судите сами:

  • Диапазон воспроизводимых частот: 7 Гц (!) до 55 кГц
  • RMS: 90 Вт
  • IMD: 0,1 % (1 Вт, 1 Ом)
  • Коэффициент гармоник: 0,1%
  • Выходное сопротивление: 0,6 Ом

Интересно, что идеальной акустической системой для работы с этим усилителем считались электростатические колонки Quad ESL 57, созданные в 1957 году.

Футтерман запатентовал устройство, а лицензии продал нескольким американским компаниям в 1961-м году. Лицензионные усилители по схеме Футермана производились до начала 70-х годов и стоили значительно дороже оригинала. На протяжении 60-х и 70-х изобретатель совершенствовал схемотехнику ламповых усилителей.

В 1984 году, уже после смерти Футермана, компанией New York Audio Labs был выпущен, разработанный при его участии, один из самых дорогих усилителей своего времени (для электростатических акустических систем), стоявший $12 000 (около $26 000 сегодня с учетом инфляции). Среди сравнительно свежих разработок, использующих наследие Футтермана, можно выделить оригинальное устройство итальянца Андреа Циуффоли (схема приведена ниже).


Heathkit amps — DIY для меломана и музыканта


Heathkit — одни из передовиков ламповых конструкторов для любителей канифольной дымки. Компания, основанная в 40-е, приобрела популярность в 60-е, на волне интереса к самостоятельной сборке устройств. Фактически все продукты компании стали культовыми в среде людей увлеченных DIY. В отличие от Dynaco, Heathkit создавали многоцелевые конструкторы, с различными наборами шасси и радиодеталей.
Комплекты и модели менялись достаточно часто, что также существенно рознит эти устройства с «макинтошем для бедных». Пик популярности наборов Heathkit приходится на середину 60-х, когда приобретение качественного усилителя предполагало затраты сравнимые со стоимостью среднего автомобиля.
Все деревянные детали (набор ручек, шасси и т.п.) входили в базовую комплектацию. Гитарные варианты heathkit иногда предполагали включение дополнительных бонусов: излучателей и деталей корпуса для создания комбо. Интересно, что для создания гитарных наборов компания активно применяла транзисторные схемы. Такой подход был не слишком популярен в 60-х (теплый ламповый тренд в гитарном усилении был силён), но позволял приобрести дешевое гитарное оборудование небогатым начинающим музыкантам.
В зависимости от назначения устройства, пользователь волен был выбрать тот или иной комплект. Например, были наборы для гитарного усиления, воспроизведения музыки, в том или ином наборе разнилась мощность УМЗЧ. Характеристики устройства приводить смысла не имеет, так как они разнятся в зависимости от конкретной модели, при этом подавляющее большинство авторов сходятся на том, что эти усилители вполне соответствовали HI-fi классу, а гитарные комбо Heathkit составляли конкуренцию аналогичным моделям Fender и VOX того периода.

Класс D: КПД vs искажения


Легендарными в среде инженеров считаются усилители класса D, попытки создать которые начались ещё в 50-х. Сама идея УМЗЧ с импульсным управлением, выходными лампами приписывается 2-м авторам, нашему соотечественнику Дмитрию Васильевичу Агееву (1951 год) и Алеку Ривзу из Соединенного Королевства (1951 год). Однако, говорить о том, что инновационные концепции смелых инженеров мгновенно стали широко востребованными на рынке не приходится.
Д.В. Агеев

Внезапно начавшаяся эра транзисторов для попыток создания годного УМЗЧ class D не привела к ожидаемым результатам. «Принцип неисчерпаемых возможностей КПД», заложенный советским инженером Агеевым и его британским коллегой, долгое время оказывался неприступным даже для специалистов таких компаний как SONY, PHILIPS, Marantz, Matsusita Electric. Вплоть до 80-х ничего прилично звучащего и коммерчески успешного в классе D создать не удавалось. Ситуация поменялась к середине 80-х, когда на рынке радиодеталей появились МДП-транзисторы.

Известно, что в режиме D импульс приобретает почти прямоугольную форму, так как транзистор либо заперт, либо открыт. А сопротивление открытого канала современных силовых МПД-транзисторов совсем небольшое (от единиц до десятков миллиОм). Благодаря этому, построенный на основании этих элементов усилитель класса D способен работать практически без потерь мощности. КПД таких усилителей класса D составляет около 90 — 95 %.


Не смотря на ограниченную популярность, усилители D-класса того времени тоже нельзя назвать сверхмассовым продуктом. Для потребителя концепция класса D успела утратить привлекательность к концу 80-х, главным образом в связи с неудачами их несовершенных предшественников.

Как повествует Википедия, основными проблемами усилителей класса D были и, в какой-то степени, остаются:

…но не позволяет добиться высокого качества воспроизведения звука, даже если охватить её обратной связью. Нелинейные искажения класса D имеют несколько причин: нелинейность генератора сигнала треугольной формы, нелинейность катушек индуктивности выходного фильтра, нелинейность из-за мёртвого времени между включениями верхнего и нижнего плеча усилителя…

Пожалуй, самым заметным представителем класса D стал один из первых цифровых усилителей, дотягивающих до показателей HI-FI — Tripath TA2020, серийное производство которого было запущено в 1999 году. Дело в том, что, в связи с неизбежной необходимостью в устранении искажений, принцип аналоговой модуляции оказался малопривлекательным.
В ранних проектах усилителей класса D низкочастотные помехи свободно проходили с питающих шин на выход, что вынуждало использовать нелинейную модуляцию и дельта-сигма модуляцию для их устранения. Последнее приводило к неизбежному росту частоты переключения и снижению КПД. Логичным выходом стало применение цифровых схем, уменьшавших частоту переключения.

Некоторые инженеры ставят под сомнение заявленные характеристики Tripath TA2020 и их соответствие стандартам HI-FI. Предлагаю читателям самим оценить показатели качества на примере 20-ти ваттного усилителя для авто, созданного на базе TA2020:
  • RMS: 2 х 20 Вт 4ohm, 2×12 Вт 8ohm
  • Соотношение сигнал-шум (SNR): 98дб
  • Динамический диапазон: 98дб
  • IMD: 0.1% 1 Вт, 4ohm
  • THD: 0.03% 9 Вт, 4ohm, 0.1% — 10 Вт ом, 0.1% — 6 Вт 8ohm, 10% — 23 Вт ом, 10% 13 — Вт 8ohm
  • Энергоэффективность: 81% 20 Вт, ом, 88% 12 Вт, 8ohm
  • Чувствительность входа: 200mV

И всё это счастье при цене от $20 до 60.

Микросхема, на основе которой создан усилитель, была внесена в список «25 микросхем, которые потрясли мир» по версии журнала IEEE Spectrum.


Компания Tripath, выпустившая инновационный усилитель, с целью привлечения внимания к продукту придумала даже новый класс, объявив свое устройство усилителем класса T (хотя принцип работы девайса соответствовал классу D).
Несмотря на маркетинговые усилия,«креативы» с классификацией, Tripath не выдержали конкуренции с более мощными игроками и исчезли с рынка в 2007-м году. Бесславный и тихий конец этой компании никак не умаляет заслуг разработчиков, которые создали, вероятно, единственный действительно легендарный усилитель класса D.

To be continued


Собственно, на этом пока всё, искренне надеюсь, что вам понравилось. В этом цикле планируем ещё 2 материала. Анонсирую моголамповых хайэнд монстров, современные гибридные разработки, и, возможно, сказку об идеальном усилителе.

аудио усилителей класса D Решения

Infineon предлагает комплексные решения для портативных / аккумуляторных, домашних и профессиональных усилителей. Портфель Infineon MERUS ™ охватывает диапазоны мощности от 20 Вт до 2000 Вт на канал. Он включает в себя одночиповые устройства, многочиповые модули (MCM) и высоко масштабируемые решения для дискретного аудиоусилителя, состоящие из мощных комбинаций HEMT MOSFET / CoolGaN ™ в режиме улучшения (e-mode) и ИС драйвера.

Давайте проявим креативность! Давайте вводить новшества! Давайте работать вместе над индивидуальным дизайном.Вот некоторые из приложений, которые мы могли выбрать.


Портативные / работающие от батареи аудиоприложения

Для портативных аудиоустройств, работающих от батареи, важно максимально увеличить время воспроизведения от батареи, сохраняя при этом отличную производительность. Микросхемы усилителя звука MERUS ™ от Infineon обеспечивают удвоенное время воспроизведения батареи в сочетании с лучшими в своем классе характеристиками и непревзойденным качеством звука.

  • Аккумуляторные колонки
  • Динамики Bluetooth в дороге
  • Док-колонки
  • Боновые ящики
  • Носимых динамиков

Домашние и аудио приложения

Современные домашние аудиопродукты бывают разных форм, размеров и конфигураций, но одной общей чертой является то, что у них общего есть требование к выдающемуся звуку в сочетании с выдающимся промышленным и акустическим дизайном.Усилители Infineon MERUS ™ открывают дорогу для инновационных и незабываемых звуковых продуктов домашнего аудио в форм-факторах и формах, которые раньше были немыслимы.

  • Многокомнатные системы
  • Домашние хабы
  • телевизоров
  • Soundbars
  • Системы домашнего кинотеатра
  • Умные колонки

Профессиональные аудио приложения

Профессиональное аудиооборудование

– это максимальная выходная мощность и плотность мощности.Большая, тяжелая, энергоемкая профессиональная аудиоэлектроника – это история. Решения Infineon MERUS ™ предлагают клиентам масштабируемость уровней выходной мощности для достижения качества звука на профессиональном уровне.

> Загрузите брошюру по применению решений MERUS ™

Воспользуйтесь преимуществами исключительного качества звука, сверхвысокой энергоэффективности, максимальной выходной мощности, высокой надежности, свободы проектирования и быстрого выхода на рынок, выбрав Infineon MERUS ™ для своего дизайна.

В мире, где экологически чистые технологии приобретают все большее значение, преимущества, достигнутые благодаря решениям MERUS ™, усиливают миссию Infineon: Часть вашей жизни. Часть завтра Мы делаем жизнь проще, безопаснее и экологичнее – благодаря технологиям, которые достигают большего, потребляют меньше и доступны каждому. Микроэлектроника от Infineon – ключ к лучшему будущему.

.

D718 B688 Мощный усилитель DIY Самодельный

Я покажу в этом видео, как создать мощный бас-усилитель мощностью 100 Вт и моно класса AB с использованием транзисторов d718 b688 и 2n3904. Сочетание мощного усилителя d718 b688 широко используется для высокого усиления. Вы должны использовать транзисторную изоляцию (Mica) для предотвращения прикосновения к радиатору во избежание короткого замыкания, поскольку оба транзистора используют противоположный ток.

Я выбрал эту схему с очень небольшим количеством компонентов, которые довольно легко собрать для начинающих и студентов.Я настоятельно рекомендую выбрать достаточно большой и толстый радиатор для достаточного рассеивания тепла для безопасности обоих транзисторов. Список компонентов также приведен в конце этой статьи, которую легко найти на местном рынке.

принципиальная схема

Ниже приведена принципиальная схема мощного усилителя D718 B688 с низкими и высокими частотами.

D718 B688 Powerful Amplifier Circuit Diagram

Разработка изображений

от D718 B688 Мощный Усилитель DIY

Шаг №1

Затяните транзисторы D718 и B688 на радиаторе с надлежащей изоляцией (MICA).Убедитесь, что задняя пластина обоих транзисторов не должна касаться радиатора. Соедините стороны плюс и минус двух диодов 1N4007 вместе. Припой один положительный конец правого диода с базы контакт 1 правого транзистора B688. И другой минус левого диода с Base Pin.1 левого транзистора D718. Подключите два резистора по 0,33 Ом / 5 Вт к контактам 3 выводов обоих транзисторов. Соедините другие концы обоих транзисторов вместе.

Image8
Шаг № 2

Припой Коллектор 2N3904 Транзистор к Басу B688 и Эмитент 2N3904 Транзистор к Коллектору B688.Также припаяйте резистор 100 кОм к базе транзистора 2N3904 и к центральному соединению резистора 0,33 Ом / 5 Вт.

D718 B688 Powerful Amplifier Images1
Шаг № 3

Подключите отрицательную сторону конденсатора 4,7 мкФ к базе транзистора 2N3904.

D718 B688 Powerful Amplifier Images2
Шаг № 4

Припой отрицательного конца конденсатора 2200 мкФ / 50 В к центральному соединению двух резисторов по 0,33 Ом. Также припаяйте один конец резистора 1k к основанию D718, а другой конец – к положительной стороне конденсатора 2200 мкФ / 50В.

D718 B688 Powerful Amplifier Image3
Шаг № 5

Я не показал здесь работу схемы низких частот. Для более подробной информации, чтобы увидеть высокие частоты басов [Нажмите здесь]. Подключите положительный контакт конденсатора 4,7 мкФ к центральному контакту 2 регулятора громкости.

D718 B688 Powerful Amplifier Image4
Шаг № 6

Возьмите один резистор 0,47 Ом / 5 Вт, а также 0,6 мм медный эмалированный провод. Оберните вокруг резистора 12 раз и припаяйте оба конца с обоих концов резистора.

D718 B688 Powerful Amplifier Image5
Шаг № 7

Теперь припаяйте один конец катушки резистора к контакту коллектора.2 из транзистора D718. Подсоедините красный положительный провод источника питания к центральному контакту Коллектор транзистора D718 и черный отрицательный провод источника питания к центральному контакту Коллектор транзистора B688.

Image8
Шаг № 8

Пришло время подключить 3,5-мм мобильный разъем. Припаяйте оба левых и правых выходных аудиосигнала к контакту 1 контроллера низких частот и провод заземления к контакту 3 контроллера громкости. Также присоедините контакт 3 коллектора контроллера громкости, центральный контакт которого является транзистором B688, который заземлен.

Image9
Шаг № 9

Подключите положительный динамик к пустому концу катушки резистора. Спикер негатив будет идти на землю.

Image7

Подсоедините контактный разъем к мобильному телефону. Включите источник питания, играйте музыку с мобильного и наслаждайтесь. Большое спасибо за посещение этого сайта.

Список компонентов

используется в D718 B688 Мощный усилитель

  • Транзистор D718 x 1
  • Транзистор B688 x 1
  • Транзистор 2N3904 x 1
  • 1N4007 Диод x 2
  • Конденсатор 2200 мкФ x 1
  • 4.Конденсатор 7 мкФ x 1
  • 104 Конденсатор x 4
  • Резистор 0,33 Ом x 2
  • Резистор 1 кОм x 3
  • Резистор 2,2 кОм x 2
  • Резистор 100 кОм 1
  • Потенциометр х 3
  • Теплоотвод x 1
  • Гнездо блока питания (приобретается дополнительно)
  • 3,5-миллиметровое мобильное гнездо (приобретается дополнительно)
  • Блок питания 12 В
  • Динамик 4 Ом

(посетил 2,907 раз, 1 посещений сегодня)

.Усилитель

| Домашний кинотеатр


Обзор

Усилители – это то, что нужно большинству громкоговорителей для создания звука. Существует множество различных технологий, и, как и динамики, усилители доступны во всех ценовых категориях.

Class A Designs

Усилители класса

класса A были когда-то выбором аудиофилов, но их низкое энергопотребление, сверхвысокая тепловая мощность, часто большие размеры и огромные требования к потребляемой мощности (240 вольт лучше всего подходят для усилителей класса A) показали, что они перестали пользоваться популярностью.С их чистым звуком трудно поспорить, но они не могут легко угнаться за потребностями воспроизведения саундтрека к фильму. Они также звучат лучше всего после нескольких часов разогрева. У них нет реальной способности (по замыслу) делать что-либо, кроме как работать на полную мощность, поэтому их ничья со стены настолько сильна, насколько вы можете найти. Аналогия, используемая многими для описания усилителей класса A, заключается в том, что они подобны кранам, которые включены полностью.

Класс AB

Class AB – это то, что считается традиционной технологией усилителя.Может использоваться как для ламповых, так и для твердотельных конструкций. Твердотельные конструкции известны своими радиаторами, большими тороидальными трансформаторами и общим весом. Усилители класса AB по-прежнему являются предпочтительным выбором для аудиофилов из-за их мощного, чистого звука, но конструкции цифровых усилителей значительно улучшились за последние несколько лет. На высшем уровне теперь есть гибридные аудиофильские усилители класса AB / цифровые усилители.

Цифровой усилитель (класс D или коммутация)

Цифровые усилители мощности (также известные как класс D или переключающие усилители) давно используются системами звукоусиления из-за их высокой мощности, небольшого веса и низкой теплоотдачи.Цифровые усилители также достаточно надежны, что привело к их популярности в коммерческих установках. Боб Карвер, основатель Sunfire, использовал цифровое усиление в своих знаменитых «True» сабвуферах, которые были невероятно маленькими, но могли выводить глубокие низкие частоты из 11-дюймовой квадратной коробки. Огромные запасы мощности были частью гения Карвера. Carver запатентовал сабвуферы True, но в конечном итоге проиграл судебный процесс другим компаниям-громкоговорителям, основываясь на действии патента. Во второй половине нынешнего десятилетия, в основном благодаря технологии ICE Bang и Oulfsen, появился совершенно новый лагерь цифровых усилителей класса D, ориентированных на аудиофилов.Аудиофилы в восторге от того, как тихие цифровые усилители могут звучать по сравнению с традиционными усилителями класса AB. Их недостаток тепла, небольшие размеры, меньший вес и меньшая стоимость являются дополнительными факторами, побуждающими потребителей переосмыслить технологию усилителей для своих эталонных аудиофилов или систем домашнего кинотеатра.

Сравнение цифровых усилителей с традиционными усилителями класса AB

Из-за стоимости, использования и других преимуществ усилители класса D звучат как идеальное решение, но критически важные слушатели быстро предупредят потребителей о том, что наилучший возможный звук по-прежнему исходит от тяжелых энергоемких усилителей класса AB.Аудиофилы говорят о «весе» звука (а не усилителя) усилителей класса AB по сравнению с цифровыми усилителями, поскольку они имеют более насыщенный звук, более богатые текстуры и совершенно иной вкус, чем звучание системы воспроизведения.

Усилители эталонной мощности Марка Левинсона № 53, которые были представлены на выставке CEDIA в 2008 году, используют гибридный запатентованный класс AB и цифровой усилитель, чтобы попытаться объединить «вес» традиционного усилителя с преимуществами цифровых усилителей. Марк Левинсон №53 монофонических усилителя примерно так же дороги, как и любой усилитель, представленный на рынке.

Усилитель моноблочный р

Моноблочные или моноусилители часто являются предпочтительным выбором аудиофилов, используемых в самых требовательных системах воспроизведения для домашнего кинотеатра. Mono относится к идее, что один физический усилитель предназначен для питания одного аудиоканала. Основное преимущество моноусилителей заключается в том, что каждый аудиоканал получает собственный источник питания и поэтому может более точно и эффективно обеспечивать мощность, необходимую для аудиофилов или 7.1 акустическая система, в соответствии с требованиями исходного материала. Некоторые аудиофильские бренды выпускают двойные или даже три-моно усилители, которые вмещают несколько моноусилителей в одном корпусе, но сохраняют преимущества монофонического дизайна. Это обычно происходит со значительной надбавкой к стоимости. Моноблочные усилители обычно встречаются во всех разновидностях усилителей, включая ламповые усилители, твердотельные усилители и даже «цифровые» усилители класса D.

ампер на полу

Аудиофилы уже давно установили свои усилители рядом со своими любимыми динамиками.Нередко можно увидеть систему с моноблочными усилителями, расположенными на полированном куске гранита, или специально созданный усилитель, стоящий рядом с парой динамиков с наилучшими характеристиками.

Известные производители усилителей включают Sunfire, Krell, Halcro, Outlaw, Anthem, Parasound и Theta.

Узнайте больше об усилителях в разделе «Обзор многоканальных усилителей » и в разделе «Обзор усилителей ».

Дополнительные ресурсы

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *