Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Принцип работы и устройство асинхронного двигателя

Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.

Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.

В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.

Немного истории

Первый подобный механизм электродвигателей появился еще в 1888 году и представил его американский инженер Никола Тесла.

Однако, его опытный образец устройства и был не самым удачным, так как был двух фазным или много фазным и рабочие характеристики асинхронного двигателя не удовлетворяли потребителей. Поэтому широкого распространения не получил.

А вот благодаря российскому ученому Михаилу Доливо-Доброволь скому в изобретение удалось вдохнуть новую жизнь. Именно ему принадлежит первенство в деле создания первого в мире трехфазного асинхронного мотора. Такое усовершенствование конструкции стало революционным, так как принцип работы трехфазного асинхронного двигателя позволял использовать для работы всего три провода, а не четыре. Так что для плавного пуска устройства в массовое производство препятствий больше не оставалось.

Сегодня, благодаря своей простоте эти машины получили широкое распространение, а механическая характеристика асинхронного двигателя устраивает всех водителей.

Каждый год доля асинхронных двигателей, среди всех двигателей мира, составляет 90%.

Простота в использовании, принцип действия асинхронного двигателя, легкий пуск, надежность и дешевизна, помогли этим моторам распространиться по всему миру и буквально совершить технический переворот в промышленности.

Принцип работы трехфазного двигателя основан на питании от трех фаз переменного тока в стандартной сети. Для работы ему требуется именно такое электричество и поэтому он назван трех фазным.

Устройство трехфазного двигателя

Любой мотор асинхронного типа, независимо от его мощности и размеров, состоит из одних и тех же частей, механическая характеристика асинхронного двигателя также одна и та же. Главными среди составляющих являются:

  • статор (неподвижная часть машины)
  • ротор (вращающаяся часть)

Помимо этого, в современных трех фазных двигателях можно найти следующие детали:

  • вал
  • подшипники
  • обмотку
  • заземление
  • корпус (в который монтируются все детали)

Как уже указывалось выше, базовые элементы двигателя — это статор (неподвижная часть) и ротор (подвижная деталь).

Статор выполнен в виде цилиндра, составлен данный элемент из множества металлических, форменных листов. Внутренняя часть создана таким образом, чтобы расположить обмотку. Центры обмоток расположены под углом в 120 градусов, а подключение происходит, исходя из доступного напряжения и двух возможных вариантов: на три или пять контактов.

Ротором называют подвижную часть подобного мотора, которая необходима для плавного пуска. Устройство асинхронного двигателя с фазным ротором является полноценным, ведь именно во вращении ротора состоит основной принцип работы трехфазного мотора.

Принципы, использование которых лежит в работе такого приспособления, как устройство асинхронного двигателя:

  1. Правило левой руки буравчика.
  2. Закон электромагнитной индукции Фарадея.

Исходя из типа обмотки, ротор может быть короткозамкнутым или фазным.

Короткозамкнутым называют ротор, состоящий из множества стальных частей. Работа асинхронного двигателя с короткозамкнутым ротором заключается в следующем: в специальные пазы заливают алюминий, формирующий сердцевины, крепящиеся с обеих сторон стопорными кольцами, такая конструкция получила название «беличья клетка». Называется так, потому что замкнута накоротко и в ней не может использоваться сопротивление.

Фазным называют ротор, который обмотан по принципу, аналогичному статору, подходящему для трехфазной сети. Края проводки сердцевины замыкают в звезду, а оставшиеся контакты подводят к контактным частям.

Согласно принципу обратимости, любым фазным асинхронным двигателям свойственна возможность работать в качестве двигателя, генератора или электромагнитного тормоза. Электромеханическая характеристика асинхронного двигателя:

  1. Двигатель.
  2. Самый частый вид использования механизма.
  3. Генератор.
  4. Действие машины можно обратить, то есть механическую энергию, приложенную к сердцевине можно превратить в электрический ток. Для этого центральной части нужно вращаться быстрей магнитного поля. Потребляя механическую энергию генератор начнет создавать тормозной момент, возвращая электрическую энергию.
  5. Электромагнитный тормоз.

Изменение порядка чередования фаз приводит к тому, что магнитное поле и сердцевина вращаются в различные стороны, при этом потребляется как механическая энергия, так и напряжение сети, создавая тормозной момент.

Собранная энергия приводит к нагреву машины.

Принцип работы трехфазного двигателя

Принцип работы асинхронного двигателя в следующем: подавая напряжение на статор, в его проводке возникает магнитное воздействие, которая благодаря углу размещения осей обмоток, суммируется и создает итоговый, вращающий магнитный поток.

Вращаясь, он создает в проводниках электродвижущую силу. Обмотка сердцевины, создана таким образом, что при включении в сеть, появляется сила, налаживающаяся на действие статора и создающая движение.

Устройство и принцип действия асинхронного двигателя зависит и от сердцевины. Движение сердцевины происходит, когда магнитная сила статора и пусковой момент преодолевают тормозную мощность ротора и внутренняя часть начинает движение, в этот момент проявляется такой показатель, как скольжение.

Скольжение очень важный параметр. В начале движения ротора оно равно 1, но вместе с ростом частоты движения, наблюдается выравнивание, и как следствие снижаются электродвижущие силы и ток в обмотках, это приводит к снижению вращающего момента.

Существует крайний предел скольжения, превышать это значение не стоит, ведь механизм может «опрокинуться», что приведет к нарушению его нормальной работы. Минимальное скольжение происходит на холостых оборотах мотора, при увеличении момента значение будет расти, до наступления критической отметки.

Для создания асинхронной работы нужно сделать так, чтобы напряжение статора и общий магнитный поток соответствовали значению переменного тока.

Во время пуска вектор результирующего магнитного поля неподвижной части плавно вращается с определенной частотой. Через сечение ротора проходит магнитный поток. Электроэнергия, подходящая к двигателю в момент пуска, уходит на перемагничивание статора и ротора.

Стоит заметить, что для электромоторов, в том числе асинхронных свойственно то, что во время пуска в короткий промежуток времени достигается до 150% крутящего момента. Пусковой ток превышает номинальный в 7 раз и из-за этого, в момент пуска падает напряжение во всей электрической сети.

Если падение напряжения слишком большое, то даже сам двигатель может не запуститься – таков принцип его действия. Поэтому на практике используют устройство плавного пуска.

Устройство плавного пуска

Устройства плавного пуска асинхронных двигателей имеет свою специфику. Оно используется для плавного пуска или остановки электромагнитных двигателей. Может быть механическим, электромеханичес ким или полностью электронным.

Пусковая характеристика асинхронного двигателя предназначена:

  • для плавного разгона асинхронного двигателя
  • для плавной остановки
  • для снижения тока во время пуска
  • для синхронизации нагрузки и крутящего момента

Принцип работы и действия устройства плавного пуска основаны на широкой вариативности переменных. Как следствие, появляются большие возможности для управления режимами работы.

Хорошие и плохие свойства асинхронных моторов

Асинхронный двигатель принцип работы и устройство имеет достоинства и недостатки. Трансформаторы, внутри которых находится вращающийся ротор, используемый для работы двигателя, получили обширное применение так как принцип действия у них простой и понятный, а само устройство работает бесперебойно. Однако и короткозамкнутым и фазным устройствам свойственны определенные недостатки. Причем именно принцип их действия лежит в основе данных минусов.

Плюсы:

  1. Короткозамкнутым и фазным устройствам свойственна простота конструкции.
  2. Так как принцип действия очень прост, устройства получаются дешевыми.
  3. Простота пуска и высокие эксплуатационные характеристики.
  4. Простота пуска обеспечивает легкое управление.
  5. Принцип действия и работы таков, что асинхронные моторы могут работать в тяжелых условиях.

Минусы:

  1. Принцип работы основан на том, что при изменении скорости, теряется мощность.
  2. Когда увеличивается нагрузка, практически сразу начинает снижаться крутящий момент.
  3. В момент плавного пуска, мощность асинхронного мотора достаточно низкая.

Стоит отметить, что в настоящее время, отдается предпочтение устройствам с короткозамкнутым ротором. А вот устройства, в которых ротор фазный используются в редких случаях, как правило, когда достигается большая мощность.

Устройство и принцип работы трехфазных асинхронных двигателей | RuAut

Устройство трехфазных асинхронных двигателей (статор и ротор асинхронных двигателей)

Трехфазный асинхронный двигатель состоит из неподвижного статора и ротора. Три обмотки размещены в пазах на внутренней стороне сердечника статора асинхронного двигателя. Обмотка же ротора асинхронного двигателя не имеет электрического соединения с сетью и с обмоткой статора. Начало и концы фаз обмоток статора присоединяют к зажимам в коробке выводов по схеме звезда или треугольник.

Асинхронные двигатели в основном различаются устройством ротора, который бывает двух типов: фазный или короткозамкнутый. Обмотка короткозамкнутого ротора асинхронного двигателя выполняется на цилиндре из медных стержней и называется “беличьей клеткой”. Торцевые концы стержней замыкают металлическими кольцами. Пакет ротора набирают из электротехнической стали. В двигателях меньшей мощности стержни заливают алюминием. Фазный ротор и статор имеют трехфазную обмотку. Фазы обмотки соединяют звездой или треугольником и ее свободные концы выводят на изолированные контактные кольца.

Получение вращающегося магнитного поля

Обмотка статора асинхронного двигателя в виде трех катушек уложена в пазы расположенные под углом в 120 градусов. Начало и конца катушек обозначаются соответственно буквами A, B, C и X,Y,Z. При подаче на катушки трехфазного напряжения в них установятся токи Ia, Ib, Ic и катушки создадут собственное переменное магнитное поле. Ток в любой катушке положительный, когда он направлен от начала к ее концу и отрицательный при обратном направлении. Векторы намагничивающей силы совпадают с осями катушек, а их величина определяется значениями токов, направление результирующего вектора совпадает с осью катушки. Вектор результирующей намагничивающей силы поворачивается на 120 градусов сохраняя величину совпадает с осью соответствующей катушки. Таким образом за период, результирующее магнитное поле статора совершает оборот с неизменной скоростью. Работа трехфазного асинхронного двигателя основана на взаимодействии вращающегося магнитного поля с токами наводимыми в проводниках ротора.

Принцип работы трехфазного асинхронного двигателя

Совокупность моментов созданных отдельными проводниками образует результирующий вращающий момент двигателя, возникает электромагнитная пара сил, которая стремится повернуть ротор в направлении движения электромагнитного поля статора. Ротор приходит во вращение приобретает определенную скорость, магнитное поле и ротор вращаются с разными скоростями или асинхронно. Применительно к асинхронным двигателям, скорость вращения ротора всегда меньше скорости вращения магнитного поля статора.

Пуск асинхронных двигателей

В асинхронных двигателях с большим моментом инерции необходимо увеличение вращающего момента с одновременным ограничением пусковых токов – для этих целей применяют двигатели с фазным ротором. Для увеличения начального пускового момента в схему ротора включают трехфазный реостат. В начале пуска он введен полностью, пусковой ток при этом уменьшается. При работе реостат полностью выведен. Для пуска асинхронных двигателей с короткозамкнутым ротором применяют три схемы: с реактивной катушкой, с автотрансформатором и с переключением со звезды на треугольник. Рубильник последовательно соединяет реактивную катушку и статор двигателя. Когда скорость ротора приблизится к номинальной, замыкается рубильник, он закорачивает катушка и статор переключаются на полное напряжение сети. При автотрансформаторном пуске по мере разгона двигателя, автотрансформатор переводится в рабочее положение, в котором на статор подается полное напряжение сети. Пуск асинхронного двигателя с предварительным включением обмотки статора звездой и последующим переключением ее на треугольник дает трехкратное уменьшение тока.

Изменение частоты вращения ротора трехфазного асинхронного двигателя 

Параллельные обмотки двух фаз образуют одну пару полюсов сдвинутые в пространстве на 120 градусов. Последовательное соединение обмоток образует две пары полюсов, что дает возможность уменьшить скорость вращения в два раза. Для регулирования скорости вращения ротора изменением частоты тока используют отдельный источник тока или преобразователь энергии с регулируемой частотой выполненный на тиристорах.

Способы торможения двигателей

При торможении противовключением меняются два провода соединяющих трехфазную сеть с обмотками статора, изменяя при этом направление движения магнитного поля машины. При этом наступает режим электромагнитного тормоза. Для динамического торможения обмотка статора отключается от трехфазной сети и включается в сеть постоянного тока. Неподвижное поле статора заставляет ротор быстро останавливаться. Асинхронные двигатели нашли широкое применение в промышленности. В строительных механизмах, на металлообрабатывающих станках, в кузнечно-прессовом оборудовании, в силовых приводах прокатных станов, в радиолокационных станциях и многих других отраслях.


Устройство и принцип действия асинхронного двигателя. АЭ-92

Предмет: «Электрические машины»
Тема: «Устройство и принцип действия асинхронного двигателя. АЭ-92»
Профессия: «Машинист электровоза»
Ярославское подразделение Северного УЦПК
1 | Преподаватели ОАО «РЖД» Коркина И.В. | 2018
Цель
Изучить
назначение,
устройство, принцип действия и
технические
характеристики
асинхронных
двигателей
компрессоров и вентиляторов.
2 | Преподаватели ОАО «РЖД» | 2018
План занятия
1.
2.
3.
4.
5.
Устройство асинхронного двигателя.
Вращающееся магнитное поле статора.
Назначение и устройство АЭ-92.
Принцип действия асинхронного двигателя.
Скольжение асинхронного двигателя.
3 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Асинхронный двигатель состоит из статора и ротора.
Статор включает в себя корпус, подшипниковые щиты,
сердечник и обмотку.
Ротор включает в себя вал, сердечник и обмотку.
Сердечники и статора и ротора выполняются из листов
электротехнической стали. В зависимости от типа обмотки
ротор может быть фазным и короткозамкнутым.
4 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Обмотка статора состоит из отдельных катушек,
объединенных в группы по числу фаз. В каждой фазе катушки
электрически соединены.
Начала и концы фаз выводятся к
шести зажимам для того, чтобы
можно было подключать обмотку
статора по схеме «звезда» или
«треугольник».
При
последовательном
согласном
соединении каждые три катушки
дают пару полюсов.
5 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
6 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
7 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Обмотка короткозамкнутого ротора имеет вид беличьей
клетки. Она выполнена из медных или алюминиевых стержней,
замкнутых накоротко с торцов двумя кольцами. Стержни
обмотки вставляют в пазы сердечника ротора без изоляции, т.к.
напряжение в короткозамкнутой обмотке ротора равно нулю.
Достоинствами двигателей с короткозамкнутым ротором
являются простота конструкции и надежность в эксплуатации.
Недостатки – большой пусковой ток и сравнительно малый
пусковой момент.
8 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
а — беличья клетка, б — ротор с беличьей клеткой из стержней, в — ротор
с литой беличьей клеткой, 1 — короткозамыкающие кольца, 2 — стержни,
3 — вал, 4 — сердечник ротора, 5 — вентиляционные лопасти, 6 —
стержни литой клетки
9 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Асинхронный двигатель с
короткозамкнутым
ротором:
1 – вал ротора;
2 – крышка подшипника;
3 – подшипник;
4 – подшипниковый щит;
5 – корпус;
6 – обмотка статора;
7 – сердечник статора;
8 – короткозамкнутый
ротор;
9 – вентилятор;
10 – кожух; 11 – коробка
выводов;
12 – выводы обмотки
статора;
13 – обмотка ротора.
10 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Обмотка фазного ротора состоит из трех, шести, девяти т.д.
катушек (в зависимости от числа полюсов машины), сдвинутых одна
относительно другой на 120º (в двухполюсной машине), 60º (в
четырехполюсной) и т.д.
С одной стороны контакты проводников
фазного ротора соединяются вместе в
общую точку («звезда»), а противоположные
концы выводятся на контактные кольца, к
которым посредством щеток подключают
трехфазный реостат.
Достоинством двигателей с фазным ротором
является
большой
пусковой
момент.
Недостаток – сложность конструкции
11 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Подключение внешнего сопротивления в обмотку ротора используется для
облегчения пуска двигателя и для контроля скорости двигателя. По мере
пуска добавочное сопротивление в обмотке ротора уменьшают. Это
происходит или плавно, или ступенчато, в зависимости от используемой
пусковой аппаратуры.
12 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Асинхронный
двигатель
с
фазным
ротором:
1, 7 – подшипники; 2, 6 – подшипниковые щиты; 3 – корпус; 4сердечник статора с
обмоткой; 5 – ротор; 8 – вал; 9 – коробка выводов; 10 – лапы; 11 – контактные
кольца.
13 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
14 | Преподаватели ОАО «РЖД» | 2018
Вращающееся магнитное поле
Электрические машины переменного тока подразделяются на два
основных вида: асинхронные и синхронные. Принцип действия этих машин
основан на использовании вращающегося магнитного поля.
В двухполюсной машине переменного тока вращающееся поле
создается при питании трехфазным током трех катушек (фаз) оси которых,
сдвинуты одна относительно другой в пространстве на 120°.
15 | Преподаватели ОАО «РЖД» | 2018
Вращающееся магнитное поле
16 | Преподаватели ОАО «РЖД» | 2018
Вращающееся магнитное поле
Продолжая рассматривать процесс прохождения токов,
по катушкам обмотки статора, можно легко доказать, что в
течение одного периода изменения тока магнитный поток
машины, а следовательно, и находящийся в ее поле магнит
повернутся на один оборот.
Т.о., при питании трехфазным током трех катушек,
сдвинутых одна относительно другой на угол 120°, возникает
магнитное поле, вращающееся в пространстве с постоянной
частотой вращения.
17 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Асинхронный двигатель АЭ92-4/02.
А – асинхронный;
Э – электровозный;
9 – диаметр сердечника статора 900 мм;
2 – длина сердечника статора 200 мм;
4 – число полюсов рабочих обмоток.
Асинхронный
трёхфазный
электродвигатель
с
короткозамкнутым ротором служит приводом главных
компрессоров и центробежных вентиляторов электровозов
переменного тока.
18 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Техническая характеристика:
Напряжение линейное
В
380
Ток фазный
А
90
Мощность
кВА
40
Гц
50
об/мин
1425
КПД

0,855
Масса
кг
390 – 400
Частота тока
Частота вращения ротора
19 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Состоит из стальной сварной станины образованной
из двух торцовых колец приваренных к продольным рёбрам и
обшивки. В станине закреплён сердечник статора состоящий
из шихтованных листов электротехнической стали, в пазах
которой уложена обмотка.
Обмотка статора состоит из жёстких пропитанных
катушек (медь прямоугольного сечения) которая в пазах
статора закреплены клиньями. Изоляция обмотки применена
класса Н, 6 выводов обмотки статора начало и конец
закреплены в коробке выводов, расположенной на станине
( две пары полюсов). Вывода соединены по схеме звезда.
20 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Ротор состоит из шихтованного сердечника так же набранного
из листов электротехнической стали. Пазы сердечника залиты
алюминиевым сплавом который образует короткозамкнутую
обмотку в виде «беличьего» колеса. В сердечнике ротора
имеются осевые вентиляционные каналы. Ротор вместе с валом
вращается в подшипниках установленных в капсулах
подшипниковых щитов.
Подшипниковые щиты крепят болтами к торцовым кольцам.
Подшипники закрывают крышками для защиты от пыли и
грязи. Подшипниковые щиты стальные, сварные, имеют
вентиляционные окна с сетками. К щиту крепятся 2
лабиринтные крышки (внутренняя и наружная) которые в
системе образуют капсулу для подшипников. В капсулу
заправляют смазку.
21 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Внутри двигатель снабжён вентилятором. Вентилятор
центробежный, с радиальными лопатками и направляющим
диском, обтекаемой формы отлит из алюминиевого сплава.
Вентилятор засасывает воздух с противоположной стороны
через окна и отверстия в подшипниковом щите. Поступающий
воздух охлаждает лобные части обмоток статора, после чего
выбрасывается наружу через окна в подшипниковом щите.
22 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
23 | Преподаватели ОАО «РЖД» | 2018
Принцип действия асинхронного двигателя
U→ВМП→ЭДС в обм. ротора→iрот.→Fэл.магн.→М→
→ ротор вращается в ту же сторону, что и МП статора
Частота вращения магнитного поля статора обозначается – n1, и
определяется по формуле:
60 f
n1
P
где: f – частота питающего тока
P – число пар полюсов
60 – коэффициент перевода единиц измерения из об/сек в
об/мин
24 | Преподаватели ОАО «РЖД» | 2018
Принцип действия асинхронного двигателя
Колтво
стат.
обм.
3
Кол-во
пар
полюсо
в (Р)
1
Подсчет Значение
n1
по n1
формуле ( об/мин)
Примечание
60×50/1
3000
2
60×50/2
1500
3
60×50/3
1000
3 обмотки по кругу занимают пространство
3600, поэтому за один период изменения
тока магнитное поле повернется на 3600.
3 обмотки из 6 по кругу занимают
пространство 1800, поэтому за один период
изменения тока магнитное поле повернется
на1800.
3 обмотки из 9 по кругу занимают
пространство 1200, поэтому за один период
изменения тока магнитное поле повернется
на1200.
6
9
Каждые 3 обмотки у асинхронного двигателя приравнивается к одной паре полюсов
25 | Преподаватели ОАО «РЖД» | 2018
Скольжение асинхронного двигателя
Частота
вращения
ротора
обозначается

n2
Для того, чтобы на валу ротора создавался вращающий момент,
необходимо
выполнение
данного
условия:
n2‹n1
Поэтому такие двигатели называются асинхронными. Приставка
«а» означает «не», то есть несинхронные двигатели.
Отставание ротора от магнитного поля статора характеризуется
скольжением (S). Скольжение определяется по данной
формуле:
.
n1 n2
S
100%
n1
26 | Преподаватели ОАО «РЖД» | 2018
Скольжение асинхронного двигателя
Скольжение показывает, на сколько процентов частота вращения
ротора меньше частоты вращения магнитного поля статорных
обмоток. Значение n2 при определенном скольжении для
различных асинхронных двигателей приведены в таблице:
Количест Количество
во
пар полюсов
статорных (Р)
обмоток
3
1
6
2
9
3
27 | Преподаватели ОАО «РЖД» | 2018
n1 (об/мин) S (%)
3000
1500
1000
n2 (об/мин)
4
4
4
2880
1440
960
Домашнее задание
1. А.В. Грищенко «Электрические машины и преобразователи
подвижного состава», стр. 215-220.
2. А.А. Дайлидко «Электрические машины тягового
подвижного состава », стр. 119-141, 143-146.
3. Работа с конспектом.
4. Подготовка к опросу по пройденному материалу.
28 | Преподаватели ОАО «РЖД» | 2018
Спасибо за внимание
Желаю успехов!
29
| преподаватели ОАО «РЖД» | 2018

Устройство и ремонт асинхронного электродвигателя с короткозамкнутым ротором

1. Крыжный Артем Юрьевич студент группы 308 ГБПОУ СО «НТЖТ» профессия машинист крана (крановщик)

Устройство и ремонт асинхронного
электродвигателя с короткозамкнутым
ротором
-описать устройство, принцип действия, технологию ремонта и
обслуживания асинхронного двигателя с короткозамкнутым
ротором.
-проанализировать литературу и техническую документацию
по выбранной теме;
-описать устройство, принцип действия, возможные
неисправности и ТО асинхронного двигателя с
короткозамкнутым ротором;
-составить технологическую карту погрузки балок в цехе
НТЗМК

3. асинхронный электродвигатель с короткозамкнутым ротором

Асинхронный двигатель – это асинхронная машина,
предназначенная для преобразования электрической
энергии переменного тока в механическую энергию.
1 – вал, 2,6 – подшипники,
3,8 – подшипниковые
щиты, 4 – лапы, 5 – кожух
вентилятора, 7 – крыльчатка
вентилятора, 9 короткозамкнутый ротор,
10 – статор, 11 – коробка
выводов.
Основными частями
асинхронного двигателя
являются статор (10) и
ротор (9).

4. КОРОТКОЗАМКНУТЫЙ РОТОР

Короткозамкнутый ротор представляет собой
сердечник, набранный из листов стали. В пазы
этого сердечника заливается расплавленный
алюминий, в результате чего образуются стержни,
которые замыкаются накоротко торцевыми
кольцами. Эта конструкция называется “беличьей
клеткой”. В двигателях большой мощности вместо
алюминия может применяться медь. Беличья клетка
представляет собой короткозамкнутую обмотку
ротора, откуда собственно название.

5. ФАЗНЫЙ РОТОР

Фазный ротор имеет трёхфазную обмотку, которая
практически не отличается от обмотки статора. В
большинстве случаев концы обмоток фазного ротора
соединяются в звезду, а свободные концы подводятся к
контактным кольцам. С помощью щёток, которые
подключены к кольцам, в цепь обмотки ротора можно
вводить добавочный резистор. Это нужно для того, чтобы
можно было изменять активное сопротивление в цепи
ротора, потому что это способствует уменьшению больших
пусковых токов.

6. Виды средств индивидуальной защиты от поражения электротоком

диэлектрические калоши
Диэлектрический коврик
диэлектрические перчатки
Диэлектрические рукоятки

7. Технологическая карта разгрузки балок с межцеховой тележки на стеллажи в цех е металлоконструкций ООО «НТЗМК»

Расчеты:
Высота подъема Н2=12м
Н1=0,3м
Н3=1м
Ширина L=9м
Пролет S=28,5м
Скорость подъема Vn=8м/мин h2
Скорость передвижения крана Vm
=80м/мин
Скорость передвижения тележки Vt
=40м/мин
Tn= 1,46м
To=1,37м
Tt=0,22м
Tm=0,35м
Tоб= 2(Tn + Tо + Tt + Tm) = 2(1,46
+1,37 + 0,22 + 0,35) = 6,8

8. Заключение

В
ходе выполнения данной работы мною была
проанализирована литература и техническая
документация по выбранной теме, изучены и
описаны устройство, принцип действия,
возможные неисправности асинхронного
двигателя с короткозамкнутым ротором,
составлена технологическая карта ремонта и
обслуживания, сделан экономический расчёт
ремонтных работ, описана экологическая
обстановка на участке прохождения
производственной практики. Таким образом,
можно считать поставленные цели задачи
выполненными.
Полученные в ходе выполнения данной работы
знания и навыки, приобретенные на
производственной практике, пригодятся в моей
будущей профессиональной деятельности.

Устройство асинхронного электродвигателя


Устройство и принцип действия асинхронных электродвигателей

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство и принцип действия асинхронных электродвигателей. Так же я бы хотел немного сказать о способах регулировки их частоты вращения, и перечислить их основные преимущества и недостатки.

Раньше, я уже писал статьи, касающиеся асинхронных электродвигателей. Если кому интересно, то можете почитать. Вот список:

Схема пуска асинхронного двигателя.

Расчёт тока электродвигателя.

Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором.

Ну а теперь давайте перейдём к теме сегодняшней статьи.

В нынешнее время, очень трудно представить, как бы существовали все промышленные предприятия, если бы не было асинхронных машин. Эти двигателя установлены практически везде. Даже дома у каждого человека есть такой двигатель. Он может стоять на вашей стиральной машинке, на вентиляторе, на насосной станции, в вытяжке и так далее.

Вообще асинхронный электродвигатель – это колоссальный прорыв в мировой промышленности. Во всём мире их выпускают более 90 процентов от количества всех выпускаемых двигателей.

Асинхронный электродвигатель – это электрическая машина, которая преобразовывает электрическую энергию в механическую. То есть потребляет электрический ток, а взамен дают крутящий момент, с помощью которого можно вращать многие агрегаты.

А само слово «асинхронный» — означает неодновременных или не совпадающий по времени. Потому что у таких двигателей частота вращения ротора немного отстаёт от частоты вращения электромагнитного поля статора. Ещё это отставанием называют – скольжением.

Обозначается это скольжение буквой: S

А вычисляется скольжение по такой формуле: S = ( n1 — n2 )/ n1 — 100%

Где, n1 – это синхронная частота магнитного поля статора;

n2 – это частота вращения вала.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Принцип действия.

Когда на обмотки статора подаются электрический ток, то в этих обмотках возникает электрический поток. Как вы помните, из выше написанных слов, фазы у нас смещены относительно друг друга на 120 градусов. И вот этот поток в обмотках начинает вращаться.

И при вращении магнитного потока статора, в обмотках ротора появляется электрический ток, и своё магнитное поле. Два этих магнитных поля начинают взаимодействовать и заставляют вращаться ротор электродвигателя. Это если ротор короткозамкнутый.

По принципу роботы вот посмотрите видео ролик.

Ну а с фазным ротором, по сути, принцип тот же. Напряжение подаётся на статор и на ротор. Появляются два магнитных поля, которые начинают взаимодействовать и вращать ротор.

Достоинства и недостатки асинхронных двигателей.

Основные достоинства асинхронного электродвигателя с короткозамкнутым ротором:

1. Очень простое устройство, что позволяет сократить затраты на его изготовление.

2. Цена намного меньше по сравнению с другими двигателями.

3. Очень простая схема запуска.

4. Скорость вращения вала практически не меняется с увеличением нагрузки.

5. Хорошо переносит кратковременные перегрузы.

6. Возможность подключения трёхфазных двигателей в однофазную сеть.

7. Надёжность и возможность эксплуатировать практически в любых условиях.

8. Имеет очень высокий показатель КПД и cos φ.

Недостатки:

1. Не возможности контролировать частоту вращения ротора без потери мощности.

2. Если увеличить нагрузку, то уменьшается момент.

3. Пусковой момент очень мал по сравнению с другими машинами.

4. При недогрузе увеличивается показатель cos φ

5. Высокие показатели пусковых токов.

Достоинства двигателей с фазным ротором:

1. По сравнению с короткозамкнутыми двигателями, имеет достаточно большой вращающий момент. Что позволяет его запускать под нагрузкой.

2. Может работать с небольшим перегрузом, и при этом частота вращения вала практически не меняется.

3. Небольшой пусковой ток.

4. Можно применять автоматические пусковые устройства.

Недостатки:

1. Большие габариты.

2. Показатели КПД и cos φ меньше, чем у двигателей с короткозамкнутым ротором. И при недогрузе эти показатели имеют минимальное значение

3. Нужно обслуживать щёточный механизм.

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

С уважением Александр!

5.2. Устройство асинхронного двигателя

Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каж­дая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора — вто­ричной, так как энергия в нее поступает из обмотки статора за счет магнит­ной связи между этими обмотками.

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рас­смотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.5.2). Двигатели этого вида имеют наиболее широкое применение.

Рис.5.2. Устройство трехфазного асинхронного двигателя

с короткозамкнутым ротором:

1 — вал; 2, 6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов;

5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкну-

той обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы

Неподвижная часть двигателя — статор — состоит из корпуса // и сердечника 10 с трехфазной обмоткой. Корпус двигателя отливают из алю­миниевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехничес­кой стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными свар­ными швами по наружной поверхности пакета. Такая конструкция Сердеч­ника способствует значительному уменьшению вихревых токов, возникаю­щих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продоль­ные пазы, в которых расположены пазовые части обмотки статора, соеди­ненные в определенном порядке лобовыми частями, находящимися за преде­лами сердечника по его торцовым сторонам. Конструкция короткозамкнутого ротора приведена на рис.5.3.

Рис.5.3. Конструкция короткозамкнутого ротора: а — беличья клетка; б — ротор с медной стержневой обмоткой; в — ротор с алюминиевой литой обмоткой;

1 — сердечник ротора; 2 — стержни; 3 — замыкающие кольца;

4 — лопасти вентилятора

Обмотка статора асинхронного электродвигателя может быть соединена звездой или треугольником. Схемы соединения представлены на рис.5.4

Рис.5.4. Схемы соединения выводов трехфазных обмоток электродвигателя:

а — звезда; б — треугольник

5.3. Принцип образования вращающегося магнитного поля

Принцип образования вращающегося магнитного поля рассмотрим на при­мере простейшей трехфазной двухполюсной обмотки, каждая фаза которой состоит из одной секции, фазы обмотки соединены звездой (рис.5.5). При этом секции тока в фазных обмотках (по времени) относительно друг друга на электрический угол 120° (рис.5.5, б). Проведем ряд построений вектора МДС трехфазной обмотки Fm, соответствующих различным моментам времениt0, t1, t2,t3отмеченным на графике рис.5.5, б.

В момент времени t0ток в фазе А равен 0, в фазе В ток имеет отрица­тельное, а в фазе С — положительное направления. Эти направления тока отмечаем на рис.5.5, б в сечениях обмоток статора для данного момента времени. При этом следует помнить, что за положительное направление тока

Рис.5.5. Получение вращающегося магнитного поля: а — трехфазная обмотка статора;

б — вращение МДС; в — модель магнитного поля статора;

1-4 — обмотка фазы А; 3-6 — обмотка фазы В;

5—2 — обмотка фазы С (первая цифра — начало обмотки)

в фазной обмотке принимается направление тока от начала обмотки к ее концу и обозначается х, а, следовательно, отрицательное направление тока в обмотке соответствует направлению тока от конца к началу и обозначается •. Затем в соответствии с указанными на рис. 5, б направлениями токов определяем (по правилу буравчика) направление вектора МДС трехфазной обмотки статора (вектор Fmнаправлен вниз).

В момент времени t1т.е. через (1/3) Т, ток в фазе В равен нулю, в фазе А имеет положительное, а в фазе С — отрицательное направление. Сделав построения, аналогичные моменту времени t0, заметим, что вектор МДС обмотки статора Fmпо сравнению с его положением в момент вре­мени t0повернулся на 120° в направлении движения часовой стрелки.

Проведя аналогичные построения вектора МДС обмотки статора для момента t2и t3, видим, что каждый раз при переходе от одного момента времени к другому вектор Fmповорачивается на 120°, а за один период изменения токов в обмотках (с t0до t3) делает полный оборот (360°) и будет, таким образом, вращающимся. Вращающаяся МДС создает враща­ющееся магнитное поле, эквивалентное полю магнита N — S с индукци­ей Во (рис.5, в). Это поле вращается с синхронной частотойn0кото­рая пропорциональна частоте переменного токаfи обратно пропорцио­нальна числу пар полюсов обмоток статора р, т.е.

,

Зависимость n0 от р и f представлена в табл.5.2.

Таблица 5.2

f = 50 Гц

Р

1

2

3

4

5

6

n0, об/мин

3000

1500

1000

750

600

500

р=1

f. ГЦ

50

100

200

400

500

1000

Круговое вращающееся магнитное поле характеризуется тем, что пространственный вектор магнитной индукции этого поля Во вра­щается равномерно (n0= const).

При необходимости изменить направление вращения магнитного поля статора нужно по­менять порядок следования токов в фазных обмотках статора, для чего переключают фазы на зажимах двигателя (рис.5.6).

Рис.5.6. Изменение направления вращения магнитного поля.

Устройство и принцип работы асинхронного двигателя

Немало техники — бытовой, строительной, производственной имеют двигатели. Если задаться целью и проверить тип мотора, в 90% окажется, что стоит асинхронный двигатель. Это обусловлено простотой конструкции, высоким КПД, отсутствием электрического контакта с движущейся частью (в моделях с короткозамкнутым ротором). В общем, причин достаточно. 

Что такое асинхронный двигатель и принцип его действия

Любой электродвигатель — устройство для преобразования электрической энергии в механическую. Электрический двигатель состоит из неподвижной (статор) и подвижной части (ротор). Строение статора таково, что он имеет вид полого цилиндра, внутри которого имеется обмотка. В это цилиндрическое отверстие вставляется подвижная часть — ротор. Он также имеет вид цилиндра, но меньшего размера. Между статором и ротором имеется воздушный зазор, позволяющий ротору свободно вращаться. Ротор вращается из-за наводимых магнитным полем статора токов. По способу вращения двигатели делят на синхронные и асинхронные.

Так выглядит разобранный асинхронный двигатель с короткозамкнутым ротором

Асинхронный электродвигатель отличается тем, что частота вращения ротора и магнитного поля, создаваемого статором, у него неравны. То есть, ротор вращается несинхронно с полем, что и дало название этому типу машин. Характерно, в рабочем режиме скорость его вращения меньше. Второе название этого типа двигателей — индукционные. Это название связано с тем, что движение происходит за счёт наводимых на нём токов индукции.

Асинхронный двигатель в разобранном виде: основные узлы и части

Коротко описать принцип работы асинхронного двигателя можно так. При включении мотора на обмотки статора подаётся ток, из-за чего возникает переменное магнитное поле. В область действия силовых линий этого попадает ротор, который начинает вращаться вслед за переменным полем статора.

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.

Недостатки:

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Асинхронный двигатель: принцип работы и устройство :

Из всего спектра выпускаемых в настоящее время электрических моторов наибольшее распространение получил двигатель асинхронный трёхфазный. Практически половина производимой в мире электроэнергии используется именно этими машинами. Они широко применяются в металлообрабатывающей и деревообрабатывающей промышленности. Асинхронный двигатель незаменим на фабриках и насосных станциях. Без таких машин не обойтись и в быту, где они используются и в другой домашней технике, и в ручном электроинструменте.

Область применения этих электрических машин расширяется с каждым днём, так как совершенствуются и сами модели, и используемые для их изготовления материалы.

Каковы же основные части этой машины

Разобрав двигатель асинхронный трехфазный, можно наблюдать два главных элемента.

1. Статор.

2. Ротор.

Одна из важнейших деталей – статор. На фото сверху эта часть двигателя расположена слева. Он состоит из следующих основных элементов:

1. Корпус. Он необходим для соединения всех деталей машины. Если двигатель небольшой, то корпус изготавливают цельнолитым. В качестве материала используют чугун. Применяются также сталь или сплавы алюминия. Иногда корпус малых двигателей совмещает функции сердечника. Если же двигатель имеет большие размеры и мощность, то корпус сваривают из отдельных частей.

2. Сердечник. Этот элемент двигателя запрессовывается в корпус. Служит он для улучшения качеств магнитной индукции. Выполняется сердечник из пластин электрической стали. Для того чтобы снизить потери, неизбежные при появлении вихревых токов, каждая пластина покрывается слоем специального лака.

3. Обмотка. Она размещается в пазах сердечника. Состоит из витков медной проволоки, которые собираются в секции. Соединённые в определённой последовательности, они образуют три катушки, которые в совокупности являются обмоткой статора. Подключается она непосредственно к сети, поэтому называется первичной.

Ротор — это подвижная часть двигателя. На фото он находится справа. Служит он для преобразования силы магнитных полей в механическую энергию. Состоит ротор асинхронного двигателя из следующих деталей:

1. Вал. На хвостовиках его закреплены подшипники. Они запрессовываются в щиты, крепящиеся болтами к торцовым стенкам коробки статора.

2. Сердечник, который собирается на валу. Состоит из пластин специальной стали, обладающей таким ценным свойством, как низкое сопротивление магнитным полям. Сердечник, обладая формой цилиндра, и является основой для укладки обмотки якоря. Роторная, или, как её ещё называют, вторичная обмотка получает энергию благодаря магнитному полю, которое появилось вокруг катушек статора при прохождении по ним электрического тока.

Двигатели по типу изготовления подвижной части

Различают двигатели:

1. Имеющие короткозамкнутую обмотку ротора. Один из вариантов исполнения этой детали показан на рисунке.

Асинхронный двигатель с короткозамкнутым ротором имеет обмотку, сделанную из алюминиевых стержней, которые располагаются в пазах сердечника. В торцевой части они замкнуты кольцами накоротко.

2. Электродвигатели, имеющие ротор, изготовленный с контактными кольцами.

У обоих типов асинхронных двигателей конструкция статора одинаковая. Различаются они только исполнением якоря.

Каков же принцип работы

Якорь трёхфазного асинхронного двигателя, исполненный подобным образом, приводится во вращение благодаря эффекту возникновения переменного магнитного поля в статорных катушках. Чтобы понять, каким образом это происходит, необходимо вспомнить физический закон самоиндукции. Он гласит, что вокруг проводника, по которому проходит поток заряженных частиц, возникает магнитное поле. Величина его будет прямо пропорциональна индуктивности провода и интенсивности протекающего в нём потока заряженных частиц. Кроме того, это магнитное поле формирует силу с определённой направленностью. Именно она нас и интересует, так как является причиной вращения ротора. Для эффективной работы двигателя необходимо иметь мощный магнитный поток. Создаётся он благодаря специальному способу монтажа первичной обмотки.

Известно, что источник питания имеет переменное напряжение. Следовательно, магнитное поле вокруг статора будет иметь такую же характеристику, напрямую зависящую от изменения тока в подающей сети. Примечательно то, что каждая фаза смещена одна относительно другой на 120˚.

Что происходит в обмотке статора

Каждая фаза сети питания подключается к соответствующей катушке статора, поэтому возникающее вокруг них магнитное поле будет смещено на 120˚. Источник питания имеет переменное напряжение, следовательно, вокруг катушек статора, которыми располагает асинхронный двигатель, будет возникать переменное магнитное поле. Схема асинхронного двигателя собирается так, чтобы магнитное поле, возникающее вокруг катушек статора, постепенно изменялось и последовательно переходило от одной обмотки к другой. Таким образом создаётся эффект вращающегося магнитного поля. Можно вычислить его частоту вращения. Измеряться она будет в оборотах за минуту. Определяется по формуле: n=60f/p, где f — это частота переменного тока в подключенной сети (Гц), p — соответствует числу пар полюсов, смонтированных на статоре.

Как работает ротор

Теперь необходимо рассмотреть, какие процессы возникают во вторичной обмотке. Асинхронный двигатель с короткозамкнутым ротором имеет конструкционную особенность. Дело в том, что к его якорной обмотке напряжение не подводится. Оно там возникает благодаря магнитоиндукционной связи с первичной обмоткой. Поэтому и происходит процесс, обратный тому, что наблюдался в статоре, в соответствии с законом, который гласит, что при пересечении проводника, а в нашем случае это короткозамкнутая обмотка ротора, магнитным потоком в нём возникает электрический ток. Откуда берётся магнитное поле? Оно возникло вокруг первичной катушки при подключении трёхфазного источника питания.

Соединим статор и ротор. Что получится?

Таким образом, имеем асинхронный короткозамкнутый двигатель с ротором, в обмотке которого проходит электрический ток. Он и будет причиной возникновения магнитного поля вокруг якорной обмотки. Однако полярность этого потока будет отличаться от созданного статором. Соответственно, и сила, образуемая им, будет вступать в противодействие с той, которая вызвана магнитным полем первичной обмотки. Это и приведёт в движение ротор, так как на нём собрана вторичная катушка, и хвостовики вала якоря закреплены в корпусе двигателя на подшипниках.

Рассмотрим ситуацию взаимодействия сил, возникающих от магнитных полей статора и ротора, с течением времени. Знаем, что магнитное поле первичной обмотки вращается и обладает определённой частотой. Созданная им сила будет перемещаться, имея аналогичную скорость. Это заставит асинхронный двигатель заработать. И его ротор будет свободно вращаться вокруг оси.

Эффект скольжения

Ситуация, когда силовые потоки ротора как бы отталкиваются от вращающегося магнитного поля статора, получила название скольжения. Следует отметить, что частота асинхронного двигателя (n1) всегда меньше той, с которой перемещается магнитное поле статора. Объяснить это можно так. Чтобы в роторной обмотке возник ток, она должна быть пересечена магнитным потоком с определённой угловой скоростью. И поэтому справедливо утверждение, что скорость вращения вала больше либо равна нулю, но меньше интенсивности перемещения магнитного поля статора. Ротор имеет частоту вращения, зависящую от силы трения в подшипниках, а также от величины отбора мощности с вала ротора. Поэтому он как бы отстаёт от магнитного поля статора. Именно из-за этого частота называется асинхронной.

Таким образом, электроэнергия питающего источника преобразовалась в кинетическую энергию вращающегося вала. Скорость его вращения прямо пропорциональна частоте тока питающей сети и количеству пар полюсов статора. Для увеличения частоты вращения якоря можно использовать частотные преобразователи. Однако работа этих устройств должна быть согласована с количеством пар полюсов.

Как подключить двигатель к источнику питания

Чтобы осуществить пуск асинхронного двигателя, его необходимо подключить к сети трёхфазного тока. Схема асинхронного двигателя собирается двумя способами. На рисунке показана схема соединения выводов двигателя, в которой статорные обмотки собраны способом «звезда».

На этом рисунке изображён другой способ соединения, именуемый «треугольник». Собираются схемы в клеммной коробке, закреплённой на корпусе.

Следует знать, что начала каждой из трёх катушек, их ещё называют обмотками фаз, именуются С1, С2, С3 соответственно. Аналогично подписываются концы, которые имеют названия С4, С5, С6. Если в клеммной коробке нет маркировки выводов, то начала и концы придётся определить самостоятельно.

Как сделать реверс

При возникновении потребности осуществить пуск асинхронного двигателя, изменив направление вращения якоря, надо просто поменять местами два провода подключаемого источника трехфазного напряжения.

Однофазный асинхронных двигателей

В быту проблематично использовать трёхфазные двигатели из-за отсутствия требуемого источника напряжения. Поэтому существует однофазный асинхронный двигатель. Он также имеет статор, но с существенным конструкционным отличием. Оно заключается в количестве и способе расположения обмоток. Это определяет и схему запуска машины.

Если однофазный асинхронный двигатель имеет статор с двумя обмотками, то расположены они будут со смещением по окружности под углом в 90˚. Катушки называются пусковой и рабочей. Соединяются они параллельно, но, чтобы создать условия для появления вращающееся магнитного поля, дополнительно вводится активное сопротивление или конденсатор. Это создаёт сдвиг фаз токов обмоток, близкий к 90˚, благодаря чему создаётся условие для образования вращающегося магнитного поля.

Если статор имеет только одну катушку, то подключённый к ней однофазный источник питания будет причиной пульсирующего магнитного поля. В замкнутой накоротко обмотке ротора появится переменный ток. Он станет причиной возникновения своего магнитного потока. Результирующая двух образовавшихся сил будет равна нулю. Поэтому для запуска двигателя, имеющего такую конструкцию, требуется дополнительный толчок. Создать его можно, подключив конденсаторную схему пуска.

Подключить двигатель к однофазной цепи

Изготовленный для работы от трёхфазного источника питания электромотор может работать и от домашней однофазной сети, но при этом существенно снизятся его характеристики, такие как КПД, коэффициент мощности. Кроме того, снизятся мощность и пусковые показатели.

Если же без подключения не обойтись, то требуется из трёх обмоток статора собрать схему, где их будет только две. Одна рабочая, а другая пусковая. Например, есть три катушки с началами С1, С2, С3 и концами С4, С5, С6 соответственно. Для создания первой (рабочей) обмотки двигателя объединяем концы С5 и С6, а их начала С3 и С2 подключаем к источнику однофазного тока, например, бытовой сети 220 вольт. Роль второй, пусковой обмотки, будет выполнять оставшаяся незадействованная катушка стартера. Она подключается к источнику питания через конденсатор, соединённый с ней последовательно.

Параметры асинхронного двигателя

При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические – это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.

Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.

Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.

Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.

Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.

Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.

Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.

Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.

В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.

В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.

Асинхронный двигатель: принцип работы, особенности конструкции

Асинхронный двигатель представляет собой мотор переменного тока, скорость вращения которого не равна частоте напряжения в обмотках статора. Эти электродвигатели получили широкое распространение, потому что являются достаточно выносливыми. Асинхронный однофазный, трехфазный моторы могут работать при значительной нагрузке продолжительное время, не перегреваясь, держать свой крутящий момент. Работа асинхронного двигателя проста, но при этом его характеристики напрямую зависят от параметров обмоток и технологии их укладки.

Оглавление:

  • Область применения
  • Разновидности моторов
  • Устройство асинхронного двигателя
  • Особенности устройства каждого из элементов
  • Ротор
  • Принцип работы
  • Маркировка электродвигателя
  • Скольжение
  • Двигателя с фазным ротором
  • Недостатки асинхронных электродвигателей

Область применения

Асинхронный двигатель получил широкое распространение в качестве тягового, второстепенного и прочих видов силовых компонентов. Учитывая особенности его конструкции, отсутствие скользящих контактов, эксплуатация такого мотора намного проще. Также, схема подключения не требует сложных устройств управления, если говорить о простом режиме работы с постоянной частотой. Плюс ко всему и срок службы до сервисного обслуживания намного дольше, так как внутреннее пространство и обмотки не загрязняются графитом.

Применяется асинхронный электродвигатель во многих сферах:

  • Системы вентиляции – благодаря выносливости и неприхотливости при эксплуатации моторы с короткозамкнутыми роторами достаточно часто используются в качестве вентиляторов. Они хорошо переживают продолжительную работу на максимальных оборотах, обеспечивая пользователей или технологическое оборудование интенсивным воздушным потоком.
  • Конвейеры – благодаря высокому моменту, способности его поддерживать при нагрузках моторы асинхронного типа стали идеальным вариантом для реализации управления подвижными производственными линиями.
  • Следящие системы и приводные устройства – особо часто применяют асинхронные двигатели в приводных системах на технологическом оборудовании. Но для организации управления таким типом двигателя потребуется особая схема подключения и частотный блок управления, а ротор асинхронного двигателя оснащается неодимовыми магнитами. Такие моторы рассчитаны на работы с частотой до 400 Гц.
  • Бытовая сфера. Из такого мотора можно сделать различные рабочие агрегаты бытового назначения или для небольшой мастерской: вентилятор, управляемые заслонки, циркулярная пила, фуганок, прочее оборудование.

Разновидности моторов

От типа питающей сети асинхронные электродвигатели подразделяются на:

  1. Трехфазные. Обмотки асинхронных двигателей такого типа состоят из 3 катушек, специальным образом уложенных в пазах статора. Они предназначены для работы в промышленности, так как имеют высокий КПД и cosφ приближенный к 1, а для обеспечения дополнительной экономии работают с системой рекуперации энергии при торможении, выступая генератором.
  2. Однофазный асинхронный двигатель. Применяется в быту и промышленности: старые стиральные машины, бытовые вентиляторы, холодильное и прочие виды оборудования. Имеют меньший КПД, мощность, по сравнению с трехфазными, что объясняется потерями в статоре из-за отсутствия дополнительной фазы.

Устройство асинхронного двигателя

Устройство асинхронного двигателя является достаточно простым:

  • Статор – является неподвижной частью электрического двигателя, который снабжен обмотками возбуждения.
  • Ротор – вращающийся элемент мотора, который крутится под действием магнитного поля, создаваемым обмотками возбуждения, расположенными на статоре. Различают 2 типа двигателя от конструкции ротора: короткозамкнутые и фазные.
  • Фланцы – статическая часть электрического двигателя, в которой находятся опорные подшипники, удерживающие ротор и являющиеся своего рода крепежом для статора. Он зажимается между двумя фланцами-крышками стяжными болтами. Либо они прикручены к корпусу статора.
  • Клеммная коробка – часть статической конструкции двигателя, в которую выводятся концы обмоток со статора. Посредством его осуществляется подключение двигателя к схеме управления.
  • Крыльчатка и защитный кожух – используется для обеспечения принудительной вентиляции, а кожух предохранит обслуживающий персонал от травматизма.
  • Дополнительные сервисные обмотки – при необходимости совместно с обмоткой возбуждения на статоре может быть дополнительная, предназначенная для контроля и измерения рабочих параметров мотора во время его работы.
  • Термодатчики – промышленные асинхронные двигателя, кроме обмоток, также имеются датчики температуры, контролирующие перегрев на случай резкого возрастания тока потребления.

Также двигателя могут быть оборудованными планарными редукторами и изготовленными в едином корпусе. Это преимущественно промышленные типы агрегатов, применяемые на станках, конвейерах и прочих видах оборудования.

Особенности устройства каждого из элементов

Статор асинхронного электродвигателя представляет собой цилиндр, изготовленный из листов специальной электротехнической стали толщиной до 0.5 мм, покрытых лаком. Этот цилиндр является сердечником, с внутренней стороны имеются пазы, куда укладываются обмотки. В трехфазных, соответственно, сдвинутые на 120 градусов, в однофазных – на 90. Обмотки могут быть уложены несколькими способами в зависимости от схемы их подключения и эксплуатационных требований. Именно от этого зависит такой показатель, как момент и мощность на валу. А при наличии количества полюсов более, чем 2 пары, то он может использоваться в следящих системах управления приводными механизмами.

Статор запрессован в корпус либо же расположен между фланцами. Корпус и боковые крышки изготовлены из чугуна или сплава алюминия. На них имеются ребра для увеличения площади и повышения эффективности отведения тепла при работе. Такое устройство позволяет лучше охлаждать двигатель, обеспечивая продолжительную работу при предельных нагрузках.

Однополюсная обмотка такого электродвигателя наматывается из 3-х катушек. Каждая из них называется фазой. Для достижения требуемых параметров работы мотора обмотка укладывается в противоположных пазах сердечника. Катушки соединяются между собой специальным образом в соответствии со схемой подключения и ожидаемых характеристик, обеспечивая возбуждение магнитного поля и необходимый момент при вращении.

Все концы датчиков выводятся в клеммную коробку, что позволяет их соединять в звезду или треугольник, что зависит от схемы подключения системы управления, величины питания. 3-фазный электродвигатель является универсальным, при необходимости его можно подключать к однофазному питанию с линейным напряжением. При соединении обмоток треугольником напряжение обмоток равно линейному Uф, а при подключении по схеме звезды – √3Uф.

Ротор

Ротор в асинхронном электродвигателе представляет собой вал, на котором закрепляется сердечник, набранный из листов электротехнической стали. Что трехфазный, что однофазный мотор, ротор имеет практически одинаковую конструкцию. В качестве обмотки в обычных асинхронных моторах на рабочую частоту 50Гц используются куски медного или алюминиевого провода большой толщины или стержни, соединенные между собой торцевыми замыкающими кольцами.

Для того чтобы обмотка надежно удерживалась в сердечнике, имеются специальные пазы, куда она запрессована. Торцевые кольца могут быть снабжены вентиляционными лопатками, предназначенными для улучшения интенсивности охлаждения внутреннего пространства. Вал закреплен на подшипниках, впрессованных во фланцы или плитах, закрепленных к станине в зависимости от устройства.

Между валом и статором имеется зазор, величина которого зависит от пусковых параметров мотора. Если необходимо увеличить мощность и момент, то он должен быть как можно меньше. Одновременно с ростом мощности увеличиваются и добавочные потери в верхних слоях статора и ротора.

Принцип работы

Асинхронный двигатель принцип работы имеет достаточно простой. Он основан на двух физических явлениях:

  1. При подаче напряжения на статорные обмотки в двигателе возникает вращающееся магнитное поле.
  2. Поле оказывает воздействие на ток, индуцируемый в роторе. А это создает крутящий момент, поворачивающий вал двигателя относительно полюсов.

За каждый поворот вала полюса меняются полярностью с частотой сети. Поэтому напряжение обмотки статора имеет стандартную частоту, а скорость вращения зависит от:

  • нагрузки на валу;
  • количества пар полюсов;
  • особенностей намотки статора.

Маркировка электродвигателя

Для упрощения процесса подключения и выбора схемы асинхронного 3-фазного ЭД на каждом из них имеется соответствующая маркировка. В ней указываются такие характеристики, как:

  • крутящий момент;
  • мощность;
  • максимальная скорость вращения;
  • cosφ.

Также в зашифрованной маркировке имеется указание типа двигателя, количества полюсов. Их необходимо учитывать при выборе мотора для тех или для других нужд. А для облегчения процесса подключения все концы сводятся в клеммную коробку, где подписаны следующим образом:

Если мотор подключается к сети 380 В с линейным напряжением обмоток 220В, то его схема обмоток должна быть треугольником. Но если двигатель подключается к стандартной сети 380В, то схема включения обмоток должна быть звездой.

Скольжение

При рассмотрении принципа работы асинхронного электрического двигателя применяют такое понятие, как скольжение, и обозначается параметр буквой «s». Оно возникает из-за разницы в скоростях вращения магнитного поля статора и реальной частоты вращения ротора. При этом первый показатель на порядок больше. Следовательно, чем выше разница, тем сильнее скольжение.

Скольжение позволяет объяснить принцип работы. За счет отставания частоты вращения ротора от магнитного поля статора и обеспечивается наведение ЭДС в короткозамкнутом роторе. Но если бы поле вращалось со скоростью частоты ЭДС в роторе, то собственно вращения не происходило.

Скольжение, являясь относительной величиной, измеряется в %. И становится больше при увеличении нагрузки на валу двигателя.

Двигателя с фазным ротором

Когда речь идет о моторах с фазным ротором, то он имеет немного иное устройство. Также имеется 3 обмотки, которые соединены в звезду, а их начала выведены на подводящие кольца. Сравнивая два типа двигателя с короткозамкнутым и фазным роторами, то у второго развивается момент сразу же под высокой нагрузкой. Такие моторы получили применение в системах, где требуется сделать мощный приводной агрегат с высокой тягой. Также такие моторы являются более удобными для регулируемого управления посредством регулятора частоты.

Недостатки асинхронных электродвигателей

В стандартном исполнении без магнитов на роторе асинхронные электродвигатели являются маломощными. Они неспособны сразу обеспечить высокий крутящий момент. А также для их запуска требуется большое количество электрической мощности, которая может превышать предельно допустимые показатели системы питания. Поэтому их пуск должен выполняться без нагрузки. Кроме этого, асинхронные электродвигатели являются мощными источниками электромагнитных помех, сопровождающимися сбоями в работе различных других устройств, находящихся вблизи. Для снижения их влияния необходимо предусматривать качественное заземление и обязательное экранирование.



1.1 Устройство и принцип действия асинхронного двигателя с короткозамкнутым ротором. Технология ремонта и обслуживание асинхронного двигателя с короткозамкнутым ротором

Похожие главы из других работ:

Асинхронные двигатели в системах электропривода

2.2 Управление пуском АД с короткозамкнутым ротором

Схема управления асинхронным двигателем с использованием магнитного пускателя (рисунок 6) включает в себя магнитный пускатель, состоящий из контактора KM и двух встроенных в него тепловых реле защиты KK…

Асинхронные двигатели в системах электропривода

3. Управление реверсом АД с короткозамкнутым ротором

Основным элементом в схеме управления реверсом (рисунок 8) является реверсивный магнитный пускатель, который включает в себя два линейных контактора (KM1 и KM2) и два тепловых реле защиты (KK)…

Изготовление статора трёхфазного асинхронного двигателя

1. Технологический процесс, конструктивные особенности и принцип действия трёхфазного асинхронного двигателя

Изготовление статора трёхфазного асинхронного двигателя

1.1 Принцип действия трёхфазного асинхронного двигателя

Асинхронный двигатель отличается простотой конструкции и несложностью обслуживания. Как и любая машина переменного тока, асинхронный двигатель состоит из двух основных частей – ротора и статора. Статором называется неподвижная часть машины…

Импульсные водородные тиратроны

2. Устройство и принцип действия

Основные элементы конструкции тиратрона (рис. 2): подогревный оксидный катод, анод и расположенная между ними двойная металлическая перегородка с отверстиями, выполняющая роль управляющей сетки…

Модернизация рыбоочистительной машины РО-1М

2.1 Устройство и принцип действия

Рыбоочиститель РО-1М Очистка рыбы производится путем механического воздействия вращающихся рифленых поверхностей на чешую рыбы. На предприятиях общественного питания для очистки рыбы применяются приспособления РО-1…

Организация и выполнение технического обслуживания и ремонта асинхронного двигателя АИР63А2

1.2 Устройство и принцип действия асинхронного двигателя АИР63А2

Данный двигатель состоит из: Статор — неподвижная часть электрической машины, взаимодействующая с подвижной частью — ротором. Ротор — вращающаяся часть двигателей и рабочих машин, на которой расположены органы…

Пиролиз как термический метод переработки древесины

4. Устройство и принцип действия экстрактора

Экстрактор. Наиболее экономичным и технологически надежным является способ выделения из жижки уксусной кислоты. Извлечение ее растворителем-экстрагентом. Процесс извлечения уксусной кислоты из жижки ведут в экстракторах…

Проектирование сушильного цеха с камерами СПЛК-2

1. Устройство и принцип действия оборудования

Разработка лесосушильного цеха на базе сушильных камер ВК-4

1. Устройство и принцип действия оборудования

Современное помольное оборудование

Устройство и принцип действия

Измельчение материала в струйной мельнице происходит в размольной камере, в которую подают сжатый воздух или перегретый пар. Мелющий поток через сопла поступает в камеру измельчения, где формирует аэрозоль из твердого измельчаемого вещества…

Технология производства пастеризованного молока

Устройство и принцип действия линии

Вначале оценивается качество молока и производится его приемка, в процессе которой молоко перекачивается центробежными насосами 1 из автомолцистерн…

Технология ремонта и обслуживание асинхронного двигателя с короткозамкнутым ротором

1.4 Технологическая карта ремонта и обслуживания асинхронного двигателя с короткозамкнутым ротором

№ п/п Наименование и содержание работ Оборудование и приспособления Технические требования 1 Наружный осмотр электрической машины, в том числе систем управления, защиты, вентиляции и охлаждения…

Управление асинхронными двигателями

1.3 Схема включения асинхронного двигателя с фазным ротором

Рис. 3. Схема пуска асинхронного двигателя с фазным ротором Используя схему асинхронного двигателя (рис. ) рассмотрим запуск в две ступени который проводится с использованием релейно-контакторной аппаратуры…

Центробежные компрессоры

Устройство и принцип действия

Центробежным называется такой компрессор, сжатие газа на колесе которого осуществляется за счет действия центробежных сил инерции на массы воздуха, увлекаемые во вращательное движение совместно с колесом компрессора…

Устройство трехфазного асинхронного двигателя

Электродвигателем называется электрическая машина, функциональным назначением которой является преобразование энергии электрической в энергию механическую. Существует несколько типов электродвигателей постоянного или переменного тока.

Одним из наиболее распространенных типов электродвигателей, нашедших свое применение в производственных условиях различного назначения, является трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.

Отличительными особенностями данного типа электродвигателей является отсутствие скользящих контактов, простота и надежность конструкции, легкость технического обслуживания.

Основной функциональный узел трехфазного асинхронного двигателя включает в себя две составные части: статор и короткозамкнутый ротор. Конструктивно статор и ротор представляют собой пакеты пластин, выполненных из специальной электротехнической стали.

Сердечник статора имеет трехфазную обмотку, уложенную и закрепленную в специальных пазах. Фазы обмотки статора соединены по типу «звезда» или «треугольник» в зависимости от напряжения и особенностей питающей сети.

Сердечник ротора и его обмотка не изолированы друг от друга. Обмотка ротора и вентиляционные лопатки представляют собой слитную конструкцию, выполненную из сплава алюминия или полностью алюминиевую. Стержневые выводы обмотки ротора накоротко замкнуты надетыми на них кольцами и образуют конструкцию, называемую «беличьей клеткой».

Принцип действия трехфазного асинхронного двигателя основан на использовании закона электромагнитной индукции. Сердечник статора с трехфазной обмоткой создает вращающееся магнитное поле, силовые линии которого пересекают короткозамкнутые стержневые выводы обмотки ротора. Электродвижущая сила, наведенная в роторе, способствует протеканию переменного тока в его обмотке.

Переменный ток, протекающий в обмотке ротора, создаёт вокруг него магнитное поле, силовые линии которого пересекаются с магнитным полем сердечника статора. Взаимодействующие магнитные поля приводят в движение ротор, который начинает вращаться в направлении магнитного поля статора.

Двигатель назван асинхронным из-за частоты вращения ротора, которая имеет несколько меньшую величину, чем синхронная частота вращения магнитного поля статора и считается асинхронной.

Конструкция асинхронных трехфазных двигателей достаточно проста и надежна в эксплуатации, что позволяет оборудовать ими технические устройства различного назначения. Асинхронные трехфазные двигатели приводят в движение многие виды производственного оборудования и вспомогательных механизмов.

Трехфазными асинхронными двигателями оснащены станки металлообрабатывающей и деревообрабатывающей промышленности, насосное и конвейерное оборудование, строительная техника, многие виды вспомогательных технических устройств.

Трехфазные асинхронные двигатели надежны и не теряют работоспособности в условиях значительных кратковременных перегрузок.

Асинхронные двигатели, наиболее пригодны, для изготовления в герметическом исполнении. Такие двигатели могут эксплуатироваться даже в очень тяжелых специфических условиях.

Простая и надежная конструкция трехфазных асинхронных электродвигателей обуславливает их повсеместное использование в различных сферах производства. Данный тип двигателей нашел широкое применение в технологическом оборудовании для строительной, судостроительной, автомобилестроительной и многих других отраслей.

Что такое двигатель с короткозамкнутым ротором и как он работает?

Электродвигатели – это машины, преобразующие электрическую энергию в механическую, и в настоящее время они доминируют в современной промышленности. Они просты в использовании, имеют простой дизайн и бывают разных форм, что позволяет им добиться успеха практически в любой ситуации. Электродвигатели могут питаться от постоянного (DC) или переменного (AC) тока, и в этой статье будет рассмотрен конкретный двигатель переменного тока, известный как двигатель с короткозамкнутым ротором. Эти двигатели представляют собой особый тип асинхронных двигателей, которые используют эффект электромагнитной индукции для преобразования электрического тока в энергию вращения (дополнительную информацию можно найти в нашей статье об асинхронных двигателях).В этой статье будут объяснены принципы работы двигателей с короткозамкнутым ротором, как они работают и для каких применений они используются. Таким образом, дизайнеры могут сделать осознанный выбор при выборе правильного двигателя.

Что такое двигатели с беличьей клеткой?

Двигатели с короткозамкнутым ротором – это подкласс асинхронных двигателей, которые используют электромагнетизм для создания движения. Это так называемые двигатели с «короткозамкнутым ротором», потому что форма их ротора – внутреннего компонента, соединенного с выходным валом – напоминает клетку.Две круглые торцевые крышки соединены стержнями ротора, на которые действует электромагнитное поле (ЭМП), создаваемое статором, или внешним корпусом, состоящим из многослойных металлических листов и намотки проволоки. Статор и ротор являются двумя основными частями любого асинхронного двигателя, а беличья клетка – это просто один из способов использования эффекта электромагнитной индукции. Переменный ток, проходящий через статор, создает ЭДС, которая колеблется с частотой переменного тока, которая «вращается» вокруг ротора, создавая противоположные магнитные поля в стержнях ротора, вызывая движение.

Как работают двигатели с беличьей клеткой?

По сути, двигатели с короткозамкнутым ротором работают не иначе, чем большинство других асинхронных двигателей, и отличаются только конкретным взаимодействием между ротором и статором. Наша статья об асинхронных двигателях содержит обсуждение основных законов, лежащих в основе всех асинхронных двигателей, и дает понимание того, как движение создается за счет магнетизма.

Двигатели

с короткозамкнутым ротором максимизируют электромагнитную индукцию за счет использования стержней ротора для взаимодействия с ЭДС статора.Статор обычно содержит обмотки из проволоки, по которым протекает переменный ток; этот ток изменяется синхронно с синусоидальной кривой (или «чередуется»), которая изменяет направление тока в обмотках провода. Когда ток колеблется, генерируемая ЭДС будет следовать его примеру и в некоторых случаях заставит его «вращаться» с частотой, подобной частоте переменного тока. Эта вращающаяся ЭДС создает противоположное напряжение и ЭДС в стержнях ротора, тем самым толкая ротор, создавая вращательное движение.

Этот ротор не вращается с точной частотой переменного тока, поэтому двигатели с короткозамкнутым ротором (как и другие асинхронные двигатели) считаются асинхронными. Всегда есть некоторая потеря или «проскальзывание» между частотой переменного тока и частотой вращения вала, и это является следствием в первую очередь того, почему ротор вращается. Если бы ротор вращался с той же частотой, то величина силы, действующей на стержни ротора, была бы равна нулю, таким образом, не создавая движения. Ротор всегда должен работать медленнее, чтобы почувствовать эффект электромагнитной индукции, как если бы ротор постоянно играл в магнитную игру «догонялки».Чтобы узнать больше, посетите нашу статью о типах двигателей переменного тока.

Характеристики двигателя с короткозамкнутым ротором

Наша статья об асинхронных двигателях объясняет спецификации для всех типов асинхронных двигателей и является хорошим местом, чтобы увидеть все различные характеристики асинхронных двигателей. В этой статье основное внимание будет уделено тому, что необходимо указать для асинхронных двигателей с короткозамкнутым ротором, а именно фазе, скорости, крутящему моменту и току. Поскольку эти двигатели пользуются огромной популярностью, NEMA и IEC разработали стандартизованные классы двигателей с короткозамкнутым ротором на основе их характеристик скорости-момента.Это позволяет производить взаимозаменяемые двигатели между производителями и упрощает замену двигателей. Эти принципы, а также различные классы стандартных двигателей с короткозамкнутым ротором будут кратко объяснены ниже.

Тип фазы

Асинхронные двигатели

могут приводиться в действие однофазным (одна частота переменного тока) или многофазным (несколько частот переменного тока) в зависимости от входного источника питания. Некоторые из наиболее распространенных типов двигателей с короткозамкнутым ротором используют три фазы, что означает, что входной ток представляет собой три идентичных частоты переменного тока, разделенных на 120 градусов по фазе.Трехфазные двигатели являются самозапускающимися, что означает, что единственным необходимым входом является пусковое напряжение, что делает эти двигатели, по сути, самозапускающимися. Однофазные двигатели также распространены, но они не самозапускаются и требуют некоторого начального толчка. Это связано с тем, что одной частоты переменного тока недостаточно для создания действительно «вращающейся» ЭДС, и необходимо выполнить некоторую компенсацию для имитации вращающегося поля. Это можно сделать с помощью пускателей, которые могут быть конденсаторами, разделенными фазами или другими компонентами. Подробнее о пускателях можно прочитать в нашей статье о типах пускателей двигателей.

Крутящий момент двигателя и кривая крутящего момента-скорости

Хотя двигатели с короткозамкнутым ротором работают с базовыми скоростями и крутящими моментами, им необходимо достичь этого установившегося состояния посредством некоторого переходного пуска. Этот запуск, обычно визуализируемый посредством кривой крутящего момента – скорости, жизненно важен, поскольку он определяет, с какими рабочими условиями может работать двигатель. На рисунке 1 ниже показаны важные участки кривой крутящий момент-скорость для любого асинхронного двигателя.

Рис. 1: Кривая крутящий момент-скорость для асинхронных двигателей с обозначенными важными участками.

Пусковой крутящий момент – это крутящий момент при запуске двигателя. Вытягивающий или разрушающий крутящий момент – это максимальный крутящий момент, достигаемый перед максимальной скоростью. Номинальный крутящий момент – это выходной крутящий момент в установившемся режиме, который обычно указан на паспортной табличке двигателя. Разница между синхронной скоростью и скоростью, достигаемой при номинальном крутящем моменте, определяет скольжение двигателя.

Классы NEMA для многофазных асинхронных двигателей с короткозамкнутым ротором

Рис. 2: Кривые крутящий момент-скорость для двигателей стандартных классов NEMA.
Таблица 1: Обобщенные характеристики стандартных двигателей NEMA с короткозамкнутым ротором.

Стандарт NEMA

S.C.I.M.

Пусковой крутящий момент

Пусковой ток

Квитанция

Класс A

Нормальный

Обычный

Нормальный

Класс B

Нормальный

Низкая

Обычный

класс C

Высокая

Низкая

Нормальный

Класс D

Высокая

Низкая

Высокая

На рис. 2 показаны кривые для двигателей с короткозамкнутым ротором различных классов NEMA.Существует четыре основных класса (A, B, C и D), хотя их больше в зависимости от специфики. Эти четыре класса приведены в таблице 1 с точки зрения их пускового момента, тока и величины скольжения. Существуют и другие нестандартные двигатели с короткозамкнутым ротором, но они обычно изготавливаются в соответствии со спецификациями покупателя.

Двигатели

класса A являются наиболее популярным типом двигателей с короткозамкнутым ротором. У них нормальный пусковой момент и ток, а также скольжение менее 5% от синхронной скорости. Распространенными приложениями являются вентиляторы, компрессоры, конвейеры и другие устройства с низкой инерционной нагрузкой, которые позволяют быстро разгонять двигатель.

Двигатели

класса B можно запускать при полной нагрузке, что делает их полезными для высокоинерционных применений (большие вентиляторы, центробежные насосы и т. Д.). У них нормальный пусковой момент, более низкий пусковой ток, чем у двигателей класса A, и скольжение менее 5% при полной нагрузке. Эти двигатели иногда взаимозаменяемы с двигателями класса А, особенно когда требуется пониженное пусковое напряжение.

Двигатели

класса C имеют высокий пусковой момент и низкий пусковой ток благодаря конструкции ротора с двойной обоймой. Из-за этого улучшения они более дорогие, чем двигатели классов A и B, но также обладают способностью выдерживать высокие пусковые моменты, например, в нагруженных насосах, компрессорах, дробилках и т. Д.Их скольжение также обычно составляет менее 5%.

Двигатели

класса D обладают наивысшими пусковыми моментами, низким пусковым током и большим скольжением при полной нагрузке (от 5% до 20% в зависимости от применения). Их крутящий момент отрыва происходит на гораздо более низкой скорости, чем у двигателей других классов, что можно увидеть, сравнив положение пиков каждой кривой на Рисунке 2. Высокое сопротивление ротора, которое делает двигатели класса D такими сильными, также отвечает за их более низкий пиковый крутящий момент. скорости, иногда вызывая пиковый крутящий момент при нулевой скорости (100% скольжение).Двигатели класса D обычно применяются в бульдозерах, литейных машинах, пробивных прессах и т. Д.

Заявки и критерии отбора

Асинхронные двигатели

с короткозамкнутым ротором являются популярным выбором в промышленности, отчасти из-за их низкой стоимости, простоты обслуживания, высокой эффективности, хорошего регулирования температуры и безопасности. Их самым большим недостатком является отсутствие контроля скорости, поэтому для решения этих задач были разработаны другие двигатели (двигатели с фазным ротором). Стандартные рамы NEMA позволяют легко выбрать правильный двигатель, требуя только рабочих характеристик проекта.

Так, например, если кузнечный бизнес создает новый силовой молот, который должен обеспечивать быстрые и сильные удары, им следует исследовать двигатели класса D, поскольку они обеспечивают чрезвычайно высокий пусковой момент. Точно так же, если двигатель необходим для простого вентилятора HVAC, двигатели классов A и B будут работать отлично. Определите необходимые крутящие моменты, скорости и напряжения для работы, и на рынке обязательно найдется подходящая беличья клетка.

Сводка

В этой статье представлено понимание того, что такое асинхронные двигатели с короткозамкнутым ротором и как они работают.Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:

  1. https://geosci.uchicago.edu
  2. http://hyperphysics.phy-astr.gsu.edu/hbase/mintage/indmot.html
  3. http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
  4. https://www.controleng.com/articles/what-to-consider-when-choosing-an-ac-induction-motor/
  5. http: // ocw.uniovi.es
  6. http://people.ece.umn.edu/users/riaz/animations/sqmovies.html

Прочие изделия из двигателей

Больше от Machinery, Tools & Supplies

Вентиляторы с короткозамкнутым ротором

Воздуходувка с короткозамкнутым ротором, также известная как центробежный вентилятор, используется для перемещения воздуха и газов в различных областях. Это снаряжение названо так потому, что его конструкция похожа на колесо хомяка. Эти типы нагнетателей используют кинетическую энергию для увеличения скорости и мощности воздушного потока; Это отличает их от нагнетательных нагнетателей, которые используют механическую энергию для физического перемещения воздуха от входа к выходу.

В основе воздуходувки с короткозамкнутым ротором лежит крыльчатка, представляющая собой круговой или цилиндрический механизм с рядом изогнутых лопаток. При вращении крыльчатки окружающий ее воздух также вращается с той же скоростью. Это действие передает центробежную силу воздуху, заставляя его двигаться радиально наружу к стенкам нагнетателя или корпуса вентилятора. Воздух движется по спиральной траектории, увеличивая давление и скорость, пока не выйдет из выпускного конца воздуходувки.

Вентиляторы Squirrel известны своей превосходной энергоэффективностью по сравнению с другими типами воздуходувок.Они также прочные, надежные, относительно тихие и способны работать в широком диапазоне условий окружающей среды. Эти атрибуты делают воздуходувки с короткозамкнутым ротором очень востребованным устройством в индустрии отопления, вентиляции и кондиционирования воздуха.

Использование / применение решетчатых вентиляторов и нагнетателей

Воздуходувки

с короткозамкнутым ротором используются в широком спектре промышленных применений из-за их высокой эффективности и относительно низкой стоимости. Обычно они используются там, где требуется постоянный поток больших объемов воздуха, например, в системах вентиляции, горения, охлаждения и нагрева, сушки и воздушных конвейеров.Некоторые из этих промышленных применений подробно описаны ниже:

● Движение воздуха в коммерческих / жилых зданиях
Циркуляция воздуха в помещении является важным компонентом систем HVAC. Эта операция помогает удалить неприятные запахи, контролировать влажность и температуру, а также вводит наружный воздух для предотвращения застоя. Беличьи вентиляторы являются важнейшим компонентом этих систем распределения.

● Промышленная сушка
При использовании в сочетании с системами обогрева можно использовать беличьи вентиляторы для подачи контролируемого потока воздуха для ускорения сушки некоторых продуктов, включая зерно, обработанные пищевые продукты, окрашенные поверхности и древесину.

● Экологические камеры
Высокая эффективность и низкий уровень шума вентиляторов с короткозамкнутым ротором часто используются в климатических камерах для регулирования таких параметров, как влажность и температура.

● Отвод дыма
Вентиляторы типа Squirrel обычно используются для удаления потенциально токсичных и опасных паров. Это важно во многих отраслях для поддержания безопасной рабочей среды. Эти системы вентиляторов предпочтительнее других типов из-за их эффективности и регулируемой мощности.

Характеристики, определяющие качество работы

Одним из наиболее важных компонентов типичного воздуходувки с короткозамкнутым ротором являются подшипники. Подшипники помогают направлять движение оси рабочего колеса и помогают уменьшить истирание и сопротивление, что может значительно снизить эффективность воздуходувки. Поэтому очень важно, чтобы подшипники были хорошо смазаны и имели соответствующую конструкцию, чтобы минимизировать трение.

Конструкция лопастей вентилятора – еще один фактор, который может определять производительность этих типов воздуходувок.Конфигурации с несколькими лопастями состоят из расположения нескольких лопастей вокруг рабочего колеса. Это дает крыльчатке большую площадь поверхности, что дает ей возможность передавать более высокую центробежную силу воздуху в корпусе. На эффективность многолопастных рабочих колес дополнительно влияют другие характеристики, такие как форма, угол и количество лопастей.

Суровые условия, такие как коррозионная атмосфера, также могут повредить как статические, так и движущиеся компоненты, что может увеличить потребляемую энергию и снизить эффективность воздушного потока.Поэтому необходимо надлежащим образом защитить воздуходувное оборудование, чтобы оно могло выдерживать такие условия.

Решения по перемещению воздуха для любых приложений

Pelonis Technologies, Inc. предлагает широкий ассортимент больших и малых вентиляторов с короткозамкнутым ротором для различных отраслей промышленности. Чтобы узнать, какое из наших решений лучше всего подходит для вашего приложения, просмотрите наши продукты.

Параллельное интегрированное устройство управления индукционным ветрогенератором с короткозамкнутым ротором LVRT

[1] Дунли Чжао, Шуджу Ху, Бинь Чжао и др.: Мир инверторов.Vol. 2 (2009 г.). С. 35-40. На китайском.

[2] Чжан Син, Лунюнь Чжан, Шуин Ян и др.: Материалы Китайского общества университетов по электроэнергетической системе и ее автоматизации.Форум 2, Том. 2 (2008 г.). стр.1-8. На китайском.

[3] К. Э. Линь, Ю. С. Шиао, К. Л. Хуанг и др.: Транзакция по энергетическим системам.Форум 3, Том. 7 (2002).

[4] Технологические правила доступа ВЭС к сети. Опубликовано Государственной сетевой корпорацией Китая, 2009 г.9. 2.

[5] Цю Хун: передано в Северо-Китайский энергетический университет (2010 г.). На китайском.

[6] Юннин Чи, Яньхуа Лю, Вэйшэн Ван и др.: Международная конференция по технологиям энергосистем.(2006).

[7] Ин Ченг, Чанг Цянь, Мариеса Л. Кроу: Сделки IEEE по промышленной электронике, Форум 5, Том. 53 (2006).С. 1512-1521.

[8] Миад М., Дэвид X, Бо Ювен: Международная конференция по электрическим машинам и приводам IEEE (IEMDC). (201).С. 813-818.

[9] Ли Вей Чунг, Мохд Фадзил Мохд Сиам. Амир Баша Исмаил: Материалы Национальной конференции по энергетике и энергетике (PECon), Куайя-Лумпур, Малайзия.(2004). С. 205-212.

[10] Бабак Бадрзаде, С.К. Салман: Передача энергии переменного и постоянного тока, 2006. ACDC 2006. 8-я Международная конференция IEE по.(2006), стр. 167-171.

DOI: 10.1049 / cp: 20060034

Анализ потерь от паразитной нагрузки в индукционной машине с медным короткозамкнутым ротором

Аннотация

Наше исследование направлено на демонстрацию важности и влияния паразитных потерь на динамические характеристики индукционной машины с медным короткозамкнутым ротором.Это играет важную роль в эффективности машины, но также и во внешнем виде характеристики электромагнитного крутящего момента.

Во-первых, вопрос заключается в том, чтобы узнать происхождение этих паразитных потерь и затем определить их влияние на крутящий момент с точки зрения характеристики скорости и на КПД с точки зрения характеристики эффективной мощности. Наконец, было бы интересно посмотреть, как сделать его оптимальным.

Ключевые слова

Машина с короткозамкнутым ротором, литье под давлением, потери на паразитную нагрузку, электромагнитный момент, высокоэффективные машины

Это предварительный просмотр содержания подписки,

войдите в

, чтобы проверить доступ.

Предварительный просмотр

Невозможно отобразить предварительный просмотр. Скачать превью PDF.

Ссылки

  1. [1]

    Дж. К. АНДРЕАС, «Энергоэффективные электродвигатели – выбор и применение»

    Изд. Марсель Деккер. Google Scholar
  2. [2]

    Norme IEEE Std 112–1996, «Стандартная процедура испытаний IEEE для многофазных асинхронных двигателей и генераторов».

    Google Scholar
  3. [3]

    T CHEVALIER, «Моделирование и измерение параметров электрических машин, применение асинхронных машин»

    Thèse de doctorat décembre 1999. Google Scholar
  4. [4]

    A. ANSEL, O.WALTI, JFBRUDNY, «Influence de la coulée sous ssion d’une cage d’écureuil en cuivre sur le comportement magnétique d’une machine asynchrone triphasée»

    Thèse de doctorat juin 2001. Google Scholar
  5. [5]

    TL СИКА ВЕРЕНИНА, «Теория и эффекты игнорирования переходных процессов в статоре и сетях»,

    , доктор философии. Диссертация Purdue University декабрь 1979. Google Scholar

Информация об авторских правах

© Springer-Verlag Berlin Heidelberg 2003

Авторы и аффилированные лица

  1. 1.14 rue Louis DeneuxSearch, La Quinta 2France

Как работают клетки Фарадея | HowStuffWorks

Электричество – это источник жизненной силы для многих аспектов нашего мира. Без вольт и усилителей многие из наших технологических инноваций перестали бы существовать.Даже наши тела не могли бы функционировать без электрического заряда, пронизывающего наши клетки. Но то, что дает электричество, электричество можно забрать.

Хотя эта форма энергии жизненно важна для многих в нашей жизни, это одна из тех вещей, которые хороши только в нужных количествах. Слишком большое количество электричества может привести к поражению людей электрическим током. Точно так же он может убить нашу современную электронику и машины.

Но благодаря Майклу Фарадею, блестящему ученому 19-го века, и одному из его одноименных изобретений, клетке Фарадея, мы, люди, разработали множество способов контролировать электричество и сделать его более безопасным для наших компьютеров, автомобилей и других изобретений – и для нас тоже.

Клетки Фарадея защищают свое содержимое от статических электрических полей. Электрическое поле – это силовое поле, окружающее заряженную частицу , такую ​​как электрон или протон.

Эти клетки часто выглядят отчетливо, ну, похоже, на клетку. Некоторые из них так же просты, как забор из сетки рабицы или ведра для льда. Другие используют мелкую металлическую сетку. Независимо от их точного внешнего вида, все клетки Фарадея принимают электростатические заряды или даже определенные типы электромагнитного излучения и распределяют их по внешней стороне клетки.

Электромагнитное излучение повсюду вокруг нас. Он находится в видимом и ультрафиолетовом свете, в микроволновых печах, которые готовят нашу еду, и даже в радиоволнах FM и AM, которые перекачивают музыку через наши радиоприемники. Но иногда это излучение нежелательно и совершенно разрушительно. Вот где пригодятся клетки Фарадея.

Поскольку клетка Фарадея распределяет этот заряд или излучение по внешней стороне клетки, она нейтрализует электрические заряды или излучение внутри клетки. Короче говоря, клетка Фарадея – это полый проводник, в котором заряд остается на внешней поверхности клетки.

Эта основная функция имеет множество увлекательных применений в нашем электрически загроможденном и насыщенном технологиями мире. И хотя у Фарадея в конечном итоге будет свое время, основа для его изобретения на самом деле уходит корнями в более ранние времена. Итак, откуда взялась идея этих сверхполезных клеток? Узнай на следующей странице.

Исключение дикой природы с использованием односторонних дверей

Информация об исключении диких животных с помощью односторонних дверей

причин выбрать односторонние двери

Используя односторонние двери, вам не придется вступать в контакт с животными, о которых идет речь.Вместо этого вы делаете все, когда их нет или не подходите слишком близко. Это сводит к минимуму риск укусов, царапин или заболевания. Кроме того, односторонние двери проще для животного, чем отлов и перемещение, поскольку они будут знакомы с территорией вокруг вашего владения. Хотя иногда переселение действительно работает, для рассматриваемого дикого животного часто бывает невозможно или невероятно сложно найти пищу, воду и убежище. Это снижает их шансы на выживание, но в случае исключения они будут в знакомой местности и будут знать, где найти эти вещи.

Как использовать односторонние двери

Процесс использования двери с односторонним движением относительно прост. Вы начинаете с того, что закрываете все точки входа в зону, кроме главной. После этого вы размещаете защитное устройство, например одностороннюю дверь, над оставшимся входом. Животные должны иметь возможность покинуть место, но не вернуться внутрь, если оно установлено правильно. Через несколько дней проверьте, нет ли на вашей территории всех диких животных. Затем вы можете снять одностороннюю дверь и закрыть последнее отверстие.После этого вам останется только очистить пространство, чтобы удалить все следы дикой природы. Это важный шаг для предотвращения болезней и неприятных запахов, в том числе тех, которые могут привлечь внимание других диких животных.

Оставьте это профессионалам

Можно самостоятельно сделать изоляцию дикой природы с помощью односторонней двери, но очень легко пропустить вход, если вы не знаете, что искать. Поскольку единственный открытый вход оставит путь открытым для большего количества диких животных, чтобы проникнуть внутрь – или тех, кого вы выселили, чтобы вернуться, – вам нужно найти и закрыть каждую дыру.Профессионалу будет проще сделать это, поскольку он знает признаки точки входа и просто имеет больше опыта в их поиске. Кроме того, исключение часто связано с подъемом по лестницам для поиска и запечатывания точек входа, что может быть опасно и лучше оставить профессионалам. Независимо от того, какие животные живут в вашем доме или здании, вам захочется убрать их из своего пространства как можно скорее. Это сводит к минимуму ущерб, который дикая природа может нанести вашей собственности, а также связанные с этим риски для здоровья.В то время как некоторые люди автоматически обращаются к ловушке и перемещению в качестве ответа, односторонние двери – гораздо лучшая альтернатива. И не забывайте, что вы можете использовать эту технику на колпаке дымохода. Читать все о животных в дымоходе.

squirrel cage: значение, синонимы – WordSense Dictionary

squirrel cage (английский)

Альтернативные формы

Существительное

клетка для белок ( пл. клетки для белок )
  1. Круглая клетка для белки или другого небольшого животного, которая вращается вертикально, когда животное бежит по дну.
  2. (, в переносном смысле – ) Утомительная, повторяющаяся, нереализуемая деятельность или ситуация, особенно такая, в которой не достигается никакого прогресса.
  • 1944 , Б. Р. Макэлдерри мл., «Гроздья гнева: в свете современной критической теории», College English , vol. 5, вып. 6, стр. 312:
    Бедные борются за богатство, успех, власть; но те, кто их достигает, вымирают. Жизнь есть, то этакая беличья клетка или беговая дорожка.
  • 1986 , Мэдисон Смарт Белл, Straight Cut (издание Open Road Media 2011), ISBN 9781453235515, (Google Preview):
    Так что, может быть, я бы даже не стал звонить Кевину. . . . Или я мог просто увидеть его в обществе. . . . Или я мог. . . . Или, или, или. . . . Я все еще бегал в этой беличьей клетке , когда большое серое ядовитое облако, которое обычно покрывает Нью-Йорк, материализовалось рядом с правым крылом.
  • ( инженерное дело ) Любое другое устройство, например вентилятор или ротор, по форме напоминающее беличью клетку.
    • 1996 19 мая, Эдвард Р. Липински, «Домашняя клиника: время проверять кондиционеры», New York Times (получено 13 февраля 2014 г.) :
      Воздуходувка в форме барабанного вентилятора (также называемая «беличья клетка , ») вытягивает теплый влажный воздух из комнаты через змеевики.
    Синонимы

    См. Также


    Записи с «беличьей клеткой»

    amortisseur winding : amortisseur winding (англ.) Существительное amortisseur winding (мн.обмотки амортизатора) Обмотка с короткозамкнутым ротором, расположенная вблизи поверхности полюсов синхронного двигателя. Его основное предназначение – это…

    колесо хомяка :… лот – бродить по ржавому хомячьему колесу жизни. Синонимы вращающаяся клетка: беличья клетка монотонная, повторяющаяся, невыполнимая деятельность: крысиные бега См. Также…

    беличье колесо : беличье колесо (английский) Существительное беличье колесо (мн. Беличье колесо) Альтернативное название беличьего клетки

    беличье колесо : squirrel cages (английский) Существительное squirrel cages Множественное число squirrel’s cage

    squirrel’s cage : squirrel’s cage (английский) Существительное squirrel’s cage (мн.беличьи клетки) Альтернативная форма беличьих клеток


    Поделиться


    Примечания, добавленные пользователями

    Для этой записи нет примечаний, добавленных пользователями.

    Добавить примечание

    Сделать пометку в записи «беличья клетка». Напишите подсказку или пример и помогите улучшить наш словарь. Не просите о помощи, не задавайте вопросов и не жалуйтесь. HTML-теги и ссылки не допускаются.

    Все, что нарушает эти правила, будет немедленно удалено.


    Next

    беличьи клетки (английский) Имя существительное беличьи клетки Множественное число беличьей клетки

    белка кукурузы (англ.) Имя существительное беличья кукуруза (бесчисленное множество) Dicentra …

    squirrel grass (английский) Имя существительное беличья трава (бесчисленное множество) foxtail …

    squirrel grasses (английский) Имя существительное беличья трава Множественное количество белки-травы

    squirrel grip (английский) Имя существительное беличья хватка (мн.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *