Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Диодный мост | Принцип работы, обозначение, виды

Что такое диодный мост

Словосочетание “диодный мост” образуется от слова “диод“. Значит, диодный мост – это радиодеталь, которая состоит из диодов. Здесь очень важно то, как соединены эти диоды, иначе диодный мост превратится просто в кучку из диодов.

Диод на электрических схемах обозначается вот так.

Самый простой диодный мост состоит из 4 диодов, которые соединяются вот так.

Эта рисунок также является самой распространенным обозначением диодного моста на электрических схемах.

Упрощенный вариант выглядит вот так.

Можно увидеть на схемах даже что-то типа этого.

 

Для правильной эксплуатации диодного моста, мы должны его правильно подсоединить. Правильное подключение диодного моста выглядит таким образом.

Как вы видите, на вход диодного моста мы подаем переменное напряжение, а на выходе диодного моста снимаем постоянное напряжение.

Отсюда можно сделать вывод:

Диодный мост используется в схемах для того, чтобы получить из переменного тока постоянный ток.


Видео на тему: Что такое диодный мост:

Принцип работы диодного моста


Диод в цепи переменного напряжения

Итак, в статье про диод мы рассматривал, что будет на выходе диода, если подать на него переменный ток. Для этого мы даже собирали вот такую схему, где G – это синусоидальный генератор. С клемм X1 и X2 уже снимали сигнал.

Мы на диод подавали переменное напряжение.

А на выходе после диода получали уже вот такой сигнал.

То есть у нас получилось вот так.

Да, мы получили постоянный ток из переменного, но стоило ли это того? В этом случае у нас получился постоянный пульсирующий ток, где половина мощности сигнала была вообще вырезана.

Как работает диодный мост в теории

Как вы знаете, переменный ток меняет свое направление несколько раз в секунду. Поэтому, его можно разбить на положительные полуволны и отрицательные полуволны. Положительные полуволны я пометил красным, а отрицательные – синим.

Для того, чтобы диодный мост работал, ему нужна какая-либо нагрузка. Пусть это будет резистор. Следовательно, когда на диодный мост приходит положительная полуволна, протекание тока через него будет выглядеть вот так.

Как вы видите, при положительной полуволне не задействованы диоды, которые я показал штриховой линией.

После положительной полуволны приходит отрицательная полуволна, и в этом случае протекание тока в диодном мосте выглядит так.

В этом случае, диоды, которые работали при положительной полуволне, при отрицательной полуволне они отдыхают). Эстафету принимает на себя другая пара диодов. Можно даже сказать, что в диодном мосте они работают попарно. Одна пара диодов работает на положительную полуволну, а другая пара – на отрицательную.

Обратите внимание на нагрузку. На нее всегда приходит одна и та же полярность тока при любом стечении обстоятельств.

Работа диодного моста на практике

Давайте и мы посмотрим, что получается на выходе диодного моста, если подать на него переменное напряжение. Для этого возьмем 4 простых кремниевых диода и соединим их в диодный мост. Важно, чтобы диоды были одной марки.

На вход диодного моста будем подавать переменное напряжение, и посмотрим, что у нас получается на выходе.

Итак, на вход я подаю вот такой сигнал.

 

На выходе получаю постоянное пульсирующее напряжение.

Здесь мы видим, что отрицательная полуволна в диодном мосте не срезается, а превращается в положительную. Мощность сигнала при этом не теряется, так как отрицательная полуволна просто инвертируется в положительную полуволну. Ну разве не чудо?

Наблюдательный читатель также может заметить, что амплитуда сигнала чуть-чуть просела. Если мы на вход подавали синусоидальный сигнал с амплитудой в 6 Вольт, то на выходе диодного моста имеем чуть меньше 6 Вольт, а точнее где-то 4,8 Вольта. Почему так произошло? Дело все в том, что на кремниевом диоде падает напряжение 0,6-0,7 Вольт. Так как переменное напряжение проходит через 2 диода при каждой полуволне, то на каждом диоде падает по 0,6 Вольт. 2×0,6=1,2 Вольта. 6-1,2=4,8 Вольта.

Теперь можно с гордостью нарисовать рисунок.

Виды диодных мостов

Примерно так выглядит импортный и советский диодные мосты.

 

Например, на советском показаны контакты, на которые надо подавать переменное напряжение значком ” ~ “, а контакты, с которых сниамем постоянное пульсирующее напряжение значком “+” и “-“.

Существует множество видов диодных мостов в разных корпусах.

Есть даже диодный мост для трехфазного напряжения.

Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы, а два другие – на постоянное напряжение.

Он собирается по так называемой схеме Ларионова и состоит из 6 диодов.

В основном трехфазные мосты используются в силовой электронике.

Характеристики диодного моста

Как мы уже с вами разобрали, в электронике встречаются диодные мосты в разных корпусах и имеют разные габариты.

Почему так? Дело в том, что каждый диодный мост обладает какими-то своими характеристиками, о которых мы и поговорим в этой главе.

Чтобы далеко не ходить, давайте рассмотрим диодный мост GBU6K и рассмотрим на его примере, как читать характеристики.

Для того, чтобы понять, что это за фрукт и с чем его едят, надо скачать на него техническое описание (даташит). Вот ссылка на этот диодный мост. Ниже рассмотрим основные характеристики диодного моста, которых будет достаточно для рядового электронщика.

Распиновка и корпус

Итак, на главной странице мы видим распиновку выводов. Распиновка – это какие выводы за что отвечают и как правильно их соединять с внешней цепью.

Как вы видите, на средний выводы подаем переменное напряжение, а с крайних выводов снимаем постоянное напряжение. Также на рисунке показано, как соединяются диоды в этом диодном мосте. Нам эта информация еще очень пригодится.

Чуть ниже мы видим вот такую табличку, которая показывает нам самые главные первичные характеристики.

Package – тип корпуса. Корпуса GBU выглядят вот так.

Максимальный ток

Итак, с этим разобрались. Далее следующий параметр. IF(AV) максимальный ток, который может “протащить” через себя этот диодный мост. В даташите есть таблички и графики, какие условия должны соблюдаться, чтобы мост смог протащить через себя этот ток без вреда для своего здоровья.

Поэтому, диодные мосты в больших металлических корпусах способны “протащить” через себя очень большую силу тока. Если же маленький диодный мост вставить в какой-нибудь мощный блок питания, то скорее всего он просто-напросто сгорит.

В промышленности в силовой электронике стараются использовать диодные моста большой мощности, например, вот такой диодный мост может “протащить” через себя силу тока в 50 Ампер.

 

Максимальное пиковое обратное напряжение

Грубо говоря, это обратное напряжение диода. Если его превысить, то произойдет пробой и диоду, а следовательно и диодному мосту, придет “кирдык”. Этому параметру также следует уделять внимание, когда вы будете выпрямлять сетевое напряжение. Если вы будете подавать на диодный мост 220 Вольт, то его пиковое значение будет составлять 310 Вольт (220 × √2). Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже. Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт. Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения.

 

Как проверить диодный мост

1-ый способ.

Как вы теперь знаете, однофазный диодный мост состоит из 4 диодов. Для того, чтобы узнать их расположение, мы должны скачать даташит на данный диод и посмотреть, как расположены диоды в данном диодном мосте. Например, для моего моста GBU6K диоды расположены вот так.

То есть все, что мне надо сделать – это просто прозвонить

каждый диод с помощью мультиметра. Как это сделать, я писал еще в этой статье.

Второй способ.

Он же 100%. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор, а также резистор, желательно 5-10 КОм. После того, как мы нашли его расположение выводов, на “+” и “-”  припаиваем резистор 5-10 КОм. С этих же выводов снимаем осциллограмму.

То есть все должно выглядеть вот так.

 

 

Смотрим осциллограмму

Значит, диодный мост исправен.

Диодный мост генератора

Диодный мост генератора в автомобилях выпрямляет переменное напряжение, которое поступает от обмоток статора генератора. То есть грубо говоря, без диодного моста получается трехфазный мини-генератор.

Диодный мост генератора ВАЗ 2110

В этой статье будем рассматривать диодный мост от генератора ВАЗ 2110.

Он сделан по схеме Ларионова с некоторым дополнением в виде 3 дополнительных диодов.

Как проверить диодный мост генератора

Для проверки диодного моста генератора есть два способа.

Проверка с помощью лампы накаливания

Этот способ считается самым простым, и все его могут применить, так как под рукой всегда найдется аккумулятор и лампа на 12 В. Иначе откуда у вас автомобильный генератор?)

Предварительно лучше запаять или прикрепить к лампе два провода, чтобы было проще производить проверку. Итак, собираем наш прибор для проверки диодного моста генератора из лампы и аккумулятора вот по такой схеме.

Далее, все что нам надо сделать – это просто проверить каждый диод. Итак, вспоминаем, что диод в одном направлении проводит электрический ток, а в другом нет. Получается, нам надо в каждый диод “тыкнуться” два раза, чтобы узнать исправен ли он. Так мы и сделаем.

Вместо аккумулятора у меня будет лабораторный блок питания на 12 Вольт, что в принципе не играет никакой роли.

Мой “прибор” для проверки диодов выглядит вот так.

Красные крокодил – это плюс от аккумулятора, в моем случае – от блока питания, а черный – это минус.

Поехали! У нас имеется 9 диодов. Начнем, пожалуй, с больших диодов-таблеток, которые вмонтированы в металлические пластины. Цепляюсь одним выводом-крокодилом к пластине, на которой вмонтирован один конец диода

 

а другим выводом, который идет от лампы накаливания касаюсь другого вывода диода и вуаля! Лампа зажглась!

Теперь надо обязательно поменять выводы наших проводов с самопального прибора местами и снова повторить это действие.

Как вы видите, наша лампа не горит, и это замечательно! Потому что мы сейчас только что убедились в том, что наш диод абсолютно здоров и готов выполнять свою задачу на 100%.

Таким же образом проверяем все диоды таблетки.

Маленькие черные диоды проверяются точь-в-точь таким же способом.

Меняем выводы и убеждаемся, что диод рабочий.

Правила:

1) Если лампочка не горит ни так ни сяк, значит диод неисправен.

2) Если лампочка горит и так и сяк, значит диод тоже неисправен.

3) Если лампочка горит, а при смене щупов не горит, значит диод исправен.

Проверка с помощью мультиметра

Не у всех есть такой замечательный прибор, как мультиметр, но он должен быть у каждого уважающего себя электрика и электронщика.

В каждом хорошем мультиметре есть функция прозвонки диодов. Как я уже говорил, наш автомобильный диодный мост будет исправен, если все его диоды будут исправны.

Берем в руки мультиметр и ставим его в режим прозвонки диодов.

И начинаем проверять все диоды друг за другом на исправность. В одном направлении диод должен показать значение от 0,4 и до 0,7 Вольт. В нашем случае 0,552 Вольта, что вполне приемлемо.

Далее меняем щупы местами и видим, что мультиметр показывает нам OL, что говорит нам о том, что превышен предел измерения. Значит, диод жив и здоров).

Таким же образом проверяем все оставшиеся диоды.

Похожие статьи по теме “диодный мост”

Автомобильное зарядное устройство

Как получить постоянное напряжение из переменного

Как проверить диод и светодиод мультиметром

Простой блок питания

 

назначение и схема подключения, как собрать своими руками

Простейшим преобразователем переменного тока в постоянный является диодный мост. Им называется такой элемент электрической цепи, который состоит из нескольких диодов, соединённых друг с другом по специальной схеме. Придуманный ещё в 1895 году такой способ включения до сих пор успешно применяется в электроцепях. Практически ни один блок питания не обходится без его использования, ведь фактически все электронные схемы запитываются от источников постоянного тока.

История изобретения

В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель.

В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.

В середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.

Изобретателем же схемы выпрямительного моста считается электротехник из Польши Карол Поллак. Позже в журнале Elektronische Zeitung опубликовали результаты исследований Лео Гретца, поэтому в литературе можно встретить и другое название диодного моста — схема или мост Гретца.

Физические процессы

В основе принципа работы диодного моста лежит способность p-n перехода пропускать ток только в одном направлении. Под p-n переходом понимается контакт двух полупроводников с различным типом проводимости. Граница, разделяющая области, характеризуется шириной запрещённой зоны, препятствующей прохождению зарядов. С одной её стороны находится p область, в которой основными носителями считаются дырки (положительный заряд), а с другой n область, где основные носители электроны (отрицательный заряд).

Находясь изолированно друг от друга, в каждой области элементарные частички совершают беспорядочные тепловые колебания, из-за чего их выделяемая энергия компенсируется и результирующий ток равен нулю. При соприкосновении этих областей возникают диффузионные токи, вызванные притягиванием зарядов друг к другу. В итоге частички сталкиваются и рекомбинируют (исчезают). В зоне соприкосновения происходит обеднение носителей, и их движение прекращается. Устанавливается состояние динамического равновесия.

При приложении к p-n переходу электрического поля картина меняется. При прямом смещении, то есть таком, когда положительный полюс источника питания подключается к p области, а отрицательный к n области, происходит введение основных носителей в области. Из-за этого ширина запрещённой зоны уменьшается, и частички свободно начинают проходить через барьер, образуя ток. Если же полярность источника питания изменить, то произойдёт ещё большее обеднение слоёв, в итоге барьер увеличится, и ток не возникнет.

Таким образом, в зависимости от полярности сигнала, приложенного к переходу, ширина запрещённой зоны увеличивается или уменьшается. Если на элемент, в основе работы которого используется p-n переход подать переменный сигнал, то в результате к нему попеременно будет прикладываться прямое и обратное напряжение. Соответственно, часть сигнала он будет задерживать, а часть пропускать.

Если же взять измерительный прибор, умеющий показывать форму сигнала (осциллограф), то на выходе радиоэлемента можно будет увидеть импульсы, длительность которых определяется периодом полуволны. Именно поэтому диод и называется выпрямительным, хотя к нему больше подходит название импульсный преобразователь. То есть устройство, преобразующее переменный сигнал в пачку импульсов.

Схема сборки из диодов

Выражение «мост из диодов» происходит от слияния двух слов, подчёркивающих принцип работы устройства. Под этим словосочетанием понимается электрический прибор, служащий для преобразования переменного тока в пульсирующий. Состоит он из четырёх диодов, образующих соединение по схеме Гретца.

Переменное электрическое напряжение представляет собой гармонический сигнал, амплитуда которого изменяется по синусоидальному закону во времени. Условно его можно представить в виде отрицательных и положительных полуволн. При подаче сигнала на вход диода через него может пройти только одна полуволна, в результате чего на выходе направление тока станет односторонним.

На этом принципе и работает диодный мост. Но так как один диод при прохождении через него изменяющегося во времени сигнала даёт на выходе только пачку импульсов, то для получения действительно постоянного напряжения необходимо, чтобы устройство выпрямляло две полуволны. Другими словами, являлось двухполупериодным.

Для создания полноценного выпрямителя схема диодного моста должна обеспечивать преобразование как положительной, так и отрицательной составляющей сигнала. Если диоды подключить по схеме Гретца, то в каждый полупериод волны ток сможет протекать только через два элемента. То есть устройство будет поочерёдно выпрямлять каждую полуволну.

При подаче на вход моста переменного напряжения в тот момент, когда сигнал будет описываться положительной составляющей, диоды VD2 и VD3 будут для него открыты, а VD1 и VD4 заперты. При смене полярности состояние выпрямителей изменится, ток потечёт через VD4 и VD1, в то время как VD3, VD2 окажутся закрытыми.

В итоге форма сигнала станет постоянной, так как на выходе устройства практически не будет промежутка времени, при котором напряжение будет равно нулю. При этом частота выходного сигнала увеличится вдвое. Например, если на устройство подать напряжение 220 в из электросети, то на его выходе получится постоянный ток с частотой 100 Гц. Это пульсирование считается паразитным, мешающим работе электронных узлов, поэтому в электрических схемах выход прибора подключается к электролитическому конденсатору, сглаживающему пульсации. Такая схема применяется в однофазных сетях, в трёхфазных же используется шесть диодов, работающих попарно (по аналогии со схемой Гретца).

Виды и характеристики

Современная промышленность выпускает различные по конструкции и характеристикам устройства. Все выпрямительные мосты разделяют на два вида: монолитные и наборные. Первые выполняются в цельном диэлектрическом корпусе, наподобие микросхемы, и имеют четыре вывода. Форма их корпуса может быть прямоугольной, квадратной, цилиндрической. При этом тип корпуса может быть также любым, например, SOT 23, MDI, SDIP, SMD.

На корпусе обычно подписываются полярные ноги символами + и —, соответствующие выходному сигналу. Входные же выводы могут не подписываться или обозначаться знаком тильды ~. Вторые же представляют собой четыре отдельных диода, запаянных по схеме моста, чаще всего в специально отведённые для них места на плате.

При работе выпрямительный мост может нагреваться, поэтому некоторые конструкции предполагают их совместное использование с радиатором. Как и любой электрический прибор, мост характеризуется рядом параметров:

  1. Наибольшее обратное напряжение, В — характеризуется максимальным значением напряжения, приложенного при обратном включении диодов, подача которого на прибор не приводит к его повреждению. Превышение этого значения вызывает пробой, то есть полупроводник превращается в проводник.
  2. Действующее напряжение, В — определяется среднеквадратичным значением амплитуды входного сигнала.
  3. Максимальный ток, А — это величина, определяющая наибольшую мощность, которую может потреблять нагрузка, подключённая к прибору.
  4. Максимальное падение напряжения, В — этот параметр обозначает потери мощности сигнала на элементе, то есть фактически характеризует эффективность прибора. Потери мощности связаны с активным внутренним сопротивлением устройства, на котором электрическая энергия преобразуется в тепловую.
  5. Интервал рабочих температур, С — обозначает диапазон, в котором характеристики устройства практически не изменяются.

Кроме этого, в зависимости от типа используемых диодов устройства могут быть высокочастотными и импульсными. Первые используются в цепях с высокочастотным электричеством. Диоды, на базе которых собирается конструкция, называются Шотки. В них вместо классического p-n перехода используется контакт металл-полупроводник. Вторые же являются обычными выпрямителями.

Обозначение и маркировка

Условно-графическое обозначение полупроводникового моста на принципиальных электрических схемах выглядит как ромб, из вершин которого выходят прямые короткие линии, символизирующие выводы. Каждый вывод подписывается знаком, соответствующим виду сигнала. Так, плюсом обозначается положительный выход, минусом — отрицательный, а тильдой — входы для подачи переменного сигнала. В середине ромба может как изображаться выпрямительный диод, так и нет.

В литературе, различных спецификациях и на схемах устройство подписывается латинскими символами VDS, после которых ставится арабская цифра, обозначающая порядковый номер. В иностранной литературе можно также встретить обозначение BDS. Стандарта для маркировки мостов не существует. Каждый производитель обозначает свою продукцию, как хочет, согласно своей системе.

Если внимательно изучить различные обозначения, то можно проследить тенденцию в маркировке, нанесённой на корпус прибора. На ней почти всегда присутствуют данные о его основных характеристиках. То есть указывается максимальный ток или рабочее напряжение. Например, DB151S — первые две цифры обозначают ток 1,5 А, а вторая напряжение согласно таблице, в этом случае 50 В.

Отечественные изделия классифицируются по-другому. Сам мост обозначается буквой «Ц», стоящее за ней число обозначает материал, а последующие цифры номер разработки. Например, популярный мостик у радиолюбителей выдерживающий обратное напряжение до 400 В, маркируется как КЦ407А.

Самостоятельное изготовление

Выпрямительные однофазные мосты обычно не являются дефицитными радиодеталями, поэтому их можно купить и выбрать по необходимым параметрам практически в любом радиомагазине. Но не всегда есть на это время, поэтому нужный мост можно собрать и своими руками. Для этого понадобится подготовить:

  1. Четыре одинаковых по своим характеристикам диода. Можно в принципе брать и любые, но следует понимать, что общие параметры моста будут определяться самым слабым элементом.
  2. Монтажный провод.
  3. Паяльник.
  4. Пинцет.
  5. Флюс и припой.
  6. Бокорезы.
  7. Электрическую схему диодного моста выпрямителя.

После того как всё подготовлено, на первом этапе залуживают выводы диодов. Для этого ножки радиоэлементов смазываются флюсом, и на них с помощью разогретого паяльника переносится олово, образующее тонкий слой. На следующем этапе диоды соединяются согласно схеме.

Для этого необходимо знать, где у элемента катод, а где анод. На схеме аноду соответствует вершина треугольника, а катоду — основание. На самом же элементе обозначается только анод. Это может быть полоска, точка или условно-графическое обозначение, смещённое к одному из выводов.

Затем берутся два элемента, и анод одного соединяется с катодом другого. Аналогичное действие повторяется и для оставшихся элементов. В итоге получается пара, каждая из которых состоит из двух диодов. Далее, между собой спаиваются катоды, а поле — аноды. После того как диоды соединены к точкам пайки, подсоединяются проводники, формирующие выводы устройства. На последнем этапе конструкция проверяется с помощью мультиметра.

Проверка радиоприбора

Чтобы проверить мост, понадобится взять цифровой прибор и переключить его в режим прозвонки диодов. На мультиметре этот режим соответствует символу диода. К тестеру подключается щуп чёрного цвета в гнездо COM, а красного в V/Ω. Суть проверки заключается в прозвонке переходов. Если за вывод № 1 принять положительный электрод устройства, за № 2 и 3 — входы для переменного сигнала, а за № 4 — отрицательный выход, то тестирование можно выполнить в следующем порядке:

  1. Чёрным щупом дотрагиваются до первого вывода, а красным до третьего. На экране тестера должно загореться трёхзначное число, обозначающее сопротивление перехода. При смене полярности на табло должна появиться единица (бесконечность).
  2. Красным щупом дотрагиваются до третьего вывода, а чёрным — до четвёртого. Тестер должен показать бесконечность, а при смене полярности должно появиться трёхзначное число.
  3. К первой ноге подключается чёрный провод, а ко второй — красный. Прибор должен показать сопротивление перехода, при смене полярности — обрыв.
  4. К третьему выводу подключается красный провод, к четвёртому — чёрный. Переход звониться не должен. При смене положения проводов тестер должен показать сопротивление.

Если все четыре пункта выполняются, то можно считать, что выпрямитель собран правильно и находится в работоспособном состоянии. При этом таким способом можно проверить любой полупроводниковый мост.

Назначение и практическое использование

Область использования моста, набранного из диодов, довольно широка. Это могут быть блоки питания и узлы управления. Он стоит во всех устройствах, питающихся от промышленной сети 220 вольт. Например, телевизоры, приёмники, зарядки, посудомоечные машины, светодиодные лампы.

Не обходятся без него и автомобили. После запуска двигателя начинает работать генератор, вырабатывающий переменный ток. Так как бортовая сеть вся питается от постоянного напряжения, ставится выпрямительный мост, через который происходит подача выпрямленного напряжения. Этим же постоянным сигналом происходит и подзарядка аккумуляторной батареи.

Выпрямительное устройство используется для работы сварочного аппарата. Правда, для него применяются мощные устройства, способные выдерживать ток более 200 ампер. Использование в устройствах диодной сборки даёт ряд преимуществ по сравнению с простым диодом. Такое выпрямление позволяет:

  • увеличить частоту пульсаций, которую затем просто сгладить, используя электролитический конденсатор;
  • при совместной работе с трансформатором избавиться от тока подмагничивания, что даёт возможность эффективнее использовать габаритную мощность преобразователя;
  • пропустить большую мощность с меньшим нагревом, тем самым увеличивая коэффициент полезного действия.

Но также стоит отметить и недостаток, из-за которого в некоторых случаях мост не используют. Прежде всего, это двойное падение напряжения, что особенно чувствительно в низковольтных схемах. А также при перегорании части диодов устройство начинает работать в однополупериодном режиме, из-за чего в схему проникают паразитные гармоники, способные вывести из строя чувствительные радиоэлементы.

Блок питания

Ни один современный блок питания не обходится без выпрямительного устройства. Качественные источники изготавливаются с использованием мостовых выпрямителей. Классическая схема состоит всего из трёх частей:

  1. Понижающий трансформатор.
  2. Выпрямительный мост.
  3. Фильтр.

Синусоидальный сигнал с амплитудой 220 вольт подаётся на первичную обмотку трансформатора. Из-за явления электромагнитной индукции во вторичной его обмотке наводится электродвижущая сила, начинает течь ток. В зависимости от вида трансформатора величина напряжения за счёт коэффициента трансформации снижается на определённое значение.

Между выводами вторичной обмотки возникает переменный сигнал с пониженной амплитудой. В соответствии со схемой подключения диодного моста это напряжение подаётся на его вход. Проходя через диодную сборку, переменный сигнал преобразуется в пульсирующий.

Такая форма часто считается неприемлемой, например, для звукотехнической аппаратуры или источников освещения. Поэтому для сглаживания используется конденсатор, подключённый параллельно выходу выпрямителя.

Трёхфазный выпрямитель

На производствах и в местах, где используется трёхфазная сеть, применяют трёхфазный выпрямитель. Состоит он из шести диодов, по одной паре на каждую фазу. Использование такого рода устройства позволяет получить большее значение тока с малой пульсацией. А это, в свою очередь, снижает требования к выходному фильтру.

Наиболее популярными вариантами включения трёхфазных выпрямителей являются схемы Миткевича и Ларионова. При этом одновременно могут использоваться не только шесть диодов, но и 12 или даже 24. Трёхфазные мосты используются в тепловозах, электротранспорте, на буровых вышках, в промышленных установках очистки газов и воды.

Таким образом, использование мостовых выпрямителей позволяет преобразовывать переменный ток в постоянный, которым запитывается вся электронная аппаратура. Самостоятельно сделать диодный мост несложно. При этом его применение позволяет получить не только качественный сигнал, но и повысить надёжность устройства в целом.

Какие бывают диодные мосты – Морской флот

Несмотря на то что в бытовых розетках, как известно, присутствует переменное напряжение величиной 220 В, подавляющее большинство электронных приборов требует намного меньших значений. Более того, это питание должно осуществляться не переменным, а постоянным током. Именно поэтому практически каждый бытовой прибор имеет в составе своей схемы выпрямитель — диодный мост.

Постоянный и переменный ток

Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.

На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.

Для сравнения можно подключить щупы осциллографа к источнику постоянного тока. В качестве него могут использоваться клеммы батарейки. В этом случае картина будет несколько иная.

Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.

Особенности видов напряжения

Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.

Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.

Выпрямление электроэнергии

До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.

Выпрямитель на одном диоде

Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.

На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.

На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.

Чем выше емкость конденсатора, тем больше энергии он сможет запасти, и тем больше напряжение будет походить на постоянное.

Двухполупериодный прибор

Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.

Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:

При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.

Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.

Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.

Выпрямительный мост своими руками

Каждый, кто занимается конструированием электронных устройств, не обходится без выпрямителя. Он присутствует практически в каждом самодельном приборе, питаемом от сети. Для того чтобы собрать выпрямитель, недостаточно взять четыре диода и скрутить им ножки согласно приведенной схеме. Для того чтобы мост работал, придется ближе познакомиться с диодами и их характеристиками перед тем, как браться за паяльник. Основные характеристики, которые понадобятся при построении выпрямителя у полупроводников, следующие:

  1. Максимально допустимое обратное напряжение. Напряжение, которое способен выдерживать диод в закрытом состоянии.
  2. Максимально допустимый прямой ток. Ток, который может долговременно выдерживать диод без повреждения.
  3. Прямое напряжение. Величина падения напряжения на открытом диоде.
  4. Граничная частота. Частота переменного тока, на которой прибор еще может работать.

При сборке сетевого выпрямителя, способного отдавать в нагрузку ток в 1 А, необходимо сделать диодный мост на 12 вольт. Так выглядит практическая схема мостового выпрямителя.

Прежде всего, необходимо правильно всё рассчитать и подобрать нужный тип полупроводников, исходя из имеющихся диодов. Если в распоряжении есть диоды Д226, КД204А, КД201А и Д247, нужно открыть справочник и ознакомиться с их основными характеристиками (напряжением, током и граничной частотой):

  • Д226 — 400 В, 0,3 А, 1 кГц;
  • КД204А — 400 В, 0,4 А, 50 кГц;
  • КД201А — 100 В, 5 А, 1,1 кГц;
  • Д247 — 500 В, 10 А, 1 кГц.

Все четыре типа диодов подходят по напряжению и частоте, но первые два не выдержат ток в 1 А. Остаются КД201А и Д247. Решение взять те или другие зависит от конструкции блока питания. Первые диоды компактнее, вторые имеют хороший запас по току.

Сглаживающий конденсатор С1 нужно выбирать по типу, электрической емкости и напряжению. Понадобится электролитический конденсатор емкостью от 1 000 до 20 000 мкФ с рабочим напряжением не ниже 25 В. Чем выше емкость сглаживающего конденсатора, тем качественнее будет выпрямленное напряжение, но тем больше по габаритам окажется сама конструкция. Всю необходимую информацию, включая емкость, полярность и рабочее напряжение можно увидеть прямо на конденсаторе.

Осталось включить паяльник и спаять схему, не забывая при этом, что электролитические конденсаторы — полярные приборы. Они имеют плюс и минус, путать которые нельзя.

Выбор типа сборки

Использование выпрямительного моста вместо четырех диодов не только существенно упрощает сборку, но и делает конструкцию более компактной. Принцип выбора типа сборки тот же — по напряжению, току и частоте. Чтобы определить, подойдет ли, к примеру, сборка КЦ402Г, фото и схема которого приведены выше, нужно обратиться к справочнику. В нём указаны следующие характеристики моста:

  • максимальное обратное напряжение диодов — 300 В;
  • прямой ток всей сборки — 1 А;
  • граничная частота — 5 кГц.

Мостик подходит, но микросборка будет работать на пределе своих возможностей по току. Для обеспечения надежности схемы лучше использовать более мощный прибор. Например, мост КЦ409А на ток 3 А или КЦ409И на 6 А.

Проверка элементов

Нередко в самодельных устройствах приходится использовать детали, уже бывшие в употреблении. Перед установкой все такие комплектующие должны быть проверены. Поскольку выпрямительная сборка представляет собой четыре диода, подключенных встречно-последовательно, а до выводов всех диодов можно добраться щупом, вопрос от том, как прозвонить диодный мост, решается элементарно.

Для этого достаточно измерить обычным омметром сопротивление каждого диода, ориентируясь на схему выпрямителя и цоколевку моста. В одной полярности щупов прибор должен показывать высокое сопротивление, в другой — низкое. Когда соответствующий диод пробит, в обоих положениях щупов сопротивление будет низким, если сгорел — высоким.

Использование барьера Шоттки

Еще одна основная характеристика, которая не использовалась в предыдущих расчетах, — прямое падение напряжения на открытом диоде. Диод только теоретически проводит ток в одну сторону, а диэлектрик — в другую. На практике в прямом подключении на приборе падает напряжение, которое может достигать 1,5 В и более.

Это значит, что напряжение на выходе однополупериодного выпрямителя будет ниже входного на 1,5 В, а если использовать мостовую схему, то на все 3 В. Кроме того, вольты, помноженные на протекающий через выпрямитель ток, будут бесполезно рассеиваться на диодах в виде тепла, уменьшая КПД схемы.

Избежать подобной неприятности позволяют диоды с барьером Шоттки. Они отличаются низким (десятые вольта) прямым падением напряжения, а значит, собранная на них схема будет обладать более высоким КПД и работать в облегченном режиме. Вид и схема мощной диодной сборки Шоттки представлены на изображении.

Сегодня и отдельные диоды, и диодные мосты Шоттки используются в качестве выпрямительных очень широко и выпускаются как отдельными приборами, так и сборками. Монтаж выпрямителя на диодах Шоттки ничем не отличается от сборки на обычных диодах.

Отзывы и комментарии

Как электроны и позитроны превращаются друг в друга

GIF анимации: http://tverd4.narod.ru/mosty.gif http://tverd4.narod.ru/Animation-1-.gif

Теория этого явления должна начинаться с осознания того, что не существует в металлических проводниках электрического тока, который распространяется от плюса к минусу.
Разность потенциалов, рождающая силу движения зарядов, формируется не между плюсом и минусом, а между плюсом и нулевым потенциалом (позитронный ток) и между минусом и нулевым потенциалом (электронный ток).
То есть электронный ток имеет разность потенциалов – / 0.
Позитронный ток имеет разность потенциалов + / 0.
По нашей гипотезе превращение электронов и позитронов друг в друга происходит посредством замены вектора движения зарядов на противоположный вектор.
Объясняется это тем, что все элементы магнитоэлектрической системы электрона противоположны всем элементам магнитоэлектрической системы позитрона. И эта противоположность определяется вектором их движения в пространстве.
Поэтому, стоит только поменять вектор движения одного из зарядов на противоположный вектор, так сразу же этот заряд превращается в своего антипода.
Анимация показывает, как полупроводниковый мост пропускает позитронный ток, движимый разностью потенциалов + / 0. Но, когда электронная полуволна на мост подаёт разность потенциала – / 0, здесь-то и происходит замена вектора движения электронов на вектор движения позитронов, с превращением электронов в позитроны.
Аналогичным образом происходит превращение позитронов в электроны в мосте, собранным на вакуумных диодах.
Разница лишь в том, что превращение позитронов в электроны, происходит, когда на мост подаётся разность потенциала + / 0.
Диоды работают парами. Пара диодов всегда открыта, другая – всегда закрыта.
Кроме того, генераторы постоянного тока генерируют позитронный ток при правом вращение, и генерируют электронный ток при левом вращении.
Объясняется это явление тем, что заряд, формирующийся первым, задаёт вектор движения, а антипод вынужден следовать принятому вектору движения.
Вектор движения электрона противоположен вектору движения позитрона, как в проводниках, так и в электромагнитных волнах.
Заключение:
1. Любой любознательный восьмиклассник способен осуществить описанные опыты.
2. Комичность ситуации заключается в том, что с широким распространением осциллографов любой любознательный восьмиклассник на экране видит, что ток есть движение, как отрицательных, так и положительных зарядов.
3. Фарадей двести лет назад получил ток с отрицательными и положительными зарядами, который распространяется в прилегающем к проводнику слое эфира.
4. Все современные тепловые, гидравлические и атомные электростанции получают ток Фарадея.

Простейшим преобразователем переменного тока в постоянный является диодный мост. Им называется такой элемент электрической цепи, который состоит из нескольких диодов, соединённых друг с другом по специальной схеме. Придуманный ещё в 1895 году такой способ включения до сих пор успешно применяется в электроцепях. Практически ни один блок питания не обходится без его использования, ведь фактически все электронные схемы запитываются от источников постоянного тока.

История изобретения

В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель.

В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.

В середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.

Изобретателем же схемы выпрямительного моста считается электротехник из Польши Карол Поллак. Позже в журнале Elektronische Zeitung опубликовали результаты исследований Лео Гретца, поэтому в литературе можно встретить и другое название диодного моста — схема или мост Гретца.

Физические процессы

В основе принципа работы диодного моста лежит способность p-n перехода пропускать ток только в одном направлении. Под p-n переходом понимается контакт двух полупроводников с различным типом проводимости. Граница, разделяющая области, характеризуется шириной запрещённой зоны, препятствующей прохождению зарядов. С одной её стороны находится p область, в которой основными носителями считаются дырки (положительный заряд), а с другой n область, где основные носители электроны (отрицательный заряд).

Находясь изолированно друг от друга, в каждой области элементарные частички совершают беспорядочные тепловые колебания, из-за чего их выделяемая энергия компенсируется и результирующий ток равен нулю. При соприкосновении этих областей возникают диффузионные токи, вызванные притягиванием зарядов друг к другу. В итоге частички сталкиваются и рекомбинируют (исчезают). В зоне соприкосновения происходит обеднение носителей, и их движение прекращается. Устанавливается состояние динамического равновесия.

При приложении к p-n переходу электрического поля картина меняется. При прямом смещении, то есть таком, когда положительный полюс источника питания подключается к p области, а отрицательный к n области, происходит введение основных носителей в области. Из-за этого ширина запрещённой зоны уменьшается, и частички свободно начинают проходить через барьер, образуя ток. Если же полярность источника питания изменить, то произойдёт ещё большее обеднение слоёв, в итоге барьер увеличится, и ток не возникнет.

Таким образом, в зависимости от полярности сигнала, приложенного к переходу, ширина запрещённой зоны увеличивается или уменьшается. Если на элемент, в основе работы которого используется p-n переход подать переменный сигнал, то в результате к нему попеременно будет прикладываться прямое и обратное напряжение. Соответственно, часть сигнала он будет задерживать, а часть пропускать.

Если же взять измерительный прибор, умеющий показывать форму сигнала (осциллограф), то на выходе радиоэлемента можно будет увидеть импульсы, длительность которых определяется периодом полуволны. Именно поэтому диод и называется выпрямительным, хотя к нему больше подходит название импульсный преобразователь. То есть устройство, преобразующее переменный сигнал в пачку импульсов.

Схема сборки из диодов

Выражение «мост из диодов» происходит от слияния двух слов, подчёркивающих принцип работы устройства. Под этим словосочетанием понимается электрический прибор, служащий для преобразования переменного тока в пульсирующий. Состоит он из четырёх диодов, образующих соединение по схеме Гретца.

Переменное электрическое напряжение представляет собой гармонический сигнал, амплитуда которого изменяется по синусоидальному закону во времени. Условно его можно представить в виде отрицательных и положительных полуволн. При подаче сигнала на вход диода через него может пройти только одна полуволна, в результате чего на выходе направление тока станет односторонним.

На этом принципе и работает диодный мост. Но так как один диод при прохождении через него изменяющегося во времени сигнала даёт на выходе только пачку импульсов, то для получения действительно постоянного напряжения необходимо, чтобы устройство выпрямляло две полуволны. Другими словами, являлось двухполупериодным.

Для создания полноценного выпрямителя схема диодного моста должна обеспечивать преобразование как положительной, так и отрицательной составляющей сигнала. Если диоды подключить по схеме Гретца, то в каждый полупериод волны ток сможет протекать только через два элемента. То есть устройство будет поочерёдно выпрямлять каждую полуволну.

При подаче на вход моста переменного напряжения в тот момент, когда сигнал будет описываться положительной составляющей, диоды VD2 и VD3 будут для него открыты, а VD1 и VD4 заперты. При смене полярности состояние выпрямителей изменится, ток потечёт через VD4 и VD1, в то время как VD3, VD2 окажутся закрытыми.

В итоге форма сигнала станет постоянной, так как на выходе устройства практически не будет промежутка времени, при котором напряжение будет равно нулю. При этом частота выходного сигнала увеличится вдвое. Например, если на устройство подать напряжение 220 в из электросети, то на его выходе получится постоянный ток с частотой 100 Гц. Это пульсирование считается паразитным, мешающим работе электронных узлов, поэтому в электрических схемах выход прибора подключается к электролитическому конденсатору, сглаживающему пульсации. Такая схема применяется в однофазных сетях, в трёхфазных же используется шесть диодов, работающих попарно (по аналогии со схемой Гретца).

Виды и характеристики

Современная промышленность выпускает различные по конструкции и характеристикам устройства. Все выпрямительные мосты разделяют на два вида: монолитные и наборные. Первые выполняются в цельном диэлектрическом корпусе, наподобие микросхемы, и имеют четыре вывода. Форма их корпуса может быть прямоугольной, квадратной, цилиндрической. При этом тип корпуса может быть также любым, например, SOT 23, MDI, SDIP, SMD.

На корпусе обычно подписываются полярные ноги символами + и —, соответствующие выходному сигналу. Входные же выводы могут не подписываться или обозначаться знаком тильды

. Вторые же представляют собой четыре отдельных диода, запаянных по схеме моста, чаще всего в специально отведённые для них места на плате.

При работе выпрямительный мост может нагреваться, поэтому некоторые конструкции предполагают их совместное использование с радиатором. Как и любой электрический прибор, мост характеризуется рядом параметров:

  1. Наибольшее обратное напряжение, В — характеризуется максимальным значением напряжения, приложенного при обратном включении диодов, подача которого на прибор не приводит к его повреждению. Превышение этого значения вызывает пробой, то есть полупроводник превращается в проводник.
  2. Действующее напряжение, В — определяется среднеквадратичным значением амплитуды входного сигнала.
  3. Максимальный ток, А — это величина, определяющая наибольшую мощность, которую может потреблять нагрузка, подключённая к прибору.
  4. Максимальное падение напряжения, В — этот параметр обозначает потери мощности сигнала на элементе, то есть фактически характеризует эффективность прибора. Потери мощности связаны с активным внутренним сопротивлением устройства, на котором электрическая энергия преобразуется в тепловую.
  5. Интервал рабочих температур, С — обозначает диапазон, в котором характеристики устройства практически не изменяются.

Кроме этого, в зависимости от типа используемых диодов устройства могут быть высокочастотными и импульсными. Первые используются в цепях с высокочастотным электричеством. Диоды, на базе которых собирается конструкция, называются Шотки. В них вместо классического p-n перехода используется контакт металл-полупроводник. Вторые же являются обычными выпрямителями.

Обозначение и маркировка

Условно-графическое обозначение полупроводникового моста на принципиальных электрических схемах выглядит как ромб, из вершин которого выходят прямые короткие линии, символизирующие выводы. Каждый вывод подписывается знаком, соответствующим виду сигнала. Так, плюсом обозначается положительный выход, минусом — отрицательный, а тильдой — входы для подачи переменного сигнала. В середине ромба может как изображаться выпрямительный диод, так и нет.

В литературе, различных спецификациях и на схемах устройство подписывается латинскими символами VDS, после которых ставится арабская цифра, обозначающая порядковый номер. В иностранной литературе можно также встретить обозначение BDS. Стандарта для маркировки мостов не существует. Каждый производитель обозначает свою продукцию, как хочет, согласно своей системе.

Если внимательно изучить различные обозначения, то можно проследить тенденцию в маркировке, нанесённой на корпус прибора. На ней почти всегда присутствуют данные о его основных характеристиках. То есть указывается максимальный ток или рабочее напряжение. Например, DB151S — первые две цифры обозначают ток 1,5 А, а вторая напряжение согласно таблице, в этом случае 50 В.

Отечественные изделия классифицируются по-другому. Сам мост обозначается буквой «Ц», стоящее за ней число обозначает материал, а последующие цифры номер разработки. Например, популярный мостик у радиолюбителей выдерживающий обратное напряжение до 400 В, маркируется как КЦ407А.

Самостоятельное изготовление

Выпрямительные однофазные мосты обычно не являются дефицитными радиодеталями, поэтому их можно купить и выбрать по необходимым параметрам практически в любом радиомагазине. Но не всегда есть на это время, поэтому нужный мост можно собрать и своими руками. Для этого понадобится подготовить:

  1. Четыре одинаковых по своим характеристикам диода. Можно в принципе брать и любые, но следует понимать, что общие параметры моста будут определяться самым слабым элементом.
  2. Монтажный провод.
  3. Паяльник.
  4. Пинцет.
  5. Флюс и припой.
  6. Бокорезы.
  7. Электрическую схему диодного моста выпрямителя.

После того как всё подготовлено, на первом этапе залуживают выводы диодов. Для этого ножки радиоэлементов смазываются флюсом, и на них с помощью разогретого паяльника переносится олово, образующее тонкий слой. На следующем этапе диоды соединяются согласно схеме.

Для этого необходимо знать, где у элемента катод, а где анод. На схеме аноду соответствует вершина треугольника, а катоду — основание. На самом же элементе обозначается только анод. Это может быть полоска, точка или условно-графическое обозначение, смещённое к одному из выводов.

Затем берутся два элемента, и анод одного соединяется с катодом другого. Аналогичное действие повторяется и для оставшихся элементов. В итоге получается пара, каждая из которых состоит из двух диодов. Далее, между собой спаиваются катоды, а поле — аноды. После того как диоды соединены к точкам пайки, подсоединяются проводники, формирующие выводы устройства. На последнем этапе конструкция проверяется с помощью мультиметра.

Проверка радиоприбора

Чтобы проверить мост, понадобится взять цифровой прибор и переключить его в режим прозвонки диодов. На мультиметре этот режим соответствует символу диода. К тестеру подключается щуп чёрного цвета в гнездо COM, а красного в V/Ω. Суть проверки заключается в прозвонке переходов. Если за вывод № 1 принять положительный электрод устройства, за № 2 и 3 — входы для переменного сигнала, а за № 4 — отрицательный выход, то тестирование можно выполнить в следующем порядке:

  1. Чёрным щупом дотрагиваются до первого вывода, а красным до третьего. На экране тестера должно загореться трёхзначное число, обозначающее сопротивление перехода. При смене полярности на табло должна появиться единица (бесконечность).
  2. Красным щупом дотрагиваются до третьего вывода, а чёрным — до четвёртого. Тестер должен показать бесконечность, а при смене полярности должно появиться трёхзначное число.
  3. К первой ноге подключается чёрный провод, а ко второй — красный. Прибор должен показать сопротивление перехода, при смене полярности — обрыв.
  4. К третьему выводу подключается красный провод, к четвёртому — чёрный. Переход звониться не должен. При смене положения проводов тестер должен показать сопротивление.

Если все четыре пункта выполняются, то можно считать, что выпрямитель собран правильно и находится в работоспособном состоянии. При этом таким способом можно проверить любой полупроводниковый мост.

Назначение и практическое использование

Область использования моста, набранного из диодов, довольно широка. Это могут быть блоки питания и узлы управления. Он стоит во всех устройствах, питающихся от промышленной сети 220 вольт. Например, телевизоры, приёмники, зарядки, посудомоечные машины, светодиодные лампы.

Не обходятся без него и автомобили. После запуска двигателя начинает работать генератор, вырабатывающий переменный ток. Так как бортовая сеть вся питается от постоянного напряжения, ставится выпрямительный мост, через который происходит подача выпрямленного напряжения. Этим же постоянным сигналом происходит и подзарядка аккумуляторной батареи.

Выпрямительное устройство используется для работы сварочного аппарата. Правда, для него применяются мощные устройства, способные выдерживать ток более 200 ампер. Использование в устройствах диодной сборки даёт ряд преимуществ по сравнению с простым диодом. Такое выпрямление позволяет:

  • увеличить частоту пульсаций, которую затем просто сгладить, используя электролитический конденсатор;
  • при совместной работе с трансформатором избавиться от тока подмагничивания, что даёт возможность эффективнее использовать габаритную мощность преобразователя;
  • пропустить большую мощность с меньшим нагревом, тем самым увеличивая коэффициент полезного действия.

Но также стоит отметить и недостаток, из-за которого в некоторых случаях мост не используют. Прежде всего, это двойное падение напряжения, что особенно чувствительно в низковольтных схемах. А также при перегорании части диодов устройство начинает работать в однополупериодном режиме, из-за чего в схему проникают паразитные гармоники, способные вывести из строя чувствительные радиоэлементы.

Блок питания

Ни один современный блок питания не обходится без выпрямительного устройства. Качественные источники изготавливаются с использованием мостовых выпрямителей. Классическая схема состоит всего из трёх частей:

  1. Понижающий трансформатор.
  2. Выпрямительный мост.
  3. Фильтр.

Синусоидальный сигнал с амплитудой 220 вольт подаётся на первичную обмотку трансформатора. Из-за явления электромагнитной индукции во вторичной его обмотке наводится электродвижущая сила, начинает течь ток. В зависимости от вида трансформатора величина напряжения за счёт коэффициента трансформации снижается на определённое значение.

Между выводами вторичной обмотки возникает переменный сигнал с пониженной амплитудой. В соответствии со схемой подключения диодного моста это напряжение подаётся на его вход. Проходя через диодную сборку, переменный сигнал преобразуется в пульсирующий.

Такая форма часто считается неприемлемой, например, для звукотехнической аппаратуры или источников освещения. Поэтому для сглаживания используется конденсатор, подключённый параллельно выходу выпрямителя.

Трёхфазный выпрямитель

На производствах и в местах, где используется трёхфазная сеть, применяют трёхфазный выпрямитель. Состоит он из шести диодов, по одной паре на каждую фазу. Использование такого рода устройства позволяет получить большее значение тока с малой пульсацией. А это, в свою очередь, снижает требования к выходному фильтру.

Наиболее популярными вариантами включения трёхфазных выпрямителей являются схемы Миткевича и Ларионова. При этом одновременно могут использоваться не только шесть диодов, но и 12 или даже 24. Трёхфазные мосты используются в тепловозах, электротранспорте, на буровых вышках, в промышленных установках очистки газов и воды.

Таким образом, использование мостовых выпрямителей позволяет преобразовывать переменный ток в постоянный, которым запитывается вся электронная аппаратура. Самостоятельно сделать диодный мост несложно. При этом его применение позволяет получить не только качественный сигнал, но и повысить надёжность устройства в целом.

Выпрямительные диодные мосты и столбы применяются в различных электротехнических приборах, радиоэлектронных приборах и устройствах, предназначенных для выпрямления переменного тока с промышленной и звуковой частотой при высоких напряжениях до 15000 В.
Давайте выясним, что такое диодный столб и что такое диодный мост и в чём их отличия.

Выпрямительные диодные столбы – это полупроводниковые приборы, схема которых имеет несколько последовательно соединённых выпрямительных диодов, собранных в единую конструкцию и имеющую два внешних вывода.
Последовательное соединение полупроводников в диодном столбе позволяет увеличить максимально допустимое обратное напряжение на приборе (пропорционально количеству диодов внутри столба), однако в такое же количество раз увеличивается и параметр падения прямого напряжения на диоде при заданном прямом токе через него. Поэтому, главной областью применения диодных столбов являются высоковольтные выпрямители, предназначенные для преобразования напряжений, превышающих значения в несколько киловольт.
Несколько выпрямительных столбов, соединённых в соответствии с той или иной схемой включения и помещённых в один корпус, представляют собой выпрямительный блок, осуществляющий преобразование переменного тока в постоянный.

Выпрямительные диодные мосты – устройства, которые осуществляют двухполупериодное преобразование переменного тока в пульсирующий постоянный ток и имеют в одном корпусе по четыре, или восемь диодов, соединённых между собой по мостовой схеме включения.

На приведённой схеме диоды VD1-VD4, соединённые по мостовой схеме, подключены к источнику переменного напряжения. В качестве нагрузки выступает резистор Rн.
При прохождении положительной полуволны (синий цвет на диаграмме) к аноду диода VD2 приложено положительное напряжение, к катоду VD4 – отрицательное, что вызывает их открытие и прохождение тока через данные диоды в нагрузку. В этот момент диоды VD1 и VD3 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.
При прохождении отрицательной полуволны начинают пропускать ток диоды VD1 и VD3, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD4 оказываются запертыми. При этом ток Iн протекающий через нагрузку Rн, что в случае положительной полуволны, что в случае отрицательной является постоянным по направлению.

Выпрямительные диодные мосты являются основными компонентами в блоках питания и других электронных устройствах широкого назначения.

Частотный диапазон выпрямительных мостов невелик, предельная частота в большинстве случаев не превышает 50 кГц (хотя есть и исключения – диодные мосты 2Ц301 позволяют работать с частотами до 500кгЦ), а мощность определяется в соответствии с максимально допустимым прямым током.
В соответствии с этой характеристикой принята следующая классификация:
– Слаботочные диодные столбы и мосты, они используются в цепях с током не более 0,3 А.
Такие устройства, как правило, выполнены в пластмассовом корпусе и имеют малый вес и небольшие габариты.
– Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А.

Условные обозначения электрических параметров, характеризующих свойства
выпрямительных диодных столбов и мостов:

Что такое диодный мост [+ схема подключения], для чего нужен и как работает

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Содержание статьи

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Устройство диода

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

Работа диодного моста

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Видео: принцип работы диодного моста


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Строение и принцип работы диодного моста генератора

 

«Автомобильные генераторы бывают двух видов: постоянного и переменного тока», — такую фразу можно прочитать в академических изданиях. В реальности автомобиль с генератором постоянного тока сегодня можно встретить разве что на выставке ретро-техники.

С 60-х годов прошлого века в автомобили устанавливают генераторы переменного тока. Узел выпрямления нужен, чтобы преобразовывать переменный ток в постоянный для питания автомобильных электроприборов. Зачем нужно было так заморачиваться и какие весомые преимущества есть у генераторов переменного тока — тема для отдельной статьи.

Что такое диодный мост и как он работает

Автомобильный генератор вырабатывает трехфазный переменный по величине и знаку ток (напряжение). Чтобы получить постоянную величину тока, в генераторах используют реле-регуляторы.

А чтобы получить ток, постоянный по полярности (+/-), используют диодные мосты, которые подключаются к обмоткам статора и преобразуют переменный ток в постоянный.

Т.е. диодный мост — это узел из выпрямительных полупроводниковых диодов, который выпрямляет переменный ток, вырабатываемый генератором.

Обмотка генератора вырабатывает три фазы тока, каждая из которых имеет форму синусоиды (волны). Часть полуволн заряжена положительно, вторая часть — отрицательно.

Полупроводниковые диоды имеют свойства пропускать ток только в одном направлении. Например, открываются на положительных полупериодах и закрываются на отрицательных.

 

Движение тока в генераторе

 

Как это работает в диодном мосте:

  • переменный ток из обмоток периодически меняет направление движения в цепи;
  • диоды пропускают его только в одном направлении;
  • чтобы не было скачков, на каждую фазу устанавливается по два диода (силовое плечо), работающих в разных направлениях.

Поэтому в стандартной, «базовой» комплектации диодного моста всегда не меньше 6 диодов (по два на каждую фазу). И независимо от полярности тока в обмотках генератора на выходе всегда будет плюс, необходимый для работы электроприборов.

С диодного моста ток поступает в аккумулятор, а оттуда ко всем электроприборам.

Принципиальная конструкция и особенности диодного моста

Диодный мост представляет собой две алюминиевые пластины (плюсовая и минусовая), соединенные изоляционными втулками. На пластинах расположены разъемы для проводов, подключающихся к обмоткам статора и регулятору напряжения.

В каждую пластину запрессованы по три или четыре крупногабаритных диода — это силовой мост.

Чтобы генератор работал более стабильно и эффективно, к 6 (8) основным диодам, которые “выпрямляют” ток,  можно подключить 3 дополнительных слаботочных — они подают питание на реле-регулятор и обмотку возбуждения.

 

 

 

Схема диодного моста генератора

Виды диодных мостов

На современных автомобилях используют диодные мосты на 6 или 8 диодов.

Шестидиодный мост используют в генераторах с любым способом подключения обмоток статора — треугольником или звездой.

 

Подключение обмотки к диодному мосту треугольником

 

Восьмидиодные мосты используются только при обмотке статора звездой, т.к. дополнительное силовое плечо здесь подключено к нулевой точке статора.

Подключение обмотки к диодному мосту звездой

 

Это более мощные мосты: дополнительное силовое плечо повышает мощность генератора на 5-15%, зависит от оборотов двигателя.

И шести-, и восьмидиодные мосты могут быть:

  • только с выпрямительными диодами. Здесь обмотка возбуждения питается от напряжения, которое снято с силовых выпрямителей;
  • с 3-мя дополнительными диодами (9-ти или 11-ти диодные мосты). В этом случае питание регулятора и обмотки идет с вспомогательных диодов.

 

Схема на 8 диодов

 

Кроме того, диодные мосты отличаются по конструкции, способу крепления диодов, бывают разборными и неразборными. В диодных мостах используются полупроводниковые выпрямители, лавинные диоды или диоды Шоттки.

Как проверить и отремонтировать диодный мост

Неисправный генератор заявляет о себе недвусмысленно:

  • Полностью заряженный с вечера аккумулятор на утро разрядился. Если его зарядить снова и завести двигатель, он разрядится через несколько минут.
  • Генератор воет во время движения. ТОнальность воя меняется в зависимости от оборотов.
  • Электроприборы сбоят.

Чтобы убедиться, что неисправен именно диодный мост, измерьте напряжение на выходе генератора — оно должно быть больше 13,5В и прозвоните генератор: если проблема в диодном мосте, “плюс” будет звенеть вместе с обмоткой.

Чтобы окончательно подтвердить предположения, езжайте на хорошее СТО — там мастера работают со спецоборудованием, которое позволяет найти обрывы, пробои, определить тип диодов, обнаружить их деградацию, напряжение обратного пробоя в лавинных диодах.  Такая подробная диагностика позволяет мастеру понять, какой диод нужен на замену, обнаружить деградирующие диоды и качественно отремонтировать генератор.

Если диодный мост разборной, специалисты заменят диоды, пришедшие в негодность. Если нет, придется полностью менять весь блок.

принцип работы, сфера применения. Выпрямительный мост своими руками

В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.


Трехфазный диодный мост схема

Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.

Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.


Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

Большинство электростанций вырабатывает переменный ток. Это связано с особенностью конструкции генераторов. Исключение составляют лишь солнечные панели, с которых снимается постоянный ток.

Вообще, выбор между постоянным и переменным током с точки зрения производства, транспортировки и потребления – это борьба противоречий.

Производить (вырабатывать на электростанциях) удобнее и проще переменный ток.

Транспортировать экономически выгодно постоянный ток. Смена полупериодов переменного напряжения приводит к потерям.

С точки зрения трансформации (уменьшение величины напряжения) удобнее работать с переменным током. Принцип работы трансформаторы построен на пульсирующем или переменном напряжении.

Большинство потребителей электроэнергии (речь идет об устройствах) работают на постоянном токе. Электросхемы не могут работать с переменным напряжением.

В результате мы имеем следующую картину:
До розетки доходит переменный ток с напряжением 220 вольт. А все домашние электроприборы (за исключением тех, которые содержат мощные электродвигатели и нагревательные элементы) питаются постоянным током.

Внутри большинства домашнего оборудования есть блоки питания. После понижения (трансформации) величины напряжения, необходимо преобразовать ток из переменного в постоянный. Основой такой схемы является диодный мост.

Для чего нужен диодный мост?

Исходя из определения, переменный ток с определенной частотой (в бытовой электросети 50Гц) меняет свое направление, при неизменной величине.

Важно! Поскольку мы знаем, что для питания большинства электросхем нужно полярное напряжение – в блоках питания приборов происходит замена переменного тока на постоянный.

Происходит это в два или три этапа:
С помощью диодной сборки переменный ток превращается в пульсирующий. Это уже выпрямленный график, однако, для нормального функционирования схемы такого качества питания недостаточно.

Для сглаживания пульсаций, после моста устанавливается фильтр. В простейшем случае – это обычный полярный конденсатор. При необходимости увеличить качество – добавляется дроссель.

После преобразования и сглаживания, необходимо обеспечить постоянную величину рабочего напряжения.

Для этого, на третьем этапе устанавливаются стабилизаторы напряжения.

И все же, первым элементом любого блока питания является диодный мост.

Он может быть выполнен как из отдельных деталей, так и в моно корпусе.


Первый вариант занимает много места и сложнее в монтаже.

Есть и преимущества:
такая конструкция стоит недорого, легче диагностируется, и в случае выхода из строя одного элемента – меняется только он.

Вторая конструкция компактна, исключены ошибки в монтаже. Однако стоимость несколько выше, чем у отдельных диодов и невозможно отремонтировать один элемент, приходится менять весь модуль.

Принцип работы диодного моста

Вспомним характеристики и назначение диода. Если не вдаваться в технические детали – он пропускает электрический ток в одном направлении, и закрывает ему путь в противоположном.

Этого свойства уже достаточно для того, чтобы собрать простейший выпрямитель на одном диоде.

Элемент просто включается в цепь последовательно, и каждый второй импульс тока, идущий в противоположном направлении – отрезается.

Такой способ называется однополупериодным, и у него есть множество недостатков:

Очень сильная пульсация, между полупериодами возникает пауза в подаче тока, равная длине половины синусоиды.

В результате отрезания нижних волн синусоиды, напряжение уменьшается вдвое. При точном измерении уменьшение оказывается больше, поскольку потери есть и в диодах.

Способность снижать напряжение вдвое при его выпрямлении, нашла применение в ЖКХ.

Жильцы многоквартирных подъездов, устав менять постоянно перегорающие лампочки – оснащают их диодами.

При включении последовательно, снижается яркость свечения и лампа «живет» гораздо дольше.

Правда сильное мерцание утомляет глаза, и такой светильник годится лишь для дежурного освещения.

Для уменьшения потерь, применяется соединение четырех элементов.

Двухполупериодный диодный мост, схема работы:

В каком бы направлении не протекал переменный ток на вводных контактах, выход диодного моста обеспечивает неизменную полярность на его выходных контактах.

Частота пульсаций такого соединения ровно в два раза выше частоты переменного тока на входе.

Поскольку плечи моста не могут одновременно пропускать ток в обоих направлениях – обеспечивается стабильная защита схемы.

Даже если у вас в устройстве перегорел диодный мост – короткого замыкания или скачка напряжения не будет.

Надежность мостовой схемы проверена десятилетиями. Защита от перенапряжения на входе гарантируется трансформатором.

От перегрузки спасает стабилизатор на выходе. Пробивает диодный мост лишь в случае использования бракованных деталей, или в автомобиле, где схема подвергается постоянным нагрузкам.

Как работает диодный мост при минимальном напряжении?

Падение напряжения в диодном мосту составляет до 0,7 вольт. При использовании обычной элементной базы в низковольтных схемах, иногда падение напряжения составляет до 50% от номинала блока питания. Такая погрешность недопустима .

Для обеспечения работы блоков питания с напряжением от 1,5 вольт до 12 вольт – используются диоды Шоттки.

При прямом протекании тока, падение напряжения на одном кристалле составляет не более 0,3 вольта. Умножаем на четыре элемента в мосту – получается вполне приемлемое значение потерь.

Кроме того, если диодный мост Шоттки на уровень помех – вы получите значение, недостижимое для кремниевых p-n диодов.

Еще одно достоинство, обусловленное отсутствием p-n перехода – способность работать на высокой частоте.

Поэтому выпрямители сверх высокочастотного напряжения делают исключительно на диодах этого типа.

Однако у диодов Шоттки есть и недостатки
. При воздействии обратного напряжения, пусть даже кратковременном – элемент выходит из строя.

Проверка диодного моста мультиметром показывает, что именно эта причина имеет необратимые последствия.

Обычный германиевый или кремниевый элемент с p-n переходом самостоятельно восстанавливаются после переполюсовки.

Поэтому мосты на диодах Шоттки применяются только в низковольтных блоках питания и при наличии защиты от обратного напряжения.

Что делать, если есть подозрения на поломку моста?

Выпрямитель собран на обычной элементной базе, поэтому мы расскажем, как в домашних условиях проверить диодный мост мультиметром.

На иллюстрации видно, как протекает ток по мосту. Принцип тестирования такой же, как при проверке одиночных диодов.

Смотрим по справочнику, какие выводы модуля соответствуют переменному входу или полярному выходу – и выполняем прозвонку.

Как прозвонить диодный мост без выпаивания из схемы?

Поскольку ток в обратном направлении через диод не течет, неправильные результаты проверки говорят о пробое моста.

Извлекать мост нет необходимости, остальные элементы блока питания не оказывают влияния на измерение.

Итог: Любой из вас сможет как самостоятельно собрать диодный мост, так и отремонтировать его в случае поломки. Достаточно иметь элементарные навыки в электротехнике.

Смотрите видео: как мультиметром проверить диодный мост генератора вашего автомобиля.

Подробный рассказ о том как проверить диодный мост мультиметром в этом видео сюжете

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в ), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.




Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.


Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.


Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.


Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Диод представляет собой полупроводниковый агрегат с разной проводимостью, определяемой прикладываемым напряжением. Он имеет два вывода: катод и анод. Если подается прямое напряжение, то есть на аноде в сравнении с катодом потенциал положителен, агрегат открыт.

Если напряжение отрицательно, он закрывается. Такая особенность нашла применение в электротехнике: диодный мост активно используется в сварочном деле для выпрямления переменного тока и улучшения качества сварных операций.

Как сделать выпрямитель своими руками?

Если в наличии мастера имеются комплектующие детали, вполне реально изготовить самодельный сварочный выпрямитель. При условии соблюдения всех рекомендаций специалистов он гарантировано обеспечит процесс ручной дуговой сварки постоянным током, но потребуется применить электрод с обмазкой.

Использовать проволоку без обмазки также допустимо, но только при условии большого опыта в сварных вопросах. Для неопытного сварщика справиться с ней будет практически нереально.

Диодный мост для сварочного аппарата.

Обмазка при расплавлении электрода препятствует проникновению составляющих воздуха в расплавленный металл сварного соединения. Без нее контакт металла в расплавленном виде с азотом и кислородом снизят прочностные свойства шва, сделав его хрупким и пористым.

Сначала потребуется выбрать или смотать своими руками понижающий трансформатор с требуемыми параметрами. Собирают трансформатор до подключения диодного моста.

Если выбран путь самостоятельного изготовления аппарата, важно правильно рассчитать его элементы, в том числе:

  • параметры магнитопровода;
  • актуальное количество витков;
  • размеры сечения шин, проводов.

На заметку! Расчеты для изготовления трансформаторов осуществляются по единой методике, поэтому данная задача не представляет трудностей даже для малоопытного сварщика со школьными знаниями электричества.

В работе не обойтись без светодиодов: нужны они в качестве проводников тока в одном единственном направлении. Простейший диодный , созданный по мостиковой схеме, монтируют на радиатор с целью теплообмена и охлаждения.

Мощные диоды для сварочного аппарата, по типу ВД-200, выделяют при работе довольно большой объем тепловой энергии. Чтобы обеспечить падающую характеристику тока, в цепь потребуется включить дроссель последовательно.

Активное переменное сопротивление в такой схеме обеспечит сварщику возможность плавно регулировать сварочный ток. Далее, один полюс нужно подключить к сварной проволоке, а второй ‒ к рабочему объекту.

Электролитический конденсатор в составе схемы необходим в качестве сглаживающего фильтра для снижения пульсаций.

Выполнить намотку реостата несложно своими силами, но для такой задачи потребуется керамический сердечник и проволока из никелина или нихрома. Актуальный диаметр проволоки определит величина регулируемого тока сварной операции.

Расчет сопротивления реостата нужно проводиться учетом удельного сопротивления электрода, его сечения и общей длины.

Электрическая схема сварки с диодным мостом.

Шаг регулировки тока для сварки зависит от диаметра витков. Если правильно собрать перечисленные детали в единый агрегат, процесс сварки будет сопровождаться постоянным током. Не лишним будет и монтаж резистора, препятствующего короткому замыканию при работе.

Оно может происходить при касании проволоки о металл без зажигания дуги. Если в это время на конденсаторе нет сопротивления, он мгновенно разрядится, произойдет щелчок, электрод разрушится или прилипнет к металлу.

При наличии резистора можно сгладить разряды на конденсаторе, сделать поджога электрода более простым и мягким. Изготовление аппарата для выпрямления сварного тока своими руками позволит создавать максимально аккуратные и долговечные сварные швы.

Итоги

Диодный мост для сварочного аппарата преобразует переменный ток в постоянный, что позволяет повысить качества сварных соединений. Такое приспособление можно приобрести в готовом виде или создать своими руками, следуя советам, озвученным в статье.

Словосочетание “диодный мост” образуется от слова “диод”. Следовательно, диодный мост должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.

Обозначение на схеме

Диодный мост на схемах выглядит подобным образом:

Иногда в схемах его обозначают еще так:


Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка “~”. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками “+” и “-“. Диодный мост также называют диодным выпрямителем.

Принцип работы

Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок, как все это будет выглядеть:

Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше. Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.

Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост “переворачивает” отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.

На выходе диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

Практические опыты

Для начала возьмем простой диод.


Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий , который из 220В делает 12В.


На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на так называемом “холостом ходу”.


3,3х5=16.5В – это максимальное значение напряжения. А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть . Осциллограф не врет, все ОК.


Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт – это не шутки, поэтому я и понизил переменное напряжение.

Припаяем к одному концу вторичной обмотки трансформатора наш диод.


Цепляемся снова осциллографа


Смотрим на осциллограмму


А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

Находим еще три таких диода и спаиваем диодный мост .


Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.


С двух других концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму


Вот, теперь порядок.

Виды диодных мостов

Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент – диодный мост. Думаю, вы догадаетесь, где импортный, а где советский))).


Например, на советском диодном мосте показаны контакты, на которые нужно подавать переменное напряжение значком ” ~ “, а контакты, с которых надо снимать постоянное пульсирующее напряжение значком “+” и “-“.


Существует множество видов диодных мостов в разных корпусах


Есть даже автомобильный диодный мост


Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:


В основном трехфазные диодные мосты используются в силовой электронике.


Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.

Как проверить диодный мост

1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем

2) Второй способ 100%-ый. Но для этого потребуется осциллограф, или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками “~”, а с двух других контактов, с “+” и “-” снимаем показания с помощью осциллографа.


Смотрим осциллограмму


Значит, импортный диодный мост исправен.

Резюме

Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

Диодный мост: устройство, принцип работы и сферы применения

Диодный мост электрического генератора это электрическая схема состоящая из нескольких мощных диодов и варистора, и служащая для выпрямления электрического тока поступающего с ротора возбудителя генератора на его силовой ротор.

Устройство и принцип работы диодного моста

Принцип работы диодного выпрямителя заключается в способности диодов пропускать электроток в одном направлении и предотвращать его обратное прохождение.

 

 

 

 

Основные этапы выпрямления синусоиды переменного тока:

  1. На вход выпрямительного блока поступает переменный ток 50-60 Гц.
  2. Сборка пропускает электроток в прямом направлении. При этом часть токовой синусоиды, которую полупроводниковая схема считает обратной, срезается и ее знак меняется на противоположный.
  3. В итоге функционирования полупроводникового моста на выход подается однополярный пульсирующий ток. Частота пульсаций выходного тока равна удвоенной частоте входного тока – 50х2 = 100 Гц.

Полученный на выходе выпрямительной схемы пульсирующий ток постоянным не является.

Основной вид устройства выпрямительного блока генератора с диодным мостом – это две теплоотводящие пластины, изготовленные из алюминиевого сплава. Пластины могут объединяться в общую конструкцию через 3 изолирующие втулки, а могут быть смонтированы отдельно друг от друга. В каждую из них впаивается по 3 диода – 3 положительных и 3 отрицательных. Плюсовые и минусовые полупроводники соединяются в пары.

Полупроводниковые выпрямители из единичных диодов или сборок

Диоды могут по отдельности впаиваться на плату, но в случае с диодным мостом генератора используется более прогрессивное решение – диодные сборки, подразумевающие объединение полупроводников в общем корпусе или на пластине. Это предпочтительный вариант – такой выпрямитель обходится дешевле и занимает меньший объем. Полупроводниковые элементы в этом случае подбираются в заводских условиях с контролем всех параметров. У отдельных диодов характеристики могут отличаться, что негативно сказывается на функционировании схемы.

Так же, что очень важно, для защиты от влаги и вибрации, вся диодная сборка заливается специальной смолой, или так называемым компаундом.

Другие преимущества сборки: работа всех ее элементов в едином тепловом режиме, что снижает вероятность выхода из строя отдельного полупроводника, простота монтажа прибора. Минусы сборки – сложность контроля за работоспособностью отдельно взятого полупроводника, невозможность замены одного отдельного элемента в случае его выхода из строя. Но при правильной подборке диодов сборки исправно служат в течение длительного времени.

Выпрямители в одно- и трехфазных сетях переменного тока

Диодный мост, используемый в электросетях напряжением 220 В, состоит из 4 диодов, трехфазных – из 6 полупроводниковых элементов. Принцип работы этих полупроводниковых выпрямителей одинаковый. Существует множество схем трехфазных выпрямительных блоков, самая мощная и совершенная из них состоит из 6 мостов, включенных параллельно.

Виды диодных мостов по мощности

Разные модели полупроводниковых выпрямителей рассчитаны на разный номинальный ток. По этому параметру полупроводниковые выпрямительные приборы делят на следующие серии:

  • малой мощности – величина номинального тока до 0,3 А;
  • средней мощности – 0,3 А – 10 А;
  • большой мощности – более 10 А.

Одна из важных характеристик полупроводникового выпрямителя – наибольшее обратное напряжение, которое может выдержать блок. Если этот показатель будет превышен, то прибор выйдет из строя.

Области применения диодных мостов

Применяются в конструкции любого синхронного генератора переменного тока для обеспечения функционирования вращающегося магнитного поля силового ротора.

Диодные мосты применяют в основном для ремонта вышедшего из строя генератора.

Купить диодные выпрямительные мосты можно для применения в электросистемах городского электрического транспорта (трамваев, троллейбусов, метро), электровозов, в промышленных системах очистки газовых смесей, буровом оборудовании.

Мостовой выпрямитель

Работа, характеристики, типы и применение

Назначение мостового выпрямителя может заключаться во многих системах электропитания постоянного тока, это может быть бытовая техника, где требуется питание постоянного тока, чтобы переменный ток выпрямления можно было преобразовать в постоянный ток. Следовательно, его можно рассматривать как основную часть блоков питания. Исходя из требований к нагрузке, желательно выбрать для него конкретный выпрямитель.

Мостовые выпрямители достаточно эффективны и имеют минимальное значение пульсации.Этот тип выпрямителя разработан для устранения недостатка трансформатора с центральным отводом двухполупериодной схемы выпрямления.

Выпрямитель

Выпрямитель

Электрическая и электронная схема, которая используется для процесса выпрямления, называется выпрямителем. Существуют различные типы выпрямителей, такие как однополупериодный выпрямитель, двухполупериодный выпрямитель и мостовой выпрямитель. Полупериодный выпрямитель преобразует или выпрямляет только полупериод входной формы волны. Двухполупериодный выпрямитель преобразует или выпрямляет полный цикл или всю форму входного сигнала.Мостовой выпрямитель также преобразует или выпрямляет всю форму входного сигнала. Но в основном мостовой выпрямитель используется для максимального числа приложений, поскольку он более эффективен и выгоден, чем полуволновый выпрямитель и двухполупериодный выпрямитель. Каждый проект силовой электроники на базе микроконтроллера требует выпрямителя, так как для большинства компонентов требуется источник питания с напряжением около 5 В постоянного тока.

Мостовой выпрямитель

Что такое мостовой выпрямитель?

Схема, состоящая из четырех или более диодов таким образом, что она соответствует топологии моста.Он упоминается как мостовой выпрямитель . Он может быть спроектирован с использованием обычных диодов или с использованием в нем управляемых переключателей. Он использует как положительную, так и отрицательную половины циклов, так что это приводит к полному выпрямлению волны.

Типы мостовых выпрямителей

В зависимости от исходной поставки и основных элементов, использованных при их проектировании, а также функций управления мостовые выпрямители подразделяются на два типа. В основном, эти два типа рассчитаны на однофазное питание и трехфазное с.Кроме того, эти основные типы подразделяются на управляемые и неуправляемые выпрямители.

  1. Однофазные и трехфазные выпрямители

В однофазной схеме выпрямителей к источнику переменного тока подключены четыре диода. Тогда как трехфазный состоит из шести диодов в своей схеме. Это основные выпрямители, которые далее классифицируются как управляемые и неуправляемые на основе используемых компонентов, таких как диоды, кремниевые управляемые выпрямители и т. Д.

Однофазная цепь питания

Трехфазная цепь питания

  1. Неуправляемые мостовые выпрямители

В выпрямителях этого типа используются диоды в схеме. В свойстве диодов четко указано, что ток может протекать в одном направлении. Следовательно, это будет основной компонент неуправляемого выпрямителя, так что мощность в выпрямителе остается неизменной даже при изменении требований к нагрузке.Следовательно, они называются постоянными выпрямителями .

Базовая схема, представляющая неуправляемый выпрямитель

  1. 3 . Управляемые выпрямители (мост)

В выпрямителях этого типа вместо обычных диодов для этой схемы предпочтительны кремниевые управляемые выпрямители (SCR). Вместо использования только SCR можно использовать MOSFET и другие управляющие устройства. При этом значение выходной мощности изменяется в зависимости от требований к нагрузке.Это можно сделать, подав на него различное напряжение. Метод, используемый здесь для изменения выходного напряжения на нагрузке, обозначается как , запускающий .

Схема мостового выпрямителя, представляющая управляемые выпрямители

Выше представлены типы мостовых выпрямителей, которые классифицируются на основе предоставленного источника питания, а также дополнительно классифицируются на основе управляемой или изменяемой выходной мощности. Исходя из необходимости, выбирается предпочтительный тип выпрямителя.

Типы мостовых выпрямителей

Диод

Существуют разные типы мостовых выпрямителей, которые классифицируются по разным критериям. Рассмотрим различные типы мостовых выпрямителей, которые классифицируются по типам выпрямителей, например, неуправляемые выпрямители и управляемые выпрямители. Диоды называются неуправляемыми выпрямителями, поскольку диоды начинают проводить проводимость всякий раз, когда анодное напряжение превышает катодное напряжение. Но в случае управляемых выпрямителей, известных как тиристоры, даже если анодное напряжение больше, чем катодное напряжение, тиристоры начинают проводить проводимость только тогда, когда срабатывает вывод затвора.Таким образом, мы можем запустить терминал затвора согласно требованию; следовательно, мы можем контролировать работу выпрямителя.

Тиристор

Мостовые выпрямители, в которых используются тиристоры, называются управляемыми мостовыми выпрямителями. Работой выпрямления можно управлять, активировав терминал затвора тиристора всякий раз, когда это необходимо. Мы знаем, что диод – это полупроводниковый прибор, состоящий из двух слоев (P-N), а тиристор также является полупроводниковым прибором, состоящим из четырех слоев (P-N-P-N).Его можно использовать как переключатель разомкнутой цепи, а также как выпрямитель в зависимости от того, как срабатывает вывод затвора тиристора.

Типы диодов мостового выпрямителя

1N4007 Диод

Существуют серии диодов от 1N4001 до 1N4007 с различными номинальными токами и напряжениями, но часто 1N4007 используется для проектирования мостовых выпрямителей. Диод 1N4007 имеет абсолютные максимальные характеристики, включая номинальное напряжение: пиковое повторяющееся обратное напряжение 1000 В VRPM, средний выпрямленный выходной ток 1 А IF (AV), непериодический пиковый прямой импульсный ток 30 А IFSM, который может работать при температуре от -55 до +175 градусов .Тепловые характеристики, такие как рассеиваемая мощность 3 Вт, переход к тепловому сопротивлению окружающей среды 50 градусов / Вт. Дидо, которые иногда используются для проектирования выпрямителей, представляют собой серии дидо от 1N5400 до 1N5408 и 6A4.

1N5048 Диод

Мостовой выпрямитель 1N5408 дидо также используется для некоторых специальных приложений, и они имеют номинальные характеристики: максимальное повторяющееся пиковое обратное напряжение 1000 В, максимальное среднеквадратичное напряжение 700 В, максимальное напряжение блокировки постоянного тока 1000 В, максимальный средний прямой выпрямленный ток 3 А, рабочий диапазон температур перехода и хранения от -50 до +150 градусов по Цельсию.Управление ACPWM для асинхронного двигателя является практическим примером, в котором мостовой выпрямитель спроектирован с использованием диодов 1N5408.

6A4 Диод

Эти диоды мостового выпрямителя 6A4 имеют максимальные номинальные характеристики и электрические характеристики, такие как максимальное рекуррентное пиковое обратное напряжение 400 В, максимальное обратное напряжение 280 В, максимальное напряжение отключения постоянного тока 400 В и максимальный средний прямой выпрямленный ток 6 А. Диоды 6A4 используются для мостовых выпрямителей в некоторых специальных приложениях, например, пропеллерное отображение сообщения виртуальными светодиодами.Работа схемы мостового выпрямителя одинакова, независимо от диодов, используемых для проектирования выпрямителя, поэтому давайте рассмотрим схему мостового выпрямителя, разработанную с использованием диодов 1N4007, поскольку она используется для мостовых выпрямителей в некоторых специальных приложениях – например, пропеллер отображает сообщение виртуальные светодиоды.

Схема мостового выпрямителя

Мостовой выпрямитель представляет собой двухполупериодную схему выпрямления, которая использует оба цикла для выпрямления. Единственная разница между этой схемой и другой схемой двухполупериодного с трансформатором с центральным отводом состоит в том, что здесь диоды соединены по мостовой топологии без необходимости использования в нем трансформатора с центральным отводом.

Поскольку использование трансформатора с центральным отводом сделало схему дорогостоящей. Этот выпрямитель призван преодолеть этот недостаток, так как эффективность остается неизменной в обоих случаях.

Схема мостового двухполупериодного выпрямителя

Выше показана схема мостового выпрямителя, которая состоит из начального источника переменного тока, а также четырех диодов, соединенных по мостовой топологии, и подключенного к нему нагрузочного резистора. На начальном этапе питание подается с помощью понижающего трансформатора.В зависимости от характеристик, касающихся требований к выпрямителю, это могут быть номинальные значения тока или пикового обратного напряжения, и поэтому были выбраны соответствующие диоды.

После обработки входных сигналов на диодном мосту другой каскад выпрямителя будет его нагрузкой. Здесь нагрузка принята как резистор. Как только выпрямление выполнено, входной переменный ток преобразуется в пульсирующий постоянный ток, но требуется чистый постоянный ток. В этом случае к нагрузке добавляется еще один компонент, называемый конденсатором или катушкой индуктивности.Так что он может убрать рябь из схемы и сделать вывод плавным.

Работа схемы мостового выпрямителя

Здесь рассматриваемая схема представляет собой однофазный выпрямитель с четырьмя диодами в мостовой топологии. Они дополнительно подключаются к резистивной нагрузке. Работа диодов зависит от применяемых циклов и основана на действии диодов в соответствии с ними.

Анализ работы мостового выпрямителя

Давайте рассмотрим приведенную выше базовую схему, чтобы проанализировать мостовой выпрямитель.Четыре соединены по диагонали, как диодный мост. Предположим, что на схему подано питание, что означает, что первый положительный цикл войдет в схему. Когда положительный цикл попадает в электрическую схему, диод D1 и диод D2 переходят в состояние прямого смещения и пропускают ток.

При этом диод D3 и диод D4 останутся в состоянии обратного смещения. Следовательно, D3 и D4 не будут проводить. Как только отрицательный цикл попадет в схему, D3 и D4 будут в проводящем режиме.D1 и D2 останутся в состоянии обратного смещения. Это приводит к использованию как положительной, так и отрицательной половины цикла. Можно наблюдать, является ли это положительным или отрицательным циклом, применяемым к потоку тока в одном и том же направлении, чтобы удовлетворить свойству диода. Следовательно, схема становится более эффективной.

Однако после исправления в сгенерированном выходе имеется некоторая рябь, которую можно сгладить с помощью техники фильтрации.Значение коэффициента пульсации у этого типа выпрямителя меньше, чем у полуволнового выпрямителя.

Работа мостового выпрямителя, используемого для преобразования 230 В переменного тока в 5 В постоянного тока

Понижающий трансформатор

Понижающие трансформаторы используются для преобразования 230 В переменного тока (высокое напряжение) в 12 В переменного тока (низкое напряжение). Этот выход 12 В представляет собой среднеквадратичное значение, а его пиковое значение определяется как произведение квадратного корня из двух на среднеквадратичное значение выхода понижающего трансформатора, которое составляет примерно 17 В. Принцип работы трансформаторов основан на законах электромагнитной индукции Фарадея.

Неуправляемые мостовидные выпрямители

Мостовые выпрямители

Мощность 230 В переменного тока преобразуется в среднеквадратичное значение 12 В переменного тока или пиковое значение 17 В (приблизительно), но 5 В постоянного тока является необходимой мощностью; для этого мощность 17 В переменного тока (пиковое значение) преобразуется в мощность постоянного тока, а затем понижается до 5 В постоянного тока. 17 В переменного тока преобразуются в постоянный с помощью мостового выпрямителя, состоящего из четырех диодов, которые называются неуправляемыми выпрямителями. Диод будет проводить только при прямом смещении и не будет проводить при обратном смещении.Если анодное напряжение диода больше, чем катодное, то говорят, что диод находится в прямом смещении. Диоды D2 и D4 проводят в течение положительного полупериода, а диоды D1 и D3 проводят в течение отрицательного полупериода.

Фильтр

Эта зарядка и разрядка конденсатора превращают пульсирующий постоянный ток в чистый постоянный ток, как показано на рисунке. Понижающий преобразователь, а именно стабилизатор напряжения IC 7805, используется для преобразования 15 В постоянного тока в 5 В постоянного тока.

Блок-схема IC7805

Блок-схема регулятора напряжения IC7805 показана на рисунке выше.Он состоит из операционного усилителя, который действует как усилитель ошибки, стабилитрона, используемого для обеспечения опорного напряжения.

Стабилитрон, используемый для обеспечения опорного напряжения

Как правило, диапазон рабочего напряжения стабилизатора IC7805 составляет от 7,2 В до 35 В. Если входное напряжение составляет 7,2 В, то это дает максимальный КПД, а когда напряжение превышает 7,2 В, КПД будет снижаться, так как будут потери энергии в виде тепла. Итак, радиаторы используются для защиты регулятора от перегрева.Даже без использования трансформатора мы можем напрямую преобразовать 230 В переменного тока в 5 В постоянного тока с помощью высокопроизводительных диодов. Если у нас есть источник питания 230 В постоянного тока, то мы можем напрямую преобразовать 230 В постоянного тока в 5 В постоянного тока с помощью понижающего преобразователя постоянного тока в постоянный. Не стесняйтесь оставлять свои комментарии в разделе комментариев ниже и поощрять других читателей узнать основы выпрямителей.

Характеристики полнополупериодного (мостового) выпрямителя

Характеристики двухполупериодных выпрямителей одинаковы как для выпрямителя с центральным отводом, так и для мостового выпрямителя.

(1) Коэффициент пульсации

Как обсуждалось в приведенном выше анализе схемы мостового выпрямителя, выходной сигнал, генерируемый после выпрямления, состоит из некоторой составляющей переменного тока, присутствующей в нем. Эти компоненты называются рябью. Пульсации можно измерить с помощью коэффициента пульсации .

Его можно выразить как отношение между присутствием составляющей переменного тока в генерируемом выходе и полученным постоянным током на выходе. Символ «r» используется для представления коэффициента пульсации.

[latexpage]
\ [
r = I_rms / I_DC
\]

Для мостового выпрямителя значение коэффициента пульсаций r = 0,483. Этот коэффициент пульсации важен для анализа эффективности схемы. Значение коэффициента пульсации и КПД схемы обратно пропорциональны друг другу.

(2) КПД мостового выпрямителя

КПД выпрямителя определяется как отношение выходной мощности постоянного тока к приложенному переменному току в качестве входной мощности.

E = (генерируемая мощность постоянного тока) / (приложенная входная мощность переменного тока)

Полученный КПД схемы мостового выпрямителя составляет 81,2%. По эффективности по сравнению с полуволновой схемой он более эффективен и по сравнению с трансформатором с центральным ответвлением очень дешев. Общий анализ мостового выпрямителя прост для понимания. Однако он также требует поддержки фильтра, чтобы использовать его в практических приложениях.

Преимущества мостового выпрямителя
  1. По сравнению с однополупериодным выпрямителем схема мостового выпрямителя более эффективна.
  2. Нет потери выходной мощности из-за использования обеих половин цикла.
  3. Входной сигнал отсутствует, так как выход полностью выпрямлен.
  4. Значение коэффициента пульсации в мостовом выпрямителе меньше, потому что схема более эффективна.
  5. Среднее значение постоянного тока наивысшего значения достигается благодаря схеме двухполупериодного мостового выпрямителя.
  6. С точки зрения стоимости, это намного меньше, потому что концепция трансформатора с центральным отводом исключается из мостового выпрямителя.

Согласно анализу и эффективности, мостовой выпрямитель имеет много преимуществ по сравнению с недостатками. Но для практического применения необходимо внести некоторые необходимые изменения.

Применение мостового выпрямителя
  1. При модуляции радиосигналов для определения его амплитуды концепция мостового выпрямителя имеет важное значение.
  2. Для электрического управления требуется стабильная подача постоянного тока с поляризацией, это возможно с помощью двухполупериодной схемы выпрямления.
  3. Из-за эффективного характера мостового выпрямителя его предпочитают в качестве части блока питания различных устройств.
  4. Высокое напряжение переменного тока может быть преобразовано в низкое значение постоянного тока с помощью мостового выпрямителя.
  5. Для включения устройств, это может быть светодиод или двигатель постоянного тока, предпочтительно использовать выпрямители этого типа.

Выше приведены некоторые применения мостового выпрямителя. Проектирование и анализ мостовых выпрямителей упростили понимание, а его эффективность и коэффициент пульсации сделали его высокоэффективным.Для практических целей какой из них предпочтительнее: выпрямитель с центральным отводом или мостовой выпрямитель?

Image Credits
Схема мостового выпрямителя, представляющая управляемые выпрямители – Allaboutcircuits.com

Различные типы выпрямителей – Блог


Выпрямители используются в различных устройствах и могут применяться для модификации сетевых систем. Они классифицируются по-разному в зависимости от таких факторов, как тип источника питания, конфигурация моста и используемые компоненты.В целом выпрямители можно разделить на два типа – однофазные и трехфазные. Переходя на следующий уровень, их можно разделить на полуволновые, двухполупериодные и мостовые выпрямители.

Что такое выпрямитель?

Прежде чем мы перейдем к различным типам выпрямителей, стоит рассмотреть, что такое выпрямители. Выпрямитель – это диод, преобразующий переменный ток (известный как AC) в постоянный ток (DC). Постоянный ток течет только в одном направлении, тогда как переменный ток постоянно меняет направление.Выпрямители позволяют току течь в одном направлении.

Выпрямители

принимают переменное напряжение и преобразуют его в высококачественное постоянное напряжение, необходимое для вашего телекоммуникационного оборудования. Традиционное телекоммуникационное оборудование обычно требует входного питания постоянного тока, но сетевое питание работает от переменного тока. Такие системы питания состоят из нескольких выпрямителей, которые преобразуют мощность переменного тока в мощность постоянного тока, чтобы они могли работать.

Без правильного выпрямителя мало шансов сконфигурировать вашу идеальную систему. Они являются сердцем энергосистемы, поскольку предлагают оптимизированные решения для каждого приложения.Использование выпрямителей означает, что вы можете адаптировать свою систему питания без необходимости перестраивать каждый элемент.

Различные типы выпрямителей

Итак, ясно, что выпрямители являются ключевым компонентом любой сетевой системы, но нам нужно углубиться, чтобы понять кариозные типы. В зависимости от ситуации используются разные выпрямители в зависимости от системы, в которой они используются. Два верхних уровня – однофазные и трехфазные, которые указывают, сколько диодов используется в цепи.Затем мы переходим к полуволновым, двухполупериодным и мостовым выпрямителям, которые влияют на то, какие полупериоды производятся. Давайте рассмотрим каждый тип, чтобы лучше понять, какой выпрямитель следует использовать.

Однофазные и трехфазные выпрямители

Однофазные выпрямители имеют вход однофазного переменного тока. Конструкции очень простые, требуются один, два или четыре диода (в зависимости от типа системы). Это означает, что однофазный выпрямитель выдает небольшую мощность и имеет меньший коэффициент использования трансформатора (TUF).Однофазный выпрямитель использует только одну фазу вторичной обмотки трансформатора для преобразования, а диоды подключены ко вторичной обмотке однофазного трансформатора. Это вызывает высокий коэффициент пульсации.

Трехфазные выпрямители имеют вход трехфазного AV-питания. Для структур требуется три или шесть диодов, и они подключаются к каждой фазе вторичной обмотки трансформатора. Трехфазные выпрямители используются вместо однофазных выпрямителей для уменьшения коэффициента пульсаций.

По сравнению с двумя типами выпрямителей, при использовании больших систем предпочтение отдается трехфазному.Это связано с тем, что они могут передавать большое количество энергии и не требуют дополнительных фильтров для уменьшения коэффициента пульсаций. Из-за этого трехфазные выпрямители более эффективны и имеют больший коэффициент использования трансформатора.

Полуволновые и полноволновые выпрямители

Полупериодные выпрямители преобразуют один полупериод на входе переменного тока в пульсирующий выход постоянного тока. Это позволяет половину цикла входного переменного тока, блокируя другую половину цикла. Половина цикла может быть как положительной, так и отрицательной.Это самый простой выпрямитель, поскольку используется только один диод. На рисунке 1 (ниже) показан выпрямитель положительной полуволны, тогда как выпрямитель отрицательной полуволны показывает, что диод смещен в обратном направлении (обращен в противоположную сторону). Из-за пульсирующего характера постоянного тока коэффициент пульсаций высок. Это означает, что полуволновые выпрямители не считаются эффективными, и им часто требуются фильтры для уменьшения коэффициента пульсаций.

Рисунок 1: однополупериодный выпрямитель

Двухполупериодные выпрямители преобразуют оба полупериода (положительный и отрицательный) на входе переменного тока в пульсирующий выход постоянного тока.Как показано на рисунке 2 (ниже), в этих схемах используется трансформатор с ответвлениями от средней точки, который подключается к середине вторичной обмотки трансформатора. Эти типы трансформаторов делят входной переменный ток на две части – положительную и отрицательную. Из-за этого двухполупериодные выпрямители считаются гораздо более эффективными, так как коэффициент пульсации намного ниже по сравнению с ними. Кроме того, поскольку оба цикла разрешены одновременно, это означает, что сигнал не теряется.

Рисунок 2: двухполупериодный выпрямитель

Мостовые выпрямители Мостовые выпрямители

широко используются в источниках питания для подачи постоянного напряжения на компоненты.В них используются четыре или более диодов и нагрузочный резистор (см. Рисунок 3 ниже).

Рисунок 3: мостовой выпрямитель

Четыре диода расположены последовательно, и только два диода пропускают электрический ток в течение каждого полупериода. Считается, что диоды работают парами: одна пара пропускает электрический ток через положительный полупериод, а другая половина пропускает ток в течение отрицательного полупериода. Входной переменный ток подается на две клеммы, а выходной постоянный ток получается через резистор индуктивности, который подключен между двумя другими клеммами.

Мостовые выпрямители пропускают электрический ток во время как положительных, так и отрицательных полупериодов входного сигнала переменного тока. Эти схемы не требуют трансформаторов с центральным ответвлением, которые могут быть очень дорогими.

Неуправляемые и контролируемые выпрямители

Неуправляемые выпрямители – это когда в цепи используются только диоды. Все выпрямители, которые мы рассмотрели до сих пор, являются неуправляемыми выпрямителями. В схемах управляемого выпрямителя используются тиристоры для управления выходом постоянного тока.Они используются, когда необходимо более точно контролировать ток, поскольку диоды могут быть только включены или выключены. Управляемые выпрямители обеспечивают непрерывное управление и гарантируют отсутствие потерь мощности.

Как выпрямители используются в телекоммуникациях?

Когда дело доходит до телекоммуникационной отрасли, выпрямители необходимы для построения сетевых систем. Их использование означает, что вам не придется начинать с нуля, когда что-то нужно изменить. Различные типы выпрямителей позволяют телекоммуникационным компаниям относительно легко менять компоновку систем.Они также позволяют операторам связи адаптировать свои системы в соответствии со своими потребностями по мере необходимости в модификации.

Применения выпрямительной продукции включают сети фиксированного доступа, сеть беспроводного доступа, сеть передачи и сеть связи предприятия. Выпрямители могут обеспечивать стабильное и надежное питание для основных поставщиков и эффективно снижать энергопотребление. По этой причине каждая телекоммуникационная компания должна принимать во внимание различные типы выпрямителей, прежде чем настраивать или вносить изменения в свою систему.

Компания Carritech предлагает широкий выбор выпрямителей для удовлетворения потребностей вашей сети. Здесь вы найдете информацию о последних приобретенных нами продуктах. Не можете найти то, что ищете? Свяжитесь с отделом продаж, чтобы узнать об этом сегодня.

Источники: Физика и радиоэлектроника , Электротехнический класс

Получайте все наши последние новости на свой почтовый ящик каждый месяц.

Что такое мостовые диоды? | Полупроводник

Мостовой диод – это диодный модуль, который образует мостовое соединение от 4 до 6 диодов в одном корпусе, и он используется для выпрямления переменного тока в постоянный или пульсирующий ток.

Для однофазного переменного тока

Для трехфазного переменного тока

Как использовать мостовые диоды… Двухполупериодное выпрямление


  • Входное напряжение: AC
  • Выходное напряжение: пульсирующее / постоянное

Мостовой диод инвертирует сторону отрицательного напряжения для входа переменного тока и выдает пульсирующий ток.
Выходная сторона сглажена конденсатором, который позволяет выводить постоянное напряжение.
Существует много мостовых диодов, предназначенных для выпрямления промышленных частот 50/60 Гц, и обычные выпрямительные диоды могут использоваться в качестве типа диода.
Когда эти диоды используются для выпрямления высоких частот, например, вторичного выпрямления на импульсных источниках питания, тогда в качестве мостовых диодов используются диоды с быстрым восстановлением или диоды с барьером Шоттки.

Значение сертификации мостовых диодов UL

Может быть прикреплен непосредственно к шасси (заземлению) без прохождения изоляционного листа

Пример обозначения каталога
  • следующий “Что такое диоды TVS?”
  • Список товаров “Мостовые диоды”
Схема мостового выпрямителя

– Детали конструкции и советы »Электроника

Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным ответвлением.


Цепи диодного выпрямителя Включают:
Цепи диодного выпрямителя Полуволновой выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


Мостовой выпрямитель – это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления и, возможно, является наиболее широко используемой схемой для этого приложения.

Используя четыре диода в мостовом выпрямителе, схема имеет характерный формат, принципиальная схема которого основана на квадрате с одним диодом на каждой ножке.

Учитывая его характеристики и возможности, двухполупериодный мостовой выпрямитель используется во многих линейных источниках питания, импульсных источниках питания и других электронных схемах, где требуется выпрямление.

Типовой мостовой выпрямитель для монтажа на печатной плате

Цепи мостового выпрямителя

Схема основной схемы мостового выпрямителя имеет блок мостового выпрямителя в центре. Он состоит из мостовой схемы с четырьмя диодами. Это могут быть отдельные диоды или мостовые выпрямители в виде единого электронного компонента.

Двухполупериодный выпрямитель с использованием мостового выпрямителя

Мостовой выпрямитель обеспечивает двухполупериодное выпрямление и имеет преимущество перед двухполупериодным выпрямителем, использующим два диода, в том, что в трансформаторе не требуется центральный отвод. Это означает, что для обеих половин цикла используется одна обмотка.

Электронные компоненты

с обмоткой дороги, а наличие центрального отвода означает, что для обеспечения двухполупериодного выпрямления необходимы две идентичные обмотки, каждая из которых обеспечивает полное напряжение.Это удваивает количество витков и увеличивает стоимость трансформатора. Это может быть особенно важно при разработке линейных источников питания или других электронных устройств.

Чтобы увидеть, как работает двухполупериодный выпрямитель с мостовым диодом, полезно увидеть ток, протекающий в течение полного цикла входящей формы волны.

Двухполупериодный мостовой выпрямитель, показывающий протекание тока

В большинстве приложений источников питания, будь то линейные регуляторы напряжения или импульсные источники питания, выход мостового выпрямителя будет подключен к сглаживающему конденсатору как часть нагрузки.

Эти электронные компоненты принимают заряд во время высоковольтных частей формы волны, а затем отдают заряд на нагрузку при падении напряжения. Таким образом, они обеспечивают более постоянное напряжение, чем прямой выход мостового выпрямителя. Это позволяет другим схемам, таким как линейные регуляторы напряжения и импульсные источники питания, работать правильно.

Примечание по сглаживанию конденсатора источника питания:
Конденсаторы

используются во многих источниках питания как для линейных регуляторов напряжения, так и для импульсных источников питания, чтобы сгладить выпрямленную форму волны, которая в противном случае варьировалась бы от пикового напряжения формы волны до нуля.Сглаживая форму волны, можно запускать из нее электронные схемы.

Подробнее о Конденсаторное сглаживание.

Что касается мостового выпрямителя и его диодов, включение конденсатора означает, что ток, проходящий через диоды, будет иметь значительные пики по мере заряда конденсатора.

Период, в течение которого конденсатор источника питания заряжается

При выборе электронных компонентов для мостового выпрямителя необходимо убедиться, что они могут выдерживать пиковые уровни тока.

Мостовые выпрямители

Компоненты мостового выпрямителя могут быть разных форм. Их можно сделать с помощью дискретных диодов. Кольцо из четырех диодов можно легко изготовить как на бирке, так и в составе печатной платы. Необходимо обеспечить достаточную вентиляцию диодов, поскольку они могут рассеивать тепло под нагрузкой.

Схема мостового выпрямителя и маркировка

В качестве альтернативы мостовые выпрямители поставляются как отдельные электронные компоненты, содержащие четыре диода в едином блоке или корпусе.Четыре соединения выведены и отмечены «+», «-» и «~». Соединение «~» используется для подключения к переменному входу. Соединения + и – очевидны.

Некоторые из этих мостовых выпрямителей предназначены для монтажа на печатной плате и могут иметь провода для монтажа в сквозные отверстия. Другие могут быть устройствами для поверхностного монтажа.

Некоторые мостовые выпрямители заключены в корпуса большего размера и предназначены для установки на радиаторе. Поскольку эти выпрямители рассчитаны на пропускание значительных уровней тока, они могут рассеивать значительный уровень тепла в результате падения напряжения на диодах, а также внутреннего сопротивления объемного кремния, используемого для диодов.

Рекомендации по проектированию схемы мостового выпрямителя

При использовании мостового выпрямителя для обеспечения выхода постоянного тока от входа переменного тока необходимо учитывать несколько моментов:

  • Падения напряжения: Не следует забывать, что ток, протекающий в мостовом выпрямителе, будет проходить через два диода. В результате выходное напряжение упадет на эту величину. Поскольку в большинстве мостовых выпрямителей используются кремниевые диоды, это падение будет минимум 1.2 вольта и будет увеличиваться с увеличением тока. Соответственно, максимальное выходное напряжение, которое может быть достигнуто, составляет минимум 1,2 В от пикового напряжения на входе переменного тока.
  • Рассчитайте количество тепла, рассеиваемого выпрямителем: Напряжение на диодах будет падать минимум на 1,2 вольта (при использовании стандартного кремниевого диода), которое будет расти с увеличением тока. Это результат стандартного падения напряжения на диоде, а также сопротивления внутри диода.Обратите внимание, что ток проходит через два диода внутри моста в течение любого полупериода. Сначала один комплект из двух диодов, затем другой.

    Чтобы увидеть падение напряжения для предполагаемого уровня тока, стоит обратиться к паспорту диодов мостового выпрямителя или всего электронного компонента мостового выпрямителя.

    Падение напряжения и ток, протекающий через выпрямитель, вызывают нагрев, который необходимо отводить. В некоторых случаях его можно легко рассеять за счет воздушного охлаждения, но в других случаях мостовой выпрямитель может потребоваться прикрутить болтами к радиатору.Многие мостовые выпрямители для этой цели крепятся болтами к радиатору.

  • Пиковое обратное напряжение: Очень важно обеспечить, чтобы максимальное обратное напряжение мостового выпрямителя или отдельных диодов не превышалось, в противном случае диоды могут выйти из строя.

    Рейтинг PIV диодов в мостовом выпрямителе меньше, чем требуется для конфигурации с двумя диодами, используемой с центральным ответвлением трансформатора. Если пренебречь падением диода, мостовому выпрямителю требуются диоды с половиной PIV-рейтинга выпрямителя с центральным отводом для того же выходного напряжения.Это может быть еще одним преимуществом использования этой конфигурации.

    Пиковое обратное напряжение на диодах равно пиковому вторичному напряжению V sec , потому что в течение одного полупериода диоды D1 и D4 являются проводящими, а диоды D2 и D3 имеют обратное смещение.

    Двухполупериодный мостовой выпрямитель с обратным пиковым напряжением

    Предполагая идеальные диоды, на которых нет падения напряжения – хорошее предположение для этого объяснения. Используя это, можно увидеть, что точки A и B будут иметь такой же потенциал, как и точки C и D.Это означает, что пиковое напряжение трансформатора появится на нагрузке. Такое же напряжение появляется на каждом непроводящем диоде.

Мостовые выпрямители – идеальный способ обеспечить выпрямленный выход на переменном входе. Мостовой выпрямитель обеспечивает двухполупериодный выпрямленный выход, что во многих случаях позволяет достичь лучшей производительности.

Мостовой выпрямитель с разделенным питанием

Для многих схем, таких как операционные усилители, могут потребоваться разделенные источники питания от линейного источника питания.Можно очень легко создать разделенное питание для этих и других приложений, используя двухполупериодный мостовой выпрямитель. Хотя он возвращается к использованию разделенного трансформатора, то есть с центральным ответвлением, может быть стоит получить импульсный или линейный источник питания с комбинацией как отрицательного, так и положительного источников питания с использованием мостового выпрямителя.

Двухполупериодный мостовой выпрямитель с двойным питанием

Схема работает эффективно и рационально, поскольку обе половины входной волны используются в каждой секции вторичной обмотки трансформатора.

Мостовой выпрямитель с двойным питанием требует использования трансформатора с центральным ответвлением, но в любом случае часто требуется вторая обмотка для обеспечения двойного питания.

Схема двухполупериодного выпрямителя на основе диодного моста работает хорошо и используется в большинстве приложений двухполупериодного выпрямителя. Он использует обе половины формы волны в обмотке трансформатора и, как результат, снижает тепловые потери для данного уровня выходного тока по сравнению с другими решениями.Кроме того, это решение не требует трансформатора с центральным ответвлением (за исключением версии с двумя источниками питания), и в результате снижаются затраты.

Мостовой выпрямитель, вероятно, наиболее известен своим использованием в импульсных источниках питания и линейных источниках питания, но он также используется во многих других схемах.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Схема мостового выпрямителя

– работа, типы, характеристики и применение

Мостовой выпрямитель – важный электрический компонент, который используется в блоках питания. Он используется как преобразователь переменного тока в постоянный. Оставайтесь и идите дальше, чтобы узнать все о схеме мостового выпрямителя, ее типах, принципах работы, характеристиках, областях применения и преимуществах.

Что такое мостовой выпрямитель

Мостовой выпрямитель является неотъемлемой частью всех электронных устройств, которые используют постоянный ток для работы.Многие компоненты используют постоянный ток, поскольку они требуют постоянного напряжения и, следовательно, преобразование переменного тока в постоянный имеет важное значение.

Схема мостового выпрямителя – это компонент, который помогает преобразовывать питание переменного тока в постоянный. Они могут быть легко сконструированы с использованием одного или нескольких диодов, которые являются неуправляемыми и однонаправленными, или других управляемых полупроводниковых переключателей.

Рис. 1 – Введение в мостовой выпрямитель

Существует много типов мостовых выпрямителей. Но тот, который вам понадобится, будет определяться требованиями к нагрузке.При выборе мостового выпрямителя для источника питания необходимо учитывать несколько моментов.

Несколько необходимых факторов, которые следует учитывать, – это номинальные характеристики компонента, напряжение пробоя, технические характеристики, диапазон температур, номинальный ток в прямом направлении, номинальный ток в переходных процессах, требования к установке и т. Д. Принимая во внимание все эти факторы и требования к нагрузке, вы можно выбрать соответствующую схему мостового выпрямителя.

Рис. 2 – Плата источника питания мостового выпрямителя

Типы мостовых выпрямителей

Мостовые выпрямители можно классифицировать на основе таких факторов, как конфигурация схемы, возможности управления и типы источника питания.Проследите указатели ниже и узнайте все о типах мостовых выпрямителей, так как некоторые из них перечислены ниже и кратко описаны:

  • Однофазные и трехфазные мостовые выпрямители
  • Неуправляемые мостовые выпрямители
  • Управляемые мостовые выпрямители

1. Однофазный и трехфазный мостовой выпрямитель

Тип источника питания, который может быть однофазным или трехфазным, определяет выпрямители. В однофазных выпрямителях есть четыре диода, которые используются для преобразования переменного тока в постоянный.Но с другой стороны, трехфазные выпрямители используют шесть диодов для той же цели, а компоненты, используемые в конструкции моста, определяют, будет ли ваша схема мостового выпрямителя управляемой или неуправляемой. Некоторые компоненты схем, которые могут определить это, – это диоды, тиристоры и т.д. который в основном используется для исправления входных сигналов.Он использует диоды для исправления входа. Диод, несомненно, является однонаправленным устройством и, следовательно, пропускает ток только с одного направления. Конфигурация диодов в этом выпрямителе такова, что мощность не может изменяться при изменении требований к нагрузке. Следовательно, благодаря этой особенности, неуправляемые мостовые выпрямители всегда используются в стабильных или постоянных источниках питания.

3. Управляемые мостовые выпрямители

Это тип выпрямителя, в котором неуправляемые диоды не используются в качестве компонентов устройства; контролируемые твердотельные устройства, такие как MOSFET, SCR (кремниевый управляемый выпрямитель или просто тиристоры), IGBT и т. д.используются. Следовательно, выходная мощность, достигаемая с помощью этого выпрямителя, различается при разных напряжениях. Эта особенность управляемых мостовых выпрямителей сделала их полезными во многих секторах.

Рис. 4 – Схема управляемого и неуправляемого мостового выпрямителя

Можно соответствующим образом изменить выходную мощность нагрузки. При срабатывании различных моментов устройств происходит изменение выходной мощности. Это основная категория мостовых выпрямителей, которые получили все свои функции только благодаря модификации компонентов.

Как работает мостовой выпрямитель

Однофазный выпрямитель имеет четыре диода D 1, D 2 , D 3, D 4 , и соединение осуществляется через нагрузку R L , как показано на рис. 5. Четыре диода соединены таким образом, что только два диода проводят ток в течение каждого полупериода. Ток нагрузки такой же, а входной переменный ток меняется на постоянный с помощью этой схемы.

Полученный выходной сигнал пульсирует, и для сохранения чистоты постоянного тока требуется конденсатор.Принцип работы почти всех выпрямителей одинаков, но в случае выпрямителей с управляемым мостом за срабатывание отвечают тиристоры; так что ток подается на нагрузку.

Рис. 5 – Конструкция мостового выпрямителя

Сигнал переменного тока подается на схему. Во время положительного полупериода диоды D1, D3 смещаются в прямом направлении, а D2, D4 – в обратном. Это также показывает, что клемма A становится положительной, а клемма B становится отрицательной.Аналогичным образом клемма B становится положительной, а клемма A становится отрицательной в течение отрицательного полупериода. В этом случае диоды D2, D4 смещены в прямом направлении, а диоды D1, D3 – в обратном. Ток нагрузки остается неизменным как в положительном, так и в отрицательном полупериоде.

Рис. 6 – Формы входных и выходных сигналов

Характеристики мостового выпрямителя

Основные характеристики включают:

Коэффициент пульсаций

Коэффициент пульсаций является мерой плавности выходного сигнала постоянного тока.Выходной сигнал постоянного тока с меньшим количеством пульсаций известен как плавный сигнал постоянного тока, а выходной сигнал с большими колебаниями известен как пульсирующий верхний сигнал постоянного тока.

КПД

КПД выпрямителя представлен как отношение выходной мощности постоянного тока к приложенному переменному току в качестве входной мощности.

Применения мостовых выпрямителей

Применения включают:

  • Они используются для модуляции радиосигналов.
  • Широко используется для преобразования переменного напряжения в низкое значение постоянного тока.
  • Применяются также в электросварке.
  • В основном используется в блоках питания.

Преимущества мостовых выпрямителей

К преимуществам относятся:

  • Эффективность мостового выпрямителя несомненно на высоте. Его КПД выше, чем у полуволнового выпрямителя, и он равен двухполупериодному выпрямителю. Выходной сигнал постоянного тока оказался более гладким по сравнению с выходным сигналом однополупериодного выпрямителя.
  • Понижающий трансформатор не требуется.
  • Сигнал на выходе непрерывный.
  • Низкий фильтр необходим для использования в автомобиле.

Недостатки мостового выпрямителя

Недостатком мостового выпрямителя может быть его сложная конструкция. Прежде всего, еще один момент, который может быть включен в этот недостаток, – это потеря мощности, вызванная использованием большего количества диодов.

  • Если использовать больше диодов, то стоимость изготовления может значительно возрасти.
  • Может быть ошибка в исправлении, если значение диода не соблюдается точно.
  • Не удается найти правильный выход постоянного тока.
  Также читают:
Коэффициент мощности - треугольник мощности, типы, коррекция коэффициента мощности, применения, преимущества
Асинхронный двигатель | Асинхронный двигатель - тип, особенности, принцип работы
Как работает конденсатор
Что такое стабилизатор напряжения - зачем он нам, как он работает, типы и области применения  

Лакшми имеет степень бакалавра в области электроники и связи и имеет опыт работы в RelQ Software в качестве инженера-испытателя и HP в качестве руководителя службы технической поддержки.Она является автором, редактором и партнером Electricalfundablog.

Мостовой выпрямитель – определение, изготовление и работа

Раньше собираясь на мостовой выпрямитель, нам нужно знать, что на самом деле выпрямитель есть и зачем нужен выпрямитель. Так Сначала давайте посмотрим на эволюцию выпрямителей.

Эволюция выпрямители

Выпрямители находятся в основном подразделяется на три типа: полуволна выпрямитель, Центр двухполупериодный выпрямитель с отводом и мостовой выпрямитель.Все у этих трех выпрямителей есть общая цель – преобразовать Чередование Ток (переменный ток) в постоянный Ток (постоянный ток).

Нет все эти три выпрямителя эффективно преобразуют Переменный ток (AC) в постоянный ток (DC), только двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель эффективно преобразовывать переменный ток (AC) в постоянный Ток (постоянный ток).

В однополупериодный выпрямитель, допускается только 1 полупериод и оставшаяся половина цикла заблокирована. В результате почти половина приложенная мощность тратится на полуволновой выпрямитель. В в дополнение к этому, выходной ток или напряжение производимый однополупериодным выпрямителем – это не чистый постоянный ток, а пульсирующий постоянный ток, который не очень полезен.

В чтобы преодолеть эту проблему, ученые разработали новый тип выпрямителя, известный как двухполупериодный с отводом по центру выпрямитель.

Основным преимуществом двухполупериодного выпрямителя с отводом по центру является то, что пропускает электрический ток как во время положительного, так и отрицательного полупериоды входного сигнала переменного тока.В результате DC выходная мощность двухполупериодного выпрямителя с отводом в два раза больше то из полуволнового выпрямителя. В дополнение к этому, DC выход двухполупериодного выпрямителя с центральным ответвлением содержит очень меньше ряби. В результате выход постоянного тока центра двухполупериодный выпрямитель с ответвлениями более плавный, чем полуволновой выпрямитель.

Однако двухполупериодный выпрямитель с центральным ответвлением имеет один недостаток: трансформатор с центральным отводом, используемый в нем, очень дорого и занимает большую площадь.

Кому сократить эти дополнительные расходы, ученые разработали новый тип выпрямитель, известный как мостовой выпрямитель. В мостовом выпрямителе, центральный кран не требуется. Если уйти или подняться напряжения не требуется, тогда даже трансформатор можно устраняется в мостовом выпрямителе.

выпрямительный КПД мостового выпрямителя практически равен к центру двухполупериодного выпрямителя.Единственное преимущество мостового выпрямителя над двухполупериодным выпрямителем с отводом от центра это снижение стоимости.

В мостовой выпрямитель, вместо использования центрального отвода трансформатор, используются четыре диода.

Сейчас мы получаем представление о трех типах выпрямителей. Половина волновой выпрямитель и двухполупериодный выпрямитель с отводом по центру (двухполупериодный выпрямитель) уже обсуждались в предыдущем учебные пособия.В этом уроке основное внимание уделяется мосту. выпрямитель.

Let’s взгляните на мостовой выпрямитель…!

Мост выпрямитель определение

А мостовой выпрямитель – это тип двухполупериодного выпрямителя, в котором используется четыре или более диодов в конфигурации мостовой схемы для эффективного преобразовать переменный ток (AC) в постоянный ток (ОКРУГ КОЛУМБИЯ).

Мост выпрямитель строительный

строительство Схема мостового выпрямителя показана на рисунке ниже. Мостовой выпрямитель состоит из четырех диодов. а именно D 1 , D 2 , D 3 , D 4 и нагрузочный резистор R L . Четыре диода подключены в конфигурации с замкнутым контуром (мостом) к эффективно преобразовывать переменный ток (AC) в постоянный Ток (постоянный ток).Главное достоинство этой мостовой схемы конфигурация такова, что нам не нужен дорогой центр трансформатор с ответвлениями, что снижает его стоимость и габариты.

входной сигнал переменного тока подается на две клеммы A и B и выходной сигнал постоянного тока получается через нагрузочный резистор R L , который подключается между клеммами C и Д.

четыре диода D 1 , D 2 , D 3 , D 4 расположены последовательно только с двумя диодами, что позволяет электрическое ток в течение каждого полупериода. Например, диоды Д 1 и D 3 рассматриваются как одна пара, которая позволяет электрический ток в течение положительного полупериода, тогда как диоды D 2 и D 4 считаются другая пара, которая пропускает электрический ток во время отрицательный полупериод входного сигнала переменного тока.

Как мост выпрямитель работает?

Когда входной сигнал переменного тока подается на мостовой выпрямитель, во время положительного полупериода диоды D 1 и D 3 имеют прямое смещение и пропускают электрический ток, в то время как диоды D 2 и D 4 имеют обратное смещение и блокирует электрический ток.С другой стороны, во время отрицательные полупериодные диоды D 2 и D 4 имеют прямое смещение и пропускают электрический ток, а диоды D 1 и D 3 имеют обратное смещение и блокирует электрический ток.

Во время положительный полупериод, клемма A становится положительной в то время как клемма B становится отрицательной.Это вызывает диоды D 1 и D 3 с прямым смещением и при при этом вызывает диоды D 2 и D 4 обратный смещенный.

направление тока в течение положительного полупериода равно показано на рисунке A (то есть от A до D, от C до B).

Во время отрицательный полупериод, клемма B становится положительной в то время как клемма A становится отрицательной.Это вызывает диоды D 2 и D 4 с прямым смещением и при при этом вызывает диоды D 1 и D 3 обратный смещенный.

показано текущее направление потока во время отрицательного полупериода на рисунке B (то есть от B до D, от C до A).

От на двух рисунках (A и B), мы можем заметить, что направление тока через нагрузочный резистор R L то же самое в течение положительного полупериода и отрицательного полупериода цикл.Следовательно, полярность выходного сигнала постоянного тока то же самое как для положительных, так и для отрицательных полупериодов. Выход Полярность сигнала постоянного тока может быть либо полностью положительной, либо отрицательный. В нашем случае это полностью положительно. Если направление диодов перевернут, то мы получаем полный отрицательный постоянный ток Напряжение.

Таким образом, мостовой выпрямитель пропускает электрический ток во время обоих положительные и отрицательные полупериоды входного сигнала переменного тока.

формы выходных сигналов мостового выпрямителя показаны на рисунок ниже.

Характеристики из мостовой выпрямитель

Пик обратный Напряжение (PIV)

максимальное напряжение, которое диод может выдержать при обратном смещении состояние называется пиковым обратным напряжением (PIV)

или

максимальное напряжение, которое может выдержать непроводящий диод называется пиковым обратным напряжением (PIV).

Во время положительный полупериод, диоды D 1 и D 3 находятся в проводящем состоянии, а диоды D 2 и D 4 находятся в непроводящем состоянии. На с другой стороны, во время отрицательного полупериода диоды D 2 и D 4 находятся в проводящем состоянии, в то время как диоды D 1 и D 3 находятся в непроводящее состояние.

Пиковое обратное напряжение (PIV) для мостового выпрямителя дано по

PIV = V Smax

Коэффициент пульсации

гладкость выходного сигнала постоянного тока измеряется с использованием известного коэффициента как фактор пульсации. Выходной сигнал постоянного тока с очень меньшим рябь рассматривается как плавный сигнал постоянного тока, в то время как выходной сигнал постоянного тока с высокой пульсацией считается высоким пульсирующий сигнал постоянного тока.

Пульсация фактор математически определяется как отношение пульсации напряжения к чистое постоянное напряжение.

коэффициент пульсации для мостового выпрямителя равен

.

коэффициент пульсаций мостового выпрямителя составляет 0,48, что равно в качестве двухполупериодного выпрямителя с отводом по центру.

Выпрямитель эффективность

выпрямитель КПД определяет, насколько эффективно выпрямитель преобразует Переменный ток (AC) в постоянный ток (DC).

Высокая выпрямитель КПД указывает на самый надежный выпрямитель, в то время как низкий КПД выпрямителя указывает на плохой выпрямитель.

Выпрямитель эффективность определяется как отношение выходной мощности постоянного тока к мощности переменного тока. входная мощность.

Максимальный выпрямительный КПД мостового выпрямителя – 81.2% который аналогичен двухполупериодному выпрямителю с отводом по центру.

Преимущества выпрямительного моста

Низкий пульсации в выходном сигнале постоянного тока

Выходной сигнал постоянного тока мостового выпрямителя более плавный, чем однополупериодный выпрямитель. Другими словами, мост выпрямитель имеет меньше пульсаций по сравнению с полуволновым выпрямитель.Однако коэффициент пульсации моста Выпрямитель такой же, как двухполупериодный выпрямитель с отводом по центру.

Высокая выпрямитель эффективность

выпрямитель КПД мостового выпрямителя очень высок по сравнению с к однополупериодному выпрямителю. Однако выпрямитель КПД мостового выпрямителя и двухполупериодного ответвления выпрямитель такой же.

Низкий потеря мощности

В однополупериодный выпрямитель только на один полупериод входного переменного тока сигнал разрешен, а оставшийся полупериод ввода Сигнал переменного тока заблокирован. В результате почти половина приложенная входная мощность тратится впустую.

Однако в мостовом выпрямителе допускается наличие электрического тока в течение как положительных, так и отрицательных полупериодов ввода Сигнал переменного тока.Таким образом, выходная мощность постоянного тока почти равна входная мощность переменного тока.

Недостатки из мостовой выпрямитель

Мост выпрямитель схема выглядит очень сложной

В полуволновой выпрямитель, используется только один диод, тогда как в двухполупериодном выпрямителе с отводом по центру используются два диода. Но в мостовом выпрямителе мы используем четыре диода для схема работы.Так выглядит схема мостового выпрямителя сложнее, чем однополупериодный выпрямитель и с отводом по центру двухполупериодный выпрямитель.

Подробнее потеря мощности по сравнению с полной волной с центральным ответвлением выпрямитель

В электронный цепей, чем больше диодов мы используем, тем больше будет падение напряжения происходить. Потери мощности в мостовом выпрямителе почти равны двухполупериодный выпрямитель с отводом по центру.Однако в мосту выпрямитель, падение напряжения немного выше по сравнению с двухполупериодный выпрямитель с отводом по центру. Это связано с двумя дополнительные диоды (всего четыре диода).

В двухполупериодный выпрямитель с отводом по центру, проводит только один диод в течение каждого полупериода. Значит падение напряжения в цепи составляет 0,7 вольт. Но в мостовом выпрямителе два диода, которые соединены последовательно в течение каждого полупериода.Так падение напряжения происходит из-за двух диодов, что равно 1,4 вольта (0,7 + 0,7 = 1,4 вольта). Однако потеря мощности из-за этого падение напряжения очень мало.

“Это статья посвящена только мостовому выпрямителю. Если вы хотите читайте про мостовой выпрямитель с посещением фильтра: мостовой выпрямитель с фильтром «

Из чего состоит схема мостового выпрямителя?

Введение

Для нормальной работы электрической системы необходим стабильный источник питания.За исключением использования солнечных элементов или химических батарей в определенных особых случаях, постоянный ток большинства цепей преобразуется из переменного тока сети. Мостовой выпрямитель обычно используется для преобразования переменного тока в постоянный, который является наиболее часто используемой схемой, в которой для выпрямления используется однонаправленная проводимость диодов. Существует множество типов мостовых выпрямителей: плоские, круглые, квадратные, скамейки (вставные и SMD ) и др., Имеющих конструкции GPP и O / J.Максимальный выпрямленный ток составляет от 0,5 до 100 А, а максимальное обратное пиковое напряжение – от 50 до 1600 В.

Что такое мостовой выпрямитель?

Каталог


Ⅰ Схема мостового выпрямительного диода

Мостовой выпрямитель использует четыре полупроводниковых диода , соединенных попарно. Когда положительная половина синусоидальной волны входа включена, две лампы включаются, и получается положительный выход; наоборот, когда вводится отрицательная половина синусоидальной волны, две другие лампы включаются.Поскольку две лампы соединены в обратном порядке, на выходе все еще остается положительная часть синусоидальной волны. Кроме того, эффективность использования входной синусоидальной волны мостовым выпрямителем в два раза выше, чем у полуволнового выпрямителя.
Блок выпрямительного моста обычно используется в двухполупериодной схеме выпрямителя и делится на полный мост и полумост. Полный мост состоит из 4 выпрямительных диодов, соединенных в виде двухполупериодной мостовой схемы выпрямителя и собранных как единое целое.Полумост предназначен для соединения половин двух диодных мостовых выпрямителей. Два полумоста могут образовывать схему мостового выпрямителя, а полумост может также образовывать двухполупериодную схему выпрямителя с центральным отводом трансформатора. При выборе выпрямительного моста необходимо тщательно учитывать схему выпрямителя и рабочее напряжение.
Прямой ток полного моста имеет различные характеристики, такие как 0,5 А, 1 А, 1,5 А, 2 А, 2,5 А, 3 А, 5 А, 10 А, 20 А, 35 А, 50 А и т. Д. Выдерживаемое напряжение (максимальное обратное напряжение) составляет 25 В, 50 В, 100 В, 200 В, 300 В, 400 В, 500 В, 600 В, 800 В, 1000 В и т. д.
В этой главе выпрямительный диод рассматривается как идеальный компонент , то есть его сопротивление прямой проводимости считается равным нулю, а обратное сопротивление – бесконечным из-за удобства анализа схемы выпрямителя . Однако в практических приложениях следует учитывать, что диод имеет внутреннее сопротивление, и выходная амплитуда сигнала, полученная после выпрямления, будет уменьшена на 0,6 ~ 1 В. Когда входное напряжение выпрямительной схемы велико, этой частью падения напряжения можно пренебречь.Напротив, если входное напряжение небольшое, например, если входное напряжение 3 В, то выходное напряжение составляет всего 2 В, и необходимо учитывать влияние прямого падения напряжения на диоде.

Направление тока цепи мостового выпрямителя

Рисунок 1.

В положительном полупериоде u2, D1 и D3 включены, D2 и D4 выключены, и ток возвращается с верхнего конца вторичного TR на нижний конец через D1 → RL → D3 , и на нагрузке RL получается полуволновое выпрямленное напряжение.
В отрицательном полупериоде u2, D1 и D3 выключены, D2 и D4 включены, и ток возвращается от нижнего конца вторичной цепи Tr к верхнему концу вторичной цепи Tr через D2 → RL → D4 , и другая полуволна выпрямленного напряжения получается на нагрузке RL.

Ⅱ Характеристики схемы мостового выпрямителя

(1) Используемое устройство выпрямления в два раза больше, чем у двухполупериодного выпрямителя.
(2) Направление изменения импульса выпрямленного напряжения такое же, как и при двухполупериодном выпрямлении.
(3) Обратное напряжение, которое несет каждое устройство, является пиковым значением напряжения источника питания.
(4) Коэффициент использования трансформатора выше, чем у двухполупериодной схемы выпрямителя.

Ⅲ Однофазное выпрямление и трехфазное выпрямление

3.1 Схема однофазного мостового выпрямителя

Рисунок 2.

Однофазная схема мостового выпрямителя состоит из четырех диодов, соединенных в виде моста.Его недостаток в том, что он использует только половину цикла источника питания, и при этом напряжение выпрямления имеет большие пульсации.
На рисунке 2 (а) выше показано направление тока в схеме однофазного мостового выпрямителя. Сплошная стрелка указывает на ситуацию, когда источник питания переменного тока находится в положительном полупериоде, а пунктирная стрелка указывает на ситуацию, когда источник питания переменного тока находится в отрицательном полупериоде.
Видно, что четыре диода разделены на две части: положительный полупериод и отрицательный полупериод.Однако текущее направление нагрузки не меняется. Это двухполупериодное выпрямление. Кроме того, схема однофазного мостового выпрямителя на практике может быть реализована с помощью интегрального устройства « bridge stack ».
На рисунке 3. показана диаграмма формы сигнала однофазной мостовой выпрямительной схемы. Согласно диаграмме, среднее напряжение составляет: Uo ≈ 0,9U2 (где U2 – действующее значение выходного напряжения вторичной обмотки трансформатора).

Рисунок 3.Форма волны (однофазная)

3,2 Схема трехфазного мостового выпрямителя

Рисунок 4.

Трехфазная схема мостового выпрямителя разработана на основе схемы неуправляемого однополупериодного выпрямителя, которая по сути представляет собой последовательное соединение набора общего катода и набора общего анода с тремя полупроводниковыми диодами.
Кроме того, трехфазная мостовая схема должна иметь два тиристора, включенных одновременно, один в общей катодной области, а другой в общей анодной области, чтобы сформировать петлю.

Закон анализа цепи
Включается диод с максимальным анодным потенциалом в общей катодной группе.
Включается диод с наименьшим катодным потенциалом в общей анодной группе.

Примеры анализа цепей
Рисунок 5. t1 ~ t2

В общей катодной группе потенциал в точке U самый высокий, а V1 включен.
В группе с общим анодом потенциал в точке V самый низкий, а V4 включен.
Напряжение на нагрузке равно линейному напряжению Uuv.

Рисунок 6. t2 ~ t3

В общей катодной группе потенциал в точке U самый высокий, а V1 включен.
В группе с общим анодом потенциал в точке W самый низкий, и V6 включен.
Напряжение на нагрузке равно линейному напряжению Uuw.

Рисунок 7. t3 ~ t4

В группе с общим катодом потенциал в точке V самый высокий, а V3 включен.
В общей анодной группе потенциал в точке W самый низкий, а V6 включен.
Напряжение на нагрузке равно линейному напряжению Uvw .

Summery
В полнополупериодном цикле его можно разделить на 6 интервалов, каждый из которых питается от пары фазных проводов к нагрузке.
В полнополупериодном цикле каждый диод включен на одну треть времени (угол проводимости составляет 120 °).
В течение 6 периодов цикла напряжение нагрузки можно рассматривать как периодическое изменение.

Ⅳ Роль мостового выпрямления

1. Преобразуйте переменный ток, генерируемый генератором переменного тока, в постоянный ток для питания электрического оборудования и зарядки аккумулятора.
2. Ограничьте ток батареи, чтобы течь обратно к генератору, чтобы защитить генератор от сгорания обратным током.

Рисунок 8. Блок-схема мостового выпрямителя переменного тока в постоянный

Ⅴ Схема подключения мостового выпрямителя

В схеме мостового выпрямителя устранены недостатки, связанные с тем, что для двухполупериодной схемы выпрямителя требуется, чтобы вторичная обмотка трансформатора имела центральный отвод, а диод выдерживал большое реверсирование. напряжение, но используются два диода.При быстром развитии полупроводниковых устройств и низкой стоимости сегодня этот недостаток не очевиден, поэтому на практике широко используются мостовые выпрямительные схемы.
Следует отметить, что диод в качестве компонента выпрямителя следует выбирать в соответствии с различными методами выпрямления и значениями нагрузки. При неправильном выборе вы не сможете безопасно работать или даже сжечь трубу, что приведет к отходам.

Рисунок 9. Принципиальная схема мостового выпрямителя

Схема мостового выпрямителя также может рассматриваться как разновидность схемы двухполупериодного выпрямителя.Трансформатор подключается к четырем диодам в соответствии со способом, показанным на рисунке 9. D1 ~ D4 – это четыре идентичных выпрямительных диода, соединенных в виде моста, поэтому они называются мостовыми выпрямительными схемами. Используя направляющую функцию диода, вторичный выход может быть направлен на нагрузку даже в отрицательном полупериоде. Из рисунка видно, что D1 и D2 проводят ток через RL сверху вниз в течение положительного полупериода, а D3 и D4 проводят ток через RL сверху вниз в течение отрицательного полупериода.В этой структуре, если на выходе получается такое же постоянное напряжение, вторичной обмотке трансформатора требуется только половина обмотки по сравнению с двухполупериодным выпрямлением. Однако, если необходимо выводить такое же количество тока, диаметр обмотки следует соответственно увеличить.
Потому что выходное напряжение схемы выпрямителя содержит более крупные пульсирующие компоненты. С другой стороны, чтобы уменьшить составляющую пульсации в максимально возможной степени, необходимо максимально поддерживать составляющую постоянного тока, чтобы выходное напряжение было близким к идеальному постоянному току.Это фильтрующая мера. Фильтрация обычно достигается за счет использования эффекта накопления энергии конденсаторов или катушек индуктивности.

Рисунок 10. Схема мостового выпрямителя с конденсатором

В этой экспериментальной схеме используется конденсаторная фильтрация, то есть конденсатор фильтра C подключен параллельно сопротивлению нагрузки RL. Схема показана на рисунке 11, а форма отфильтрованного сигнала показана на рисунке ниже.


Рис. 11. Форма волны двухполупериодного фильтра выпрямления

Постоянная составляющая двухполупериодного выпрямленного выходного напряжения (по сравнению с полуволновым) увеличивается, а пульсации уменьшаются, но трансформатору требуется центральный отвод, который сложно производить, а выпрямительный диод должен выдерживать высокое обратное напряжение, поэтому обычно подходит для низкого выходного напряжения.

Рис. 12. Форма волны полуволнового выпрямительного фильтра

Полупериодное выпрямление – это наиболее часто используемая схема, в которой для выпрямления используется однонаправленная проводимость диода.

Ⅵ Разница между мостовым выпрямителем и двухполупериодной схемой выпрямителя

1) Не нужен центральный отвод на вторичной стороне трансформатора мостовой выпрямительной цепи, используйте еще 2 выпрямительных диода.
2) В двухполупериодной схеме выпрямителя используется менее 2 выпрямительных диодов, но вторичная обмотка трансформатора должна иметь центральный отвод.
3) Обратное выдерживаемое напряжение выпрямительного диода, используемого в двухполупериодной схеме выпрямителя, вдвое больше, чем у мостового выпрямителя.
4) Выпрямление и двухполупериодное выпрямление имеют разные требования к количеству вторичных трансформаторов. Для первого требуется только 1 набор катушек, а для второго – 2 набора.
5) Выпрямление и двухполупериодное выпрямление имеют разные требования к вторичному току трансформатора, первое в два раза больше, чем второе.

Часто задаваемые вопросы о схеме мостового выпрямителя

1.Что делает мостовой выпрямитель?
Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к более низкой стоимости и весу по сравнению с выпрямителем с трехпроводным входом от трансформатора с вторичной обмоткой с центральным отводом. … Диоды также используются в мостовых топологиях вместе с конденсаторами в качестве умножителей напряжения.

2. Как мостовой выпрямитель преобразует переменный ток в постоянный? Мостовые выпрямители
преобразуют переменный ток в постоянный, используя систему диодов, изготовленных из полупроводникового материала, либо полуволновым методом, который выпрямляет одно направление сигнала переменного тока, либо полуволновым методом, который выпрямляет оба направления входного переменного тока.

3. Что происходит при выходе из строя мостового выпрямителя?
Без сглаживания конденсатора, когда 1 диод в мостовом выпрямителе выходит из строя, как напряжение, так и ток уменьшаются. При конденсаторном сглаживании, когда в мостовом выпрямителе выходит из строя 1 диод, напряжение остается довольно постоянным, но увеличивается ток.

4. Почему мы используем 4 диода в мостовом выпрямителе?
Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным ответвлением.Мостовой выпрямитель – это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления и, возможно, является наиболее широко используемой схемой для этого приложения.

5. Почему мостовой выпрямитель предпочтительнее двухполупериодного выпрямителя?
Мостовой выпрямитель приводится в действие одной обмоткой, которая пропускает ток в обоих циклах нагрузки. … Полная волна лучше, чем мост, еще в одном аспекте, то есть выходное напряжение постоянного тока немного выше, чем у моста. Это потому, что он имеет только 1 диодный переход с переменного на постоянный ток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *