Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Страница не найдена – Портал Продуктов Группы РСС

Сообщите нам свой адрес электронной почты, чтобы подписаться на рассылку новостного бюллетеня. Предоставление адреса электронной почты является добровольным, но, если Вы этого не сделаете, мы не сможем отправить Вам информационный бюллетень. Администратором Ваших персональных данных является Акционерное Общество PCC Rokita, находящееся в Бжег-Дольном (ул. Сенкевича 4, 56-120 Бжег-Дольный, Польша ). Вы можете связаться с нашим инспектором по защите личных данных по электронной почте: .

Мы обрабатываем Ваши данные для того, чтобы отправить Вам информационный бюллетень – основанием для обработки является реализация нашей законодательно обоснованной заинтересованности или законодательно обоснованная заинтересованность третьей стороны – непосредственный маркетинг наших продуктов / продуктов группы PCC .

Как правило, Ваши данные мы будем обрабатывать до окончания нашего с Вами общения или же до момента, пока Вы не выразите свои возражения, либо если правовые нормы будут обязывать нас продолжать обработку этих данных, либо мы будем сохранять их дольше в случае потенциальных претензий, до истечения срока их хранения, регулируемого законом, в частности Гражданским кодексом.

В любое время Вы имеете право:

  • выразить возражение против обработки Ваших данных;
  • иметь доступ к Вашим данным и востребовать их копии;
  • запросить исправление, ограничение обработки или удаление Ваших данных;
  • передать Ваши персональные данные, например другому администратору, за исключением тех случаев, если их обработка регулируется законом и находится в интересах администратора;
  • подать жалобу Президенту Управления по защите личных данных.

Получателями Ваших данных могут быть компании, которые поддерживают нас в общении с Вами и помогают нам в ведении веб-сайта, внешние консалтинговые компании (такие как юридические, маркетинговые и бухгалтерские) или внешние специалисты в области IT, включая компанию Группы PCC .

Больше о том, как мы обрабатываем Ваши данные Вы можете узнать из нашего Полиса конфиденциальности.

Ветряные электростанции и отключение электричества в Техасе: есть ли связь?

Автор фото, Getty Images

Аномальные холода и метель на юге США оставили миллионы людей без электричества. В Техасе энергосистема не выдержала резкого роста потребления, и в штате начались масштабные отключения электричества.

Перебои в энерго- и газоснабжении сохраняются до сих пор. Власти Техаса говорят о необходимости “сохранения баланса между снабжением и потреблением”, чтобы избежать дальнейших масштабных отключений электроэнергии.

Губернатор Техаса Грег Эбботт запретил экспорт природного газа до 21 февраля и назвал ситуацию с отключениями электроэнергии недопустимой. Он призвал расследовать действия техасской компании, отвечающей за местные энергосети, чтобы выяснить “причины всех ошибок, приведших к такому результату”.

Республиканцы и некоторые СМИ связали отключение электричества с ростом доли ветряных электростанций в энергосистеме штата.

“Все работало прекрасно до того момента, пока не наступили холода, – утверждает политический обозреватель и ведущий телеканала Fox News Такер Карлсон. – Ветряные мельницы тут же вышли из строя как никчемные модные игрушки, и люди в Техасе начали умирать [от холода]”.

Что произошло на самом деле?

Сильный холод привел к перебоям в работе энергосистемы Техаса. Действительно, ветряные турбины остановились из-за мороза. Но из-за холодов перестало также работать и оборудование на газовых скважинах и АЭС.

Поскольку газ и другие невозобновляемые источники энергии являются основными для энергосистемы Техаса (в особенности в зимние месяцы), именно перебои в работе газовых станций и АЭС, а не ветряных электростанций, привели к масштабным отключениям электричества.

Автор фото, Getty Images

Поэтому, когда кто-то говорит, что из-за остановки ветряных турбин производство электроэнергии на ветряных электростанциях упало в два раза, то, как правило, забывает о том, что производство электроэнергии также в два раза упало на АЭС, на газовых электростанциях, а также станциях, работающих на угле и других невозобновляемых источниках энергии.

Ветроэнергетика активно развивается в Техасе на протяжении последних 15 лет. На ветряные электростанции приходится до 20% производимой в штате электроэнергии. Еще 10% производят АЭС, а остальные почти 70% приходится на ископаемые виды топлива.

По данным техасского Совета по обеспечению надежности электроснабжения (Ercot), из-за холодов производство электроэнергии на газовых, угольных электростанциях, а также на АЭС упало на 30 гигаватт. Тогда как выход из строя электростанций, работающих на возобновляемых источниках энергии, привел к падению производства электроэнергии на 15 гигаватт.

По данным совета, такое сокращение производство энергии привело к тому, что не был удовлетворен пиковый спрос на электроэнергию в 69 гигаватт. Рост потребления электроэнергии в холодные дни оказался выше, чем ожидалось.

Ведомство не рассчитывало на большой вклад ветряных электростанций в условиях экстремально холодной зимы: по данным совета, в морозные дни ветряные электростанции должны были произвести только 7% от необходимой штату электроэнергии.

Также не следует забывать, что холода привели к перебоям с водоснабжением. Из-за недостатка воды пришлось отключить один из реакторов АЭС в Южном Техасе.

“Нельзя винить в создавшейся ситуации какой-то один источник энергии”, – считает эксперт по электроснабжению Университета Техаса в Остине Джошуа Родс.

По его словам, обычно в случае нештатных ситуаций предполагается, что пиковое потребление будет продолжаться в течение нескольких часов. Сейчас же речь идет уже о нескольких днях.

Автор фото, Getty Images

Могут ли другие штаты помочь Техасу?

Техас – единственный штат в США с автономной системой электроснабжения. Обычно система энергоснабжения штата работает без перебоев. Кроме того, штат производит электроэнергии больше, чем необходимо для внутреннего потребления, и может экспортировать ее в другие штаты.

Однако в нештатных ситуациях (как, например, наступившие холода) Техас не может рассчитывать на помощь других штатов из-за автономной работы своей энергосистемы. Поэтому избежать отключения электричества при резком и значительном ухудшении погодных условий довольно сложно.

Введение в заблуждение

На фоне споров по поводу связи использования возобновляемых источников энергии и отключениями электричества в соцсетях появились вводящие в заблуждение публикации.

Например, на одном из фото, которым пользователи активно делятся в “Твиттере” и “Фейсбуке”, изображен вертолет, с которого производится противообледенительная обработка ветряной турбины.

В подписи утверждается, что этот снимок сделан в Техасе. Фото в соцсетях сопровождается текстом, в котором экологичность ветряных электростанций ставится под сомнение: ведь для ее обслуживания задействован вертолет, работающий на ископаемом топливе, и он распыляет противообледенительную жидкость, которая производится с использованием ископаемого топлива.

Как выяснила Би-би-си, на самом деле эта фотография сделана в Швеции в 2016 году. Снимок был опубликован несколько лет назад шведской компанией Alpine Helicopter. По данным компании, на фотографии запечатлен вертолет, который очищает турбину от льда с помощью горячей воды.

Vortex Bladeless: безлопастные ветряные турбины

Документ представлен Испанским ведомством по патентам и товарным знакам

Компания Vortex Bladeless S.L. разработала и вывела на рынок ветрогенераторы, работающие без лопастей, валов, подшипников и других механизмов, изнашиваемых при трении.

Данная технология основана на аэроупругом резонансе, позволяющем использовать феномен формирования вихрей.

Безлопастные ветротурбины в основном состоят из вертикального неподвижного цилиндра на упругом стержне, встроенном в землю.

Движение верхней части ограничено магнитной силой, так как именно здесь возникает максимальная амплитуда колебаний.

Этот цилиндр улавливает энергию ветра, вступающую в резонанс благодаря аэродинамическому эффекту, называемому сходом вихря, и затем преобразует механическую энергию в электричество с помощью генератора переменного тока.

Инновация, вдохновленная обрушением Такомского висячего моста

В 1940 г. на шоссе № 16 в штате Вашингтон через пролив Такома-Нэрроуз был построен третий по длине в мире висячий мост. Спустя четыре месяца после открытия моста он начал колебаться и обрушился. Столь драматическое обрушение такой конструкции вошло во все учебники как пример, объясняющий работу некоторых типов аэродинамического резонанса, вызванных ветром.

В 2002 г. Давид Х. Яньес узнал об этом событии на курсе инженерно-строительного дела в Вальядолидском университете и подал первый патент на механизм, способный оптимизировать аэродинамический резонанс такого типа и генерировать электроэнергию.

Этот механизм представлял собой вертикальную тонкую конструкцию с круглым сечением, колеблющуюся в плоскости, перпендикулярной направлению ветра.

Такая конструкция была способна работать без каких-либо валов, зубчатых передач, подшипников или других подобных устройств. Таким образом, механизм не нуждался в смазочных материалах и затратах на техническое обслуживание, а сроки окупаемости были сведены к минимуму.

Эта конструкция могла генерировать ветряную энергию без необходимости лопастей, которые до сих пор использовались в ветрогенераторав.

Лишь спустя несколько лет – в 2010 г. – Давид Х. Яньес и Рауль Марин Юнта получили патент ES2374233B1, владельцем которого стала совместно основанная ими компания «DEUTECNO S.L.».

Затем благодаря поддержке фонда «Repsol» и нескольким выигранным наградам была основана компания «Vortex Bladeless S.L.», которая успешно прошла два раунда инвестиций.

В настоящее время компания работает над производством первой предсерийной партии из

100 малогабаритных агрегатов, что достаточно, чтобы представить продукт на рынке.

Этапы разработки технологии

Первый этап заключался в изучении феномена аэродинамики.

Испытания в аэродинамической трубе Института микрогравитации Университета Игнасио да Ривы, UPM. (фото: Vortex Bladeless)

Такой тип аэродинамического резонанса обычно считается проблемой, и существует множество способов его предотвращения. Однако информации о методах оптимизации этого феномена не так много.

Благодаря поддержке таких транснациональных корпораций, как «Altair Engineering, Inc», и таких организаций, как Барселонский суперкомпьютерный центр, конструкция была оптимизирована для максимизации производительности установки.

На втором этапе основное внимание уделялось обеспечению контроля взаимодействия конструкции с ветром

с целью увеличения диапазона скоростей, в котором возникает резонанс.

На третьем этапе был разработан генератор, способный эффективно преобразовывать колебательную энергию в электричество.

В настоящее время проект находится на четвертом и последнем этапе, на котором после выпуска «минимально жизнеспособного продукта» компания готовится к производству, индустриализации и выпуску продукции на рынок.

Первые экспериментальные испытания в «CEDER CIEMAT» в Сории. (фото: предоставлено компанией)

Международное признание

Проект вызвал необычайный интерес на международном уровне. Особую заинтересованность продемонстрировали в Азии, Америке и Европе (именно в таком порядке).

В частности, было получено огромное число предложений о сотрудничестве с различными предприятиями и учреждениями как в промышленности, так и в науке.

Например, одна из трех крупнейших ветроэнергетических компаний в мире предложила осуществить совместный проект по анализу потенциала применения этой идеи на габаритных установках.

Общественные организации также приняли идею на ура. В социальной сфере проекту также был оказан теплый прием.

Такие учреждения, как «SEO Birdlife», ООН, Европейская комиссия, а также множество национальных и международных кооперативов, ассоциаций и учреждений оказывают проекту содействие и делятся своими мнениями.

Охрана: «Vortex Bladeless» в ногу с промышленной собственностью

Начиная с первого патента ES2374233B1, обеспечивающего охрану изобретения как по всей Европе, так и в Америке (в США и Мексике), и продолжая патентами EP15771650, WO2017174161A1, WO2018149942A1 и др. , в основе проекта всегда лежала охрана инноваций и всего предприятия с помощью механизмов промышленной собственности (патентов и товарного знака «Vortex Bladeless»).

Фактически, эволюция компании и этапы ее развития отражены в разных семействах ее патентов.

На каждом раунде инвестиций и на каждом конкурсе, на котором был представлен проект, критически важным считалась степень охраны технологии. К счастью, поскольку этот тип ветряных турбин является «первым в своем роде», не составило труда получить признание «новизны» и «изобретательского уровня», требуемого всеми патентными ведомствами мира, куда была подана заявка на обеспечение охраны.

Хотя в настоящее время все технологии Vortex Bladeless защищены, компонент охраны остается в стратегии компании: особое внимание уделяется производственным процессам и их применению в различных областях.

  • Название МСП: Vortex Bladeless S.L.
  • Сектор: ветроэнергетика
  • Адрес: Calle Zagreb, 4, 28232, Las Rozas de Madrid, Мадрид, Испания
  • Контактное лицо: Давид Х.
    Яньес Вильяреаль
  • Контактный телефон: + 34 659169417
  • Веб-сайт: vortexbladeless.com

Ветропарки: защита климата в ущерб живой природе? | Анализ событий в политической жизни и обществе Германии | DW

Угольная электрогенерация, фрекинг для добычи природного газа, бурение нефтяных скважин… Такие темы  сегодня все чаще выводят на улицы защитников окружающей среды. Но и возобновляемые источники энергии также могут быть весьма спорными – даже с точки зрения экоактивистов.

Рассказывая о том, что рядом с ее домом планируют вырубить лес под новый ветропарк, Габриэле Нихаус-Юбель (Gabriele Niehaus-Uebel), по ее собственным словам, ощущает бессилие, беспомощность и ярость. Она – лидер гражданской инициативы по борьбе со строительством 20-турбинной ветряной электростанции в федеральной земле Гессен.

Акция в защиту Хамбахского леса

Хотя планы по строительству этого объекта предусматривают вырубку менее двух процентов леса, Габриэль говорит, что это все равно разрушит “ранее нетронутую экосистему”.

Она сравнивает лесной массив в Гессене с уникальным Хамбахским лесом недалеко от Кельна, уже много лет находящимся под угрозой вырубки: концерн RWE планирует расширить свой угольный карьер. “Экологи и активисты там сражаются за каждое дерево, и об этом постоянно пишут в СМИ. Здесь у нас хотят вырубить 200 квадратных километров – и нигде ни слова об этом не говорят”, – возмущается Нихаус-Юбель.

Использование энергии ветра будет расти

Спор по поводу целесообразности строительства ветряных электростанций в Германии идет уже много лет. “У ветроэнергетики всегда было много противников, – говорит генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер (Stefan Gsänger). – И это нормально в условиях любых изменений, происходящих демократическим путем”.  

Как говорится на сайте объединения, возглавляемого Нихаус-Юбель, эта группа –  лишь одна из примерно 1000 гражданских инициатив, выступающих против строительства ветропарков. Между тем ветроэнергетика позволяет частично удовлетворить растущий мировой спрос на электроэнергию.

По оценкам экспертов, в ближайшие двадцать лет использование этого источника энергии возрастет на 30 процентов, снижая при этом темпы изменения климата.

У ветропарков есть немало противников

Специалисты WWEA утверждают, что ветряные турбины, введенные в эксплуатацию до конца 2018 года, способны удовлетворять около шести процентов мирового спроса на электроэнергию. При этом, как сообщает Международное агентство по возобновляемым источникам энергии, доля производства энергии на возобновляемых источниках вырастет с 25% в 2017 году до 85% к 2050 году – в основном за счет использования энергии солнца и ветра. И учитывая глобальные масштабы этих изменений, недооценивать влияние ветряных электростанций на окружающую среду было бы крайне недальновидно.

Опасность для птиц и летучих мышей

Особую опасность ветровые турбины представляют для птиц и летучих мышей. У хищных птиц, к примеру, при необычайной остроте зрения, есть и “мертвая зона”: наклоняя при поиске добычи голову вниз, они не видят того, что находится прямо по курсу, и если птица летит в сторону ветрогенератора, столкновение с его лопастями почти неизбежно. А летучие мыши становятся жертвами ветряка, даже с ним не сталкиваясь: приблизившись к нему менее чем на 100 метров, животные попадают в зону низкого давления и погибают от внутреннего кровоизлияния, вызванного резким расширением легких. 

На юге Испании – в провинции Эстремадура – из-за ошибок на этапе планирования ветропарки были построены на пути миграций огромного количества перелетных птиц через Гибралтар. Этот факт, говорится в докладе испанского отделения орнитологического сообщества SEO BirdLife, может негативно отразиться на популяциях птиц всего северного полушария и угрожать отдельным редким видам, таким, как испанский королевский орел.

В ряде других исследований, впрочем, утверждается, что от столкновения с ветряными турбинами птицы гибнут гораздо реже, чем от других причин, связанных с деятельностью человека. В США, к примеру, чаще всего птицы становятся жертвами домашних кошек, сотни миллионов птиц ежегодно врезаются в окна высотных зданий и лобовые стекла движущихся автомобилей, десятки миллионов гибнут на линиях электропередач.

Однако испанские орнитологи из SEO BirdLife настаивают на том, что подобные исследования несовершенны, поскольку их выводы основаны на небольших размерах выборки. “Нельзя упускать из виду и тот факт, что даже невысокая смертность может иметь решающее значение для видов, находящихся под угрозой исчезновения, или с очень низким уровнем размножения”, – говорится в отчете группы.

Как минимизировать опасность от ветряков для живой природы?

За пределами Европы – в Южной Африке – местное отделение орнитологического сообщества BirdLife недавно отпраздновало победу: благодаря его усилиям, в горном массиве Грут Винтерхоек примерно в 120 км от Кейптауна было отменено строительство ветропарка, появление которого могло бы стать угрозой для редких видов птиц. Южноафриканское отделение координирует работу Целевой группы по вопросам энергетики, созданной в соответствии с Конвенцией ООН по сохранению мигрирующих видов диких животных (CMS). Одной из ее задач является определение территорий, где можно строить объекты возобновляемой энергетики без вреда популяциям птиц.

Многие эксперты сходятся во мнении, что правильное расположение ветропарков и технологические усовершенствования в большинстве случаев позволят минимизировать опасность ветрогенераторов для биологического разнообразия. Довольно эффективным, на их взгляд, может стать выборочное отключение турбин в местах массового скопления перелетных птиц.

Выборочное отключение турбин уменьшает вероятность столкновения птиц с лопастями

Исследование 2012 года, опубликованное в ведущем международном журнале в области биологии и охраны природы Biological Conservation, зафиксировало 50-процентное снижение смертности стервятников на 13 ветряных электростанциях в Кадисе, на юге Испании, после того, как турбины стали выключать в момент приближения к ним птиц. Производство электроэнергии при этом снижалось всего на 0,7 процента в год.

Эксперты Американского института изучения природы ветра (AWWI) проанализировали случаи гибели птиц от столкновения с ветряными турбинами и пришли к выводу, что уменьшение скорости вращения лопастей при низкой скорости ветра может сократить число смертельных случаев на 50-87 процентов.

Кому должны принадлежать ветрогенераторы?

И хотя экологам не всегда удается предотвратить строительство ветропарков и свести к нулю их опасность для птиц и летучих мышей, эксперты убеждены в том, что отношение к ним будет более позитивным, если к дискуссиям, связанным с использованием альтернативных источников энергии, привлекать жителей тех регионов, где устанавливаются ветрогенераторы.

Позитивное отношение к ветровой электрогенерации можно сформировать, если “максимально вовлекать к обсуждению этой темы всех, на чью жизнь влияет строительство ветряных электростанций, и изначально гарантировать им максимально возможные права собственности и преимущества”, – уверен генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер.

В развивающихся странах, таких, как, к примеру, Мали, возобновляемые источники энергии играют особенно важную роль в преодолении бедности, и передача их в собственность местным общинам может изменить ситуацию к лучшему, убежден Гзенгер. “У людей была бы не только энергия, но и контроль над ней”, – объясняет он.

В одном взгляды сторонника строительства ветряных электростанций Штефана Гзенгера и их активного противника Габриэле Нихаус-Юбель сходятся: если ветрогенераторы передать в собственность людям и позволить им принимать участие в решении всех важных вопросов, связанных с эксплуатацией, это поможет уменьшить негативное воздействие ветряных электростанций на окружающую среду. Ведь люди, которым принадлежит земля, любят и ценят ее больше, чем кто-либо другой.

______________

Подписывайтесь на наши каналы о России, Германии и Европе в | Twitter | Facebook | YouTube | Telegram 

 Смотрите также:

  • Альтернативные ландшафты Германии

    Дисен-ам-Аммерзе (Бавария) • На прошлой июльской неделе мы опубликовали этот снимок из Баварии в нашей рубрике “Кадр за кадром” – причем, руководствуясь чисто эстетическими соображениями: не смогли пройти мимо столь живописного ландшафта. Публикация этого пейзажа с солнечными батареями вызвала оживленное обсуждение в соцсетях – о пользе и вреде возобновляемых источников энергии.

  • Альтернативные ландшафты Германии

    Лемвердер (Нижней Саксония) • Поэтому сегодня продолжим тему солнечных панелей и ветряков на немецких просторах. На возобновляемые источники в Германии уже приходится более 40 процентов всего объема вырабатываемой электроэнергии.

  • Альтернативные ландшафты Германии

    Ульм (Баден-Вюртемберг) • При этом официальная немецкая статистика в этих данных учитывает энергию ветра, солнца, воды, а также получаемую разными путями из биомассы и органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Якобсдорф (Бранденбург) • В 2018 году на наземные (оншорные) и морские (офшорные) ветроэнергетические установки и парки в Германии пришлась почти половина всего объема произведенной возобновляемой энергии – 41 % и 8 % соответственно.

  • Альтернативные ландшафты Германии

    Пайц (Бранденбург) • Доля солнечных электростанций в этом возобновляемом энергетическом “коктейле” достигла 20 %.

  • Альтернативные ландшафты Германии

    Юнде (Нижняя Саксония) • Ровно столько же, то есть 20 % пришлось на использование биомассы в качестве альтернативного источника электрической энергии. Еще три процента дает использование органической части домашних отходов.

  • Альтернативные ландшафты Германии

    Хаймбах (Северный Рейн – Вестфалия) • Оставшиеся семь процентов возобновляемой энергии приходятся на ГЭС. Возможности для строительства гидроэлектростанций в Германии ограничены, но используются эти ресурсы уже очень давно. Эту электростанцию в регионе Айфель построили в 1905 году. Оснащенная современными турбинами, она исправно работает до сих пор.

  • Альтернативные ландшафты Германии

    Халлиг Хооге (Шлезвиг-Гольштейн) • Для полноты картины приведем расклад по всем источникам в Германии за 2018 год: АЭС – 13,3 %, бурый уголь – 24,1 %, каменный уголь – 14,0 %, природный газ – 7,4 %, ГЭС – 3,2 %, ветер – 20,2%, солнце – 8,5 %, биомасса – 8,3 %.

  • Альтернативные ландшафты Германии

    Гарцвайлер (Северный Рейн – Вестфалия) • В 2038 году в Германии намерены полностью отказаться от сжигания бурого угля для получения электроэнергии. Последний атомный реактор, согласно решению федерального правительства, должны вывести из эксплуатации в 2022 году. В прошлом году на АЭС и бурый уголь пришлось более 37 %, которые необходимо будет чем-то замещать.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • По данным на конец 2018 года в Германии насчитывалось более 29 тысяч наземных ветроэнергетических турбин. В прибрежных морских водах Германии расположено еще около 1350 ветряков, однако более четырех десятков из них еще не были подключены в энергетическую сеть.

  • Альтернативные ландшафты Германии

    Северное море (Шлезвиг-Гольштейн) • Серьезную проблему представляет необходимость строительства новых энергетических трасс для транспортировки энергии из северных регионов, где ветер дует чаще и сильнее (здесь много таких турбин), к потребителям в западные и южные части Германии.

  • Альтернативные ландшафты Германии

    Лебус (Бранденбург) • Эти планы вызывают протесты жителей в тех густонаселенных регионах, по которым линии электропередач должны проходить. В некоторых местах люди требуют убирать высоковольтные ЛЭП под землю.

  • Альтернативные ландшафты Германии

    Рюген (Мекленбург – Передняя Померания) • Планы установки новых ветроэнергетических турбин в разных регионах все чаще наталкиваются в Германии на сопротивление со стороны населения. Соответствующие судебные иски часто имеют успех, что уже заметно сказывается на годовых показателях роста отрасли – тем более, что подходящие места становится находить все труднее.

  • Альтернативные ландшафты Германии

    Вормс (Рейнланд-Пфальц) • Согласно данным службы Deutsche WindGuard, в 2018 году в Германии было введено в эксплуатацию всего 743 новых ветряка. При этом предыдущий 2017 год оказался рекордным в истории развития этого вида возобновляемой энергии в ФРГ: почти 1849 новых установок.

  • Альтернативные ландшафты Германии

    Дассов (Мекленбург – Передняя Померания) • Всего в Германии сейчас насчитывается около тысячи гражданских инициатив, выступающих против строительства новых ветряков. Их сторонники считают, что эти установки разрушают жизненное пространство птиц и летучих мышей, уродуют ландшафты, а инфразвук и прочий постоянный шум этих установок вредит здоровью людей, живущих по соседству.

  • Альтернативные ландшафты Германии

    Восточная Фризия (Нижняя Саксония) • Эти инициативы требуют, в частности, в качестве альтернативы рассматривать газовые и паровые электростанции, повышать эффективность угольных станций, а также пересмотреть решение парламента и правительства Германии об отказе от атомной энергии.

  • Альтернативные ландшафты Германии

    Зауэрланд (Северный Рейн – Вестфалия) • Представители отрасли обычно указывают на недоказанность негативного влияния инфразвука на здоровье. Что касается гибели птиц из-за ветровых установок, специалисты называют разные цифры, максимум – до 200 тысяч в год в целом по Германии. Для сравнения: в результате столкновений со стеклами окон и фасадов погибает около 18 миллионов птиц в год.

  • Альтернативные ландшафты Германии

    Сиверсдорф (Бранденбург) • Летучих мышей гибнет более 100 тысяч в год (по некоторым оценкам, втрое больше) – не только от столкновений с лопастями, но и из-за травм, получаемых в результате завихрений воздуха, когда они пролетают рядом. Много гибнет во время сезонной миграции. Эксперты требуют учитывать эти факторы – в частности, отключать ветряки в часы особой активности летучих мышей.

  • Альтернативные ландшафты Германии

    Бедбург-Хау (Северный Рейн – Вестфалия) • Правила выбора мест для ветряков регулируются земельными законами. Например, в Северном Рейне – Вестфалии минимальное расстояние до жилых построек составляет 1500 метров, в Тюрингии – 750 метров. В Баварии это расстояние вычисляется по формуле “Высота установки х 10”, то есть, например, два километра между жилыми зданиями и двухсотметровым ветряком.

  • Альтернативные ландшафты Германии

    Ренцов (Мекленбург – Передняя Померания) • Дискуссии о развитии возобновляемых источников энергии часто ведутся в Германии эмоционально и будут продолжаться в обозримом будущем. Чтобы повысить готовность населения видеть в окрестностях такие установки, предлагается, в частности, отчислять дополнительную часть доходов конкретным регионам на различные нужные и полезные для местных жителей проекты.

    Автор: Максим Нелюбин


Как работает крупнейшая в мире морская ветряная турбина

Компания GE Renewable Energy объявила о запуске в Роттердаме крупнейшей в мире морской ветряной турбины мощностью 14 МВт

Что происходит

  • Компания GE Renewable Energy запустила прототип морской ветряной турбины Haliade-X 14 мощностью 14 МВт. 4 октября 2021 года она начала свою работу в Нидерландах, в портовом городе Роттердам.
  • Haliade-X 14 высотой 260 м с лопастями длиной 107 м — модернизированная версия Haliade-X 13, которая прошла сертификацию в январе 2021 года.
  • Новая турбина способна генерировать до 74 ГВт·ч энергии в год, — это позволит сократить выбросы СО2 на 52 тыс. т, что эквивалентно выбросам, производимым 11 тыс. автомобилей в год.
  • GE Renewable Energy стала первой компанией в отрасли, которая запустила турбину такой мощностью.
  • Отмечается, что увеличение мощности ветряков — прорыв в секторе ветряных электростанций, поскольку для выработки необходимой энергии необходимо меньше турбин. Кроме того, это упрощает их эксплуатацию и техническое обслуживание, делая возобновляемые источники энергии более доступными для клиентов и потребителей по всему миру.
  • Коммерческая эксплуатация новой ветряной турбины начнется на электростанции Dogger Bank C, в 130 км от северо-восточного побережья Англии. В рамках проекта GE Renewable Energy установит 87 турбин Haliade-X 14, — это будет самая большая оффшорная ветроэлектростанция в мире.

Что это значит

Альтернативные источники энергии, такие как солнечные или ветряные станции, являются экологичным способом обеспечить хозяйства электроэнергией без вреда для окружающей среды. Одной из перспективных областей возобновляемой энергетики является строительство оффшорных ветряных электростанций, построенных в неглубокой зоне морей.

В настоящее время морская ветроэнергетика является довольно дорогим источником энергии, — внушительные затраты на строительство и эксплуатацию турбин приводят к высокой стоимости энергии и ее меньшей распространенности. Однако эксперты прогнозируют, что благодаря оптимизации затрат на производство и увеличению мощностей данный сектор ожидает снижение цен на 37–49% до 2050 года.

На данный момент Haliade-X 14 — самая мощная действующая морская турбина, однако производители со всего мира считают, что 14 МВт мощности — не предел возможностей. Например, китайская Ming Yang Wind Power Group Limited объявила о разработке гигантской турбины MySE 16.0-242 высотой 242 м и мощностью 16 МВт. Компания обещает, что 118-метровые лопасти смогут охватить площадь в 46 тыс. кв. м. Предполагается, что MySE 16.0-242 будет построена в 2022 году, однако коммерческое производство начнется лишь в 2024-м.

Утилизация лопастей турбин: ахиллесова пята ветроэнергетики

Одни называют ветряные турбины потрясающим элементом экологически чистых технологий. Другие же считают их слишком шумными, чересчур громоздкими или опасными для биоразнообразия. Но одно можно сказать наверняка. Ветроэнергетика сталкивается с трудностями в Европе. Одна из насущных проблем – проблема с лопастями турбин, их трудно утилизировать.

Борьба с ветряными мельницами

Жители города Лунас на юге Франции требуют демонтировать 7 турбин ветряной электростанции Бернаг. Они годами борются за это, судебное разбирательство все еще продолжается.

Марион – представитель “Коллектива 34-12”. В начале июня она призвала жителей митинговать у входа на ветряную электростанцию “Бернаг” после того, как застройщик выиграл апелляцию в суде против демонтажа спорных ветряных турбин.

В ближайшее время в Европе будет демонтировано огромное количество ветряных турбин, но жалобы местного населения тут не при чем.

Ветряные турбины первого поколения устаревают, и их необходимо заменить более современными и эффективными. Этот процесс, называемый обновлением мощности, начался разными темпами по всей Европе. То, что мы увидели на одном из производственных объектов в Генте.

В связи с обновлением мощности к 2030 году в Европе, возможно, придется вывести из эксплуатации до 5700 ветряных турбин. Сегодня утилизировать можно почти все, что есть в ветрогенераторе, до 90%. Проблема в лопастях. Они сделаны из композитных материалов, предназначенных для длительного использования, а не для вторичной переработки.

Длина одной ветряной лопасти составляет около 40 метров, она весит семь тонн и составляет те 10% ветряной турбины, которые трудно утилизировать. Эти 10% вызвали споры во всем мире относительно устойчивости этой возобновляемой энергии.

Так что же происходит с лопастями сегодня? Большинство из них используются повторно. Например, эта отправится на Украину. Но количество выведенных из эксплуатации лопастей через пять-десять лет будет настолько большим, что придется менять всю систему.

Сегодня те лопасти, которые не используются повторно или не сжигаются, в идеале для регенерации энергии, оказываются на свалке. Этот снимок был сделан в США и стал символом одной из темных сторон возобновляемых источников энергии во всем мире.

Только четыре страны Европы запретили подобные “кладбища турбин”: Германия, Австрия, Нидерланды и Финляндия. Голос европейской ветроэнергетики призвал к 2025 году ввести общеевропейский запрет на такие свалки.

Сделать ветряные лопасти 100% перерабатываемыми

Сегодня вы можете по пальцам одной руки пересчитать количество предприятий, способных утилизировать ветряные лопасти в Европе. Технологии еще не достаточно развиты и недоступны в промышленных масштабах. Испанский стартап получает лопасти из Франции, Португалии и Северной Африки. Они уверяют, что в скором времени смогут перерабатывать 1500 лопастей ежегодно.

Отрасль ветроэнергетики считает, что призыв к запрету свалок во всем Евросоюзе ускорит расширение масштабов технологий рециркуляции, но также ускорит рост спроса на переработанные материалы.

Усилия направлены на повышение устойчивости по всей цепочке создания стоимости от проектирования до производства. Как это делает датский ветроэнергетический гигант Vestas. Конечная цель – сделать лопасть на 100% пригодной для вторичной переработки.

Помогут рыбки

Отрасль движется к увеличению производства, эффективности и циркуляции. Что, если мы сделаем шаг назад и спросим себя, сколько энергии нам действительно нужно будет производить в ближайшем будущем и как? Как раз этим вопросом задается Парижская лаборатория энергий завтрашнего дня. И ответы стали поступать от этих рыбок.

В таком случае сокращение количества отходов могло бы стать главным индикатором для нахождения лучшего баланса между окружающей средой, потребностями людей, технологиями и экономикой.

Ветряная электростанция – это… Что такое Ветряная электростанция?

Ветроэнергетика: общемировая годовая динамика установленной мощности ВЭС.[1] Офшорная ветряная электростанция Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире Карта потенциала ветроэнергетики США

Ветряная электростанция — несколько ветрогенераторов, собранных в одном или нескольких местах. Крупные ветряные электростанции могут состоять из 100 и более ветрогенераторов. Иногда ветряные электростанции называют ветряными фермами (от англ. Wind farm).

Планирование

Исследование скорости ветра

Ветряные электростанции строят в местах с высокой средней скоростью ветра — от 4,5 м/с и выше.

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного—двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты (и специальное программное обеспечение) позволяют потенциальным инвесторам оценить скорость окупаемости проекта.

Обычные метеорологические сведения не подходят для строительства ветряных электростанций: эти сведения о скоростях ветра собирались на уровне земли (до 10 метров) и в черте городов, или в аэропортах.

Во многих странах карты ветров для ветроэнергетики создаются государственными структурами, или с государственной помощью. Например, в Канаде Министерство развития и Министерство Природных ресурсов создали Атлас ветров Канады и WEST (Wind Energy Simulation Toolkit) — компьютерную модель, позволяющую планировать установку ветрогенераторов в любой местности Канады. В 2005 году Программа Развития ООН создала карту ветров для 19 развивающихся стран.

Высота

Скорость ветра возрастает с высотой. Поэтому ветряные электростанции строят на вершинах холмов или возвышенностей, а генераторы устанавливают на башнях высотой 30—60 метров. Принимаются во внимание предметы, способные влиять на ветер: деревья, крупные здания и т. д.

Экологический эффект

При строительстве ветряных электростанций учитывается влияние ветрогенераторов на окружающую среду. Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Современные ветряные электростанции прекращают работу во время сезонного перелёта птиц.

Типы ветряных электростанций

Наземная

Наземная ветряная электростанция в Испании. Построена по вершинам холмов. Наземная ветряная электростанция возле Айнажи, Латвия.

Самый распространённый в настоящее время тип ветряных электростанций. Ветрогенераторы устанавливаются на холмах или возвышенностях.

Промышленный ветрогенератор строится на подготовленной площадке за 7—10 дней. Получение разрешений регулирующих органов на строительство ветряной фермы может занимать год и более.

Для строительства необходима дорога до строительной площадки, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

Электростанция соединяется кабелем с передающей электрической сетью.

Крупнейшей на данный момент ветряной электростанцией является электростанция в городе Роско (Roscoe), штат Техас, США. ВЭС Роско была запущена 1 октября 2009 года немецким энергоконцерном E.ON. Станция состоит из 627 ветряных турбин производства Mitsubishi, General Electric и Siemens. Полная мощность — около 780 МВт. Площадь электростанции не менее 400 км².[2]

Прибрежная

Строительство прибрежной электростанции в Германии.

Прибрежные ветряные электростанции строят на небольшом удалении от берега моря или океана. На побережье с суточной периодичностью дует бриз, что вызвано неравномерным нагреванием поверхности суши и водоёма. Дневной, или морской бриз, движется с водной поверхности на сушу, а ночной, или береговой — с остывшего побережья к водоёму.

Шельфовая

Шельфовые ветряные электростанции строят в море: 10—60 километров от берега. Шельфовые ветряные электростанции обладают рядом преимуществ:

  • их практически не видно с берега;
  • они не занимают землю;
  • они имеют большую эффективность из-за регулярных морских ветров.

Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

Шельфовые электростанции более дороги в строительстве, чем их наземные аналоги. Для генераторов требуются более высокие башни и более массивные фундаменты. Солёная морская вода может приводить к коррозии металлических конструкций.

В конце 2008 года во всём мире суммарные мощности шельфовых электростанций составили 1471 МВт. За 2008 год во всём мире было построено 357 МВт шельфовых мощностей. Крупнейшей шельфовой станцией является электростанция Миддельгрюнден (Дания) с установленной мощностью 40 МВт[3].

Для строительства и обслуживания подобных электростанций используются самоподъёмные суда.

Плавающая

Строительство первой плавающей электростанции. Норвегия. Май 2009 года.

Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Норвежская компания StatoilHydro разработала плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в сентябре 2009 года[4]. Турбина под названием Hywind весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии.

Стальная башня этого ветрогенератора уходит под воду на глубину 100 метров. Над водой башня возвышается на 65 метров. Диаметр ротора составляет 82,4 м. Для стабилизации башни ветрогенератора и погружения его на заданную глубину в нижней его части размещён балласт (гравий и камни). При этом от дрейфа башню удерживают три троса с якорями, закреплёнными на дне. Электроэнергия передаётся на берег по подводному кабелю.

Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров.

Панорамы ВЭС

ВЭС в России

На 2008 год общая мощность ВЭС в стране исчислялась 16,5 МВт[5]. Одна из крупнейших ветровых станций России — Зеленоградская ВЭУ, расположенная в районе посёлка Куликово Зеленоградского района Калининградской области. Её суммарная мощность составляет 5,1 МВт. Состоит из ВЭУ датской компании SЕАS Energi Service A.S. (1 новая мощностью 600 кВт и 20 отработавших 8 лет в Дании мощностью 225 кВт каждая).

Мощность Анадырской ВЭС составляет 2,5 МВт.

Мощность ВЭС Тюпкильды (Башкортостан) составляет 2,2 МВт.

Заполярная ВЭС, находящаяся около города Воркута в Коми, имеет мощность 1,5 МВт, построена в 1993 году. Состоит из шести установок АВЭ-250 российско-украинского производства мощностью 250 кВт каждая.

Около Мурманска строится опытная демонстрационная ВЭУ мощностью 250 кВт[6].

См. также

Примечания

Литература

Методы разработки ветроэнергетического кадастра.//АН СССР, ГЛАВНИИ при Госэкономсовете Энергетический институт им. Г. М. Кржижановского. Изд-во АН СССР, 1963.

Ссылки

турбина | Британника

турбина , любое из различных устройств, которые преобразуют энергию потока жидкости в механическую энергию. Преобразование обычно осуществляется путем пропускания жидкости через систему неподвижных каналов или лопастей, которые чередуются с каналами, состоящими из лопастей, похожих на ребра, прикрепленных к ротору. Путем организации потока на лопасти ротора действует тангенциальная сила или крутящий момент, ротор вращается, и работа извлекается.

Турбины можно разделить на четыре основных типа в зависимости от используемых жидкостей: вода, пар, газ и ветер.Хотя одни и те же принципы применимы ко всем турбинам, их конкретные конструкции достаточно различаются, чтобы заслужить отдельное описание.

Гидравлическая турбина использует потенциальную энергию, возникающую в результате разницы в высоте между верхним водным резервуаром и уровнем воды на выходе из турбины (отводом) для преобразования этого так называемого напора в работу. Водяные турбины – современные преемники простых водяных колес, которым около 2000 лет. Сегодня гидротурбины в основном используются для производства электроэнергии.

Однако наибольшее количество электроэнергии вырабатывается паровыми турбинами, соединенными с электрогенераторами. Турбины приводятся в действие паром, вырабатываемым либо в генераторе, работающем на ископаемом топливе, либо в генераторе, работающем на атомной энергии. Энергия, которую можно извлечь из пара, удобно выражать через изменение энтальпии в турбине. Энтальпия отражает формы тепловой и механической энергии в процессе потока и определяется суммой внутренней тепловой энергии и произведением давления на объем.Доступное изменение энтальпии через паровую турбину увеличивается с увеличением температуры и давления парогенератора и с уменьшением давления на выходе из турбины.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Для газовых турбин энергия, извлекаемая из текучей среды, также может быть выражена через изменение энтальпии, которое для газа почти пропорционально перепаду температуры в турбине. В газовых турбинах рабочим телом является воздух, смешанный с газообразными продуктами сгорания.Большинство газотурбинных двигателей включает, по крайней мере, компрессор, камеру сгорания и турбину. Обычно они монтируются как единое целое и работают как законченный первичный двигатель в так называемом открытом цикле, когда воздух всасывается из атмосферы, а продукты сгорания, наконец, снова выбрасываются в атмосферу. Поскольку успешная работа зависит от интеграции всех компонентов, важно рассматривать устройство в целом, которое на самом деле является двигателем внутреннего сгорания, а не только турбиной.По этой причине газовые турбины рассматриваются в статье двигатель внутреннего сгорания.

Энергия ветра может быть извлечена ветровой турбиной для производства электроэнергии или для откачки воды из скважин. Ветряные турбины являются преемниками ветряных мельниц, которые были важным источником энергии с позднего средневековья до XIX века.

Fred Landis

Водяные турбины обычно делятся на две категории: (1) импульсные турбины, используемые для высокого напора воды и низкого расхода, и (2) реактивные турбины, обычно используемые для напора ниже примерно 450 метров и среднего или высокого расхода.Эти два класса включают в себя основные типы, обычно используемые, а именно, импульсные турбины Пелтона и реактивные турбины типа Фрэнсис, пропеллер, Каплана и Дериаза. Турбины могут быть оборудованы как горизонтальными, так и, чаще, вертикальными валами. Для каждого типа возможны широкие вариации конструкции для соответствия конкретным местным гидравлическим условиям. Сегодня большинство гидравлических турбин используются для выработки электроэнергии на гидроэлектростанциях.

Импульсные турбины

В импульсных турбинах потенциальная энергия или напор воды сначала преобразуется в кинетическую энергию путем выпуска воды через сопло тщательно продуманной формы.Струя, выбрасываемая в воздух, направляется на изогнутые ведра, закрепленные на периферии бегунка, для извлечения энергии воды и преобразования ее в полезную работу.

Современные импульсные турбины основаны на конструкции, запатентованной в 1889 году американским инженером Лестером Алленом Пелтоном. Свободная водная струя попадает в лопатки турбины по касательной. Каждый ковш имеет высокий центральный гребень, так что поток разделяется, оставляя желоб с обеих сторон. Колеса Пелтона подходят для высоких напоров, обычно выше 450 метров при относительно низком расходе воды.Для максимальной эффективности скорость конца рабочего колеса должна составлять примерно половину скорости ударной струи. КПД (работа, производимая турбиной, деленная на кинетическую энергию свободной струи) может превышать 91 процент при работе с 60–80 процентами полной нагрузки.

Мощность одного колеса можно увеличить, используя более одной форсунки. Для горизонтальных валов характерны двухструйные устройства. Иногда на одном валу устанавливаются два отдельных бегунка, приводящих в движение один электрогенератор. Агрегаты с вертикальным валом могут иметь четыре или более отдельных форсунок.

Если электрическая нагрузка на турбину изменяется, ее выходная мощность должна быть быстро отрегулирована в соответствии с потребностями. Это требует изменения расхода воды, чтобы поддерживать постоянную скорость генератора. Скорость потока через каждую форсунку регулируется расположенным в центре наконечником или иглой аккуратной формы, которая скользит вперед или назад под управлением гидравлического серводвигателя.

Правильная конструкция иглы гарантирует, что скорость воды, покидающей сопло, остается практически неизменной независимо от отверстия, обеспечивая почти постоянный КПД в большей части рабочего диапазона.Нецелесообразно внезапно уменьшать поток воды, чтобы соответствовать уменьшению нагрузки. Это может привести к разрушительному скачку давления (гидроудару) в подающем трубопроводе или напорном затворе. Таких скачков можно избежать, добавив временное сопло для разлива, которое открывается при закрытии основного сопла, или, что более часто, частично вставляя отражающую пластину между струей и колесом, отклоняя и рассеивая часть энергии при медленном закрытии иглы.

Другой тип импульсной турбины – турбина турго.Струя падает под косым углом на бегунок с одной стороны и продолжает двигаться по единственному пути, выходя на другую сторону бегунка. Этот тип турбины использовался в установках среднего размера с умеренно высоким напором.

Реакционные турбины

В реакционной турбине силы, приводящие в движение ротор, достигаются за счет реакции ускоряющегося потока воды в рабочем колесе при падении давления. Принцип реакции можно наблюдать в роторном оросителе для газонов, где выходящая струя вращает ротор в противоположном направлении.Из-за большого разнообразия возможных конструкций рабочих колес реактивные турбины могут использоваться в гораздо большем диапазоне напоров и расходов, чем импульсные турбины. Реакционные турбины обычно имеют спиральный впускной кожух, который включает регулирующие заслонки для регулирования потока воды. На входе часть потенциальной энергии воды может быть преобразована в кинетическую энергию по мере ускорения потока. Впоследствии энергия воды отбирается в роторе.

Как отмечалось выше, широко используются четыре основных типа реактивных турбин: турбины Каплана, Фрэнсиса, Дериаза и пропеллерные.В турбинах Каплана с неподвижными лопастями и турбинами с регулируемыми лопастями (названными в честь австрийского изобретателя Виктора Каплана), по существу, существует осевой поток через машину. Турбины типа Фрэнсиса и Дериаза (в честь американского изобретателя, родившегося в Великобритании Джеймса Б. Фрэнсиса и швейцарского инженера Поля Дериаза, соответственно) используют «смешанный поток», когда вода поступает радиально внутрь и выходит в осевом направлении. Рабочие лопатки на турбинах Фрэнсиса и пропеллера состоят из неподвижных лопастей, в то время как в турбинах Каплана и Дериаза лопасти могут вращаться вокруг своей оси, которая находится под прямым углом к ​​главному валу.

Техасские фермеры пожинают плоды бума в области солнечной и ветровой энергетики

Ветряные турбины в Папалоте, штат Техас. Если бы это была страна, штат США был бы пятым в мире производителем энергии ветра © Getty Images

Техас – один из сельскохозяйственных центров США, производящий зерновые и скот на десятки миллиардов долларов. Это также крупнейший производитель возобновляемой энергии в стране. И эти два сектора становятся все более взаимосвязанными по мере того, как энергетический переход набирает обороты.

Фермеры и владельцы ранчо приветствовали бум возобновляемых источников энергии, охвативший весь штат. Ветровая и солнечная энергия обещают сделать сельскохозяйственные операции более устойчивыми и обеспечить стабильный доход в отрасли, в которой состояние экономики меняется от сезона к сезону.

«Как это обычно бывает в сельском хозяйстве, существует ряд причин [для перехода на возобновляемые источники энергии], и, как правило, у людей есть несколько на каждой ферме», – говорит Кэти Дэй, координатор климатической политики в National Sustainable Сельскохозяйственная коалиция, правозащитная группа.

«Они используют солнечную энергию либо как способ снизить свои затраты, либо как способ продать немного энергии и заработать немного денег на той же земле. Но некоторые люди, определенно многие из фермеров, больше ориентированных на охрану окружающей среды, также заинтересованы в том, чтобы просто быть частью решения проблемы климата ».

Обещание повышения отказоустойчивости, поскольку суровые погодные условия, вызванные изменением климата, представляют все большую угрозу, также увеличивает привлекательность возобновляемых источников энергии на фермах в Техасе.

Руководители и аналитики Solar говорят, что интерес к маломасштабным системам, которые могут обеспечивать электроэнергию на местном уровне, резко возрос после того, как жестокая зимняя буря в феврале нанесла ущерб электросети Техаса.

Рабочие расчищают снег на стоянке в Мидленде, штат Техас, в феврале. . . © Мэтью Буш / Bloomberg . . . когда метели повредили линии электропередач и вызвали длительные отключения электроэнергии © Thomas Ryan Allison / Bloomberg

Сид Миллер, уполномоченный штата по сельскому хозяйству, сказал в то время, что перебои в подаче электроэнергии почти на неделю оказали «глубокое воздействие», остановив фермы и предприятия пищевой промышленности по всему штату, что нанесло сектору ущерб на миллиарды долларов.

Возобновляемые источники энергии сейчас являются частью более широких усилий по вовлечению сельскохозяйственного сектора штата в низкоуглеродную экономику, хотя это часто обусловлено экономическими, а не климатическими проблемами.

Сид Миллер, комиссар по сельскому хозяйству Техаса, сказал, что февральский шторм оказал «сильное воздействие» на сельскохозяйственный сектор © AFP via Getty Images

Техасские фермеры производят более 5 миллионов баррелей биотоплива в год, занимая второе место в США после Айовы, где производится большая часть кукурузного этанола в стране. Некоторые также выходят на недавно сформированные углеродные рынки, на которых схемы, направленные на увеличение биоразнообразия или восстановление пастбищ с большей способностью поглощать углекислый газ почвой, могут быть проданы в качестве компенсации крупным загрязнителям парниковых газов.

Возобновляемая энергия на сельскохозяйственных угодьях Техаса впервые начала развиваться более десяти лет назад, когда на больших ранчо начался бум ветроэнергетики, который сделал бы штат, будь он страной, пятым по величине производителем энергии ветра в мире.

Это была экономическая линия выживания для многих владельцев ранчо, которые продавали доступ к своей земле разработчикам ветряных электростанций, которые хотели установить турбины. Некоторые возражали против нарушения ландшафта, когда было возведено множество высоких турбин, но финансовые выгоды продолжали реализацию проектов.

Эти схемы обычно подают электроэнергию в сеть, а не на сами фермы и ранчо, но они значительно очистили более широкую сеть, которая питает сельскохозяйственный сектор.

Ветроэнергетика, в основном расположенная на ранчо и сельскохозяйственных угодьях, в последнее время превзошла уголь в структуре энергоснабжения штата. В любой день более 20 процентов электроэнергии, вырабатываемой в Техасе, обычно вырабатывается за счет энергии ветра.

В последнее время крупные солнечные проекты начали распространяться на техасских фермах и ранчо – хотя они вызвали более серьезную реакцию, чем турбинный бум десять лет назад, по словам Гэри Джойнера, представителя Texas Farm Bureau, промышленной группы.

Некоторые фермеры развертывают небольшие внутрихозяйственные солнечные установки для выработки собственной электроэнергии. Но солнечные проекты, пользующиеся наибольшим спросом и вниманием, намного крупнее и в первую очередь питаются от сети.Они могут приносить существенный доход землевладельцам, но их сложнее интегрировать в существующие операции, чем ветровые проекты, и зачастую они заменяют землю, которая ранее использовалась для сельского хозяйства.

Солнечные панели в Депорте, Техас. Аренда земли под солнечные проекты может предложить стабильный источник дохода фермерам – говорит Столяр.

«Это доход, который иногда не приносит традиционное сельское хозяйство в конкретный год», – говорит он. «Так что у землевладельца есть стимул смотреть на это только потому, что он представляет собой ценность того, что представляет собой аренда».

Традиционно консервативное Техасское сельскохозяйственное бюро долгое время проводило политику «поддержки возобновляемых источников энергии на фермах, таких как проекты солнечного ветра и биогаза», – говорит Джойнер, но эта поддержка является предметом споров из-за опасений, что проекты возобновляемых источников энергии – наряду с головокружительное развитие штата – съедают самые продуктивные сельскохозяйственные земли Техаса.

«Во многих случаях продуктивные сельскохозяйственные угодья превращаются в солнечную собственность», – говорит Джойнер. «И эта сельскохозяйственная ценность теряется для тех, кто обрабатывает землю. Мы слышим эти комментарии и эти настроения ».

Day из Национальной коалиции за устойчивое сельское хозяйство заявляет, что все большее внимание уделяется интеграции солнечных проектов в сельскохозяйственные операции, чтобы избежать необходимости выделять землю для солнечных батарей.

Практика, известная как агрисолар, включает в себя посадку культур, которые хорошо растут в тени, таких как салат или помидоры, вокруг панелей или использование той же земли для выпаса животных.«Оказывается, это дает некоторые существенные преимущества как для сельскохозяйственных культур, так и для солнечной системы», – говорит Дэй.

«Это диверсификация доходов. Вкладывая энергию в посевы, вместо того, чтобы просто диверсифицировать посевы, теперь вы диверсифицируете их во что-то еще [большее] другое. Я думаю, вы заметите толчок в этом направлении, особенно с учетом того, что климат становится все более серьезной проблемой ».

Ветер впервые в Турции становится крупнейшим источником электроэнергии

Энергия ветра стала крупнейшим источником выработки электроэнергии впервые в истории страны с 22.6% -ная доля на 28 ноября, согласно данным Турецкой корпорации по передаче электроэнергии (TEIAŞ) в понедельник.

Ветряные электростанции выработали 178 964 мегаватт-часа (МВт-ч) из 791 794 МВт-ч суточной выработки электроэнергии.

Установленная мощность ветровой энергии в Турции достигла 10 585 мегаватт (МВт), что делает ее второй по величине возобновляемой мощностью после гидроэнергетики.

Электростанции, работающие на природном газе, в воскресенье обеспечили 22% -ную долю выработки электроэнергии, а на третьем месте – импортные угольные электростанции, получившие 17-е место.Доля 8%.

Совсем недавно, 11 ноября, производство электроэнергии с помощью энергии ветра стало рекордным за день, выработав 20,1% от общей мощности.

Пороговое значение установленной энергии ветра более 10,00 МВт, хотя и является важной вехой в продвижении зеленой энергии в стране, по-прежнему отстает от гидроэлектроэнергии, которая в настоящее время является лидером по установленной мощности чистой энергии в Турции.

Турция считает безопасность энергоснабжения одним из центральных столпов своей энергетической стратегии, что ведет к усилиям по увеличению инвестиций в сектор чистой энергии.

В последнее десятилетие в Турции произошла значительная диверсификация структуры энергопотребления, в частности, за счет роста производства электроэнергии из возобновляемых источников.

Производство ветряных электростанций и оборудования в Турции выросло до такой степени, что теперь она входит в десятку крупнейших мировых рынков.

Рост в этом секторе уже показал, что Турция в прошлом году стала пятым по величине производителем оборудования в Европе. И этот рост также помог Турции расширить свой экспорт в 45 стран на шести континентах.

Из 77 производителей ветряного оборудования в Турции 70% получают выручку от экспорта оборудования.

По данным WindEurope, ассоциации, которая выступает за ветроэнергетику в Европе и за ее пределами, Турция вошла в пятерку европейских стран, которые больше всего инвестировали в ветроэнергетику. глобус.

Информационный бюллетень Daily Sabah

Будьте в курсе того, что происходит в Турции, это регион и мир.

ЗАПИШИТЕ МЕНЯ

Вы можете отписаться в любое время. Регистрируясь, вы соглашаетесь с нашими Условиями использования и Политикой конфиденциальности. Этот сайт защищен reCAPTCHA, и применяются Политика конфиденциальности и Условия обслуживания Google.

Vestas подтверждает, что ИТ-система работает после атаки программ-вымогателей • The Register

Производитель ветряных турбин Vestas заявляет, что «почти все» его ИТ-системы наконец-то заработали через 10 дней после атаки злоумышленников, подтверждая, что он действительно стал жертвой программы-вымогателя.

Тревога прозвучала в позапрошлый уик-энд, когда датская организация заявила, что выявила «инцидент кибербезопасности» и закрыла части своего технологического комплекса, чтобы «сдержать проблему».

Сегодня компания – одна из крупнейших в мире по проектированию, строительству, установке и обслуживанию ветряных турбин – заявила, что провела «обширные исследования, экспертизу, восстановительные работы и укрепление наших ИТ-систем и ИТ-инфраструктуры».

Хенрик Андерсен, президент и главный исполнительный директор фирмы, сказал в заявлении:

«Мы пережили несколько трудных дней с тех пор, как мы обнаружили киберинцидент, и поэтому исполнительное руководство и совет директоров очень довольны тем, что инцидент не повлиял на работу ветряных турбин, и почти все наши ИТ-системы снова работают.«

Команда

, занимающаяся производством, строительством и обслуживанием, не пострадала, сказал Вестас.

«Нам предстоит еще много работы, и мы должны оставаться предельно внимательными к киберугрозам. Я уже сейчас хотел бы воспользоваться этой возможностью, чтобы поблагодарить наших клиентов, сотрудников и внешних партнеров за их понимание и исключительную поддержку в этих сложных условиях. обстоятельства.”

По словам Вестаса, тщательное расследование инцидента продолжается, и до сих пор нет доказательств того, что взлом затронул клиентов или операции цепочки поставок, «что подтверждается судебно-медицинским расследованием, проведенным с помощью сторонних экспертов». он сказал.

Инцидент с безопасностью имел все признаки атаки вымогателя, но на прошлой неделе Vestas отказалась от комментариев. Сегодня он подтвердил то, что Регистр ранее подозревал.

«Киберинцидент, который, как показывают наши расследования, был вымогателем, затронул внутренние системы Vestas и привел к компрометации данных. Степень взлома данных все еще исследуется, но на данный момент кажется, что данные в первую очередь относятся к Vestas. внутренние дела.«

Мы спросили компанию, заплатила ли она выкуп, но ее представитель сказал: «В связи с ситуацией мы не собираемся это комментировать». Он также отказался «на этом этапе» подробно описывать, как произошло цифровое вторжение.

Согласно исследованию Coveware, опубликованному в январе, среднее время простоя, вызванное программами-вымогателями, составляет 16,2 дня, а биткойн – это криптовалюта, наиболее популярная среди преступных группировок.Фирма также обнаружила, что программы-вымогатели более прибыльны, чем торговля кокаином, что средний платеж составляет всего 140 000 долларов за каждую атаку, а наиболее распространенными штаммами являются Conti V2, Mespinoza и Sodinokibi. ®

Типы ветра – Управление энергетической информации США (EIA)

  • Горизонтально-осевые турбины
  • Вертикально-осевые турбины

Размеры ветряных турбин сильно различаются.Длина лопастей – самый важный фактор в определении количества электроэнергии, которую может генерировать ветряная турбина. Небольшие ветряные турбины, которые могут привести в действие один дом, могут иметь электрическую мощность 10 киловатт (кВт). Самые большие действующие ветряные турбины имеют электрическую мощность до киловатт (10 мегаватт), а турбины большего размера находятся в стадии разработки. Большие турбины часто группируются вместе для создания ветряных электростанций или ветряных электростанций , которые обеспечивают энергией электрические сети.

Источник: адаптировано из Национального проекта развития энергетического образования (общественное достояние)

Вертикально-осевой ветряк Дарье в Мартиньи, Швейцария

Источник: Лисипп, автор Wikimedia Commons (лицензия свободной документации GNU) (общественное достояние)

Горизонтально-осевые турбины аналогичны винтовым двигателям самолетов

Горизонтальные турбины имеют лопасти, как у воздушных винтов, и обычно имеют три лопасти.Самые большие турбины с горизонтальной осью имеют высоту 20-этажного здания и имеют лопасти длиной более 100 футов. Более высокие турбины с более длинными лопастями производят больше электроэнергии. Практически все используемые в настоящее время ветряные турбины представляют собой турбины с горизонтальной осью.

Вертикальные турбины похожи на взбиватели яиц

Турбины с вертикальной осью имеют лопасти, которые прикреплены к верхней и нижней части вертикального ротора. Самый распространенный тип турбины с вертикальной осью – ветряк Дарье, названный в честь французского инженера Жоржа Дарье, запатентовавшего эту конструкцию в 1931 году, – выглядит как гигантский двухлопастный взбиватель для яиц.Некоторые версии турбины с вертикальной осью имеют высоту 100 футов и ширину 50 футов. Сегодня используется очень мало ветряных турбин с вертикальной осью, потому что они не работают так же хорошо, как турбины с горизонтальной осью.

Ветряные электростанции или ветряные электростанции производят электроэнергию

Ветряные электростанции – это группы ветряных турбин, которые производят большое количество электроэнергии. Ветряная электростанция обычно имеет много турбин, разбросанных по большой площади. Одна из крупнейших ветряных электростанций США – Центр ветроэнергетики Хорс-Холлоу в Техасе, в котором по состоянию на конец 2020 года было 422 ветряных турбины, расположенных на площади около 47000 акров.Общая электрическая мощность проекта составляет около 735 мегаватт (или 735 000 киловатт).

Горизонтально-осевые ветряки на ветроэлектростанции

Источник: стоковая фотография (защищена авторским правом)

Последнее обновление: 3 ноября 2021 г.

лопастей ветряных турбин не должны попадать на свалки

Это один из четырех блогов в серии, посвященной текущим проблемам и возможностям утилизации экологически чистых технологий.См. Вводный пост , а также другие записи о солнечных панелях , и аккумуляторных батареях . Особая благодарность Джессике Гарсия, научному сотруднику UCS по политике чистой энергии Среднего Запада на лето 2020 года, за поддержку в исследованиях и соавторство этих публикаций.

Ветровые турбины увеличились в размерах и количестве, чтобы удовлетворить потребности в чистой энергии

Современная ветроэнергетика преобразует кинетическую энергию (движение) ветра в механическую.Это происходит за счет вращения больших лезвий из стекловолокна, которые затем вращают генератор для производства электроэнергии. Известные ветряные турбины могут располагаться на суше или на море.

Прогнозируется, что к 2050 году ветроэнергетика продолжит расти в США. Последний отчет о рынке ветряных технологий, подготовленный Национальной лабораторией Лоуренса в Беркли, показал, что цены на ветровую энергию находятся на рекордно низком уровне, а в 2019 году – 7,3 процента выработки электроэнергии коммунальными предприятиями. в США пришел ветер.В этом сообщении в блоге мы рассмотрим наземные ветряные турбины и возможности переработки, которые существуют, но еще не получили широкого распространения для лопастей турбин.

Источник: Berkeley Lab Electric Markets & Policy (https://emp.lbl.gov/wind-energy-growth)

Конструкции ветряных турбин со временем развивались, увеличиваясь в размерах и увеличивая эффективность, что в конечном итоге привело к увеличению генерирующих мощностей. Основная конструкция промышленных турбин сегодня – это ветряные турбины с горизонтальной осью, состоящие из ротора с тремя лопастями из стекловолокна, прикрепленными к ступице, которая сама прикреплена к центральной детали (гондоле), установленной на стальной башне.Различное другое оборудование и бетонные основания также включены в современные конструкции ветряных турбин, которые включают более 8000 деталей на турбину.

Лопасти ветряных турбин в существующем парке США в среднем составляют около 50 метров в длину или около 164 футов (примерно ширина американского футбольного поля). А с учетом недавних тенденций к использованию более длинных лопастей на более крупных турбинах и более высоких опорах для увеличения выработки электроэнергии, некоторые из самых крупных лопастей, производимых сегодня, достигают 60-80 метров в длину.

Источник: Лаборатория Беркли, Обновление данных по ветроэнергетическим технологиям: издание 2020 г., стр. 37.Обратите внимание, что диаметр ротора (показанный здесь в метрах) чуть более чем в два раза превышает длину лопастей

.

Фото: Джеймс Жиньяк

С точки зрения долговечности ветряные турбины служат в среднем около 25 лет. Около 85 процентов материалов компонентов турбины, таких как сталь, медная проволока, электроника и зубчатые передачи, могут быть переработаны или повторно использованы. Но лезвия отличаются, поскольку они сделаны из стекловолокна (композитного материала), чтобы быть легкими для эффективности, но при этом достаточно прочными, чтобы выдерживать штормы.Смешанный характер материала лезвия затрудняет отделение пластика от стекловолокна для переработки в пригодный для обработки стекловолоконный материал, а прочность, необходимая для лезвий, означает, что их также физически сложно сломать.

Куда теперь попадают бывшие в употреблении лопасти ветряных турбин?

Лопасти ветряных турбин требуют утилизации или вторичной переработки, когда турбины выводятся из эксплуатации на этапе завершения использования или когда ветряные электростанции модернизируются в процессе, известном как восстановление мощности.Восстановление мощности предполагает сохранение того же места и часто поддержание или повторное использование первичной инфраструктуры для ветряных турбин, но модернизацию с использованием турбин большей мощности. Лезвия могут быть заменены на более современные и, как правило, большие лезвия. В любом случае лопасти из стекловолокна, когда они больше не нужны, представляют собой серьезнейшую проблему с точки зрения конечного использования ветроэнергетики.

Хотя лезвия можно разрезать на несколько частей на месте во время вывода из эксплуатации или повторного включения, эти части по-прежнему сложно и дорого транспортировать для переработки или утилизации.А процесс резки чрезвычайно прочных лезвий требует огромного оборудования, такого как канатные пилы на транспортных средствах или пилы с алмазным канатом, подобные тем, что используются в карьерах. Поскольку в настоящее время существует очень мало вариантов утилизации лезвий, подавляющее большинство из тех, которые достигают конца использования, либо хранятся в разных местах, либо вывозятся на свалки.

Действительно, Bloomberg Green ранее в этом году сообщал о вывозе лопастей ветряных турбин на свалки. Несмотря на то, что поток отходов представляет собой лишь крошечную долю твердых бытовых отходов США, это явно не идеальная ситуация.По мере вывода из эксплуатации или замены ветряных турбин возникает необходимость в более творческих решениях по переработке использованных лопастей.

Хорошая новость заключается в том, что в настоящее время ведутся работы по разработке альтернатив. Две крупные компании в США, PacificCorp и MidAmerican Energy, например, недавно объявили о планах наладить партнерство с компанией Carbon Rivers из Теннесси по переработке некоторых израсходованных лопаток турбин вместо их захоронения. Технология, используемая Carbon Rivers, поддерживается за счет грантов Министерства энергетики США и будет использоваться для разрушения и повторного использования стекловолокна из использованных лопаток турбин.

Фото: Flickr / Chuck Coker

Новые инновации в переработке стекловолокна

В то время как композитная природа лопаток турбины из стекловолокна, как известно, затрудняет их устранение на этапе завершения использования, интерес к поиску альтернатив также может стимулировать творчество и инновации. Например, партнерство с участием университетов США, Ирландии и Северной Ирландии под названием Re-wind разработало несколько интересных проектных идей в области гражданского строительства для повторного использования и перепрофилирования лезвий из стекловолокна.Сюда входит использование выведенных из эксплуатации лопастей в проектах гражданского строительства в составе конструкций линий электропередач или башен, а также крыш для аварийного или доступного жилья. В Северной Ирландии Re-wind также рассматривает возможность их использования на пешеходных мостах вдоль зеленых насаждений.

Далее по иерархии отходов начинают появляться дополнительные варианты переработки. WindEurope, представляющая ветроэнергетику Европейского Союза, сотрудничает с Европейским советом химической промышленности (Cefic) и Европейской ассоциацией производителей композитов (EuCIA) для разработки новых методов повторного использования материалов для лопастей.По оценкам организаций, только в Европе в течение следующих нескольких лет будет выведено из эксплуатации 14 000 лопастей ветряных турбин. В мае 2020 года консорциум выпустил Accelerating Wind Turbine Blade Circularity, всеобъемлющий отчет, в котором подробно описаны дизайн, исследования и технические решения, ориентированные на жизненный цикл ветряных турбин.

Ключевым моментом при переработке композитных материалов является обеспечение того, чтобы процесс переработки имел чистый положительный результат по сравнению с альтернативой утилизации на свалках.Одним из примеров является Германия, где концепция переработки турбинных лопаток в цемент впервые была разработана около десяти лет назад на заводе, построенном в рамках партнерства между Geocycle, бизнес-подразделением корпорации строительных материалов HolcimAG, и компанией Zajons.

Эта форма рециркуляции включает в себя контроль цепочки поставок утилизации, в том числе распиливание лопаток турбины на более мелкие части на месте вывода из эксплуатации для снижения логистики и затрат на транспортировку. Этот процесс обещает 100-процентную переработку и сокращение выбросов углекислого газа при совместной переработке цемента за счет замены производства цементного сырья на переработанные лопасти, а также использование биогаза из органических остатков вместо угля в качестве топлива.

Разрабатываются и другие технологии, такие как механическая переработка, сольволиз и пиролиз, которые в идеале предоставят промышленности дополнительные возможности для работы с лезвиями из стекловолокна, когда они достигают конца использования.

Фото: Джеймс Жиньяк

Другой творческий вариант переработки позволяет получать гранулы или доски, которые можно использовать в столярных работах. В 2019 году Global Fiberglass Solutions приступила к производству продукта под названием EcoPoly Pellets в США и вскоре будет дополнительно производить панельную версию.Эти продукты сертифицированы как переработанные из списанных лопастей ветряных турбин посредством отслеживания радиочастотной идентификации (RFID) от лопасти до конечного продукта. EcoPoly Pellets можно превратить в различные продукты, такие как складские поддоны, напольные покрытия или парковочные болларды. Основываясь на своих прогнозах спроса, Global Fiberglass Solutions ожидает, что сможет обрабатывать от 6000 до 7000 лезвий в год на каждом из двух своих заводов в Техасе и Айове.

Дополнительный подход к переработке лезвий состоит в том, чтобы сосредоточить внимание на исходной детали – из чего сделаны лезвия.Дополнительные исследования и разработки направлены на использование термопластической смолы вместо стекловолокна или углеродного волокна для лопастей ветряных турбин. Материал может быть проще и дешевле утилизировать.

В конце концов, цель увеличения количества инноваций в направлении дополнительных приложений использования списанных лопаток турбин требует наличия достаточного рыночного спроса, чтобы стимулировать создание предприятий, которые могут перерабатывать лопатки. Наряду с этой проблемой в США отсутствует политика в отношении конечного использования лопаток турбин, что еще больше способствует сохранению статус-кво хранения или утилизации в качестве твердых отходов на полигонах.

Достижение 100% возможности вторичной переработки ветряных турбин

Как обсуждалось выше, в настоящее время дешевле утилизировать лопасти ветряных турбин на ближайшем полигоне, чем часто требуется транспортировка на большие расстояния для рециркуляции на ограниченном количестве предприятий, которые могут их эффективно переработать. Кроме того, отрасль в настоящее время страдает от недостаточного давления со стороны регулирующих органов или рыночных стимулов для полной разработки других вариантов конечного использования.

Два подхода к более замкнутой экономике – это более тесная связь в цепочке поставок ветряных турбин и амбициозные цели.Например, Vestas Wind Systems A / S, компания, занимающаяся проектированием, производством и установкой ветряных турбин, объявила о твердом намерении произвести к 2040 году ветровые турбины без отходов. тесно сотрудничать со своими партнерами по всей цепочке поставок, чтобы в конечном итоге избежать сжигания или захоронения своей продукции. Необходимо больше партнерских отношений между компаниями ветроэнергетики, чтобы восполнить пробел и сделать системы ветроэнергетики на 100% пригодными для вторичной переработки.

Кроме того, штаты США должны рассмотреть механизмы политики для стимулирования развития рынка альтернативных решений, таких как повышение ответственности производителей, помимо утилизации лопастей ветряных турбин на свалках. Кроме того, штаты могли бы рассмотреть способы поддержки строительства региональной инфраструктуры рециркуляции – особенно в штатах с более крупными ветряными электростанциями, такими как Техас или Айова – для решения вопроса о прекращении использования лопастей ветряных турбин.

В других блогах этой серии вы найдете введение в технологии переработки экологически чистой энергии, а также дополнительную информацию о переработке солнечных панелей и аккумуляторов энергии.

Как работают ветряные турбины? | Блог

Ball Corporation удовлетворяет половину своих текущих потребностей в энергии США за счет энергии ветра.

Что такое ветровая энергия?

Люди использовали силу ветра тысячи лет. Ветер перемещал лодки по реке Нил, перекачивал воду и перемалывал зерно, поддерживал производство продуктов питания и многое другое. Сегодня кинетическая энергия и сила естественных воздушных потоков, называемых ветром, в огромных масштабах используются для создания электричества.Одна современная оффшорная ветряная турбина может генерировать более 8 мегаватт (МВт) энергии, чего достаточно для обеспечения экологически чистой энергии почти шести домов в течение года. Береговые ветряные электростанции вырабатывают сотни мегаватт, что делает энергию ветра одним из самых рентабельных, чистых и легкодоступных источников энергии на планете.

Энергия ветра – это самый дешевый крупномасштабный возобновляемый источник энергии и самый крупный источник возобновляемой энергии в США на сегодняшний день. Существует около 60 000 ветряных турбин общей мощностью 105 583 мегаватт (МВт).Этого достаточно, чтобы привести в действие более 32 миллионов домов!

График совокупной ветроэнергетики в США, данные любезно предоставлены Американской ассоциацией ветроэнергетики (AWEA)

Помимо того, что решения для ветроэнергетики играют жизненно важную роль в нашем энергоснабжении, они также помогают коммерческим компаниям в достижении целей в области возобновляемых источников энергии и выполнении требований в отношении надежной и чистой энергии.

Преимущества энергии ветра:

  1. Ветровые турбины обычно компенсируют выбросы углерода в течение всего срока эксплуатации, связанные с их развертыванием, менее чем за год, прежде чем обеспечить до 30 лет практически безуглеродного производства электроэнергии.
  2. Энергия ветра помогает сократить выбросы углекислого газа – в 2018 году удалось избежать выбросов CO2 на 201 миллион метрических тонн.
  3. Энергия ветра обеспечивает налоговые поступления для сообществ, в которых проводятся проекты. Например, государственные и местные налоговые платежи от ветроэнергетических проектов в Техасе составили 237 миллионов долларов.
  4. Ветроэнергетика поддерживает создание рабочих мест, особенно во время строительства. В 2018 году отрасль поддержала 114 000 рабочих мест в США.
  5. Энергия ветра обеспечивает стабильный дополнительный источник дохода: в рамках проектов по ветроэнергетике ежегодно выплачивается более 1 миллиарда долларов правительствам штатов и местным властям, а также частным землевладельцам.

Как выглядит проект ветроэнергетики?

Ветровой проект или ферма – это большое количество ветряных турбин, которые построены близко друг к другу и работают как электростанция, отправляя электроэнергию в сеть.

Фотография ветряных турбин на проекте Frontier Windpower II в Оклахоме

Проект Frontier Windpower I в округе Кей, штат Оклахома, действует с 2016 года и расширяется за счет проекта Frontier Windpower II.По завершении строительства Frontier I и II будут генерировать в общей сложности 550 мегаватт энергии ветра – этого достаточно для питания 193 000 домов.

Как работают ветряные турбины?

Схема, показывающая компоненты стандартной ветряной турбины.

Энергия вырабатывается вращающимися ветряными турбинами, которые используют кинетическую энергию движущегося воздуха, которая преобразуется в электричество. Основная идея заключается в том, что в ветряных турбинах используются лопасти для сбора потенциальной и кинетической энергии ветра. Ветер вращает лопасти, которые вращают ротор, подключенный к генератору для выработки электроэнергии.

Большинство ветряных турбин состоит из четырех основных частей:

  • Лезвия прикреплены к ступице, которая вращается при вращении лезвий. Лопасти и ступица вместе составляют ротор.
  • В гондоле находятся редуктор, генератор и электрические компоненты. \
  • Башня удерживает лопасти ротора и генерирующее оборудование высоко над землей.
  • Фундамент удерживает турбину на земле.

Типы ветряных турбин:

Большие и малые турбины делятся на две основные категории в зависимости от ориентации ротора: турбины с горизонтальной осью и турбины с вертикальной осью.

Горизонтально-осевые турбины на сегодняшний день являются наиболее часто используемым типом ветряных турбин. Этот тип турбины приходит на ум при изображении энергии ветра с лопастями, очень похожими на воздушный винт самолета. Большинство этих турбин имеют три лопасти, и чем выше турбина и чем длиннее лопасть, тем больше вырабатывается электроэнергии.

Турбины с вертикальной осью больше похожи на взбиватель для яиц, чем на пропеллер самолета. Лопасти этих турбин прикреплены как вверху, так и внизу к вертикальному ротору.Поскольку турбины с вертикальной осью не работают так же хорошо, как их горизонтальные аналоги, сегодня они встречаются гораздо реже.

Сколько электроэнергии вырабатывает турбина?

Это зависит от обстоятельств. Размер турбины и скорость ветра, проходящего через лопасти ротора, определяют, сколько электроэнергии вырабатывается.

За последнее десятилетие ветряные турбины стали выше, что позволило использовать более длинные лопасти и получить возможность использовать лучшие ветровые ресурсы, доступные на больших высотах.

Для сравнения: ветряная турбина мощностью около 1 мегаватта может производить достаточно чистой энергии примерно для 300 домов в год. Ветровые турбины, используемые на наземных ветряных электростанциях, обычно вырабатывают от 1 до почти 5 мегаватт. Скорость ветра обычно должна составлять около 9 миль в час или более, чтобы большинство ветряных турбин промышленного размера начали вырабатывать электроэнергию.

Каждый тип ветряной турбины способен генерировать максимальное количество электроэнергии в диапазоне скоростей ветра, часто от 30 до 55 миль в час.Однако, если ветер дует меньше, производство обычно снижается экспоненциально, а не останавливается полностью. Например, количество вырабатываемой энергии уменьшается в восемь раз, если скорость ветра падает вдвое.

Кто обслуживает ветряные турбины?

Высококвалифицированные специалисты по ветроэнергетике из Duke Energy Renewables поднимаются на сотни футов для обслуживания турбин

Что происходит, когда возникает неисправность на возвышающейся ветряной турбине? Специалисты по ветроэнергетике, такие как Рене Лопес и его товарищи по команде Duke Energy Renewables, поднимаются на вершину, чтобы исправить это быстро и безопасно.

Рене говорит, что при транспортировке около 45 фунтов оборудования и инструментов опытным техникам может потребоваться 20 минут или больше, чтобы добраться до гондолы, которая находится на высоте 300 футов в верхней части ветряной турбины.

Рене Лопес, специалист по ветроэнергетике в Duke Energy Renewables

Специалисты по ветроэнергетике отвечают за поиск и устранение неисправностей и ремонт электроники и механики, обеспечивающей вращение лопастей. Каждый технический специалист проходит как минимум двухлетнюю техническую программу для получения сертификата, а затем проходит более 50 часов обучения, прежде чем его направят на работу в полевых условиях.Безопасность также является постоянным и ежедневным акцентом на работе, потому что подъем на гондолу турбины может быть опасным. В Duke Energy Renewables строгий режим безопасности практикуется, документируется и анализируется, чтобы гарантировать, что безопасность остается высшим приоритетом.

При соответствующем обучении технические специалисты могут также использовать дроны, чтобы упростить и безопаснее осматривать высотное оборудование. Дроны могут увеличивать масштаб оборудования, что позволяет легче увидеть мелкие дефекты, такие как трещины на ветряной турбине, и снижает потребность технических специалистов в лазании по турбинам и спуску по лопастям.Это может быть особенно полезно, когда дороги мокрые или непроходимые.

Стоит ли рассматривать решения для ветроэнергетики?

Производство энергии ветра остается одним из наименьших углеродных следов среди всех источников энергии. Он играет важную роль в будущем энергоснабжения нашей страны, поддерживая переход нашего мира в области энергетики и увеличивая спрос на устойчивые энергетические ресурсы.

Ветер также является одним из лучших способов для корпораций, университетов, городов, коммунальных служб и других организаций быстро перейти на энергию без выбросов в больших масштабах.Одно виртуальное соглашение о покупке электроэнергии (VPPA) может обеспечить от десятков до сотен мегаватт чистой нулевой электроэнергии на срок от 10 до 25 лет. В большинстве соглашений также делается отметка о дополнительности, означающей, что новые источники чистой энергии вытесняют потенциально более старые источники энергии с более высоким уровнем выбросов.

Какое лучшее место для проекта ветроэнергетики?

Есть шесть основных соображений по проектам ветроэнергетики:

  • Наличие ветра и желаемые места
  • Воздействие на окружающую среду
  • Вклад сообщества и местные потребности в производстве возобновляемой энергии
  • Благоприятная политика на уровне штата и федеральном уровне
  • Наличие земли
  • Возможность подключения к электросети

Как и в случае с коммерческими проектами солнечных фотоэлектрических систем, разрешения также должны быть получены до запуска ветроэнергетической установки.

Добавить комментарий

Ваш адрес email не будет опубликован.