Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Принцип работы люминесцентной лампы

Категория: Источники освещения

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Люминесцентные лампы

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Движение электронов в лампе

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Преобразование в видимый свет

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Стартер на схеме лампы

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

Принцип работы люминесцентной лампы и ее устройство
люминесцентная лампа

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

устройство электроприбора

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

вариант подключения лампы

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

чертеж подключения лампочки

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.
лампы Вуда

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

принцип работы люминесцентной лампы

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

люминесцентный источник света

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

устройство, принцип работы, виды, маркировка

Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания. С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих. Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.

Устройство и принцип работы

Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и  других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.

Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.

Устройство и принцип действия люминесцентной лампыРис. 1. Устройство и принцип действия люминесцентной лампы

Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:

  • На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
  • При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
  • Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит  активация и последующей свечение люминофора.

Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.

Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.

Разновидности

Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.

По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:

  • Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
  • Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.

По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную  форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.

Разновидности колбыРис. 2. Разновидности колбы

По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с  цоколем типа W и F, но они используются довольно редко.

Разновидности цоколейРис. 3. Разновидности цоколей

По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.

Цветовая температураРис. 4. Цветовая температура

Маркировка

Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.

Отечественная

Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.

Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:

  • Д – дневного спектра;
  • ХБ – холодное белое свечение;
  • Б – белого цвета;
  • ТБ – белый теплых оттенков;
  • ЕБ – белый естественного спектра;
  • УФ – ультрафиолетового спектра;
  • Г – голубого цвета;
  • С – синего оттенка;
  • К – красный спектр излучения;
  • Ж – желтого оттенка
  • З – зеленого цвета.

Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.

В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:

  • А – амальгамного типа;
  • Б – с быстрым пуском;
  • К – кольцевого вида;
  • Р – рефлекторные лампы
  • У – U образные.

Зарубежная

Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.

Тип свечения определяется цифровым кодом с буквенным пояснением на английском:

  • 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
  • 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
  • 765 – голубого оттенка с посредственным уровнем передачи цветов;
  • 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
  • 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
  • 840 – белого оттенка с хорошим уровнем передачи цветов;
  • 865 – дневного спектра с хорошей цветопередачей;
  • 880 – дневной спектр с отличной степенью передачи света;
  • 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
  • 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
  • 954/965 – люминесцентные устройства с непрерывным спектром.

Технические характеристики

Важными техническими характеристиками для люминесцентных ламп являются:

  • Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
  • Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
  • Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
  • Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
  • Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
  • Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и  G13 штырькового образца и другие.

Особенности подключения к сети

В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.

Электромагнитный балласт

Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.

Схема подключения с электромагнитным балластомРис. 5. Схема подключения с электромагнитным балластом

Как видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.

Электронный балласт

Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.

Использование электронного балластаРис. 6. Использование электронного балласта

Как видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.

Причины выхода из строя

Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.

Наиболее частыми причинами выхода люминесцентных ламп со строя являются:

  • перегорание нити накала – характеризуется полным отсутствием свечения;
  • нарушение целостности контактов – также не дает лампе загореться;
  • разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
  • перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
  • обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
  • замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.

Плюсы и минусы

В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.

К преимуществам люминесцентных устройств следует отнести:

  • Достаточно высокая эффективность, в сравнении с теми же лампами накаливания выдают на порядок больший световой поток на каждый ватт потребленной электроэнергии;
  • Имеет несколько вариантов цветового спектра, что делает обоснованным их применение для различных целей;
  • Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот же показатель у ламп накаливания и галогенок;
  •  Достаточно большое разнообразие конструкций – компактные, большие, удлиненные и т.д.

Однако и недостатков у люминесцентных ламп существует немало:

  • Гораздо  более высокая стоимость;
  • Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
  • Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
  • Стабильность работы во многом зависит от температуры и влажности окружающей среды;
  • Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
  • В сравнении со светодиодными светильниками, бояться механических повреждений;
  • Не поддаются классическим методам управления яркостью.

Область применения

Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.

В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.

устройство, праметры, схема, плюсы и минусы

Современные люминесцентные лампы (ЛЛ) прекрасно справляются с освещением жилых, рабочих и технических помещений большой площади и позволяют снизить общее потребление электричества на 50-83%, уменьшив таким способом счета за коммунальные услуги.

В этой статье рассмотрим рабочие характеристики ЛЛ, их устройство, разберем основные преимущества и недостатки в сравнении с другими типами осветительных приборов. В дополнение приведем тематические фото и схемы, а также видеоролики о принципе работы лампочек люминесцентного типа и особенностях их применения.

Содержание статьи:

Принцип работы и устройство ЛЛ

Люминесцентный прибор представляет собой газозарядный источник света, где в ртутных парах электрический разряд создает интенсивное ультрафиолетовое излучение.

Компактные модули люминесцентного типа имеют стандартный цоколь, благодаря которому становятся удобной заменой ярких, но более энергозатратных ламп накаливания.

Как работает люминесцентная лампочка?

В видимый человеческому глазу свет его преображает специальный состав под названием люминофор, состоящий из галофосфата кальция, смешанного с дополнительными элементами.

После подключения к центральной электросети люминесцентной лампы, внутри стеклянной колбы требуется поддерживать так называемый тлеющий разряд.

Он дает возможность обеспечить свечение люминофорного слоя в постоянном режиме и даже в период кратковременного отключения центрального электропитания.

Люминесцентные лампы разных формЛюминесцентные лампы разных форм

Раньше классическая лампа люминесцентного типа имела вид запаянной с двух сторон трубки, внутри которой находятся пары ртути. Сейчас приборы выпускаются в более разнообразных формах и конфигурациях

Конструкционные особенности прибора

Традиционная лампа люминесцентного типа — это стеклянный цилиндр с внешним диаметром 12, 16, 26 и 38 мм, обычно представленный как:

  • прямая удлиненная трубка;
  • изогнутый U-образный модуль;
  • кольцо;
  • сложная фигура.

В торцевые края герметично впаяны ножки. На их внутренней стороне размещены вольфрамовые электроды, конструктивно напоминающие биспиральные тела накала, встроенные в лампочки «Ильича».

Ламповая триспиральЛамповая триспираль

В отдельных типах люминесцентных ламп используются более прогрессивные триспирали, представляющие собой закрученную биспираль. Оснащенные ими приборы имеют повышенный уровень КПД и более низкий порог теплопотери, существенно поднимающие общую эффективность светопотока

С наружной части электродные элементы подпаяны к металлическим штырькам металлического , на которые подается рабочее напряжение.

U-подобные и прямые приборы обычно оснащены цоколями G5 и G13, где буквенная кодировка означает штырьковый тип цокольного элемента, а цифровая показывает, на каком расстоянии друг от друга располагаются рабочие элементы.

Электропроводная среда, располагающаяся внутри стеклянной колбы, обладает отрицательным сопротивлением. Когда между двумя противоположными электродами возникает рост тока, требующий ограничения, оно проявляется и снижает рабочее напряжение.

В схему цепи включения обычной люминесцентной лампочки входит или балластник. Он отвечает за создание высокоуровневого импульсного напряжения, необходимого для корректной активации лампы.

Схема устройства люминесцентной лампыСхема устройства люминесцентной лампы

Рисунок показывает внутреннее обустройство лампы люминесцентного типа и наглядно объясняет базовый принцип работы ее основных составных элементов

Помимо этой детали, ЭмПРА комплектуется . Он представляет собой элемент тлеющего разряда, внутри которого располагаются два электрода, окруженные средой инертного газа.

Один из них состоит из биметаллической пластины. В спящем режиме оба электрода находятся в разомкнутом состоянии.

Распространенные виды таких лампочек

Первичная классификация изделий на люминесцентной основе производится по уровню базового давления. Приборы высокого давления используются для осветительных установок большой мощности и наружного уличного освещения.

Лампы низкого давления применяются в быту для подачи света в производственные, технические и жилые помещения различного назначения.

Вид #1 — модули высокого давления

Устройства высокого давления вырабатывают насыщенный светопоток хорошей плотности. Внутренняя поверхность колбового элемента имеет специальное люминофорное покрытие из фторогерманата или арсената магния.

Рабочая мощность таких люминесцентных ламп колеблется в диапазоне 50-2000 Вт.

Люминесцентная лампа высокого давленияЛюминесцентная лампа высокого давления

Ртутные модули высокого давления для корректной работы нуждаются в 220 ваттном номинальном сетевом напряжении. Коэффициент их пульсации обычно составляет от 61 до 74%

Полный розжиг осветительного модуля происходит в течение 3 секунд. Срок службы 80-125-ваттных изделий составляет около 6 000 ч, а лампы от 400 Вт и более могут проработать до 15 000 ч при беспрекословном соблюдении правил эксплуатации, установленных изготовителем.

Вид #2 — изделия низкого давления

ЛЛ низкого давления применяется для обеспечения светопотоком жилых, технических и производственных помещений.

Конструкционно прибор является трубкой из прочного стекла, содержащей внутри аргон под давлением 400 Па и в небольшом количестве ртуть либо амальгаму. На рынке предлагается в самых разнообразных модификациях и оснащается двумя электродными элементами.

Компактная люминесцентная лампаКомпактная люминесцентная лампа

Самая низкая температура, которую могут переносить ЛЛ низкого давления, составляет -15 °C. Поэтому для использования на открытых площадках эти источники света считаются неактуальными

Стеклянная колба может иметь самый разный диаметр. Уровень светоотдачи варьируется в зависимости от мощности самого устройства. Для его корректной работы требуется стартер дроссельного типа. Средний срок службы составляет 10 000 часов.

Особенности компактных ЛЛ

ЛЛ компактного типа – это изделия-гибриды, соединяющие в себе некоторые специфические отличительные черты ламп накаливания и характеристики люминесцентов.

Благодаря прогрессивным технологиям и расширившимся инновационным возможностям, имеют небольшой диаметр и некрупные габариты, свойственные лампочкам «Ильича», а также высокий уровень энергоэффективности, характерный для линейки приборов ЛЛ.

Разновидности компактных люминесцентных лампРазновидности компактных люминесцентных ламп

ЛЛ компактного типа выпускаются под традиционные цоколи E27, E14, E40 и очень активно вытесняют с рынка классические лампы накаливания за счет обеспечения качественного света при существенно меньшем потреблении электроэнергии

КЛЛ в большинстве случаев оснащаются электронным дросселем и могут использоваться в осветительных приборах специфического типа. Также применяются для замены в новых и раритетных светильниках простых и привычных ламп накаливания.

При всех достоинствах у компактных модулей есть такие специфические недостатки, как:

  • стробоскопический эффект или мерцание – основные противопоказания здесь касаются эпилептиков и людей с различными заболеваниями глаз;
  • выраженный шумовой эффект – в процессе пролонгированного применения появляется акустический фон, способный вызвать определенный дискомфорт у человека, находящегося в помещении;
  • запах – в некоторых случаях изделия издают едкие, неприятные ароматы, раздражающие обоняние.

Последняя позиция чаще наблюдается у безымянных поделок китайского происхождения, а первыми двумя часто страдают даже брендовые приборы, изготовленные согласно всем правилам и современным требованиям. Рейтинг лучших производителей КЛЛ мы привели .

Базовый спектр цветовых температур

Цвет свечения – один из самых важных параметров, напрямую зависящий от состава люминофора, преображающего ультрафиолетовое излучение в свет.

Сегодня к наиболее распространенным относятся 7 определений оттенков потока, вырабатываемого люминесцентными лампами:

  • ЛЕБ – естественный белый с заметным холодным оттенком;
  • ЛДЦ – натуральный дневной с улучшенным качеством цветопередачи;
  • ЛТБ – теплый белый;
  • ЛД – традиционный дневной белый;
  • ЛБ – классический белый;
  • ЛЕЦ – естественный с максимально качественной передачей оттенков;
  • ЛХБ – простой холодный белый.

Для жилых помещений, где человек проводит много времени, подходят оттенки теплой гаммы или натуральные дневные лампы с повышенным уровнем цветопередачи.

Белые и дневные тона, как правило, присутствуют в офисных, рабочих, промышленных помещениях, кабинетах и аудиториях. Они способствуют концентрации внимания, повышают мозговую активность и улучшают общую обучаемость и производительность труда.

Самые холодные оттенки применяются в медицинских учреждениях, лабораториях, больницах и технических помещениях. Они придают предметам дополнительную четкость и усиливают остроту зрения.

Цветные люминесцентные лампыЦветные люминесцентные лампы

Люминесценты для мясных витрин продовольственных магазинов отличаются специально подобранным спектром излучения розового цвета. Он подчеркивает естественные оттенки продукции, делая ее более привлекательной в глазах покупателей

Цветовые компоненты, добавленные в люминофор, позволяют получать розовый, голубой, зеленый и другие необычные ламповые оттенки.

Такие приборы используются в дизайнерских, рекламных и коммерческих целях. С их помощью создают оригинальное свечение, необходимое в конкретном отдельно взятом случае.

Больше информации о цветовой температуре света, особенностях восприятия цвета человеком и нюансах выбора мы писали .

Сильные и слабые стороны устройств

Как у любых технических приспособлений, предназначенных для освещения бытовых и рабочих помещений, у люминесцентных ламп имеются свои слабые и сильные стороны.

На основании этой информации можно определить, где разумнее их использовать, а в каких случаях стоит отдать предпочтение источникам света иного плана.

Положительные стороны ламп

Основным преимуществом люминесцентных изделий считается повышенная светоотдача и хороший уровень КПД. Они обеспечивают помещение освещением, не раздражающим глаз, и демонстрируют нормальную выносливость даже в условиях интенсивной эксплуатации.

Лампы накаливания и компактный люминесцентный модульЛампы накаливания и компактный люминесцентный модуль

Модуль примерно в 5 раз превышает базовую мощность обычной лампочки «Ильича». А 20-ваттный люминесцент дает световой поток, равный тому, что обеспечивает лампа накаливания в 100 Ватт

Разнообразные температуры световых оттенков, приближенные по гамме к естественному солнечному свету, позволяют подобрать подходящий осветительный прибор под различные цели и для помещений любого назначения.

Поток света, выдаваемый модулем, получается не направленным, а рассеянным. Спокойное, приятное глазу сияние исходит не только от вольфрамовой нити, располагающейся внутри, но и от всей наружной поверхности колбы.

Это позволяет использовать люминесцентные источники как для создания общего фонового освещения, так и для организации зонального света.

Люминесцентное освещениеЛюминесцентное освещение

Для применения в местах, где освещение включается автоматически, согласно сигналам датчиков движения, люминесценты не подходят. Они ограничены по допустимому количеству включений за определенный временной период и при слишком частой активации могут выйти из строя

Продолжительность службы люминесцентных изделий варьируется в зависимости от модели и доходит до 20 000 часов или до 5 лет.

Однако, покупателю следует знать, что этот ресурс лампа вырабатывает только при соблюдении таких условий, как:

  • наличие достаточного объема качественного электропитания без скачков и перепадов;
  • качественный ;
  • определенное количество активаций, обычно, не более 2000 за первые 2 года использования, что составляет всего 5 включений в день.

Нарушение этих базовых условий существенно ухудшит эффективность осветительного прибора, и значительно укоротит срок его жизни.

Люминесцентное освещение в теплицеЛюминесцентное освещение в теплице

Модули можно использовать для освещения теплиц. Они обеспечивают естественный свет, максимально приближенный к солнечному, не потребляют много электропитания и проявляют хорошую стойкость к перепадам напряжения, характерным для загородных энергоподающих сетей

Уровень энергопотребления у люминесцентов почти в 5 раз ниже, чем у традиционных изделий, поэтому их можно отнести к источникам света.

С их помощью удастся эффективно осветить большое помещение, не расходуя при этом больших денег на коммунальные платежи.

Рабочая температура на поверхности колбы не превышает 50 градусов. Это дает возможность эксплуатировать лампу в помещениях, где к пожарной безопасности предъявляются повышенные требования.

Основные недостатки модулей

Первым большим минусом изделий является излишняя чувствительность к температурным перепадам. Они сильно реагируют на движение ртутного столбика и могут перестать работать при похолодании ниже -20 °C.

Жара, превышающая +50 °C, далеко не лучшим образом сказывается на функционировании и серьезно ограничивает спектр использования этих источников света.

Влаговоспримчивость тоже не относится к плюсам и не позволяет широко применять изделия в ванных комнатах и санитарных помещениях.

Люминесцентные лампыЛюминесцентные лампы

Со временем люминофор в ламповых колбах деградирует и спектр излучения изменяется. Параллельно падает уровень светоотдачи прибора и заметно снижается КПД

Иногда к недостаткам причисляется и сам светопоток, имеющий линейчатый, неравномерный спектр, искажающий естественные оттенки находящихся в комнате предметов.

Не все ощущают это визуально, но для тех, кто улавливает этот минус слишком явственно, продаются лампы с люминофором, приближенным к сплошному, более натуральному спектральному цвету. Правда, их светоотдача существенно меньше.

Случаются ситуации, когда люминесценты мерцают с удвоенной частотой питающей сети. Проблема эта решаема некоторым усовершенствованием прибора, в частности, применением с подходящим уровнем емкости сглаживающего конденсатора выпрямленного тока на входе инвертора.

Но то, что производители пытаются сэкономить и не комплектуют приборы конденсаторами необходимой емкости, несколько огорчает.

Вкручивание люминесцентной лампы в патронВкручивание люминесцентной лампы в патрон

Бытовые ЛЛ модули лучше всего себя чувствуют, когда температура окружающего воздуха держится в диапазоне от +5 до +35 ˚С. Когда градусник демонстрирует меньшие показатели, пуск устройства существенно затрудняется, а время эксплуатации заметно сокращается

Потребность в дополнительном пусковом устройстве тоже немного снижает популярность ламп. Им обязательно требуется либо чрезмерно шумный и довольно громоздкий дроссель со стартером низкой надежности или более прогрессивный ЭПРА, имеющий функцию корректировки мощности, но при этом стоящий солидных денег.

Еще одно уязвимое место люминесцентов – высокая чувствительность к включению. Во время непосредственной активации лампы на электродах выгорает и осыпается особый состав, который обеспечивает стабильность разряда и защищает внутреннюю вольфрамовую нить от перегрева.

Постоянное включение существенно снижает срок службы прибора. Кроме того, появляется заметное глазу, раздражающее мерцание, а края ламповой колбы темнеют и теряют эстетичность.

Химическая угроза здоровью

Одним из основных недостатков люминесцентных источников света является химическая опасность. В ламповой колбе содержится высокотоксичная ртуть, причем ее количество колеблется от 1 до 70 мг.

Пары этого вещества могут нанести вред здоровью людей, постоянно находящихся в помещениях, освещаемых приборами ЛЛ типа.

Утилизация токсичных элементов люминесцентных лампУтилизация токсичных элементов люминесцентных ламп

Целостность отработавшей лампы нельзя нарушать, иначе токсичная ртуть попадет во внешнюю среду. За несанкционированную утилизацию предусмотрен штраф, поэтому лучше передать изделие в центр, занимающийся переработкой элементов, опасных для природы и человека

Когда модуль выходит из строя, его ни в коем случае нельзя разбивать или отправлять в обыкновенную урну. Его необходимо и правилам, четко описанным в действующем законодательстве.

Например, отвозить на полигоны, где от населения принимают токсичные материалы для их корректного уничтожения или переработки.

Сравнение с другими источниками света

Изделия ЛЛ-типа существенно отличаются как от устаревающих ламп накаливания, так и от прогрессивных светодиодных.

По сравнению с первыми они потребляют в 5 раз меньше электроэнергии, обеспечивая при этом такой же уровень насыщенности светопотока. Зато LED-приборам они несколько уступают по мощности в сочетании с энергопотреблением.

Таблица наглядно в цифрах показывает, насколько выгоднее использовать вместо традиционных лампочек Эдисона более современные источники качественного освещения

Правда, лампа накаливания весь период работы горит с одинаковой интенсивностью, тогда как люминесценты теряют часть насыщенности из-за выгорания внутреннего слоя, отражающего ультрафиолет.

LED-изделия в процессе эксплуатации приобретают некоторую тусклость благодаря деградации рабочих диодов. А в отдельных моделях есть возможность регулировки яркости освещения при помощи диммера.

В лампах накаливания или люминесцентах такая функция не предусмотрена. Но этот удобный режим в LED-приборах не бесплатен и за него придется отдать дополнительную сумму.

По уровню конструкционной хрупкости лампы накаливания и люминесценты схожи, так как имеют стеклянную колбу. Лед-модули в этом плане более устойчивы к ударам и механическим повреждениям. Да и отсутствие внутри каких-либо вредных и токсичных элементов делает их значительно привлекательнее для эксплуатации в домашних условиях.

Самые высокие расходы за весь эксплуатационный период влечет за собой использование ламп накаливания. Люминесценты расходуют энергию в разумных пределах, а светодиоды дают возможность снизить затраты до самых минимальных показателей

Что касается финансовой стороны, то изначально меньше других стоит лампочка накаливания. Однако, учитывая ее рабочий ресурс всего в 1 000 часов, это вряд ли можно считать ярко выраженным достоинством.

Базовая цена люминесцентов выше, однако, и служат они значительно дольше. Как говорят солидные производители, их хватает на 10 000-15 000 часов в том случае, если количество ежедневных активаций не превышает 5-6 раз.

Светодиодные модули могут похвастаться еще лучшими показателями, но и заплатить за это удовольствие придется намного больше, а это не во всех случаях целесообразно. Хотя тенденция замены одних источников света другими, прослеживается повсеместно. О необходимости замены люминесцентных лампочек светодиодными и порядке выполнения этой работы .

Выводы и полезное видео по теме

По какому принципу работают люминесценты. Подробное объяснение всех нюансов функционирования экономичных и энергоэффективных приборов для освещения:

В чем заключаются основные отличия люминесцентных элементов от простых и традиционных ламп накаливания. Сравнение мощности, светопотока и энергопотребления двух современных осветительных изделий:

Что собой представляют компактные энергосберегающие лампочки люминесцентного типа. Как они работают, сколько ватт потребляют и для каких целей используются:

Прибор люминесцентного типа – это практичный аналог классической лампы накаливания. С его помощью можно обеспечить качественным светопотоком помещение любых габаритов, снизив при этом энергопотребление. Прослужит он долго и не доставит владельцам никаких существенных хлопот.

Потом, когда лампы отработают свой срок, их понадобится утилизировать, а взамен купить новые, более прогрессивные модули.

А какой тип лампочек предпочитаете вы и что думаете о лампочках-люминесцентах? Поделитесь с другими пользователями своим мнением, расскажите, в чем вы видите основные плюсы ЛЛ, а что, лично для вас, является существенным недостатком этих приборов.

Если вы владеете хорошими теоретическими знаниями по теме вышеизложенной статьи и хотите дополнить наш материал полезными нюансами, пишите, пожалуйста, свои комментарии в блоке ниже.

Устройство и схема включения люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).

Устройство и описание ЛЛ

Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.

Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого - создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер - лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.

Принцип работы ЛЛ

Стартерная схема включения люминесцентных ламп работает следующим образом.

  1. На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
  2. При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
  3. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
  4. Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.

Бездроссельное включение люминесцентных ламп: схемы

Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

Достоинства электронной схемы запуска:

  • возможность пуска с любой временной задержкой;
  • не нужны массивный электромагнитный дроссель и стартер;
  • отсутствие гудения и моргания ламп;
  • высокая светоотдача;
  • легкость и компактность устройства;
  • больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.

ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.

Преимущества современных ЭПРА следующие:

  • плавное включение;
  • экономичность работы;
  • сохранение электродов;
  • исключение мерцания;
  • работоспособность при низкой температуре;
  • компактность;
  • долговечность.

Недостатками являются более высокая стоимость и сложная схема зажигания.

Применение умножителей напряжения

Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.

После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1, С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3, С4 устанавливают слюдяные на 1000 В.

ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Бесстартерная схема включения люминесцентных ламп

Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.

Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.

Как включить сгоревшую лампу?

Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.

Заключение

Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.

Принцип работы люминесцентной лампы

Уважаемые посетители!!!

Представим, что кто-то из нас работает по вызовам и в своей практике мы сталкиваемся с различными просьбами граждан:

  • установили и подключили люминесцентный светильник, — светильник не работает;
  • заменили люминесцентные лампы в светильнике, — светильник не работает;
  • заменили стартер с дросселем в светильнике, — светильник опять не работает

и так далее.   На выполняемую работу можно потратить целый день и не найти причину неисправности, а можно потратить около тридцати минут, установить причину неисправности и устранить ее.   То-есть, здесь все зависит от нашего опыта работы и элементарных знаний по электротехнике.

Полагаю, что работа электрика должна заключаться не только в следующем:

  • как правильно соединить провода в распределительной коробке;
  • как починить электрический патрон в люстре;
  • как установить и подключить выключатель к люстре;
  • как подключить трехфазный двигатель к распределительной панели  ВРУ

и далее.   По этой специализации должны охватываться более обширные знания,  в этой теме я хочу поделиться с Вами  небольшой такой  информацией.

Как загорается люминесцентная лампа

В начале ознакомимся со схематическим изображением устройства светильника с одной лампой \рис.1\, состоящего из:

  • люминесцентной лампы, представляющей собой цилиндрическую стеклянную трубку \1\;
  •  электродов,  с закрепленной на них вольфрамовой спиралью \2\;
  • неоновой лампочки стартера с двумя электродами \3, 4\;
  • стартера \Ст\;
  • дросселя \Д\;
  • конденсатора \С\.

рис.1

В начальный момент, при включении люминесцентного светильника, для лампы не хватает напряжения чтобы создать разряд  в самой люминесцентной лампе.   Как-же создать электрический разряд в люминесцентной лампе? — Для этого необходимо ознакомиться:

и понять, — для чего нужен дроссель в люминесцентной лампе.

Устройство люминесцентной лампы

На двух торцах люминесцентной лампы \рис.2\  расположены вваренные стеклянные ножки, на каждой ножке смонтированы электроды \5\, электроды выведены к цоколю \2\ и соединены с контактными штырьками, на самих электродах \по обеим торцам лампы\ закреплена вольфрамовая спираль.

 

рис.2

На внутреннюю поверхность лампы нанесен тонкий слой люминофора \4\,  колба лампы \1\ после откачки воздуха заполняется аргоном с небольшим количеством ртути \3\.

Для чего нужен дроссель в люминесцентной лампе

Дроссель в схеме люминесцентного светильника служит для броска напряжения.   Рассмотрим отдельную электрическую схему \рис.3\, которая не относится к схеме люминесцентного светильника.

рис.3

Для данной схемы, при размыкании ключа, лампочка на короткое мгновение загорится ярче и затем погаснет.   Явление это связано с возникновением ЭДС самоиндукции катушки \правило Ленца\.   Чтобы увеличить свойства проявления самоиндукции, катушку наматывают на сердечник —  для увеличения электромагнитного потока.

дроссель светильника

Схематическое изображение рисунка 4 дает нам полное представление об устройстве дросселя для отдельных типов  светильников  с люминесцентными лампами.

рис.4

Магнитопровод \сердечник\ дросселя собирается из пластин электротехнической стали, две обмотки в дросселе — между собой соединены последовательно.

Принцип работы стартера люминесцентной лампы

Стартер в электрической схеме выполняет работу быстродействующего ключа, то-есть им создается замыкание и размыкание электрической цепи.

стартеры для люминесцентного свтильника

При включении стартера \замыкании ключа\ происходит разогрев катодов, а при размыкании цепи создается импульс напряжения, необходимый для зажигания лампы.   Стартер в разобранном виде представляет из себя так называемую лампу тлеющего разряда с биметаллическими электродами.

Принцип работы люминесцентного светильника

По двум предоставленным схемам люминесцентных светильников \рис.5\  можно понять, — в каком соединении состоят каждые отдельные элементы.  

 рис.5

Все элементы двух светильников состоят в последовательном соединении, — кроме конденсаторов.   Когда мы включаем люминесцентный светильник, происходит прогревание биметаллической пластинки стартера.   Пластинка при прогревании изгибается и стартер замыкается, тлеющий разряд при замыкании пластинок гаснет и пластинки начинают остывать, при остывании — пластинки размыкаются.   Когда пластинки размыкаются в парах ртути происходит дуговой разряд и лампа зажигается.

В настоящее время имеются более усовершенствованные люминесцентные светильники — с электронным балластом, принцип работы которых тот-же самый что и у люминесцентных светильников, которые были рассмотрены в этой теме.

 Предоставленные для Вас записи вносятся  мною в сайт  из личных конспектов, почерк в которых очень плохой, часть информации  берется из собственных знаний.   Фотоснимки и электрические схемы подбираются для темы — из интернета.   Чтобы предоставить свои записи с личными фотоснимками при выполнении каких-либо работ, нужно наверное иметь личного фотографа или  непосредственно обращаться с просьбой к кому-либо, а обращаться с такой просьбой просто не хочется.

На этом пока все друзья!!!   Следите за рубрикой.

Устройство люминесцентного светильника


Люминесцентные светильники (светильники с люминесцентными лампами) бывают совершенно разнообразные. Кроме дизайна, они отличаются так же формой, количеством, размером, типом используемых люминесцентных ламп, а также электронной начинкой. И это далеко не весь список отличий между светильниками, которые в настоящее время можно купить в любом специализированном магазине. Но при всем при этом, их объединяет общий принцип работы, схема подключения и общее устройство.


Рассмотрим устройство светильника под трубчатые люминесцентные лампы T8, цоколь G13, это один из самых распространенных видов люминесцентных светильников, который вы наверняка встречали в повседневной жизни.

В качестве примера, возьмем светильник накладной люминесцентный 2х36 Вт «Айсберг» со степенью защиты ip65.

 



 

 

Устройство люминесцентного светильника

 

Конструктивно люминесцентный светильник состоит из:

 

1. Пластикового корпуса.

Который закрывает и защищает все элементы электрической схемы, а также несет на себе крепежные элементы как для монтажа светильника на стену или потолок, так и для сборки всех составляющих осветительного прибора в единое целое.


2. Металлической монтажной панели – основания.

На ней располагаются все электронные составляющие, необходимые для работы светильника, а также фурнитура для установки люминесцентных ламп.

3. Светопрозрачного рассеивателя.

Который создает более комфортное для нашего зрения освещение, так как равномерно распределяет световой поток люминесцентных ламп.

Кроме этих основных компонентов, из которых состоит светильник, в комплекте поставки обычно присутствуют:

- крепежные элементы для установки люминесцентного светильника на стены или потолок.

- Фиксаторы, соединяющие светопрозрачный рассеиватель с корпусом. Позволяющие достаточно просто получать доступ к внутренностям светильника, в первую очередь к лампам, для их замены.

- Заглушки – мембраны. Которыми закрываются неиспользуемые вводные отверстия в светильник, а также герметизируется место ввода питающего кабеля.

Обратите внимание!Люминесцентные лампы, чаще всего, не входят в комплект поставки светильника и их необходимо покупать отдельно.


Устройство электрической части люминесцентного светильника


Чтобы разобраться в устройстве электрических компонентов, входящих в схему люминесцентного светильника, необходимо понимать принцип работы люминесцентных ламп.  

Обычно, люминесцентная лампа представляет собой трубку, заполненную инертным газом с парами ртути. Внутренняя поверхность лампы покрыта специальным веществом – люминофором. По краям трубки установлены электроды, между которыми, при включении электричества, образуется дуговой разряд, при этом, при прохождении электрического тока внутри лампы, образуется ультрафиолетовое (УФ) излучение, которое и воздействует на люминофор, вызывая его свечение.

Как вы понимаете, при таком сложном принципе действия, люминесцентная лампа не сможет полноценно работать при простом подключении к электрической сети. Более подробно причины этого, мы рассмотрим в одном из следующих материалах, всецелом посвященном люминесцентным лампам.

Сейчас же стоит отметить одно, для полноценной работы люминесцентых ламп в осветительных приборах, применяются специальные пускорегулирующие аппараты (ПРА) или по-другому балласты. Наиболее распространены электромагнитные балласты/пускорегулирующие аппараты (ЭмПРА) и электронные балласты/пускорегулирующие аппараты (ЭПРА).

 


В нашем примере, люминесцентном светильнике "Айсберг", использован электронный балласт, который установлен на монтажной панели – основании. Так же к пускорегулирующему аппарату подведены все необходимые провода. К одной из сторон балласта подходят провода идущие до гнезд подключения ламп, с другой стороны до клемм, к которым в подключается питающий кабель. На балласте присутствует схема подключения, согласно которой в любой момент можно восстановить соединение, или заменить неисправный ПРА, безошибочно подключив все провода к соответствующим клеммам.

Общую схему подключения люминесцентных светильников, которая разумеется полностью подходит для данного осветительного прибора Айсберг 2х36Вт, мы уже описывали в нашей статье «Схема подключения люминесцентного светильника».

Теперь, в общих чертах познакомившись с устройством люминесцентного светильника, можно переходить к его установке. В следующем материале «Установка люминесцентного светильника», мы подробно описываем весь процесс сборки и установки светильника с люминесцентными лампами. Для лучшего понимания устройства люминесцентного светильника, обязательно ознакомьтесь с этой статьей. Там довольно подробно оказаны все компоненты светильника, их взаимодействие и многое другое.

Все вопросы, которые у вас возникли после прочтения материала, задавайте в комментариях к статье, постараемся помочь!

Люминесцентная лампа | Britannica

электрическое освещение Обзор различных типов электрического света, включая лампы накаливания, галогенные лампы, люминесцентные лампы и светодиоды. Contunico © ZDF Enterprises GmbH, Майнц Просмотреть все видео на эту статью

Люминесцентная лампа , электрическая газоразрядная лампа, более холодная и эффективная, чем лампы накаливания, которая излучает свет за счет флуоресценции люминофорного покрытия. Люминесцентная лампа состоит из стеклянной трубки, заполненной смесью пара аргона и ртути.Металлические электроды на каждом конце покрыты щелочноземельным оксидом, который легко испускает электроны. Когда ток протекает через газ между электродами, газ ионизируется и испускает ультрафиолетовое излучение. Внутренняя часть трубки покрыта люминофорами, веществами, которые поглощают ультрафиолетовое излучение и флуоресцируют (излучают энергию в виде видимого света).

Компактные люминесцентные лампы (лампочки). Encyclopædia Britannica, Inc.

Поскольку люминесцентная лампочка не обеспечивает свет при постоянном нагреве металлической нити накала, она потребляет гораздо меньше электроэнергии, чем лампа накаливания - по некоторым оценкам, только на четверть электричества или даже меньше, по некоторым оценкам.Однако первоначально при включении лампы рабочее напряжение люминесцентной лампы должно в четыре раза превышать рабочее напряжение, чтобы ионизировать газ при запуске. Это дополнительное напряжение подается устройством, называемым балластом, которое также поддерживает более низкое рабочее напряжение после ионизации газа. В старых люминесцентных лампах балласт находится в лампе отдельно от колбы и вызывает жужжание или жужжание, которые часто ассоциируются с люминесцентными лампами. В более новых компактных люминесцентных лампах (КЛЛ), в которых люминесцентная лампа намотана в форму, похожую на лампу накаливания, балласт вставляется в чашку в основании узла колбы и состоит из электронных компонентов, которые уменьшают или устраняют гудящий звук.Включение балласта в каждую отдельную лампу повышает стоимость колбы, но общая стоимость для потребителя все еще ниже из-за снижения энергопотребления и увеличения срока службы КЛЛ.

КЛЛ

оцениваются по использованию энергии (в ваттах) и светоотдаче (в люменах), часто в конкретном сравнении с лампами накаливания. Конкретные КЛЛ настроены для использования с диммерными переключателями и трехпозиционными переключателями и в утопленных светильниках.

.Люминесцентные лампы
- Как работает и применяется люминесцентная лампа

Что такое люминесцентные лампы?

Люминесцентные лампы - это лампы, в которых свет генерируется в результате потока свободных электронов и ионов внутри газа. Типичная люминесцентная лампа состоит из стеклянной трубки, покрытой люминофором и содержащей пару электродов на каждом конце. Он заполнен инертным газом, обычно аргоном, который действует как проводник, а также состоит из ртутной жидкости.

Fluorescent lamp Fluorescent lamp Люминесцентная лампа

Как работает люминесцентная лампа?

Когда электричество подается в трубку через электроды, ток проходит через газовый проводник в форме свободных электронов и ионов и испаряет ртуть.Когда электроны сталкиваются с газообразными атомами ртути, они отдают свободные электроны, которые прыгают на более высокие уровни, и когда они возвращаются к своему первоначальному уровню, испускаются фотоны света. Эта излучаемая световая энергия находится в форме ультрафиолетового света, который невидим для человека. Когда этот свет попадает на люминофор, нанесенный на трубку, он возбуждает электроны люминофора до более высокого уровня, и когда эти электроны возвращаются к своему первоначальному уровню, фотоны испускаются, и эта световая энергия теперь находится в форме видимого света.


Запуск люминесцентной лампы

В люминесцентных лампах ток течет через газообразный проводник, а не твердотельный проводник, где электроны просто текут от отрицательного конца к положительному концу. Там должно быть изобилие свободных электронов и ионов, чтобы позволить потоку заряда через газ. Обычно в газе очень мало свободных электронов и ионов. По этой причине требуется специальный пусковой механизм для введения большего количества свободных электронов в газ.

Два пусковых механизма для люминесцентной лампы

1.Одним из методов является использование пускового выключателя и магнитного балласта для подачи тока переменного тока на лампу. Переключатель стартера необходим для предварительного нагрева лампы, так что для запуска производства электронов от электродов лампы требуется значительно меньшее количество напряжения. Балласт используется для ограничения количества тока, протекающего через лампу. Без пускового выключателя и балласта большой ток протекал бы прямо к лампе, что уменьшало бы сопротивление лампы и в конечном итоге нагревало лампу и разрушало ее.

Fluorescent lamp using a magnetic ballast and a starter switch Fluorescent lamp using a magnetic ballast and a starter switch Люминесцентная лампа с использованием магнитного балласта и пускового выключателя

Используемый пусковой выключатель представляет собой обычную колбу, состоящую из двух электродов, так что между ними образуется электрическая дуга, когда ток протекает через колбу. Используемый балласт - это магнитный балласт, который состоит из катушки трансформатора. Когда переменный ток проходит через катушку, создается магнитное поле. Когда ток увеличивается, магнитное поле увеличивается, и это в конечном итоге противодействует потоку тока. Таким образом, переменный ток ограничен.

Первоначально для каждого полупериода сигнала переменного тока ток проходит через балласт (катушку), создавая вокруг него магнитное поле. Этот ток, проходя через нити трубки, медленно нагревает их, что приводит к образованию свободных электронов. Когда ток проходит через нить на электроды колбы (используется в качестве пускового выключателя), между двумя электродами колбы образуется электрическая дуга. Поскольку один из электродов представляет собой биметаллическую полосу, он изгибается при нагревании, и в конце концов дуга полностью исключается, и, поскольку ток не протекает через стартер, он действует как размыкающий переключатель.Это вызывает коллапс в магнитном поле на катушке, и в результате возникает высокое напряжение, которое обеспечивает необходимый запуск для нагрева лампы, чтобы вырабатывать достаточное количество свободных электронов через инертный газ, и в конце концов лампа светится.

PCBWay PCBWay

6 Причины, по которым магнитный балласт не считается удобным?

  • Потребляемая мощность довольно высока, около 55 Вт.
  • Они большие и тяжелые
  • Они вызывают мерцание при работе на более низких частотах
  • Они не служат дольше.
  • Потеря составляет от 13 до 15 Вт.

2. Использование электронного балласта для запуска люминесцентных ламп

Электронные балласты, в отличие от магнитного балласта, подают переменный ток на лампу после увеличения частоты линии от примерно 50 Гц до 20 кГц.

Electronic Ballast to start a Fluorescent lamp Electronic Ballast to start a Fluorescent lamp Электронный балласт для запуска люминесцентной лампы

Типичная электронная балластная цепь состоит из преобразователя переменного тока в постоянный, состоящего из мостов и конденсаторов, которые выпрямляют сигнал переменного тока в постоянный ток и отфильтровывают пульсации переменного тока для выработки энергии постоянного тока.Это напряжение постоянного тока затем преобразуется в высокочастотное переменное напряжение прямоугольной формы с использованием набора переключателей. Это напряжение приводит в действие резонансную цепь резервуара LC, чтобы генерировать отфильтрованный синусоидальный сигнал переменного тока, который подается на лампу. Когда ток проходит через лампу с высокой частотой, он действует как резистор, образуя параллельную RC-цепь с цепью бака. Первоначально частота переключения переключателей уменьшается с использованием схемы управления, в результате чего лампа перегревается, что приводит к увеличению напряжения на лампе.В конце концов, когда напряжение лампы увеличивается достаточно, она зажигается и начинает светиться. Существует устройство измерения тока, которое может измерять величину тока через лампу и, соответственно, регулировать частоту переключения.

6 Причины, по которым электронные балласты предпочтительнее более

  • Они имеют низкое энергопотребление, меньше 40 Вт
  • Потеря незначительна
  • Мерцание устранено
  • Они легче и больше подходят для мест
  • Они служат дольше

Типичное применение люминесцентной лампы - автоматическое переключение света

Вот полезная домашняя схема для вас.Эта автоматическая система освещения может быть установлена ​​в вашем доме для освещения помещений с помощью КЛЛ или люминесцентной лампы. Лампа автоматически включается около 6 часов вечера и выключается утром. Так что эта схема без выключателей очень полезна для освещения помещений дома, даже если заключенных нет дома. Обычно автоматическое освещение на основе LDR мигает, когда интенсивность света меняется на рассвете или в сумерках. Таким образом, КЛЛ не может быть использован в таких цепях. В автоматических лампах, управляемых Triac, возможна только лампа накаливания, поскольку мерцание может повредить цепь внутри КЛЛ.Эта схема преодолевает все такие недостатки и мгновенно включается / выключается при изменении заданного уровня освещенности.

Как это работает?

IC1 (NE555) - это популярная таймерная ИС, которая используется в схеме в качестве триггера Шмитта для получения бистабильного действия. Активность установки и сброса IC используется для включения / выключения лампы. Внутри IC есть два компаратора. Верхний пороговый компаратор отключается при 2/3 Vcc, а нижний триггерный компаратор отключается при 1/3 Vcc. Входы этих двух компараторов связаны между собой и соединены на стыке LDR и VR1.Таким образом, напряжение, подаваемое LDR на входы, зависит от интенсивности света.

LDR - это разновидность переменного резистора, сопротивление которого зависит от интенсивности падающего на него света. В темноте LDR предлагает очень высокое сопротивление до 10 мегом, но при ярком освещении оно уменьшается до 100 Ом или менее. Таким образом, LDR является идеальным датчиком света для автоматических систем освещения.

В дневное время LDR имеет меньшее сопротивление, и через него протекает ток к пороговому (Pin6) и триггерному (pin2) входам IC.В результате напряжение на пороговом входе превышает 2/3 Vcc, что сбрасывает внутренний триггер, а выход остается низким. В то же время, вход триггера получает более 1 / 3Vcc. Оба условия поддерживают низкий уровень выхода IC1 в дневное время. Транзистор драйвера реле подключен к выходу IC1, поэтому реле остается обесточенным в дневное время.

Auto switching light circuit diagram Auto switching light circuit diagram Схема освещения с автоматическим переключением

На закате сопротивление LDR увеличивается, а величина тока, протекающего через него, прекращается.В результате этого напряжение на входе компаратора порога (контакт 6) падает ниже 2/3 В, а напряжение на входе компаратора триггера (контакт 2) меньше 1/3 В постоянного тока. Оба эти условия приводят к тому, что выход компараторов становится высоким, что задает триггер. Это изменяет выход IC1 на высокое состояние и запускает T1. Светодиод указывает на высокий выход IC1. Когда T1 проводит, реле активируется и замыкает цепь лампы через общий (Comm) и NO (нормально разомкнутый) контакты реле.Это состояние продолжается до утра, и IC сбрасывается, когда LDR снова начинает светиться.

Конденсатор C3 добавлен к базе T1 для чистого переключения реле. Диод D3 защищает T1 от задней части e.m.f, когда T1 выключается.

Как установить?

Соберите схему на общей печатной плате и поместите в противоударный корпус. Вставная коробка адаптера является хорошим выбором для включения трансформатора и цепи. Поместите устройство там, где солнечный свет доступен в дневное время, предпочтительно вне дома.Перед подключением реле проверьте выход, используя светодиодный индикатор. Отрегулируйте VR1, чтобы включить светодиод на определенном уровне освещенности, скажем, в 6 часов вечера. Если все в порядке, подключите реле и соединения переменного тока. Фаза и нейтраль могут быть подключены к первичной обмотке трансформатора. Возьмите фазные и нейтральные провода и подключите к патрону лампы. Вы можете использовать любое количество ламп в зависимости от текущего номинала контактов реле. Свет от лампы не должен падать на LDR, поэтому расположите лампу соответствующим образом.

Осторожно : В контактах реле 230 В при зарядке. Поэтому не прикасайтесь к цепи, когда она подключена к сети. Во избежание ударов используйте хорошие втулки для контактов реле.

Фото предоставлено:

  • A Люминесцентная лампа от wikimedia
  • Запуск люминесцентной лампы с использованием магнитного балласта и пускового выключателя от wikimedia
.
Как установить флуоресцентный свет: советы и рекомендации

Вы можете рассмотреть возможность замены некоторых ваших старых ламп накаливания на люминесцентные лампы. Флуоресцентный свет обеспечивает равномерное и не затененное освещение, но, что лучше всего, люминесцентные лампы более эффективны, чем лампы накаливания. В лампе накаливания большая часть электроэнергии отводится в виде тепла вместо света. Флуоресцентная лампа, напротив, остается прохладной.

Как работает люминесцентная лампа? В флуоресцентном контуре, начиная с левого штыря вилки, ток проходит через балласт, через одну из нитей лампы, через замкнутый выключатель в пускателе, через другую нить в лампе и выходит через правую нить. штекер штекера.Ток нагревает два небольших элемента на концах люминесцентной лампы; затем стартер открывается, и ток проходит через лампу.

Балласт - это магнитная катушка, которая регулирует ток через трубку. Когда трубка открывается, он создает всплеск электрической дуги через трубку, а затем сохраняет ток с нужной скоростью, когда трубка светится. В большинстве люминесцентных ламп стартер представляет собой автоматический выключатель. Как только он чувствует, что лампа светится, он остается открытым.Стартер закрывается всякий раз, когда вы выключаете прибор.

Многие люминесцентные приборы имеют более одной трубки, чтобы обеспечить больше света. Эти лампы должны иметь отдельные стартеры и балласты для каждой трубки. Устройство может иметь две трубки, работающие от одного балласта, но на самом деле в один корпус встроены два балласта. Светильники с четырьмя трубами, аналогично, имеют четыре стартера и четыре балласта. В некоторых типах приспособлений пускатели встроены и не могут быть заменены по отдельности.Поскольку люминесцентная лампа состоит только из трех основных частей, вы обычно можете позаботиться о любом ремонте самостоятельно. Все люминесцентные лампы тускнеют с возрастом, и они могут даже начать мерцать или мигать. Это предупреждающие сигналы, и вы должны выполнить необходимый ремонт, как только заметите какие-либо изменения в нормальной работе лампы. Тусклая трубка обычно требует замены, и ее отсутствие может привести к деформации других частей светильника. Аналогичным образом, повторное мерцание или мигание приведет к износу стартера, что приведет к ухудшению изоляции на стартере.

Люминесцентные светильники

можно обслуживать просто методом замены. Если вы подозреваете, что деталь может быть неисправна, замените деталь новой. Начните с люминесцентной лампы или лампы. Вы можете установить новую или, если вы не уверены, что лампа перегорела, проверить старую лампу в другом люминесцентном приборе. Снимите старую трубку, вывернув ее из патрубков в приспособлении. Установите новую трубку таким же образом - вставьте штыри трубки в гнездо и поверните трубку, чтобы зафиксировать ее на месте.

Если проблема не в трубе, попробуйте заменить стартер. Стартеры люминесцентных ламп рассчитаны на мощность, и важно, чтобы вы использовали правильный стартер для трубки в вашем приспособлении. Снимите старый стартер так же, как вы сняли старую трубку, выкрутив ее из гнезда в приспособлении. Установите новый, вставив его в гнездо и повернув, чтобы зафиксировать на месте.

Балласт также рассчитан в соответствии с мощностью, и запасной балласт, как и запасной пускатель, должен соответствовать мощности трубы и типу приспособления.Балласт - это наименее вероятная часть, которая может выйти из строя, и ее сложнее всего заменить, поэтому оставьте балласт на последнем месте, когда вы начнете заменять детали. Если ни труба, ни стартер не повреждены, проблема должна быть в балласте. Чтобы заменить неисправный балласт, обесточить цепь, разобрать прибор, перенести провода от старого балласта на новый - по одному, чтобы избежать неправильного соединения - и, наконец, собрать

крепеж.

Если трубка, стартер и балласт работают нормально, но лампа все еще не горит, проверьте исправность выключателя.Если лампа управляется настенным выключателем, замените выключатель, как описано в следующем разделе. Если лампа имеет кнопочный переключатель, старый переключатель можно заменить на новый аналогичного типа. Чтобы отключить питание цепи перед началом работы с выключателем, удалите предохранитель цепи или отключите автоматический выключатель.

В большинстве случаев переключатель вкручивается в резьбовую крепежную гайку на внутренней стороне лампы. Два провода от выключателя подключены, обычно с помощью проводов, к четырем проводам от люминесцентной лампы.Разберите устройство до необходимого уровня, чтобы получить доступ к задней части коммутатора, затем привинтите новый коммутатор и перенесите провода от старого коммутатора к новому, по одному, чтобы избежать неправильного подключения. Соберите прибор и снова включите питание.

На следующей странице мы обсудим шаги, которые необходимо предпринять для установки нового флуоресцентного светильника.

,Балласт Баланса

- Как Работают Люминесцентные лампы

Мы видели в последнем разделе, что газы не проводят электричество так же, как твердые вещества. Одним из основных отличий между твердыми частицами и газами является их электрическое сопротивление (противодействие протекающему электричеству). В цельнометаллическом проводнике, таком как провод, сопротивление является постоянной при любой заданной температуре, контролируемой размером проводника и природой материала.

В газовом разряде, таком как люминесцентная лампа, ток вызывает снижение сопротивления.Это связано с тем, что по мере того, как через определенную область протекает больше электронов и ионов, они сталкиваются с большим количеством атомов, что освобождает электроны и создает больше заряженных частиц. Таким образом, ток будет подниматься сам по себе в газовом разряде, пока имеется достаточное напряжение (а в бытовом переменном токе много напряжения). Если ток во флуоресцентном свете не контролируется, он может сдуть различных электрических компонентов.

Балласт люминесцентной лампы работает для контроля этого.Самый простой вид балласта, обычно называемый магнитного балласта , работает как индуктор. Основной индуктор состоит из катушки провода в цепи, которая может быть намотана на кусок металла. Если вы читали, как работают электромагниты, вы знаете, что когда вы посылаете электрический ток через провод, он генерирует магнитное поле. Расположение провода в концентрических петлях усиливает это поле.

Поле такого типа влияет не только на объекты вокруг цикла, но и на сам цикл.Увеличение тока в контуре увеличивает магнитное поле, которое прикладывает напряжение, противоположное течению тока в проводе. Короче говоря, длина спирального провода в цепи (индуктор) противодействует изменению тока, протекающего через него (подробнее см. Как работают индукторы). Трансформаторные элементы в магнитном балласте используют этот принцип для регулирования тока в люминесцентной лампе.

Балласт может только замедлять изменения тока - он не может их остановить.Но переменный ток, питающий флуоресцентный свет, постоянно меняет направление на , поэтому балласт должен только на короткое время блокировать увеличение тока в определенном направлении. Проверьте этот сайт для получения дополнительной информации об этом процессе.

Магнитные балласты модулируют электрический ток при относительно низкой частоте цикла , что может вызвать заметное мерцание. Магнитные балласты также могут вибрировать с низкой частотой. Это источник слышимого гудящего звука, который люди ассоциируют с люминесцентными лампами.

Современные балластные конструкции используют передовую электронику для более точного регулирования тока, протекающего через электрическую цепь. Поскольку они используют более высокую частоту циклов, вы обычно не замечаете мерцания или гудения, исходящего от электронного балласта. Для различных ламп требуются специальные балласты, предназначенные для поддержания определенного уровня напряжения и тока, необходимого для различных конструкций труб.

Люминесцентные лампы

бывают всех форм и размеров, но все они работают по одному и тому же основному принципу: электрический ток стимулирует атомы ртути, заставляя их испускать ультрафиолетовые фотоны.Эти фотоны в свою очередь стимулируют люминофор, который испускает фотоны видимого света. На самом базовом уровне, это все, что нужно сделать!

Чтобы узнать больше об этой замечательной технологии, включая описания различных конструкций ламп, перейдите по ссылкам ниже.

Связанные Статьи HowStuffWorks

Больше замечательных ссылок

,

Отправить ответ

avatar
  Подписаться  
Уведомление о