Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Резистор — электронное устройство, применение, маркировка

Резистор (resistor) – самый распространённый пассивный полупроводниковый элемент, который создаёт обозначенное в его маркировке сопротивление (R, измеряется в Ом-ах) электрическому току, проходящему через него. Основное назначение – уменьшение силы тока на выходе.

Резисторы обычно имеют 2 контакта, однако переменные и подстроечные резисторы могут иметь ещё выходы, для регулировки их сопротивления извне.

Обозначения постоянных резисторов на графических схемах, по степени рассеивания энергии (мощности):

Резистор:

 

Разновидности резисторов:

  • · Постоянные резисторы – обладают постоянным сопротивлением,
    которое может изменяться только в пределах погрешности.
  • · Переменные и подстроечные резисторы – имеют возможность менять сопротивление посредством физической корректировки (ручка, кнопка), либо с помощью определённого инструмента.
  • · Терморезисторы и термисторы – специальные резисторы, сопротивление которых может меняться в зависимости от ТКС (Температурный Коэффициент Сопротивления). Термисторы — резисторы с отрицательным ТКС, а терморезисторы — резисторы с положительным ТКС.
  • · Варисторы – резисторы, сопротивление которых зависит от приложенного напряжения. Применяются преимущественно в защитных схемах электрических сетей для пассивной стабилизации напряжения. При достижении определённого предела, варистор вскрывается от температуры и отключает схему от сети, тем самым обеспечивает дополнительную защиту от перенапряжения.
  • · Фоторезисторы – сопротивление данных резисторов зависит от освещения. Используются в датчиках движения, фотоаппаратах, видеокамерах и т.д.

Как узнать сопротивление резистора по маркировке:

Вид первый, с буквами и цифрами:


64К64 кОм

12Е12 (ед.) Ом

12К 12 кОм

1К51,5 кОм

К480,48 кОм = 480 Ом

М140,14 МОм = 140 кОм

Такая маркировка в основном применяется только в странах постсоветского пространства.

Вид второй, цифры:


Последняя цифра обозначает количество нулей за первыми цифрами.

135 – 13 00000 Ом = 1300 кОм

164 – 16 0000 Ом = 160 кОм

102 – 10 00 Ом = 1.0 кОм

382 – 38 00 Ом = 3,8 кОм

160 – 16 Ом

С помощью цветности:


Принцип как в предыдущем способе, но каждую цифру показывает свой цвет. Ориентировать во взгляде резистор нужно так, чтобы группа полосок (3-4 штуки) была ближе к левому краю, а единичная полоска(золотистая или серебряная) справа чуть дальше.

0 – чёрный

1 – коричневый

2 – красный

3 – оранжевый

4 – жёлтый

5 – зелёный

6 – синий

7 – фиолетовый

8 – серый

9 – белый

 

Резисторы обладают такими не обозначенными характеристиками как паразитная индуктивность, нелинейность вальт-амперной характеристики, паразитная ёмкость. Чем данные значения меньше, тем лучше. Качество резистора зависит напрямую от его производителя.

Резистор, для чего он нужен, где применяется в автомобилях

Сегодня мы поговорим про резистор, как основной элемент любой электрической цепи автомобиля. Для чего он нужен, какие бывают резисторы, принципы их работы, какие подходят для той или иной электрической цепи.

Эти знания могут пригодиться при ремонте автомобиля.

Три основные составляющие электрического тока

Электроэнергия достаточно плотно вошла в нашу жизнь. Используется она практически везде, и в автотранспорте в том числе.

Данный вид энергии имеет три основных составляющих – напряжение, сила тока и сопротивление.

Что касается последнего параметра, то благодаря возможности создания дополнительного сопротивления в любой точке электрической цепи можно влиять на первые два параметра.

Основным элементом для создания сопротивления является резистор. Данный элемент относится к самым востребованным, и ни одна электрическая цепь без него не обходится, и заменить его чем-либо другим не получится. А в любом автомобиле электрических цепей предостаточно.

Назначение

Основное назначение резистора – создание сопротивления для возможности контроля и регулировки силы тока и сопротивления. По сути, он является своеобразным фильтром, позволяющим на выходе из него получить электроэнергию с определенными параметрами.

Обеспечивает он все это за счет удержания тока, деления и уменьшения напряжения.

Основным параметром резистора является сопротивление, которое он создает в цепи, и измеряется оно в Омах.

Резисторы в электрической цепи автомобиля.

Именно благодаря своей функции этот элемент так часто используется в автомобилях. Ниже мы рассмотрим одни из основных составляющих авто, где используется резистор и какую конкретно функцию он там выполняет.

Система охлаждения

Итак, нагрузочный резистор используется в системе охлаждения автомобиля, а точнее, – в цепи питания вентилятора радиатора.

Стоит отметить, что раньше этот электрический элемент не использовался в данной цепи, и все работало очень просто – при достижении определенной температуры охлаждающей жидкости, температурный датчик замыкал контакты цепи питания вентилятора, и он включался в работу.

Использование же резистора позволило сделать работу электродвигателя вентилятора двух — и даже трехрежимной.

Процесс подачи питания на вентилятор при этом несколько изменился. В систему добавились также реле, а за включение вентилятора у современных авто уже отвечает электронный блок управления.

То есть, электронный блок анализирует температурные показатели датчика, и подает сигнал на реле.

В зависимости от температуры реле направляет электроэнергию по определенной цепи. Если температура охлаждающей жидкости превышена незначительно, но уже требуется ее снижение, и сигнал от ЭБУ поступил, реле направляет электроэнергию через нагрузочный резистор, который создает сопротивление, и вентилятор начинает вращаться с небольшой скоростью.

Если температура будет дальше повышаться и достигнет критической точки, реле перенаправит электроэнергию по другой цепи – в обход резистора, напрямую к вентилятору, что обеспечит его работу на полную мощность, с большой скоростью вращения.

Это схема двухрежимной работы вентилятора, которая обеспечивается наличием нагрузочного резистора в цепи. Причем она упрощенная, чтобы было более понятно.

В авто с трехрежимной работой вентилятора, принцип остается тот же, но у него уже используется два резистора – один отвечает за малые обороты вращения вентилятора, второй – за средние.

Третий же режим – аварийный, при котором вентилятор вращается с максимальной скоростью, обеспечивается за счет подачи питания на него напрямую.

Система зажигания

Второй элемент автомобиля, где можно встретить резистор – это свечи зажигания. Но далеко не все свечи оснащены им.

В конструкции данных элементов он начал появляться не так давно, и задача его заключается в подавлении радиопомех.

Кстати, сейчас ведется очень много споров, нужен ли он в свечах. Ведь резистор создает сопротивление, которое в конечном итоге влияет и на искру. А ведь чем сильнее последняя, тем лучше воспламеняется горючая смесь.

Но на самом деле на качестве искры наличие резистора сказывается незначительно, а вот на свечу – только положительно. Очень сильный искровой заряд приводит к разрушению электродов, а сопротивление снижает напряжение искры.

Но не в этом его главное назначение. Мощный искровой разряд создает достаточно сильные помехи в радиочастотном диапазоне, которые могут повлиять на работу аудиосистемы автомобиля, мобильного телефона и любого другого оборудования, чувствительного к помехам данного типа.

Интересно, что необязательно устанавливать на автомобиль свечи зажигания, оснащенные резисторами.

Дело в том, что во многих моделях шумоподавляющий элемент устанавливается в наконечники проводов высокого напряжения. Также некоторые виды самих проводов обладают достаточно неплохим сопротивлением, которого хватает для подавления радиопомех.

Резистор также может быть установлен и в бегунок трамблера, причем встречается он там на многих моделях. Его задача – та же, что и в свече зажигания или наконечнике.

Важно понимать, что во всех перечисленных элементах зажигания одновременно использоваться резисторы не могут.

При последовательном подключении этих элементов все сопротивление, которое они создают, суммируется.

То есть, если резистор будет установлен в бегунке трамблера, наконечнике, свече, то они будут создавать настолько сильное сопротивление, что значительно послабят искровой заряд, и он уже не сможет качественно воспламенять смесь. А это приведет к перебоям в работе двигателя, потере мощности, увеличению расхода топлива.

Поэтому принимать решение, стоит ли устанавливать на автомобиль свечи зажигания с резистором необходимо, тщательно ознакомившись с техдокументацией, идущей к авто.

Если изготовитель указывает, что необходимо использование таких свечей, то ими лучше пользоваться.

Читайте также:

Система обогрева салона

Еще один элемент в конструкции автомобиля, где используется резистор – система отопления салона, а точнее, – управление работой электродвигателя печки.

В любом автомобиле используется переменный резистор для изменения скорости работы электромотора обогревателя.

В нем при помощи вращающегося элемента обеспечивается возможность изменения значения сопротивления.

При включении электродвигателя на 1-ю скорость вращения, резистор обеспечивает максимальное сопротивление, при переключении на 2-ю – оно уменьшается, а при переходе на 3-ю скорость — практически полностью убирается.

 

Осветительные приборы

В последнее время резисторы стали использоваться вместе со светодиодными лампами. Данный вид ламп все больше начал применяться на авто.

Но далеко не все машины пока идут с завода, укомплектованные светодиодными осветительными приборами, а вот отдельно их купить и установить вместо штатных ламп накаливания тех же поворотников или стоп-сигналов вполне можно и многие так делают.

Но здесь возникает проблема, которая обязывает использовать резисторы.

Дело в том, что потребление электроэнергии этими лампами очень малое, из-за чего электронный блок расценивает работу светодиодов как неисправность штатной лампы.

Чтобы исправить ситуацию, используются резисторы, создающие нагрузку на линии проводки, запитывающей те осветительные приборы, в которых установлены светодиодные лампы.

В результате ЭБУ воспринимает сопротивление элемента, как работу лампы накаливания, поэтому кода ошибки не возникает.

Интересно, что при использовании таких обманок основное достоинство светодиодных ламп – малое потребление энергии, сводится к нулю, и у них остается только одно преимущество перед обычными лампами накаливания – длительный срок эксплуатации.

Виды резисторов, их особенности

Из описанных выше резисторов, которые используются в конструкции автомобиля, можно отметить два типа – нагрузочные, они же постоянные и переменные. В целом – это и есть два основных вида, которые имеют достаточно широкое применение в разных сферах.

Конечно, есть еще целый ряд всевозможных резисторов, которые отличаются по своим конструктивным особенностям. К примеру, терморезисторы, в которых сопротивление меняется от температуры, или фоторезисторы, меняющие свои параметры от освещенности. Но их мы пока касаться не будем, а рассмотрим лишь указанные два вида.

Постоянные резисторы называются так потому, что сопротивление, которое они создают – неизменное.

К примеру, если указано, что основной параметр данного элемента составляет 30 Ом, то сопротивление именно этого значения он обеспечивает и поменять его невозможно.

В переменных же резисторах сопротивление можно менять, притом вручную. Примером тому является уже упомянутое управление электродвигателем системы отопления.

К переменным резисторам относятся также подстроечные.

В таких резисторах тоже можно изменять параметр вручную, но регулировка его выполняется не в любой момент, как это делается в переменном, а лишь когда требуется перенастроить работу всей схемы, куда он включен, на длительный срок.

В автотранспорте подстроечные элементы не используются, хотя их часто можно встретить в бытовой технике.

Подбор резистора по сопротивлению

Большинство людей при выходе из строя какого-то электроприбора сдают его в ремонт или заменяют, хотя во многих случаях виноват именно резистор, тем более что он – один из самых распространенных элементов в любой схеме. Но находятся и такие, кто самостоятельно берется за ремонт.

И часто у любителей самостоятельного ремонта возникает вопрос, как правильно подобрать резистор для той или иной схемы.

Для этого возьмем простейшую схему, включающую источник питания и один потребитель.

Еще вначале было указано, что электроэнергия имеет три основные характеристики – напряжение, сила тока и сопротивление. Именно по этим параметрам и производятся все необходимые расчеты, используя для этого закон Ома.

Согласно этого закона, поскольку нам необходимо определение сопротивления, следует напряжение поделить на силу тока.

К примеру, наш источник питания обеспечивает цепь напряжением 12 В, с силой тока 0,02 А.

Чтобы определить сопротивление проводим математические расчеты – 12/0,02 и получаем сопротивление цепи 600 Ом.

Теперь непосредственно о том, как высчитать сопротивление резистора для использования в той или иной схеме. Для примера возьмем источник питания на 12 В и потребитель (лампу накаливания 3,5 В, 0,28 А).

Вначале рассчитывается сопротивление лампы – 3,5/0,28 = 12,5 Ом. Теперь узнаем, какая сила тока потечет через имеющуюся лампу – для этого берем напряжение источника питания и делим на сопротивление: 12/12,5 = 0,96 А, что в 3,5 раза превышает необходимую для работы потребителя силу тока, и если подключить потребитель, то нить лампы попросту перегорит.

Чтобы перегорания не произошло, необходимо сопротивление в цепи, равное 43,75 Ом (12,5 * 3,5). А поскольку лампа сама создает сопротивление, то в схему необходимо подключить добавочный резистор на 30 Ом. В ходе расчетов получаем – 12 В/ 42,5 Ом (сопротивление лампы и резистора) = 0,28 А.

То есть получили силу тока, необходимую для нормальной работы потребителя. В данном случае включенный в схему элемент выступил в качестве ограничителя силы тока.

Мощность рассеивания

Помимо сопротивления у резистора есть еще один немаловажный параметр – мощность рассеивания.

Любой резистор выступает своего рода ограничителем и благодаря своему сопротивлению проводит через себя только определенное напряжение и силу тока. При этом излишки, которые он не пропустил в себе не накапливает, а преобразует их в тепловую энергию и рассеивает.

Поэтому предусмотрены обозначения резисторов по мощности рассеивания.

Несоответствие данного элемента по мощности рассеивания приведет к его перегреву и разрушению. Мощность рассеивания измеряется в Ваттах.

Определить мощность рассеивания можно как по напряжению, проходящему через него, так и по силе тока.

Что касается напряжения, то формула для расчета выглядит так:

Где:

  1. Р – мощность;
  2. U – напряжение в цепи;
  3. R – сопротивление резистора.

Для расчета по силе тока формула имеет такой вид:

Где:

  1. P – мощность;
  2. I – сила тока, проходящая через резистор;
  3. R – сопротивление.

Важным условием при выборе резистора по данному параметру является то, что мощность рассеивания у него должна быть вдвое больше, чем полученная при расчетах.

К примеру, мы имеем силу тока в 0,1 А и сопротивление резистора в 100 Ом.

Исходя из формулы, получаем мощность рассеиваний в 1 Ватт (0,12 * 100 = 1), но для нормальной работы элемента выбираем резистор с мощностью рассеивания в 2 Ватт.

Отметим, что все изготавливаемые резисторы имеют строго определенное значение мощности рассеивания, что облегчает их выбор.

К тому же можно даже визуально определить, какая у резистора мощность рассеивания. Здесь все просто, чем больше по размерам элемент, тем выше значение.

Здесь мы рассмотрели резисторы – одни из самых распространенных элементов в любой электрической схеме автомобиля. Ведь они позволяют контролировать основные параметры электрической энергии благодаря воздействию всего лишь на одну из ее характеристик.

Напоследок отметим, что при расчетах необходимо следить за размерностью параметров. То есть, использовать только амперы, вольты и омы, и если указано, что сила тока составляет 20 мА, то следует перевести это значение в амперы, получив для расчетов значение в 0,02 А.

РЕЗИСТОРЫ

   Продолжаем наш цикл справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах, они присутствуют в любой электронной схеме, даже самой простой. Делятся они на два вида: переменные и постоянные. Распространенные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0.125 до 2 Ватт. Если быть более точным, то это ряд 0.125 Вт, 0.25 Вт, 0.5 Вт, 1 Вт, 2 Вт. Конечно, есть и более мощные резисторы, например проволочные, но они редко используются в электронных схемах. На рисунке ниже изображены внешний вид и габариты резисторов, а также их обозначения на принципиальных схемах. 

Схематическое обозначение постоянных резисторов

   Из них чаще всего в электронике используются резисторы мощностью от 0.125 до 0.5 Ватт. Резисторы бывают как обычные, с допуском 5-10%, так и прецизионные с допуском 0.1-1%. Существуют и более точные резисторы, но в большинстве радиолюбительских конструкций такая точность не требуется. Если резистор может менять сопротивление – его называют переменным (или подстроечным). Фото переменных резисторов:

Резисторы переменные

   Переменные резисторы также бывают проволочные и непроволочные, проволочные обычно бывают рассчитаны на большую мощность. Устройство непроволочного переменного резистора можно видеть на рисунке:

Конструкция переменного резистора

   Устроен резистор следующим образом, на основании из гетинакса в виде дуги нанесен слой из сажи смешанной с лаком. У этого резистора между первым и вторым контактом (на рисунке), другими словами между крайними выводами сопротивление неизменно, а между средним и крайними выводами изменяется при вращении ручки резистора. К этому слою обладающему сопротивлением прилегает подвижный контакт, соединенный с центральным выводом. Очень часто при интенсивном использовании регулятором, этот слой сажи истирается, и сопротивление резистора при вращении ручки резистора изменяется скачкообразно, становясь иногда даже больше максимального положенного по номиналу. Из-за этого износа и происходит шуршание и треск из динамиков, а иногда при сильном износе звучание пропадает совсем. Переменные резисторы бывают как одинарные, так и сдвоенные, сдвоенные обычно используются в устройствах со стерео звучанием. Также к переменным резисторам относятся подстроечные резисторы:

Подстроечный резистор

   Они отличаются от стандартных переменных отсутствием ручки и регулируются вращением вала отвёрткой. Также переменные резисторы бывают однооборотные и многооборотные. Схематическое изображение переменного и подстроечного резистора на рисунке ниже:

Схематическое изображение переменного резистора

   На советских резисторах МЛТ был написан номинал резистора, на импортных резисторах маркировка осуществляется нанесением разноцветных колец, в первых двух кольцах закодирован номинал, третье кольцо множитель, четвёртое кольцо это допуск резистора (для обычных не прецизионных резисторов). 

Цветовая маркировка резисторов

   Встречается маркировка большим, чем четыре, количеством колец, расшифровать маркировку поможет следующий рисунок:

Прецизионные резисторы цветовая маркировка

   Иногда возникает надобность узнать номинал резистора, а по цветовой маркировке это сделать, по каким-либо причинам затруднительно. В таком случае нужно обратиться к принципиальной схеме устройства. На таких схемах номинал резистора обозначается следующим образом, например: 150 означает 150 Ом (единицы измерения не указываются), 100 К означает 100 КилоОм, 2 М означает 2 МегаОма. Иногда при сборке какой-либо схемы нужного номинала нет под рукой, но есть много резисторов других номиналов, в таком случае может помочь последовательное или параллельное соединение резисторов. Формулы подсчета всем известны из учебников физики, но если кто подзабыл, приведу здесь их:

При последовательном соединении


При параллельном соединении

   В последнее время многие переходят на SMD детали, из них наиболее распространены резисторы размеров 0805 и 1206. Определить номинал SMD резистора очень просто, первые две цифры показывают сопротивление резистора, третья цифра количество нулей. Пример: нанесена маркировка 332, это значит 33 плюс два нуля, получается 3300, то есть 3.3 КилоОма. Менее распространены в электронике, но тем не менее находят применение терморезисторы и фоторезисторы. На рисунке ниже изображено схематическое изображение терморезисторов:

Терморезисторы схематическое изображение

   У терморезисторов сопротивление зависит от температуры. Если с повышением температуры сопротивление терморезистора увеличивается, то температурный коэффициент сопротивления ТКС положительный, если же с повышением температуры сопротивление уменьшается, то ТКС отрицательный. Терморезистор изображен на фотографии ниже:

Терморезистор фото

   На следующем рисунке изображён фоторезистор, как его рисуют на схемах:

Фоторезистор схематическое изображение

   Он представляет собой полупроводниковый прибор, сопротивление которого меняется под действием света.

Фоторезистор – внешний вид

   Фоторезисторы особенно широко используются в устройствах автоматики. Привожу типовую схему включения полупроводникового фотодетектора:

Типовая схема полупроводникового фотодетектора

   В общем резистор можно смело считать кирпичиком любой радиосхемы, так как это самый распространённый элемент в радиоэлектронике. С вами был AKV.

   Форум по деталям

Резистор. Резисторы переменного сопротивления | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о резисторах. В первой части статьи мы познакомились с резисторами постоянного сопротивления (постоянными резисторами), а в этой части статьи поговорим о резисторах переменного сопротивления, или переменных резисторах.

Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно

изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

1. Потенциометры.

Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные.

1.1 Непроволочные.

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

1.2. Проволочные.

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

2. Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются

1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

3. Обозначение переменных резисторов на схемах.

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

4. Подстроечные резисторы.

Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б) перемещение контактной щетки осуществляется червячной передачей.

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

5. Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы.
Удачи!

Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.

энциклопедия киповца

В цепях переменного и постоянного тока резисторы используются в качестве активного сопротивления. 

Резисторы бывают трех типов:

 - постоянные

 - переменные (служат для многократного изменения сопротивления)

 - подстроечные (для изменения сопротивления при отладке, потом фиксируются)

Обозначение

Основные параметры резисторов:

 - номинальное сопротивление R,[Ом]

 - максимальная рассеиваемая мощность P,[Вт]

 - допустимое отклонение сопротивления от номинального DR,[%]

 - температурный коэффициент сопротивления (ТКС)

 – тип резистивного элемента

Промышленность выпускает постоянные сопротивления строго в соответствии с рядом номинального значения сопротивления. Существует несколько рядов, которые обозначаются следующим способом: E6, E12, E24, E48, E96, E112. Цифра в обозначении ряда показывает сколько номинальных значений приходится на одну декаду. Первые три ряда – резисторы общего назначения. Вторые три ряда резисторов применяются в измерительной технике. Наиболее распространенным является ряд E24.

Величина рассеиваемой мощности определяет в цепях с какими токами данный резистор можно использовать. Например резистор с сопротивлением 250 Ом и максимальной рассеиваемой мощностью 1 Вт в цепи с током 0,25 А сгорит, т.к. при таком токе на сопротивлении 250 Ом рассеивается мощность около 15 Вт (I2R).

Температурный коэффициент сопротивления измеряется в долях процента на градус и показывает на сколько изменится сопротивление резистора, если температура окружающей среды изменится на один градус.

Существует два основных класса резисторов: проволочные и непроволочные. Сопротивление проволочных резисторов находится в пределах от долей Ома до сотен Ом. Сопротивление непроволочных резисторов обычно превышает десятки Ом.

Непроволочные резисторы делятся на:

 - металлопленочные

 - углеродистые

 - бороуглеродистые

Устройство резистора

1 – контактный колпачек

2 – резистивное покрытие

3 – керамический стержень

4 – проволочный вывод

Резистор переменного сопротивления, переменный резистор, резистор переменный проволочный


Резистор переменного сопротивления состоит из двух основных компонентов: резистивного слоя и ползунка. Резистивный слой имеет на своих концах контакты. Сопротивление между этими контактами и определяет сопротивление переменного резистора. А ползунок передвигается по этому слою, имея с ним электрический контакт. При этом ползунок тоже имеет свой вывод. В процессе движения ползунка от одного крайнего положения до другого изменяется сопротивление между ним и крайними контактами переменного сопротивления. Резистивный слой изготавливается из углерода, металлокерамики или может быть в виде проволочной катушки (резистор переменный проволочный). Проволочные переменные резисторы могут быть довольно приличной мощности. Переменные сопротивления обычно бывают поворотные, т.е. шток резистора надо крутить. Но бывают также и ползунковые переменные резисторы. В них резистивный слой в виде прямой линии и ползунок движется по нему прямо. Поэтому и шток такого резистора надо двигать, а не крутить.

Переменное сопротивление – назначение

Переменный резистор


22 ком, 0.5 Вт.

Переменные сопротивления главным образом применяются для регулировки громкости в различной бытовой и профессиональной радиоаппаратуре. А вообще, можно сказать, что они предназначены для плавного изменения напряжения или тока в различных электросхемах посредством изменения собственного сопротивления. Например, с их помощью можно плавно регулировать яркость свечения электрической лампочки.

Переменный резистор с выключателем

В случае использования переменных резисторов в качестве регулятора громкости, например в радиоприёмнике, часто используют переменные резисторы с выключателем. Т.е. регулятор громкости совмещён с выключателем напряжения питания радиоприёмника. Как это работает: в крайнем положении регулятора, когда он соответствует минимальному значению громкости, выключатель питания выключен и устройство, в данном случае радиоприёмник, тоже выключено. Чтобы его включить, надо начать поворачивать регулятор в сторону увеличения громкости. Произойдёт небольшой щелчок – выключатель включится и дальнейший поворот регулятора приведёт к увеличению громкости звучания приёмника. В дальнейшем, чтобы выключить устройство, надо повернуть ручку громкости до минимума звука, а затем ещё чуть-чуть до характерного щелчка, означающего что выключатель сработал и устройство выключено.

Сдвоенный переменный резистор

Сдвоенный переменный резистор – ещё одно исполнение данных устройств. В общем случае, такие сдвоенные резисторы предназначены для одновременного изменения сопротивления в разных независимых частях схемы или вообще в разных устройствах. Самое частое применение сдвоенных переменных резисторов – звуковые стереофонические усилители мощности, где необходимо регулировать громкость одновременно в двух каналах: правом и левом. Такие резисторы имеют две резистивные дорожки, каждая со своими выводами и со своим ползунком, и один общий шток, который двигает сразу оба ползунка.

Некоторые переменные сопротивления разработаны для установки сразу на печатную плату и их контакты запаиваются непосредственно в схему. Другие предназначены для установки в корпус радиоаппаратуры, в предварительно просверленное отверстие и крепятся там при помощи гайки. В схему такие сопротивления запаиваются уже при помощи проводов. На корпусе пер. сопротивлений наносится значение его сопротивления и мощности. Номиналы переменных резисторов соответствуют ряду E6.


Резистор переменный проволочный


§ 8. Использование резисторов для регулирования тока в электрической цепи

Резисторы. Закон Ома наглядно показывает, что силу тока в электрической цепи можно изменять, включая в нее различные сопротивления. Этим свойством широко пользуются на практике для регулирования и ограничения тока в обмотках двигателей, генераторов и других электрических потребителях. Электрический аппарат, предназначенный для включения в электрическую цепь с целью регулирования или ограничения проходящего по ней тока, называют резистором. Резисторы бывают с постоянным или регулируемым сопротивлением. Последние иногда называют реостатами.
Резисторы обычно изготовляют из проволоки или ленты, материалом для которых служат сплавы металлов, обладающие высоким удельным сопротивлением (константан, никелин, манганин, фехраль). Это дает возможность для изготовления резисторов применять проволоку наименьшей длины. В электрических цепях, по которым проходят сравнительно небольшие токи (например, в цепях управления, в устройствах электроники и радиотехники), часто применяют непроволочные резисторы, выполненные из графита и других материалов.
Устройство реостатов. Реостаты могут выполняться с плавным или ступенчатым изменением сопротивления. В лабораториях для управления электрическими машинами и испытательными устройствами часто используют ползунковый реостат с плавным изменением сопротивления (рис. 16, а). Такой реостат состоит из изоляционной трубки 4, на которую навита проволочная спираль 5. К виткам этой спирали прикасается подвижной контакт 2. Зажим 1 реостата соединяется с подвижным контактом, другой зажим 3 — с одним из концов спирали. Перемещая подвижной контакт, можно изменять длину проволоки, расположенной между зажимами реостата, и тем самым изменять его сопротивление.
Для пуска и регулирования электрических двигателей станков, грузоподъемных механизмов и пр. применяют ползунковый реостат со ступенчатым изменением сопротивления (рис. 16, б). Реостат состоит из ряда одинаковых сопротивлений 9 (секций), присоединенных к контактам 8. Для включения в цепь того или иного числа секций служит ползунок 7 со штурвалом 6.
Для регулирования тока при пуске тяговых двигателей электрических локомотивов постоянного тока применяют реостаты со ступенчатым изменением сопротивления (пусковые реостаты). Отдельные секции реостата в процессе пуска замыкаются накоротко дистанционно управляемыми выключателями, называемыми контакторами.
На некоторых электровозах (например, электровозах ЧС) пусковые реостаты выполнены из чугунных литых пластин 10 особой формы, напоминающей зигзагообразно уложенную ленту. Отдельные пластины собирают на изолированных шпильках и прикрепляют к основанию 11 (рис. 16, в).

Рис. 16. Устройство реостатов: а — с плавным изменением сопротивления; б — со ступенчатым изменением сопротивления; в — из чугунных пластин; г — из фехралевой ленты

В последнее время пусковые реостаты электровозов и моторных вагонов выполняют из фехралевой ленты 12, намотанной на фарфоровые изоляторы 13 (рис. 16, г). Так же устроены и реостаты, служащие для регулирования тока возбуждения тяговых двигателей на электровозах и тепловозах. Реостаты из фехралевой ленты более

Рис. 17. Схема последовательного включения реостата в цепь приемника электрической энергии

Рис. 18. Схема включения реостата в качестве делителя напряжения

прочны, более устойчивы против тряски и вибраций и имеют меньшую массу, чем реостаты, выполненные из чугунных пластин.
Схемы включения реостатов. Реостат 2 (рис. 17) может быть включен последовательно в цепь между источником 1 и приемником 4 электрической энергии. В этом случае при изменении сопротивления реостата, т. е. при перемещении подвижного контакта 3, изменяется сила тока в приемнике. Этот ток проходит только по части сопротивления реостата.
Однако реостат можно включать в цепь таким образом, чтобы ток проходил по всему его сопротивлению, а к приемнику ответвлялась только часть тока источника. В этом случае два крайних зажима 2 и 4 реостата (рис. 18) подключают к источнику 5, а один из этих зажимов, например 4, и подвижной контакт 3 реостата — к приемнику 1. Очевидно, что при таком включении к приемнику будет подаваться напряжение U, равное падению напряжения между зажимом 4 и подвижным контактом 3 реостата. Следовательно, передвигая подвижной контакт реостата, можно изменять напряжение U, подводимое к приемнику, и силу тока в нем. Напряжение U представляет собой только часть напряжения Uи на зажимах источника.
Реостат, включенный по схеме рис. 18, называется делителем напряжения, или потенциометром.

Типы, применение, детали »Электроника

Резисторы

являются одними из наиболее широко используемых компонентов в электронных схемах – существует множество различных типов резисторов, имеющих разные свойства и используемых по-разному в разных схемах.


Resistor Tutorial:

Обзор резисторов Углеродный состав Карбоновая пленка Металлооксидная пленка Металлическая пленка Проволочная обмотка SMD резистор MELF резистор Переменные резисторы Светозависимый резистор Термистор Варистор Цветовые коды резисторов Маркировка и коды SMD резисторов Характеристики резистора Где и как купить резисторы Стандартные номиналы резисторов и серия E


Резисторы всех типов в большом количестве используются в производстве электронного оборудования.Фактически, резистор, вероятно, является наиболее распространенным типом электронного компонента, используемого в электрических и электронных схемах.

Существует большое количество различных типов резисторов, которые можно купить и использовать. Свойства этих разных резисторов различаются, и это помогает выбрать резистор подходящего типа для любой конкретной конструкции, чтобы обеспечить наилучшие характеристики.

Хотя многие резисторы будут работать в различных приложениях, в некоторых случаях важен тип резистора.Соответственно, необходимо знать о различных типах резисторов и о том, в каких приложениях можно использовать каждый тип резистора.

Выбор резисторов с постоянными выводами или различных типов

Что такое резистор?

Резисторы

используются практически во всех электронных схемах и многих электрических. Резисторы, как следует из их названия, противостоят току электричества, и эта функция является ключевой для работы большинства цепей.

Примечание о сопротивлении:

Сопротивление – один из ключевых факторов, используемых в электрических и электронных схемах.Сопротивление – это свойство материалов сопротивляться потоку электричества, и оно регулируется законом Ома.

Подробнее о Сопротивление.

Для резисторов используются два основных символа схемы. Самый старый из них до сих пор широко используется в Северной Америке и состоит из зубчатой ​​линии, обозначающей провод, используемый в резисторе. Другой символ цепи резистора представляет собой небольшой прямоугольник, который часто называют международным символом резистора, и он более широко используется в Европе и Азии.

Обозначения цепи резистора

Единицей измерения или сопротивления является Ом, Ом, а значения резистора могут быть указаны в единицах Ом – Ом, тысячи Ом или киломов – кОм и миллионы Ом, мегом, МОм. При написании на схемах таких значений, как 10 кОм, можно увидеть, что это означает 10 кОм или 10 кОм. Знак Омега часто опускается, а десятичная точка заменяется множителем: например, 1R5 будет 1,5 Ом, 100R – 100 Ом, 4k7 – 4,7 кОм, 2M2 – 2,2 МОм и т. Д.

Есть много разных типов резисторов.Некоторые из них предназначены для специальных применений, таких как использование в качестве переменных резисторов, а другие используются для ограничения перенапряжения, а другие обеспечивают переменное сопротивление в зависимости от температуры. Все эти характеристики можно использовать.

Однако для постоянных резисторов необходимо учитывать другие характеристики.

Несмотря на то, что фактическое сопротивление компонента имеет первостепенное значение, необходимо учитывать и другие характеристики. Рассеиваемая мощность, шум, индуктивность, термическая стабильность и ряд других характеристик могут влиять на работу цепи, в которой используется резистор.

Различные материалы и структура резистора могут иметь большое влияние. Соответственно, при выборе резистора, который будет использоваться, эти характеристики также должны быть приняты во внимание.

Основные различия типов резисторов

Первые основные категории, к которым могут быть отнесены различные типы резисторов, – фиксированные или переменные. Эти разные типы резисторов используются для разных приложений:

  • Постоянные резисторы: Постоянные резисторы на сегодняшний день являются наиболее широко используемым типом резисторов.Они используются в электронных схемах для установки правильных условий в цепи. Их значения определяются на этапе проектирования схемы, и их никогда не следует изменять для «настройки» схемы. Существует множество различных типов резисторов, которые можно использовать в различных обстоятельствах, и эти различные типы резисторов более подробно описаны ниже.
  • Переменные резисторы: Эти резисторы состоят из фиксированного резисторного элемента и ползунка, который подключается к основному резистивному элементу.Это дает три соединения с компонентом: два соединены с фиксированным элементом, а третье – с ползунком. Таким образом, компонент действует как переменный делитель потенциала, если используются все три соединения. Можно подключить к ползунку и одним концом, чтобы обеспечить резистор с переменным сопротивлением.
    Потенциометр предварительной настройки углеродной пленки Переменные резисторы и потенциометры широко используются для всех форм управления: – от регуляторов громкости на радиоприемниках и ползунков в аудиомикшерах до множества областей, где требуется переменное сопротивление.
    Потенциометр и переменный резистор Строго говоря, потенциометр – это компонент, в котором есть фиксированный резистор, который имеет ползунок для обеспечения деления потенциала от напряжения вверху. Переменный резистор фактически такой же, но с ползунком, соединенным с одним концом резистора, так что он обеспечивает истинное переменное сопротивление.

Типы постоянного резистора

Есть несколько различных типов постоянного резистора:

  • Состав углерода: Резистор углеродного состава – это тип резистора, который когда-то был очень распространен – ​​он был основным типом резистора, но теперь редко используется, потому что новые формы резистора обеспечивают лучшую производительность, они меньше и тоже дешевле.

    Резисторы из углеродного состава получают путем смешивания гранул углерода со связующим, которое затем превращается в небольшой стержень. Этот тип резистора был большим по сегодняшним меркам и имел большой отрицательный температурный коэффициент.
    Резисторы также страдали от больших и беспорядочных необратимых изменений сопротивления в результате нагрева или старения. В дополнение к этому гранулированный характер углерода и связующего приводит к возникновению высокого уровня шума при протекании тока.


  • Углеродная пленка: Этот тип резистора был представлен на заре транзисторной технологии, когда уровни мощности имели тенденцию быть ниже.
    Карбоновый пленочный резистор Углеродный пленочный резистор формируется путем «крекинга» углеводорода на керамическом каркасе. Сопротивление полученной осажденной пленки устанавливали путем врезания спирали в пленку. Это сделало эти резисторы очень индуктивными и мало пригодными для многих ВЧ-приложений. Они показали температурный коэффициент от -100 до -900 частей на миллион на градус Цельсия. Углеродная пленка защищена либо конформным эпоксидным покрытием, либо керамической трубкой.
  • Металлооксидный пленочный резистор: Этот тип резистора в настоящее время является наиболее широко используемой формой резисторов.Вместо углеродной пленки в этом типе резисторов используется пленка оксида металла, нанесенная на керамический стержень. Как и в случае с углеродной пленкой, сопротивление можно регулировать, вырезая в пленке спиральную канавку. Пленка снова защищена конформным эпоксидным покрытием. Этот тип резистора имеет температурный коэффициент около + или – 15 частей на миллион на градус Цельсия, что дает ему намного лучшие характеристики по сравнению с любым резистором на основе углерода. Кроме того, этот тип резистора может поставляться с гораздо меньшим допуском, стандартным является 5% или даже 2%, а доступны версии с 1%.Они также демонстрируют гораздо более низкий уровень шума, чем углеродные резисторы, однако в основном они были заменены металлическими пленочными резисторами.
  • Металлопленочный резистор: Металлический пленочный резистор очень похож на металлооксидный пленочный резистор. Визуально он очень похож, и производительность также сопоставима. Вместо металлооксидной пленки в этом типе резистора используется металлическая пленка, как следует из названия. Могут использоваться такие металлы, как никелевый сплав.
    Металлопленочный резистор с выводами Металлопленочный резистор – это тип, который наиболее широко используется, когда требуется резистор с выводами.
  • Резистор с проволочной обмоткой: Этот тип резистора обычно зарезервирован для приложений с большой мощностью. Эти резисторы изготавливаются путем наматывания на каркас провода с более высоким, чем обычно, сопротивлением (провод сопротивления).

    Более дорогие разновидности наматываются на керамический каркас и могут быть покрыты стекловидной или силиконовой эмалью.Этот тип резистора подходит для высоких мощностей и демонстрирует высокий уровень надежности при высоких мощностях наряду со сравнительно низким уровнем температурного коэффициента, хотя это будет зависеть от ряда факторов, включая первый, используемый провод и т. Д. В качестве резисторов с проволочной обмоткой часто предназначены для применения с высокой мощностью, некоторые разновидности спроектированы таким образом, чтобы их можно было установить на радиаторе, чтобы гарантировать, что мощность рассеивается в металлоконструкциях, чтобы ее можно было унести.

    Ввиду того, что они намотаны, они не подходят для работы на частотах выше низких, хотя, если намотать части резистивного провода в разных направлениях, индуктивность можно несколько уменьшить.


  • Резисторы для поверхностного монтажа: Технология поверхностного монтажа, SMT в настоящее время является основным форматом, используемым для электронных компонентов. Их проще использовать в автоматизированном производстве, и они способны обеспечить очень высокий уровень производительности. В резисторах SMT используются технологии, аналогичные другим формам, но в формате для поверхностного монтажа.

Резисторы других типов

Хотя большинство резисторов представляют собой стандартные постоянные резисторы или переменные резисторы, существует ряд других типов резисторов, которые используются в более нишевых или специализированных приложениях.

  • Светозависимый резистор / фоторезистор: Светозависимые резисторы или фоторезисторы изменяют свое сопротивление в зависимости от уровня освещенности. Они используются в ряде сенсорных приложений и во многих случаях представляют собой очень экономичное решение.

    Типичный светодиодный резистор, зависимый от света Светозависимые резисторы имеют задержку во времени, необходимом для реакции на изменение освещенности, но они дешевы и просты в использовании.


  • Термистор: Как видно из названия, термисторы являются термочувствительными резисторами.Сопротивление термистора зависит от температуры. Некоторые имеют отрицательный температурный коэффициент, термисторы NTC, другие имеют положительный температурный коэффициент, термисторы PTC.
  • Варистор: Варисторы доступны в нескольких формах. По сути, эти электронные компоненты изменяют свое сопротивление в зависимости от приложенного напряжения, и в результате они находят применение для защиты от скачков напряжения и перенапряжения. Часто их можно увидеть как Movistors, что является сокращением слов M etal O xide V ar istor .

    Выбор варисторов с выводами Варисторы – это устройства, которые широко используются в удлинителях сети с защитой от перенапряжения или переходных процессов и используются для защиты компьютеров. Следует помнить, что каждый раз, когда варистор получает импульс, его свойства незначительно меняются.


Хотя резисторы можно рассматривать как простые в использовании электронные компоненты, существует ряд параметров, которые необходимо учитывать при выборе правильного типа резистора.Важны не только сопротивление, но и параметры. Выдерживаемое напряжение, рассеиваемая мощность и тип самого резистора – все это влияет на производительность. Поскольку доступно множество типов резисторов, необходимо выбирать правильный тип для каждого конкретного применения. Таким образом может быть обеспечена лучшая производительность.

Другие электронные компоненты:
резисторов Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Резистор

– Energy Education

Рис. 1. Пример углеродного резистора с цветовым кодом сопротивления. [1]

Резисторы – это электрические компоненты в электрической цепи, которые замедляют ток в цепи. Они намеренно теряют энергию в виде тепла или тепловой энергии.

В таких устройствах, как электрические обогреватели, электрические духовки и тостеры, используются резисторы для преобразования тока в тепло, а затем тепло, теряемое этим резистором, используется для обогрева окружающей среды.Даже нить накаливания лампы накаливания является эффективным резистором, замедляющим ток и нагревающим провод до достаточно высокой температуры, чтобы он испускал свет. Этот испускаемый свет известен как излучение абсолютно черного тела.

Резисторы

также используются в электрических устройствах, таких как компьютеры и сотовые телефоны, для подавления нежелательных электрических сигналов. Это нелогично, но, несмотря на то, что энергия рассеивается с помощью сопротивления, резисторы абсолютно необходимы для правильного функционирования электроники.Они работают, чтобы гарантировать, что другие компоненты не будут иметь слишком большое напряжение или электрический ток.

Резисторы имеют сопротивление от нескольких Ом (Ом) до нескольких МОм (МОм = миллион Ом). Более подробную информацию о резисторах см. В разделе «Гиперфизика». Объяснение цветового кода, показанного на рисунке 1, можно найти здесь.

Типы резисторов

Рисунок 2. Переменные резисторы. [2]

Существует множество различных способов изготовления резистора, и каждый метод имеет преимущества и недостатки с точки зрения универсальности и стоимости.Можно увидеть два основных типа резисторов: переменные и фиксированные резисторы .

Переменная

Переменные резисторы

, показанные на рисунке 2, представляют собой просто особый тип резистора, который можно настроить на любое омическое значение – или уровень сопротивления – в определенном диапазоне.

Фиксированный

Эти резисторы являются наиболее распространенным типом резисторов и рассчитаны на сопротивление при определенном омическом значении – это просто означает, что они имеют одно связанное, заранее определенное значение сопротивления.Существует несколько типов постоянных резисторов, основным из которых является углеродный. Некоторые конкретные типы постоянных резисторов включают в себя:

Рисунок 3. Резистор из углеродного состава с цветными полосами, показывающими сопротивление. [3]
  • Углеродный состав : Этот тип резистора, показанный на Рисунке 3, имеет два металлических вывода, разделенных столбиком угольной пыли или графита посередине. Когда ток проходит мимо первого вывода, он достигает углеродного столба, который сопротивляется части движущегося заряда.Затем ток проходит по второму выводу при более низком значении тока, чем он был изначально. [4] Удельное сопротивление углеродного столба может быть изменено путем введения примесей, влияние на сопротивление зависит от добавленной примеси.
  • Проволочная обмотка : Этот тип резистора имеет 2 вывода с витым проводом между ними для обеспечения сопротивления. Чем больше длина провода, тем большее сопротивление обеспечивается. Резисторы с проволочной обмоткой являются наиболее часто используемыми резисторами в приложениях с высокой мощностью, поскольку они имеют большую площадь поверхности по сравнению с резисторами из углеродной композиции. [4] Эта увеличенная площадь поверхности позволяет им рассеивать большее количество тепла, которое требуется для таких применений.
  • Интегрированный : Интегрированные резисторы сделаны из полупроводников, отличных от углерода. Они очень малы и поэтому могут иметь несколько упаковок в один корпус, однако они ограничены слаботочными приложениями.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Понимание резисторов Для чего они нужны?

Теория предыстории: что делает резистор?

Каждое электронное устройство, которое у вас есть, содержит как минимум один резистор.Резистор – это пассивный электронный компонент, который предназначен для приложения электрического сопротивления, уменьшающего ток через цепь. В зависимости от того, насколько велико или мало значение сопротивления, резисторы регулируют разную величину тока. Чрезмерное количество тока приводит к сильному нагреву, который может привести к пожару или необратимому повреждению.

Чтобы понять поведение резистора, давайте посмотрим на закон Ома. Закон Ома: V = I x R. Он гласит, что напряжение (V) на резисторе пропорционально току (I), умноженному на его значение сопротивления (R).Итак, сколько R обеспечит любой данный резистор? Вы можете использовать мультиметр, но все резисторы используют систему кодирования, чтобы их было легко читать. См. Таблицу цветов резисторов Jameco.

Резисторы можно подключать последовательно или параллельно. Значение сопротивления можно регулировать в зависимости от того, как резисторы соединены вместе. Резисторы, соединенные последовательно и имеющие один общий общий узел, просто складываются, чтобы найти общее сопротивление. Параллельно подключенные резисторы немного сложнее найти общее сопротивление.Формула рассчитана на сумму, равную сумме всех резисторов, включенных параллельно. Req = (1 / [(1 / R1 + 1 / R2 + … + 1 / Rn)] Выбрав правильные резисторы и затем спроектировав их последовательно или параллельно, вы можете приблизиться к тому сопротивлению, которое требуется для вашей конструкции.

Давайте приступим к образовательному проекту резисторов, построив силовую резистивную декадную нагрузочную коробку.

Проект загрузочного бокса:


Блок для резистивных нагрузок средней мощности представляет собой промежуточный комплект, который требует большого количества пайки и пробивки отверстий в корпусе.Конечный продукт используется в лабораториях электроники в качестве переменного резистора для создания и отладки схем или в качестве нагрузки высокой мощности для проверки способности схемы управлять резистивными нагрузками.

Вам понадобится:

(4) Поворотный переключатель, SP, 12 позиций
(1) Корпус, металлический, 7,5 “x 9,8” x 3,2 “
(7) Резистор 5 Вт 0,1 Ом
(7) Резистор 5 Вт 1 Ом
(7) Резистор 5 Вт 10 Ом
(100) Плоская шайба, # 4, 9/32 OD
(100) Шестигранная гайка, 4-40
(1) Сплошной монтажный провод, 22AWG, черный, 100 ‘Ручка
(4), Вал 1/4 “, JK-902A
(1) Изолированный домкрат-банан, красный
(1) Изолированный домкрат-банан, черный
(100) Винт с цилиндрической головкой, 4-40 x 1/4″
Сверла, 1/8 от “до 7/16”
Маленький серповидный гаечный ключ
Крестообразная отвертка
Паяльник
Металлический напильник или кусачки
Шестигранный ключ
Инструмент для зачистки проводов
Резистор 5 Вт 100 Ом (7 шт.)
Резистор 10 Вт 0.1 Ом (2 шт.)
Резистор 10 Вт 1 Ом (2 шт.)
Резистор 10 Вт 10 Ом (2 шт.)
Резистор 10 Вт 100 Ом (2 шт.)
Инструкции

Возьмите основание коробки и поместите все резисторы 5 Вт или 10 Вт с резистором наименьшего номинала с правой стороны коробки. Поместите резистор 0,1 Ом в ряд, равномерно распределенный по правой стороне основания коробки. Затем разместите резисторы 1 Ом на прямой линии на равном расстоянии от резисторов 0,1 Ом, не позволяя им соприкасаться. Затем поместите резисторы 10 Ом в линию, а резисторы 100 Ом в линию с левой стороны основания коробки, как показано ниже:

Тщательно, не мешая другим резисторам, отметьте внутреннюю часть каждого отверстия в алюминиевых корпусах (монтажные отверстия) каждого резистора фломастером.Удалите резисторы и, используя дырокол, сделайте каждую отметку маркера. Пробойник следует поместить в центр каждого отмеченного монтажного отверстия. Просверлите отверстия в коробке в каждом месте прорези, используя сверло 1/8 дюйма.

Шаблон набора номера (нажмите, чтобы увеличить)
Используйте шаблон циферблата и проделайте небольшое отверстие в центре каждого отверстия, не разрывая бумагу. Возьмите боковую стенку коробки с резисторами 10 Вт, удерживайте циферблат над внешней стороной лицевой стороны, на которой есть зазор для упрощения проводки.Удерживая циферблат в центре боковой стороны, отметьте центральное отверстие каждого маркера фломастером.

Обязательно держите бумагу ровно, чтобы переключатели были установлены на одном уровне относительно друг друга и коробки. Сделайте отметки с помощью кернера. Просверлите четыре отверстия в передней части коробки, постепенно увеличивая размер сверла для четырех переключателей и этикетки, используя сверло не более 7/16 дюйма.

Частично вставьте выключатели питания с небольшой неповоротной проушиной прямо под отверстием и отметьте положение упора поворота (проушины).Просверлите одну сторону зоны неповоротного выступа и с помощью высечки или напильника откройте прорезь, достаточно большую, чтобы не поворачивающуюся проушину можно было вставить, но достаточно маленькую, чтобы не допускать люфта в неповоротной проушине. чтобы переключатель не поворачивался, когда он вставлен в коробку и работает после сборки.

Установите каждый резистор на место и припаяйте пары резисторов вместе с проводом к каждой паре, чередуя стороны по мере продвижения вниз по линиям (100, 10, 1, 0,1), как показано, пока провод не соединится с каждым резистором в каждом ряду.

  • Измерьте ширину коробки без крышки. Вычтите 3/4 дюйма из измерения и разделите на два. Это расстояние от каждого края коробки, на котором будут установлены банановые домкраты (по длине). Отметьте вертикальную линию на этом расстоянии с каждой стороны коробки.
  • Измерьте высоту коробки без крышки. Разделите на два. Отметьте это расстояние по горизонтали с помощью вертикальных линий, проведенных на предыдущем шаге.
  • Используйте дырокол, чтобы сделать углубления в местах пересечения линий.Перемычки должны быть на одном уровне и на расстоянии 3/4 дюйма в центре задней стороны коробки.
  • Просверлите отверстия для банановых домкратов, вставьте банановые домкраты и прикрутите болты, которые крепят каждый банановый домкрат к стенке коробки.
Установите переключатели в переднюю часть коробки и начните подключать переключатели на место, следуя схеме ниже (привяжите контакт 11 к контакту 12 каждого из четырех переключателей): Поместите омметр на контакт 1 переключателей и на контакт 2, циклически перебирайте каждое положение и проверяйте приращение сопротивления на правильную величину с каждым шагом.
Подключите провода к банановым разъемам, добавив два провода, показанные на схеме, привязанные к банановым разъемам. Ряд 100 Ом должен быть привязан к черному разъему, а ряд 0,1 Ом должен быть привязан к красному разъему. Накрутите крышку на основание ящика. Создайте кривые для кривой безопасной работы резистора 0,1, 1, 10 и 100 Ом.

Вырежьте отверстия диаметром 1/2 дюйма в центре индикаторной бумаги сопротивления в центре каждого круга. Ламинируйте индикаторную бумагу сопротивления и вырежьте отверстия диаметром 7/16 дюйма в каждом ранее вырезанном отверстии на полдюйма.Поместите индикаторную бумагу на каждый переключатель и прикрепите к коробке под гайками, удерживающими переключатели на месте. Добавьте каждую ручку к переключателям и затяните их. Теперь поставьте коробку в эксплуатацию.

Вопросы для обсуждения

Что произойдет, если сопротивление будет слишком высоким?
Какие преимущества и недостатки использования резисторов последовательно или параллельно?
Как температура подключенного в цепь резистора повлияет на производительность устройства?

Применение резисторов | Sciencing

Обновлено 3 ноября 2020 г.

Ким Льюис

Резисторы – это электрические компоненты, которые помогают контролировать протекание тока в цепи.Высокое сопротивление означает, что для данного напряжения доступен меньший ток. Внутри резистора электроны сталкиваются с ионами, замедляя поток электричества и уменьшая ток, выделяя тепло.

Транзисторы и светодиоды

Транзисторы и светодиоды – это устройства, чувствительные к электрическому току; слишком большой ток разрушит их, но слишком маленький мешает им работать должным образом. Резистор правильного номинала, помещенный в схему, позволяет транзисторам, светодиодам и другим полупроводниковым компонентам работать в наиболее подходящем для них диапазоне тока.

Синхронизация и частота

Во многих схемах используется резистор, подключенный к конденсатору, для обеспечения источника синхронизации; световые мигалки, электронные сирены и многие другие схемы зависят от этой функции. Конденсатору, который удерживает электрический заряд, как чашка держит воду, требуется определенное время для заполнения током, а резистор определяет, насколько быстро конденсатор заполняется. Если вы умножите значение сопротивления резистора на значение конденсатора в фарадах, вы получите значение времени, измеряемое в секундах; по мере увеличения сопротивления временной период схемы также увеличивается.

Делитель напряжения

Делитель напряжения представляет собой «гирляндную цепь» резисторов, соединенных вместе, один за другим, образующих последовательную цепь. Если все резисторы имеют одинаковое значение, падение напряжения на каждом из них будет одинаковым; в противном случае это пропорция, определяемая сопротивлением каждого резистора и общим сопротивлением всех резисторов в делителе. Делители напряжения полезны для компонентов, которым необходимо работать при меньшем напряжении, чем подаваемое на вход.2R

, где P – мощность нагрева в ваттах, I – ток в амперах, а R – сопротивление в омах, определяет количество тепла, выделяемого резистором.

Пользовательское управление функциями цепи

Некоторые типы резисторов являются переменными, что позволяет вам устанавливать их сопротивление, перемещая ползунок или вращая ручку. Изменяющееся сопротивление изменяет количество тока, протекающего в цепи. Вы можете, например, использовать переменный резистор для управления громкостью усилителя, высотой музыкального тона или скоростью двигателя.

Что такое резистор

Что такое резистор и расчет резистора.

Что такое резистор

Резистор – это электрический компонент, уменьшающий электрический ток.

Способность резистора уменьшать ток называется сопротивлением и измеряется в омах (символ: Ω).

Если мы проводим аналогию с потоком воды по трубам, резистор представляет собой тонкую трубку, которая уменьшает поток воды.

Закон Ома

Ток резистора I в амперах (А) равен напряжению резистора В в вольтах (В)

разделить на сопротивление R в омах (Ω):

Потребляемая мощность резистора P в ваттах (Вт) равна току резистора I в амперах (A)

раз больше напряжения резистора В в вольтах (В):

P = I × V

Потребляемая мощность резистора P в ваттах (Вт) равна квадрату тока резистора I в амперах (A)

В

раз больше сопротивления резистора R в омах (Ом):

P = I 2 × R

Потребляемая мощность резистора P в ваттах (Вт) равна квадрату напряжения резистора В в вольтах (В)

деленное на сопротивление резистора R в омах (Ом):

P = V 2 / R

Параллельно подключенные резисторы

Общее эквивалентное сопротивление резисторов, включенных параллельно R Всего определяется по формуле:

Таким образом, когда вы добавляете резисторы параллельно, общее сопротивление уменьшается.

Резисторы серии

Суммарное эквивалентное сопротивление резисторов в серии R Всего – это сумма значений сопротивления:

R всего = R 1 + R 2 + R 3 + …

Таким образом, когда вы добавляете резисторы последовательно, общее сопротивление увеличивается.

Размеры и материал влияет на

Сопротивление резистора R в омах (Ом) равно удельному сопротивлению ρ в ом-метрах (Ом ∙ м), умноженной на длину резистора l в метрах (м), деленную на площадь поперечного сечения резистора A в квадратных метрах (м 2 ):

Изображение резистора

Обозначения резисторов

Код цвета резистора

Сопротивление резистора и его допуски обозначены на резисторе полосами цветного кода, которые обозначают значение сопротивления.

Есть 3 типа цветовых кодов:

  • 4 полосы: цифра, цифра, множитель, допуск.
  • 5 полос: цифра, цифра, цифра, множитель, допуск.
  • 6 диапазонов: цифра, цифра, цифра, множитель, допуск, температурный коэффициент.
Расчет сопротивления 4-х полосного резистора

R = (10 × цифр 1 + цифр 2 ) × множитель

Расчет сопротивления 5-ти или 6-ти полосного резистора

R = (100 × цифр 1 + 10 × цифр 2 + цифр 3 ) × множитель

Типы резисторов

Резисторы SMT / SMD
Переменный резистор Переменный резистор с регулируемым сопротивлением (2 клеммы)
Потенциометр Потенциометр с регулируемым сопротивлением (3 клеммы)
Фоторезистор Снижает сопротивление при воздействии света
Силовой резистор Силовой резистор применяется в цепях большой мощности и имеет большие габариты.
Резистор

(SMT / SMD) для поверхностного монтажа

имеют небольшие габариты. Резисторы устанавливаются на печатную плату (PCB), этот метод быстрый и требует небольшой площади платы.
Сетевой резистор Сеть резисторов – это микросхема, содержащая несколько резисторов с одинаковыми или разными номиналами.
Резистор угольный
Чип резистор
Металлооксидный резистор
Керамический резистор

Подтягивающий резистор

В цифровых схемах подтягивающий резистор – это обычный резистор, подключенный к источнику высокого напряжения (например,g + 5V или + 12V) и устанавливает уровень входа или выхода устройства на «1».

Подтягивающий резистор устанавливает уровень «1», когда вход / выход отключен. Когда вход / выход подключен, уровень определяется устройством и отменяет подтягивающий резистор.

Понижающий резистор

В цифровых схемах понижающий резистор – это обычный резистор, который подключен к земле (0 В) и устанавливает уровень входа или выхода устройства на «0».

Понижающий резистор устанавливает уровень на «0», когда вход / выход отключен.Когда вход / выход подключен, уровень определяется устройством и имеет приоритет над понижающим резистором.

Электрическое сопротивление ►


См. Также

Типы резисторов и их функции

Резисторы повсюду в электрических устройствах. Эти простые пассивные компоненты имеют огромное значение, когда дело касается схемотехники. Они бывают разных видов и обладают широким спектром функций. Как видно из их названий, основная функция резистора – обеспечивать сопротивление электрическому току.Другие функции резисторов включают:

  • Делительное напряжение
  • Вырабатывает тепло
  • Питание светодиодов
  • Цепи согласования и нагрузки
  • Управляемая прибыль
  • Устранение временных ограничений

Выбор подходящего типа резистора для проекта или конструкции зависит от множества факторов, которые необходимо спланировать заранее, прежде чем закупить резисторы для крупномасштабного производства. При выборе типа резистора инженер должен учитывать следующие факторы:

  • Сопротивление
  • Допуск
  • Номинальная рассеиваемая мощность
  • Упаковка и установка
  • Номинальное напряжение
  • Материальное строительство
  • Индуктивность и емкость
  • Температурный диапазон
  • Рабочий шум

Резисторы бывают разных типов со своими номиналами и размерами.При разработке схемы это поможет узнать преимущества и уникальные функции каждой разновидности резисторов.

Общие типы линейных резисторов

Линейные резисторы реагируют по закону Ома. Эти резисторы изменяют значение прямо пропорционально приложенному напряжению и температуре. Обычно линейные резисторы делятся на две категории: постоянные резисторы и переменные резисторы.

Постоянные резисторы

Эти резисторы обеспечивают постоянное сопротивление в цепи.Эти типы резисторов чаще всего используются на печатных платах и ​​в электронике. Постоянные резисторы могут быть разных размеров и разных материалов. Наиболее распространенные постоянные резисторы следующие:

Резисторы из углеродного состава: Этот тип резистора является одним из старейших типов компонентов на рынке. Они обычно использовались до 1960-х годов и обычно изготавливались из смеси порошкообразного углерода и керамики. Хотя на рынке все еще доступны резисторы из углеродного состава, они, как правило, более дороги и реже используются, потому что другие типы постоянных резисторов имеют более эффективные характеристики, такие как допуск, зависимость от напряжения и пороги напряжения.

Резисторы с проволочной обмоткой: Эти резисторы состоят из изолированного металлического провода, намотанного на сердечник из непроводящего материала, такого как керамика, пластик или стекло. Металлическая проволока обычно состоит из высокопрочных сплавов, таких как нихром или манганин. Эти резисторы также появились на рубеже веков, но, в отличие от резисторов из углеродного состава, они широко используются и сегодня. Они способны выдерживать высокие нагрузки, стабильны при высоких температурах и обеспечивают долгосрочную стабильность.Однако они, как правило, более дороги и не могут применяться в высокочастотных устройствах.

Тонкопленочные резисторы: Они бывают двух разновидностей: углеродные пленочные резисторы и металлопленочные резисторы, но имеют почти идентичные конструкции. Они состоят из керамического сердечника, окруженного тонким резистивным слоем углеродной или металлической пленки. Тонкопленочные резисторы идеально подходят для использования в приложениях, требующих высокой стабильности, высокой точности и низкого уровня шума, таких как использование в медицинских устройствах, звуковом оборудовании, а также в испытательных и измерительных устройствах

Толстопленочные резисторы : Эти постоянные резисторы чаще всего используются в потребительских устройствах.Они сконструированы как тонкопленочные резисторы, но, как следует из названия, используют толстые пленки оксидов металлов или оксидов металлокерамики. Эти типы резисторов являются самыми дешевыми и наиболее доступными. Обычно они используются в любом электрическом устройстве, которое использует аккумулятор или источник питания переменного тока.

Плавкие резисторы : Эти резисторы выполняют две разные функции: обеспечивают сопротивление электрическому току и действуют как предохранитель для отключения тока в случае перегрузки. Плавкие резисторы работают не только для регулирования тока, но и для защиты от сбоев в случае скачка напряжения.Они сконструированы так же, как резисторы с проволочной обмоткой, и обычно используются в дорогих электронных устройствах, таких как телевизоры, усилители, а также в оборудовании для контроля и управления безопасностью.

Переменные резисторы

В отличие от постоянных резисторов, значениями сопротивления этих компонентов можно управлять с помощью шкалы, ручки или винта. Поскольку они могут управлять напряжением и током, они обычно используются в радио и аудиоаппаратуре. К распространенным типам переменных резисторов относятся:

Потенциометры : Эти резисторы обычно управляются с помощью шкалы или ручки.Они состоят из трех выводов, величина сопротивления которых регулируется подвижным контактом (также известным как стеклоочиститель), который соединен с валом управления. Вращение вала управления увеличивает или уменьшает напряжение на резисторе. Они обычно используются в аудио / визуальном оборудовании и преобразователях.

Реостаты : Эти переменные резисторы, также известные как резисторы с ответвлениями или переменные резисторы с проволочной обмоткой, используют скользящий контакт для регулирования напряжения. Сердечник резистора устроен аналогично резисторам с проволочной обмоткой.Как и потенциометры, эти резисторы используются для управления напряжением в аудио / визуальном оборудовании и преобразователях.

Типы нелинейных резисторов

Нелинейные резисторы отличаются от линейных резисторов тем, что их значение сопротивления изменяется в зависимости от температуры, света или напряжения, а не в соответствии с законом Ома, как у линейных резисторов. Их также можно использовать для управления напряжением тока, поэтому они также являются типами переменных резисторов. Общие типы нелинейных резисторов включают:

Термисторы : Этот тип переменного резистора регулирует напряжение пропорционально изменениям температуры.Термисторы находят применение в бытовой технике, автомобилях, термометрах и аккумуляторных батареях.

Варисторные резисторы : Эти типы резисторов изготавливаются из полупроводниковых материалов, таких как кремний и керамические оксиды металлов. Значение сопротивления этих резисторов изменяется вместе с приложенным напряжением цепи. Варисторы способны выдерживать высокие напряжения постоянного тока и часто используются в качестве ограничителей переходных напряжений в линиях связи, устройствах радиосвязи и в удлинителях.

Фоторезистор или LDR (светозависимые резисторы) : Как видно из названия, значение сопротивления этих резисторов зависит от воздействия света. Эти резисторы используются в датчиках света и измерительном оборудовании, в бытовой технике и фотооборудовании.

Резисторы для поверхностного монтажа (SMD) : Эти резисторы, также называемые чип-резисторами, устанавливаются непосредственно на печатные платы, в отличие от резисторов других типов, которые обычно устанавливаются методом сквозного отверстия.Это позволяет ускорить производство и сэкономить место на печатной плате. Они используются в основном в производстве вычислительного оборудования, а также в других технологиях.

Имея широкий спектр типов и применений, когда компаниям нужен постоянный источник резисторов, лучше всего обратиться к компании, которая может иметь запасы и планировать доставку. Sensible Micro имеет доступ к надежной сети поставщиков микрокомпонентов, включая все типы резисторов. Мы гордимся тем, что обеспечиваем наших клиентов высококачественными компонентами, а также сокращаем время выполнения всех наших заказов.Наши складские запасы хранятся на складе с контролируемой температурой, и каждая исходящая партия проверяется в нашей собственной лаборатории инспекции и тестирования для обеспечения качества. Нужны резисторы? Свяжитесь с одним из наших экспертов по закупкам сегодня.

Будьте в курсе последних событий в отрасли, подписавшись на блог Sensible Micro сегодня!

Резисторы

Что такое сопротивление?

Ограничение потока электронов или электрического ток до определенного уровня называется сопротивлением, а устройство или компонент, используемый для ограничения электрического тока, называется резистор.

Величина электрического тока, ограниченная резистор определяется с помощью уравнение закона.

Где R = сопротивление, V = напряжение, I = Электрический ток

Электрический ток, протекающий через резистор обратно пропорционален сопротивлению резистор и прямо пропорциональный напряжению приложенный к резистору.

В другими словами, количество электрического тока, протекающего через резистор уменьшается с увеличением сопротивления резистора (если напряжение, приложенное к резистору, остается постоянным) и увеличивается с увеличением напряжения, приложенного к резистор (если сопротивление резистора остается постоянным).

Что такое резистор?

Резисторы

являются наиболее часто используемыми электронными компонентами. в схемах.Резистор – это электронный компонент, который уменьшает или ограничивает поток электронов или электрического тока до определенного уровня.

Сколько электрического тока делает резистор блоки зависит от сопротивления резистора. Резисторы с большим сопротивлением блокирует большое количество электрического тока и пропускает очень небольшое количество электрического тока. Резисторы с меньшим сопротивлением блокирует очень небольшое количество электрического ток и допускает большое количество электрического тока.В электрический ток, блокируемый резистором, теряется в виде тепла.

Резисторы – это пассивные компоненты. Следовательно, они не могут контролировать поток электронов или электрический ток через них. Однако они могут ограничивать электрический ток до определенный уровень.

Резистор условное обозначение

Условное обозначение резистора показано на рисунок ниже.Резистор состоит из двух выводов. В клеммы резисторов используются для подключения к другим компоненты через электрический провод.

квартир резистора

Количество электрического тока, заблокированного резистор измеряется в омах и обозначается символом Ω. Ом – количество электрического тока, блокируемого резистором, и допускается один ампер электрического тока при приложенном напряжении в один вольт сохраняется постоянным.

Резистор принадлежит к какая категория: изоляторы или проводники

Мы знаем, что материалы в основном засекречены на два типа: Изоляторы и проводники

Изоляторы блокируют большое количество электрических ток и допускает очень небольшое количество электрического тока, тогда как проводников позволяет электрический ток и блокирует очень небольшое количество электрический ток.

Резисторы с большим сопротивлением действуют как изоляторы, тогда как резисторы с меньшим сопротивлением действуют как проводники.

Сопротивление резистора в основном зависит от двух факторов: длины и площади поперечного сечения

Длина резистора

Сопротивление резистора напрямую пропорционально длине резистора.Длинная длина резисторы обладают высоким сопротивлением, потому что свободные электроны имеют путешествовать на большие расстояния. Следовательно, большое количество свободных электронов сталкиваются с атомами. Поэтому большое количество энергия или электрический ток будут потрачены впустую в виде нагревать.

Резисторы малой длины обеспечивают низкое сопротивление, потому что свободные электроны должны пройти только короткая дистанция.Следовательно, небольшое количество свободных электронов сталкивается атомы. Следовательно, только небольшое количество электрического тока впустую в виде тепла.

Площадь сечения резистора

Сопротивление резистора обратно пропорционально пропорционально площади поперечного сечения резистора. В резисторы с большой площадью поперечного сечения обеспечивают больше места для свободные электроны свободно перемещаются.Следовательно, столкновение свободных электронов с атомами меньше. Поэтому очень небольшое количество электрического тока тратится впустую.

Резисторы с малой площадью поперечного сечения обеспечивают очень маленькое пространство для свободных электронов. Следовательно столкновение свободных электронов с атомами больше. Следовательно, теряется большое количество электрического тока.

Преимущества и недостатки резисторов

Преимущества резисторов

Резисторы очень маленькие.Следовательно, это очень легко переносить их из одного места в другое.

Резисторы

стоят очень дешево. Следовательно, легко заменить их.

Резисторы не зависят от внешнего источник напряжения. Следовательно, внешнее напряжение или энергия не необходим для работы резисторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *